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Abstract 
As starting point for patterns with seven-fold symmetry, we investigate the 
basic possibility to construct the regular heptagon by bicompasses and ruler. 
To cover the whole plane with elements of sevenfold symmetry is only possi-
ble by overlaps and (or) gaps between the building stones. Resecting small 
parts of overlaps and filling gaps between the heptagons, one may come to 
simple parqueting with only a few kinds of basic tiles related to sevenfold 
symmetry. This is appropriate for parqueting with a center of seven-fold 
symmetry that is illustrated by figures. Choosing from the basic patterns 
with sevenfold symmetry small parts as elementary stripes or elementary 
cells, one may form by their discrete translation in one or two different di-
rections periodic bordures or tessellation of the whole plane but the seven-
fold point-group symmetry of the whole plane is then lost and there re-
mains only such symmetry in small neighborhoods around one or more 
centers. From periodic tiling, we make the transition to aperiodic tiling of the 
plane. This is analogous to Penrose tiling which is mostly demonstrated with 
basic elements of fivefold symmetry and we show that this is also possible with 
elements of sevenfold symmetry. The two possible regular star-heptagons and a 
semi-regular star-heptagon play here a basic role. 
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1. Introduction 

Plane geometry and number theory are considered as the oldest disciplines of 
mathematics where the historical roots blur in ancient times. Most knowledge 
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from ancient mathematics is handed down to modern time by the 13 books of 
Euclid’s “Elements” (for example, Stillwell [1], Maor [2] from the many repre-
sentations of history of mathematics). Geometric constructions with compass 
and ruler fascinated professional mathematicians and layman to every time. A 
particularly interesting special case is constructions of regular polygons (n-gons) 
and it is known since ancient time that beside the square and the regular triangle 
( 3n = ), the regular pentagon ( 5n = ) and their combination to the regular pen-
tadecagon ( 3 5 15n = ⋅ = ) are constructible in such way and, furthermore, all 
n-gons which arise from them by multiple bisections of the central inner angles of 
the basic isosceles triangles (i.e., ( )3 2 ,5 2 ,3 5 2 , 0,1,2,m m mn m= ⋅ ⋅ ⋅ ⋅ =  . The 
young Gauss found in 1796 that in addition the n-gons are constructible by 
compass and ruler if n is a prime Fermi number 22 1

h

hn F= ≡ +  (plus possible 
bisections of the inner angles). From the many possible references we cite here 
Stillwell [1] because he mentions with citation on p. 512 of the original paper 
that Wantzel in 1837 finally proved that this is not only sufficient but that it is 
basically necessary for such constructibility that n is a product of different prime 
Fermi numbers and completes in this way the insight of Gauss that, apparently, 
is not very well known up to now (see also Maor and Jost [3], p. 76, for full name 
and life data of Wantzel). From other possible references, we cite here the very 
interesting work of Conway and Guy [4] and the nice booklet of Sutton [5]. For 

2h =  one finds the Fermi number 
22

2 2 1 17F = + =  that leads to the famous 
constructibility of the regular 17-gon, the very new case not known in ancient 
time. In addition to cases resting on the prime Fermi numbers, clearly, the 
square and all its cases obtained by bisection of the central inner angles are con-
structible by compass and ruler (i.e., 2 2 , 0,1,2,mn m= ⋅ =  ). Formally, the last 
corresponds to Fermi numbers hF  with h → −∞  (2-gon or di-gon) but then 
it is not clear whether or not are there geometric objects which in some sense 
correspond to the (irrational) Fermi numbers with finite negative integers 

0h−∞ < < . 
The n-gon with the lowest number 3n ≥  which is not constructible by 

compass and ruler is the regular heptagon to number 7n = . The prime number 
“Seven” as symmetry in nature and art is very seldom realized (see Section be-
fore “Conclusion”) but it plays some role in mystics. We mention here only the 
very old myth that our world was created in seven days and everybody will find 
many other things even from daily life which more or less arbitrarily were re-
lated by men with the number “Seven”. 

The regular heptagon can be constructed by a so-called “neusis” construction 
[4] [5] [6] which is not fully in the spirit of constructions by compass and ruler. 
It was shown in [7] [8] that a regular heptagon may be constructed by an in-
strument which was called “rhombic bicompasses” and consists of two com-
passes which are connected by movable arms of equal lengths (at least three 
arms altogether) and with fixed endpoints in their action. In this way the points 
on the two different circles which can be drawn by such an instrument are cor-
related (see Section 2). It seems to us that such constructions are more in the 
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spirit of constructions by compass and ruler than neusis constructions but one 
has to wait whether or not this will be accepted by the community of mathema-
ticians. In combination with usual compasses the construction of much more 
regular n-gons becomes possible than without it. A technical realization of 
rhombic bicompasses, in particular with the possibility of variable arm lengths, 
would be interesting. 

The regular heptagon and also the two possible regular star-heptagons possess 
the point-group symmetry 7 7vC m  with 14 symmetry elements given in 
Schoenflies and in International notation (m stands here for 'mirror' symmetry) 
used by physicists. This group characterizes a relatively simple symmetry and 
may serve as starting point for some considerations to extensions. The pure ro-
tation group 7 7C   with 7 elements of rotations and the mirror group 

1s vC C≡  are the only possible nontrivial subgroups of C7v where C7v may be 
considered in its structure as built from the subgroup C7 of C14 where the coset 
( )14 7C C−  to its subgroup C7 is multiplied by the “simplest element of anti-
symmetry” that is the reflection at a line in the plane. This provides the oppor-
tunity to consider groups with and without general anti-symmetries which be-
came important in physics, for example, as magnetic groups and non-magnetic 
groups if this element of anti-symmetry is the inversion of time. However, the 
extensions of the point groups C7 or C7v to crystallographic groups is as it is well 
known not possible that restricts their possibilities. Furthermore, one may dis-
cuss possible realizations of C7v and C7 for parqueting and tessellations of planes 
and this goes in direction of one- and two-dimensional reliefs and tiling and 
art-work and also to realizations in nature. 

The number of contributions to symmetry and to discrete groups and of their 
extension to anti-symmetries and color groups and to application in physics, in 
particular, in crystallography is really enormous and their notations are often 
very different in physics and mathematics. An early classical book about sym-
metries in art and nature is that of H. Weyl [9]1 and later to parts the book of 
Steinhaus [10]. One of my earliest books about regular and semi-regular sym-
metries was that of Lyusternik [11] with general propositions about convex fig-
ures and with the regular and semi-regular Archimedean polyhedrons. The 
more extensive book of Fejes Tóth [12] contains also mathematical propositions 
to two-dimensional figures and three-dimensional objects and in addition 
good-quality reproductions to plane figures and red-green stereo-spectacles for 
spatially seeing three-dimensional geometrical objects. 

Next, we have to mention the Russian school (it seems that one may speak 
about such) with roots, in particular, from E. S. Fyodorov who in 1890 (and in-
dependently Schoenflies in 1891) found the crystallographic spatial groups and 
later from Shubnikov who contributed to symmetries and anti-symmetries with 
applications in physics where they play an important rule (e.g., [13]). The most 
important of the many journal papers of Shubnikov are collected in the work [14] 

 

 

1Translations of books from Western countries into Russian were welcome since up to the turn in 
GDR in 1990 it was impossible for me to buy them in original. 
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which comprises as well physical as also mathematical contributions to symme-
try groups with particularly beautiful illustrations to them and tabular material. 
Anti-symmetry in mathematical form was first considered by H. Heesch and as 
time inversion in addition to spatial crystallographic symmetry elements by 
Shubnikov, Koptsik and others and leads to magnetic and non-magnetic 
point-groups and crystal classes. A very broad spectrum of ideas to theory and 
application of discrete symmetries is dealt with in the book of Shubnikov and 
Koptsik [15] with many tables and symbolic representations (in black-red for 
anti-symmetries and by more colors for color groups) and also in nature with 
(black-white) reproductions of E. Haeckel and artwork is also taken into account. 
More for specialists and very astonishing is the large monograph of Koptsik [16] 
with symbolic graphical representation of all 90 generalized point groups and of 
all 1421 = 230 + 1191 generalized crystallographic groups (in black-red and with 
many tabular material). In Russian literature the usual 230 crystallographic 
groups are mostly called “Fyodorov groups”, with antisymmetry “Shubnikov 
groups” and with elements of more general color symmetry “Byelov groups”. 
About magnetic crystal classes in physics we recommend also the paragraphs 
§57 and §58 of [17] in connection with the very well-written chap. XII to sym-
metry of Landau and Lifshits [18]. A special article about magnetic crystals is 
that of Dimmock and Wheeler [19]. To history of crystallography and, more 
generally, of geometry, we find very interesting and little known stories in the 
popular-scientific booklet of Levitin [20]2. 

A well organized representation of group theory for physicists and mathema-
ticians together with vast tabular material to the crystallographic point and space 
groups in the Appendices we find in the monograph of Lyubarskiy [21]. From 
the more physically oriented representations of the mathematics of symmetry in 
application to crystallography and the notations we recommend the book of Yale 
[22] and, in particular, the first chapter (about 80 pages) of the monograph of 
Kleber [23]. 

In our paper [24] we gave the structure of the 122 generalized crystallographic 
point groups built from the 11 crystallographic point groups with only rotations 
as elements of symmetry ( 1 2 2 3 3 4 4 6 6, , , , , , , , , ,C C D C D C D C D T O ) from their 
non-trivial 10 subgroups of divisor 2 and among them 3 of divisor 4 by multip-
lication of their co-sets by the elements of 1  (spatial inversion), 1  (time inver-
sion) and by 1  (product of spatial inversion and time inversion) and by direct 
products with them that leads to a good overview about them and to magnetic 
and non-magnetic and to gyrotropic and non-gyrotropic classes. 

From a more mathematical point of view to symmetry of two-, three- and 
higher-dimensional geometrical objects is the work of Coxeter, e.g. [25]. An al-

 

 

2For example, it is said that E. S. Fyodorov found 229 and Schoenflies 227 of the possible 230 crys-
tallographic space groups without intersection of the absent groups that means the union of both 
works contains all crystallographic space groups. There is also reported that the derivation of the 17 
planar net (or lattice) groups which can be extended by translation from the appropriate 10 planar 
point groups to two-dimensional analogs of three-dimensional crystallographic groups and which 
often is attributed to Pólya was already made before by E. S. Fyodorov ([20], chap. V, pp. 90 and 80). 
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most exhaustable representation of two-dimensional symmetries for tilings and 
tessellations with a great number of high-quality figures (in black-white) one 
finds in the voluminous monograph of Grünbaum and Shephard [26]. Comput-
ers make it possible to create now really beautiful colored geometrical figures. A 
very novel representation with many new ideas (e.g., costs of patterns, magic 
theorem) and new notations for extended considerations of symmetries and with 
a great number of two- and three-dimensional figures and with explanation of 
their symmetries is given in the book of Conway, Burgiel and Goodman-Strauss 
[27]. Also with beautiful symmetrical figures but without mathematics and more 
from an artists point of view is the work of Miyazaki [28]. Likely, there are much 
more similar sources which had to be cited. 

With figures of arbitrary point-group symmetry one may fill the whole plane 
but only a few point-group symmetries are compatible with additional transla-
tion symmetry. In three-dimensional case these are the well-known 7 crystal 
systems in the possible 14 Bravais lattices with 32 possible point groups and 230 
“usual” crystallographic space groups. In the two-dimensional case these are 
analogously 5 lattice systems with 10 point-group symmetries and 17 possible 
net groups as analogues of the crystallographic space groups [15] [26] [27]. All 
point-group symmetries with number five and equal and higher of seven are not 
possible in connection with discrete translation symmetries. The covering of 
spaces by geometrical objects (for examples, by circles, balls and analogously 
n-dimensional spheres in n-dimensional spaces) including such with overlaps 
are considered in the highly mathematical book of Conway and Sloane [29]. 
Covering of the whole plane with heptagons with small overlapping and after 
their cut-off with a very small number of remaining different tiles are possible 
and considered in present article. A similar and very interesting direction was 
initiated already long ago by Penrose (in about 1976) and found interesting ap-
plications in quasi-crystals. Two introducing articles from Martin Gardner we 
find in [30] (first two chapters pp. 1-30) with beautiful figures (in particularly 
impressive for me are Figure 8, Figure 9 and Figure 11 of patterns “sun”, “star” 
and “cartwheel” and the Ammann bars) and more in the already cited mono-
graph of Grünbaum and Shephard [26] with a voluminous chapter about aperi-
odic tilings (chap. 10, pp. 519-582) including a large number of pretty pictures. 
Practically all such patterns in the cited sources contain locally elements of 
five-fold symmetry (regular pentagon and star-pentagon and a semi-regular 
pentagon) and the gaps between them are filled with other simple polygons. It 
seems to us that aperiodic tiling of the kind of Penrose tiles is also possible with 
elements of local seven-fold symmetry such as the regular heptagon and the two 
regular star-heptagons and some figures were made for present article and for 
preparation in this direction. This direction is very open for further investigation. 

2. An Ancient Theorem for a Doubling Relation between  
Two Angles within a Circle 

In this short Section we give a theorem known from ancient time for a doubling 
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relation between two angles constructed within a circle. It is very useful for 
quickly establishing relations between the different angles inside and outside of 
regular polygons. According to Maor [2] (chap. 6) it is Proposition 20 and 
Proposition 21 of book III of Euclid’s “Elements”. Probably, it is much older and 
was known already to the Babylonians. The Figs. 28-33 in [2] illustrate what are 
equivalent contents of the theorem. In the book of Stillwell [1] this theorem is 
almost at the beginning of the whole representation (p. 8, Fig. 1.6). Nevertheless, 
it seems to be not so well-known and popular as, for example, the theorem of 
Pythagoras. 

The theorem is illustrated for our purpose in Figure 1. Its geometrical proof is 
very simple but it has to use the theorem that the angle sum of an arbitrary plane 
triangle is equal to π that is also easily to prove geometrically, for example, by 
fragmentation of two equal triangles and compositions of the fragments to a 
rectangle. The triangle with corners ( ), ,O B C  is an isosceles one and therefore 
the inner angles at B and C are equal and are denoted by α . Due to the angle 
sum of a triangle the inner angle at O is equal to 2απ−  and the complemen-
tary angle to it denoted by β  is equal to 2α . The triangle with the corners 
( ), ,O A B  is also an isosceles one and therefore its inner angles at points A and  

B are equal and due to the angle sum within a triangle are then equal to 
2

απ
− .  

This proves at once that the inner angle of the triangle with the corners 
( ), ,A B C  at point B is a right angle. 

A modern analytic proof of the doubling theorem is easily to make using the 
theorem of Pythagoras and the analytic form of doubling relations for the angles 
in trigonometric functions, for example, for the Tangent but due to clearness of 
the geometrical proof it is not necessary to give it here. For the relations between  
 

 
Figure 1. Doubling relation between two angles α  and 2β α=  within a (unit) circle. 
The triangles with the corners ( ), ,O A B  and ( ), ,O B C  are isosceles ones and the 

triangle with corners ( ), ,A B C  is a rectangular one. The elementary proof uses the 

theorem that the angle sum of arbitrary plane triangles is equal to π . The theorem 
extends from acute to obtuse angles β . (Figure such as all following figures made by 
“Mathematica 10”). 
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the angles of regular polygons it is convenient to use the doubling theorem but it 
is also possible by other reasoning. In last cases it should implicitly contain a 
proof of the doubling theorem without seeing this. 

3. Cyclotomic Equation and Its Solution for the Regular  
Heptagon 

The corner points of a regular n-gon inscribed into a circle of unit radius ( 1R = ) 
and considered in the complex z-plane is the cyclotomic equation  

( )( ) ( )1 20 1 1 1 , i .n n nz z z z z z x y− −= − = − + + + + = +        (3.1) 

Their n solutions by, in general, transcendental numbers kz  (modulo n) are  

( )2 2 2exp i cos i sin , 0,1, 2, , 1 ,kz k k k k n
n n n

     = = + = −     
   

π π π

 
  

* *
0 7 1, , , 1.k l k l k n k k k kz z z z z z z z z z+ −= = = = ≡ =         (3.2) 

They are constructible by compass and ruler if these solutions do not involve 
irrational expressions higher than quadratic radicals (including nested quadratic 
radicals). For the construction by rhombic bicompasses and ruler this has to be 
weakened by the requirement that all fixed points used for the construction 
should be determined by irrational expressions not more complicated than 
nested quadratic radicals. 

The cyclotomic equation for the regular heptagon can be factorized as follows 
[7] [8]  

( )( )

( )

( ) ( )( )( )( ) ( )( )( )( )

7

6 5 4 3 2

3 2 3 2

1 2 4 3 5 6

0 1

1 1

1 i 7 1 i 7 1 i 7 1 i 71 1 1
2 2 2 2

1 .

z

z z z z z z z

z z z z z z z

z z z z z z z z z z z z z

= −

= − + + + + + +

  − + + −
= − + − − + − −    

  
= − − − − − − −

 (3.3) 

It is easily seen that the first polynomial in z of third degree involves the three 
roots 1 2 4, ,z z z  and the second polynomial of third degree the three roots 

3 5 6, ,z z z  and due to the theorem of Viète we have (Figure 2)  

1 2 4 3 5 3 6 5 6
1 i 7 ,

2
z z z z z z z z z − +
+ + = + + =  

3 5 6 1 2 1 4 2 4
1 i 7 ,

2
z z z z z z z z z − −
+ + = + + =  

1 2 4 7 3 5 6 14 0 1.z z z z z z z z z= = = = =                 (3.4) 

For convenience let us give the solutions also in numerical form. The seven-th 
complex roots of 1 are  

0 7 1,z z= =  

1
2 2cos i sin 0.6234898019 i 0.7818314825,
7 7

z    = + =
π π

+ +   
   
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2
4 4cos i sin 0.2225209340 i 0.9749279122,
7 7

z    = + =
π π

− +   
   

 

3
6 6cos i sin 0.9009688679 i 0.4338837391,
7 7

z    = + =
π π

− +   
   

 

4
8 8cos i sin 0.9009688679 i 0.4338837391,
7 7

z    = + =
π π

− −   
   

 

5
10 10cos i sin 0.2225209340 i 0.9749279122,

7 7
z    = + = − −   

 

π

 

π
 

6
12 12cos i sin 0.6234898019 i 0.7818314825.

7 7
z    = + = + −   

 

π

 

π
        (3.5) 

 

 
Figure 2. Regular heptagon and its construction with rhombic bicompasses and ruler in 
complex z-plane. Additionally to the fixed points for the bicompasses and corresponding 
circles of radius 1 1R =  we have drawn two circles with Radius 2 2R =  around the 

coordinate origin and around the point 
1 i 7

2
− +

 which are here the fixed points for the 

rhombic bicompasses with distance 2  and obtain in this way a modified construction 
by absolute minimum bicompasses with 3 arms. For the construction it is important that 

the middle arm of the bicompasses goes through the point 
1 i 7

2
+

 or through the point −1 

in the complex plane. The complex points 3z  and 2 4 3 3
22cos 1.246980
7

z z z zπ + = = 
 

 

lie on the same straight line from the center. 
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They are the corner-points of the regular heptagon in the complex plane in-
scribed into a circle of radius equal to 1R = . 

4. Equations for Real and Imaginary Part of Roots for the  
Regular Heptagon 

It is interesting to establish the equations of third degree which provide the real 
and imaginary parts kx  and ky  of the solutions kz  separately. It is not poss-
ible to make this directly by elimination of one part from the root theorem of 
Viète (3.4) because this provides polynomial equations of nine-th degree. This is 
due to the fact that the elimination process does not know which are the pairs of 
real and imaginary part of the solutions and takes into account all possible com-
binations. 

For the sums it follows directly from the first of the relations (3.4) that  

1 2 4 6 5 3
2 4 8 1cos cos cos ,
7 7 7 2

x x x x x x      + + = + + = + + = −    
π π π


     

 

1 2 4 6 5 3
2 4 8 7sin sin sin .
7 7 7 2

y y y y y y      + + = − − − = + + =     
    

π



π π    (4.1) 

Both these identities cannot be obtained by the addition theorems for trigono-
metric functions alone and have to use the theorem of Viète. Using well-known 
identity relations for products of trigonometric functions we may transform the 
following sums to the sums in (4.1)  

1 2 1 4 2 4 6 5 6 3 5 3

2 4 8 1cos cos cos ,
7 7 7 2

x x x x x x x x x x x x+ + = + +

 π π π    = + + = −     
     

 

1 2 1 4 2 4 6 5 6 3 5 3 0,y y y y y y y y y y y y+ + = + + =              (4.2) 

and, furthermore, using trigonometric identities and (4.1)  

1 2 4 6 5 3
1 2 4 8 11 cos cos cos ,
4 7 7 7 8

x x x x x x       = = + + + =      
   

π



π

 

π  

1 2 4 6 5 3
1 2 4 8 7sin sin sin .
4 7 7 7 8

y y y y y y       = − = − + + = −      
    

π π



π    (4.3) 

Thus the equation which provides the real parts of the complex roots as solu-
tions is  

( )( )( ) ( )( )( )

3 2

1 2 4 6 5 3

1 1 10
2 2 8

,

x x x

x x x x x x x x x x x x

= + − −

= − − − = − − −
        (4.4) 

and the equation for the imaginary parts of the complex roots  

( )( )( ) ( )( )( )

3 2

1 2 4 6 5 3

7 70
2 8

.

y y

y y y y y y y y y y y y

= − +

= − − − = + + +
       (4.5) 

The coefficients in the equations for the real and the imaginary part of the 
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complex roots are only rational numbers or rational parts of the square root of 7. 
Their parts in the Cardano formulae, however, are complex numbers and are 
rather complicated. 

If we denote the solutions for the doubled imaginary part of the corner-points 
by ku  of the regular heptagon according to  

( )22 2sin , 0,1,2, ,6 ,
7k ku y k k ≡ = = 
π

 
             (4.6) 

then we find from (4.5) the two equations for the doubled imaginary parts  

( )( )( )3 2
1 2 40 7 7 ,u u u u u u u u= − + = − − −  

( )( )( )3 2
6 5 30 7 7 .u u u u u u u u= + − = − − −           (4.7) 

For the product of both equations we get the following bi-cubic equation for 
the quantity u  

( )( )3 2 3 2 6 4 20 7 7 7 7 7 14 7.u u u u u u u= − + + − = − + −      (4.8) 

In last form of the right-hand side this is the bi-cubic equation of Kepler with 
integer coefficients (see Fejes Tóth [12], p. 117) for the side lengths of the regular 
heptagon {7/1}, the first regular star-heptagon {7/2} and the second regular 
star-heptagon {7/3} all inscribed with their corners into a circle of radius 1R = . 
The applied symbols for regular heptagon and regular star-heptagons are the 
Schläfli symbols [12] [25] [27]. The Equation (4.8) possesses only real solutions 
but they are pair-wise positive and negative ones and the mentioned side lengths 
mean the positive ones. 

5. Proof for Second Fix-Point of Rhombic Bicompasses  
Leading to Corner-Points of Regular Heptagon 

We now come to the explanation of the construction of the roots (corners of 
regular heptagon) (3.5) of the cyclotomic Equation (3.3) by bicompasses and ru-
ler. If we draw the sum of the vectors ( )1 2 4, ,z z z  in different order we get a  

rhombus which ends at the point 
1 i 7

2
− +

 of the complex plane if we begin in  

the center of the complex plane. This is shown in Figure 2 where on the circle 
* 2 2 1zz x y= + =  lie all sevenths roots of 1 and on the circle  

221 7 1
2 2

x y
  + + − =       

 the three root sums ( )1 2 1 4 2 4, ,z z z z z z+ + + ; (the  

root sums ( )3 5 3 6 5 6, ,z z z z z z+ + +  lie on the here not drawn complex conju-
gated circle in the lower half-plane). The rhombic bicompasses with at least 
three linearly connected arms of equal lengths is fixed in two points, first in the  

coordinate origin 0z =  and second in the point 
1 i 7

2
z − +
=  and the movable  

arms with one degree of freedom possess a position where they are at once cor-
related between the points ( )1 2 4, ,z z z  of the unit circle around the origin. The 
two auxiliary points are determined as points of intersection of the two unit cir-
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cles with two circles of radius 2  around the same fixed points 0z =  and  
1 i 7

2
z − +
= . The square root 2  is the distance of the two fixed points of the  

bicompasses. One of the possible positions of the bicompasses corresponds then 
to the right corners of the regular heptagon. To find these points one may use  

one of the two auxiliary points of the complex plane 1z = −  or 
1 i 7

2
z +
=  at  

which one of the arms of the rhombic bicompasses intersects these points as 
shown in Figure 2. We now prove that this determines the right position of 
the rhombic bicompasses and choose for this purpose the auxiliary point 

1z = − . 
The point 1z = −  lies on the line between 4z  and 2 4z z+  which can be 

parameterized by  

( )2 4 , 0 1 ,z tz z t= + ≤ ≤                      (5.1) 

with real parameter t. It goes for 0t =  through the point 4z  and for 1t =  
through the point 2 4z z+ . From the equation  

2 4 1,z tz z= + = −                         (5.2) 

follows that this is the case for the real value of the parameter t equal to  

( )*4
2 2

2

1 42cos 0.445042.
7

zt z z
z
+  π = − = − + = − = 

 
          (5.3) 

The point 2 4z z+  is on the prolongation of the line from the coordinate ori-
gin to the point 3z  according to  

2 4

3 3

4 8 2 2 6exp i exp i exp i exp i exp i
7 7 7 7 7
22cos 1.246980 .
7

z z

z z

π π π π          + = + = − +          
          
 = =

π

 
 

π
   (5.4) 

This proves that in the right position when a middle arm of the bicompasses 
intersects the point 1z = −  it determines the corners ( )1 2 4, ,z z z  of the regular 
heptagon. Analogous considerations can be made for the intersection point  

1 i 7
2

z +
= . If we use only 3 arms of the rhombic bicompasses we may determine  

by this construction only the point 4z . By succeeding angle bisection one may 
determine next the point 2z  and then finally the points 1z  and 3z  and thus 
also 6z  and 5z . 

The second fix-point 
1 i 7

2
z − +
=  for the construction of the regular heptagon  

with rhombic bicompasses is equal to a second possible basis besides the basis 
equal to 1 of the Kleinian lattice that means one of the 9 possible lattices with 
unique factorization [4] [31]. However, it seems now that this is likely only a 
curious fact with no relation between each other and besides the basis  

1 i 71,
2

 − +
  
 

 of the Kleinian lattice of the elementary cell one may choose infi-
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nitely many others, e.g., 1 i 7 1 i 7,
2 2

 + − +
±  

 
. Therefore the point-group  

symmetry of the Kleinian prime integers should possess the x- and y-axis as 
mirror lines and should be not higher than 2vC  and lattices with translation 
symmetries are not compatible with sevenfold symmetry. 

The regular heptagon loses a little its fear in view of the first regular n-gon 
which is not constructible by compass and ruler between the cases of the regular 
trigon 3n =  and the regular octagon 8n =  since it is constructible instead by 
rhombic bicompasses and ruler. 

6. Geometry of the Regular Heptagon and Role of Addition  
and Multiplication of Complex Numbers for  
Two-Dimensional Rotations and Translations 

For the drawings of figures in the next sections it is steadily necessary to make  

rotations of points and lines. The rotation of plane coordinates 
x
y

 
=  
 

r  about  

an angle ϕ  counter-clockwise around the coordinate origin (transformation  

( )R ϕ ) with following translation by a vector 0
0

0

x
y

 
=  
 

r  is represented by  

( ) 0R ,ϕ′ = +r r r  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 0

0 0

cos sin cos sin
.

sin cos sin cos
x x y xx x
y x y yy y

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

′  −   − +     
= + =       ′ + +        

   (6.1) 

Alternatively, this is exactly what is made with the algebra of complex num-
bers iz x y= +  by addition and multiplication with complex numbers of mod-
ulus equal to 1  

( )
( ) ( )( )( ) ( )
( ) ( ) ( ) ( )( )

0

0 0

0 0

i exp i

cos i sin i i

cos sin i sin cos .

z x y z z

x y x y

x y x x y y

ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

′ ′ ′= + = +

= + + + +

= − + + + +

        (6.2) 

In this principal way we made the calculations to the group of Euclidean mo-
tions for the drawings, however, mostly in other ordering, first the translation 
from the coordinate origin and then the rotations of the transformed vectors or 
lines or geometrical objects  

( )( ) ( )( )0 0R R I .ϕ ϕ′′ ′= + = + −r r r r r                 (6.3) 

The algebra of complex numbers is essentially the algebra of the 
two-dimensional rotation group ( )2SO  which extended by multiplication with 
real numbers unequal to zero is the maximal group of continuous commutative 
transformations with a fixed center and already the two-dimensional unitary 
unimodular group ( )2SU  with 3 independent parameters is non-commutative. 
For the description of the transformations by such non-commutative groups was 
searched for hyper-complex algebraic number systems (e.g., [31]) which may 
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describe them (e.g., Hamilton”s quaternions) but the general form of their de-
scription by matrices (or linear operators) was soon later developed by Cayley 
and others. 

The distance ( )1 2,D z z  of two complex numbers 1i
1 1ez r ϕ=  and 2i

2 2ez r ϕ=  
or equivalent plane vectors 1r  and 2r  is determined by  

( ) ( )( )
( )

* *
1 2 1 2 1 2

2 2 2 2
1 1 2 2 1 2 1 2

2 2
1 2 1 2

,

2

2 .

D z z z z z z

x y x y x x y y

= − −

= + + + − +

= + −r r r r

          (6.4) 

The Cosine and Sine between two complex numbers 1z  and 2z  are deter-
mined by  

( )
( )( ) ( )( )

* *
1 2 1 2 1 2 1 2 1 2

1 2
* * 2 2 2 2 1 21 1 2 2 1 1 2 2

cos ,
2

z z z z x x y y

z z z z x y x y
ϕ ϕ

+ +
− = = =

+ +

r r
r r

 

( )
( ) ( ) ( ) ( )

[ ]* *
1 21 2 1 2 1 2 1 2

1 2 * * 2 2 2 2
1 21 1 2 2 1 1 2 2

,
sin i ,

2

z z z z y x x y

z z z z x y x y
ϕ ϕ − −

− = − = ≡
+ +

r r
r r

   (6.5) 

with [ ],a b  the vector product of vector a  with vector b . 
Some features of the geometry of the regular heptagon with circumscribed 

circle of radius 1R =  are represented in Figure 3. The side length a of the reg-
ular heptagon and the height h (perpendicular bisector) of the central sector  

with inner angle 2
2
7

α =
π  are  

2sin 0.867767, cos 0.900969.
7 7

a h   = = = =   
 

π

 

π
        (6.6) 

The height h is at once the radius of the circle inscribed into the regular hep-
tagon (not drawn in Figure 3). The points on the x-axis in Figure 3 are at  

( )3 4 6,0 cos ,0 0.900970,0 ,
2 7

z z
A

+     = = = − 
π
      

 

( )

2 5

2 5 3 4

4 5sin cos
7 7,0 ,0 ,0

4 6sin sin cos
7 7 7

4 22cos 2cos 1,0 0.692021,0 ,
7 7

z z
B

z z z z

      
       −       = − = − = − + −           +                

    = − + = −    
  

π π

π π π

π π

 

 

( )

3 4

1 6 3 4

6sin
7,0 ,0

6 2sin sin
7 7

4cos sin
7 14,0 ,0 0.356896,0 ,

2 3cos sin
7 14

z z
C

z z z z

  
   −   = − = − − + −       +        

      
            = = − = −

      
          

π

π

 

π π

π

π π
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( )2 5 4,0 cos ,0 0.222521,0 ,
2 7

z z
D

+     = = = − 
π
      

 

( )

3 4

1 6 2 5

6sin
7,0 ,0

2 4sin sin
7 7

3cos
27 ,0 2cos 1,0 0.246980,0 ,
7cos

7

z z
E

z z z z

π

π

  
   −   = = + − + −       +        

  
       = = − = +       


π

π π



π

   

 

( )1 6 2,0 cos ,0 0.623490,0 .
2 7

z z
F

+     = = = + 
π
      

                   (6.7) 

 

 
Figure 3. Geometry of regular heptagon. The radius of the circumscribed circle is set 

1R = . The notation of the angles is 1 7m m mα α =
π

=  and thus 1 7
α =

π  and, for 

example, 2 3 13 2 6α α α= = . Furthermore, 0 7 1z z R= = = . The points B±  are equivalent 

to B by clock-wise rotation with angle 4
7

±
π  around the center and C±  are equivalent 

to C by clock-wise rotation with angle 6
7
π  around the center. The relations between the 

angles are easily to verify using Figure 1. The details of the notation of the points are 
explained in (6.7), (6.8) and (6.9). 

https://doi.org/10.4236/apm.2021.111005


A. Wünsche 
 

 

DOI: 10.4236/apm.2021.111005 77 Advances in Pure Mathematics 
 

The points ,B C± ±  which are rotated points ,B C  are at  

( )0.153989 i 0.674671 ,B± = ±  

( )0.321552, i 0.154851 ,C± = ±                   (6.8) 

and the points G±  which are the intersection of chords between 0 1z =  and 

2z±  and between 1z±  and 4z±  (i.e., between corner points of the regular hep-
tagon such as given plus equivalent ones by rotations about multiple angles of  
2
7
π )  

( )0.321552, 0.541044 .G± = ±                   (6.9) 

It is sometimes not easy to find the simplest form of complicated trigonome-
tric expressions due to the many identities where “simplest” in addition is not 
exactly defined. 

We now consider a first “ring” or “generation” of 7 regular heptagons which 
coincide at one side with the heptagon of equal side-length in the center (see 
Figure 4). First, it is favorable to establish the centers of the regular pentagons 
around the coordinate origin. For example, the two centers of the hexagon to  

the right are at 2cos exp i
7 7

   ±   
  

π



π
 and the remaining centers are found by  

rotations from them. The seven regular heptagons at the first ring possess a 
small overlap which later in parqueting of the whole plane play a role and have 
to be removed. The points in Figure 4 are determined by  

( )1 2cos ,0 2.80194,0 ,
7

A   = − − = −  
 

π


 

( )51 2cos cos ,0 1.74698,0 ,
7 7

B
     = + = −     

    

π π


 

( )cos ,0 0.900969.0 ,
7

C   = − = −  
  

π  

( )4cos ,0 0.222521,0 ,
7

D   = = −  
  

π  

( )31 2cos cos ,0 0.62349,0 ,
7 7

E π π     = + =     
     

 

( )2 32cos cos ,0 1.84601,0 ,
7 7

F     = + =    
    

π π  

( )

3sin 2sin
7 7cos ,0 2.08815,0 ,

37 tg
14

G

    +          = − + =    
   

π π
π

π


 

( )1 2cos cos ,0 2.52446,0 .
7 7

H
     = + =     

    

π π


                     (6.10) 
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Figure 4. Geometric relations for the first ring of neighbored regular heptagons with 

overlaps. The angles mα  are defined as in Figure 3 that means by 1 7m
mmα α =
π

= . 

Other geometrical details are explained in (6.10). 
 

If we look to Figure 3 and to Figure 4 we see that when drawing all interest-
ing lines between corner points we have astonishingly many cases of intersection 
of more than 2 lines in one point. 

7. Two Regular Star-Heptagons and a Semi-Regular  
Star-Heptagon 

Besides the regular heptagon there are possible two regular star-heptagons 
shown in Figure 5. They can be obtained if we first draw the 7 corner points of a 
regular heptagon and if we then connect by lines each corner point with the next 
{ } { }7 1 7≡  (regular heptagon), with the over-next (first star-heptagon {7/2}) or 
with the third-next corner point (second star-heptagon {7/3}) and prolong them 
up to intersection of the lines (the symbols for the star-heptagons are the Schläfli 
symbols). If we circumscribe around them circles with radius 1R =  then the 
side length of these star-heptagons are solutions ( )3 3 2 2 3 32 , 2 , 2u y u y u y= = =  
of (4.7) to { } { } { }( )7 , 7 2 , 7 3 . In the drawing we show here their inner and 
outer angles. With radius 1r =  of the inner drawn circles the distances from 
the center to the tip of the jags 1D  and 2D  are, respectively  
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Figure 5. The two regular star-heptagons. For the first star-heptagon the inner angle of a 

jag is 1 7
α =

π  and the angle between two jags 3
3
7

α =
π . For the second star-heptagon 

the inner angle of a jag is 3
3
7

α =
π  and the angle between two jags 5

5
7

α =
π . If the 

radius of the circle around the inner regular heptagon is set 1R =  then the tip of the jags 

possess the distance from the center for the first 1 1 2cos 2.80194
7

D π = + = 
 

 and for the 

second 2 1 2sin 1.44504
14

D π = + = 
 

. 

 

1 cos ctg sin 1 2cos 2.80194.
7 14 7 7

D        = + = + =    
π π

  
  

π

  

π

 
       (7.1) 

2
3cos ctg sin 1 2sin 1.44504.

7 14 7 14
D π π π π       = + = + =       

       
       (7.2) 

If we look to Figure 5 we find the following possible calculation. An inner 
sector of the regular heptagon and the corresponding outer jag possess the  

common basis which is the side length of the regular heptagon and is 2sin
7

 π 
 
 

 

with the perpendicular bisector cos
2

 π 
 
 

. The perpendicular bisector of the jags  

to the common side length with the regular heptagon is the Cotangent of the half  

angle of the jag, i.e. ctg
14
 π 
 
 

 or 
3ctg
14
π 

 
 

, respectively, multiplied with the 

half of the side length of the regular heptagon that means with sin
2

 π 
 
 

. The  

sum of both mentioned expression is the distance of the tip of the jags to the 
center. 

If we draw around the inner regular heptagon or around the inner 
star-heptagon {7/2} a “densely” packed ring of regular heptagons (first genera-
tion) that is only possible with small overlaps of the heptagons then we arrive at 
the two upper pictures in Figure 6. After resection of the overlaps we obtain the 
two lower pictures in Figure 6. We consider this as two dual cases to each other  
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Figure 6. Basic rings of the two alternative parquets. The 7 regular heptagons ring around 
a central regular heptagon or a star-heptagon, respectively, are densily arranged that is 
only possible with overlaps as shown in the upper row. These overlaps can be cut in a way, 
for example, as shown in the lower row. The angles at the outer concave points of the 

figures are 3 5 5, , ,
7 7 7 7
π π π π  (from left to right) which are the same as the inner angles of 

the jags and the outer angles between two neighbored jags as seen in Figure 5. If the 
radius of the circles around the regular heptagons is set equal to 1R =  in the figure on 
the left-hand side then the distance to the marked centers of the regular heptagons on the 

first ring is 2cos 1.8019377
7

D  = = 
 

π
 in all partial figures. 

 
that later leads to two dual forms of possible parqueting. In relation to the inner 
regular heptagons the rings of heptagons in the first generation have different 
positions in the two cases, in first case they have a common side and in second 
case the tips of the heptagon of the ring touch the middles of the sides of the 
central heptagon. If the regular heptagons of the first generation possess the 
same size in both cases then their distance of their centers from the coordinate 
origin is the same (see Figure 6). 

There is yet another principal way of finding a structure element for patterns 
with sevenfold symmetry. For this purpose we made Figure 7. We draw here 
circles around the regular heptagons and lines from their corners to their centers  
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Figure 7. Basic constructions with densely packed regular heptagons and circles around 
them. In the center of the left-hand figure we recognize a semi-regular star-heptagon 
which is separately shown in Figure 8 on the left-hand side. We have here small overlaps 
of the circles. This is also the basis of the parqueting of the whole plane dealt with in 
Section 8. 
 
and show the rings of the first and second generation of regular heptagons. It is 
seen that by parts of the lines appear patterns in form of a star-heptagon which 
does not belong to the regular star-heptagons. We call it semi-regular 
star-heptagon. It is shown in Figure 8 on the left-hand side. On the right-hand 
side of Figure 8 it is shown a ring of the first generation of regular heptagons 
which touch with their tips the tips of the semi-regular heptagon in the center. It 
can serve as starting point for further rings with generations of heptagons which 
together with triangles may cover the whole plane with patterns of sevenfold 
symmetry. However, the last is not really made up to now. 

The geometry of the semi-regular star-heptagon is to see in Figure 8. Two 
length characteristics from which can be easily calculated other length characte-
ristics are the radius of the circumscribed circle around the regular heptagon in 
the center which we set 1R =  and the distance D from the center to the tip of 
the jags of the semi-regular star-heptagon which is then  

3cos
142cos 1 1.80194.

7 cos
14

D

 
    = = + =    
 
 

π
π

π
              (7.3) 

The inner angles of the jags of the semi-regular star-heptagon are 2
7
π  and 

the angles between their jags 4
7
π  and they fit together insofar as they are in a  

relation 1:2. However, it is not possible to cover the whole plane only with 
semi-regular star-heptagons. From Figure 9 it can be seen that this is only poss-
ible with overlaps and (or) gaps between these star-heptagons. The outer 14  

angles at the concave points on the border in right-hand picture are 6
7
π  and  
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Figure 8. The semi-regular star-heptagon and a ring of regular heptagons around it 
without overlaps. In the center of the right-hand figure we recognize a semi-regular 
star-heptagon which is separately shown in the figure on the left-hand side. If the radius 
of the circumscribed circle around the inner regular heptagon is set 1R =  then the tip of 
the jags in the figure of the left-hand side possess a distance to the center of 

2cos 1.80194
7

D   = 
 

π
=  and in the right-hand picture from the center to the centers of 

the ring of regular heptagons of 2 1 2cos 2.80194
7

D  = + = 
 

π
. The outer angles at the 14 

(concave) corner points are 6
7
π . Therefore the inner angles of the jags, the angle 

between the jags and the outer angles at the concave corner points of the border in the 
figure on the right-hand side possess a relation 1:2:3. The border line between two 
neighbored regular heptagons is exactly equal to the side length of the regular heptagon 
that we prove in the text. 
 

 
Figure 9. Basic constructions with densely packed semi-regular heptagons but with 
overlaps. In the center of the two figures we recognize semi-regular star-heptagons which 
are separately shown Figure 8. If the radius of the circumscribed circle around the inner 
regular heptagon is set 1R =  then the tips of the inner jags possess a distance to the 

center of 2cos 1.80194
7

D   = 
 

π
= . The left-hand figure possesses symmetry C7v with 

mirror symmetry and the right-hand figure only the lower symmetry C7. Both 
arrangements possess overlaps. 
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together with the inner angles of the jags and the angles between the jags of the 
semi-regular heptagon are in a relation 1:2:3 that opens possibilities to order 
further rings of elements with sevenfold symmetry around the first ring without 
overlaps. 

We now prove that the borderline (in brown) between two outer regular hep-
tagons is exactly equal to the side length of the regular heptagon as it seems from 
right-hand Figure 8. From right-hand side in Figure 8 we see that this length of 
the borderline is the distance ( ),D z z+ −  of the following two complex points  

z+  and z−  within the right-hand angle sector of 2
7
π .  

21 2cos exp i exp i ,
7 7 7

z±
      = + ± +      

    

π π π

 
              (7.4) 

which is  

( )

( )1 0

2, 2 1 2cos sin 2sin
7 7 7

52cos 2sin , 0.867767,
14 7

D z z

D z z

+ −
      = + −     

π π π

π


      

   = = = =
π

  
   

        (7.5) 

where 0z  and 1z  are roots of the cyclotomic equation (see (3.5)). It is exactly 
equal to the side length of the regular heptagons with circumscribed circle with 
radius 1R = . Therefore, in the next “ring” of polygons in the right-hand Figure 
8 we may place 7 new regular heptagons with these borderlines as basis. On the 
other side it is clear from this Figure 8 that if we place on the neighbored regular 
heptagons to these borderlines 14 new regular heptagons of the same size then 
they meet them with their tips at the distance  

1 2cos 2cos 5.04892
7 7

D     = + =    
    

π π  from the center. 

8. Parqueting of the Whole Plane with Seven-Fold Symmetry  
C7v by Tiles of 4 Different Types 

We consider now ways of parqueting of the whole plane with a center of 
point-group symmetry C7v. Rings with 7, 14, 21 and so on regular heptagons are 
arranged in a compact way but with overlaps and gaps that is shown in Figure 
10. The parts which have to be removed are shown by red lines in Figure 11 and 
the gaps in form of small rhombi can be left as small tiles or can be cut into 4 
equal parts and added to the remaining tiles. In first form the whole plane will be 
filled with two sorts of polygons, irregular heptagons and rhombi and in second 
form by only irregular pentagons in the whole pattern. This is shown in Figure 
12. As mentioned we call each new “ring” (better quasi-rings) of new tiles a new 
generation of tiles and if we call the regular heptagon in the center the 0-th gen-
eration the first generation possesses 7 tiles and each following generation pos-
sesses 7 tiles more. Thus the ring of the k-th generation is formed by 7k tiles. In 
Figure 10, Figure 11 are drawn 4 generations of tiles up to 4k =  and in Fig-
ure 12 also 4 generations but from 2k =  up to 5k = . 
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Figure 10. Covering of plane with densely packed regular heptagon tiles. The regular 
heptagons possess small overlaps from the first generation (rings) on and small gaps 
between 4 neighbored ones. The point-group symmetry is C7v that mean C7 plus 7 
additional mirror lines. In the partial figures are drawn up to 4 generations (rings) of 
regular heptagons. 
 

 
Figure 11. Removing the overlaps and transition to covering of plane with irregular 
heptagons and rhombuses. If the tiles are cut off along the red lines one gets irregular 
heptagons with mirror symmetry. 
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Figure 12. Parqueting of plane with seven-fold symmetry by non-regular pentagons of 4 
different forms. Each generation adds 7n new tiles to the preceding generation but the 
whole figures become more similar with their boundaries to regular heptagons for high n. 
There are shown here 5 generations (rings) of tiles. If the central heptagon belongs to 

0n =  our four partial pictures begin with the first generation that means with 2n =  
and goes up to 5n = . The total sum nS  with tiles of n generations is described by the 

formula 
27 7 2

2n
n nS + +

=  that leads to { }1,8,22,43,71,106,nS =  . This means 106 

tiles up to the 5-th generation in the last partial figure. 
 

The distance of two next neighbored centers of the regular heptagons in  

Figure 10 in different generations of rings is 2cos
7

D  =  
 

π
. The direction of  

their position from the coordinate origin in the complex plane is obtained by 
multiplication of this distance by complex numbers which are obtained in fol-
lowing way. One begins from coordinate origin and goes to the centers from 
neighbor to next neighbor and add for each step a factor  

( )exp i , 0, 1, 2, ,6
7

n nπ  = ± ± 
 

  where 
7

n π  is the angle between the coordinate  

center to the center of the next considered regular heptagon. Since there are dif-
ferent ways from coordinate origin to the center of the considered regular hep-
tagons over neighbored we have different possibilities of summations which 
have to lead to the same result. We consider a few first generations and denote 
the distances from the coordinate center to the centers of the regular heptagons 
in Figure 12 by k

lD  where upper index k means the k-the generation and lower 
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index 0, 1, 2,l = ± ±   enumerates the different possibilities. The complex cen-
ters in the k-th generation we denote by 1 1 1 2 2 1i , i ,k k k k k kc a b c a b= + = +   and the 
corresponding angles by k

lγ . If we are only interested in the distances and in the  

angles to the positive x-axes we may only consider a sector of angle 2
7
π  and 

obtain all other cases by rotations about multiples of angle 2
7
π . In this way we  

find for the first 3 generations: 
1) generation  

1
1 2cos exp i ,

7 7
c±

   = ±   
   

π π
 

( )1 1
1 1

sin
72cos 1.80194, tg ,

7 cos
7

D γ± ±

 
    
π

π
π

= = = ±    
 
 

         (8.1) 

2) generation  

2
1 2cos 1 exp i ,

7 7
c±

    = + ±    
   

π



π  

( )2 2
1 1

sin
72cos 2cos 3.51352, tg ,

7 14 1 cos
7

D γ± ±

π 
      = = = ± 

π
       + 

π


 
π

    (8.2) 

3) generation  

3
0 2cos exp i 1 exp i ,

7 7 7
c       = − + +      

   

π π

  

π  

( )3 3
0 02cos 1 2cos 5.04892, tg 0,

7 7
D γ    = + = =    

   

π



π  

3
1 2cos 1 2exp i ,

7 7
c±

    = + ±    
   

π



π  

( )3 3
1 1

2sin
72cos 5 4cos 5.28551, tg .

7 7 1 2cos
7

D γ± ±

π 
      = + = = ±        

π
π




π

+ 


  (8.3) 

All shown pictures of parqueting possess the point-group symmetry C7v 
(7-fold rotation around the symmetry center plus mirror symmetry to 7 lines 
through the center, i.e. 14 symmetry elements). If we do not remove the small 
rhombic gaps which are seen in Figure 11 but only the overlaps then we get a 
parqueting without destroying the symmetry C7v but with irregular heptagon 
plus rhombic tiles tiles of the form of the gaps. One may lower this symmetry to 
C7 if we remove the mirror symmetries by making, e.g., bulges at the tiles in a 
way that after this they fit together and do not form gaps in the parquet. There is 
a lot of possibilities for changing this parqueting hardly to overview. 
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9. Possible Tile Forms for Parqueting with Seven-Fold  
Symmetry 

We now discuss possible forms of the tiles for parqueting the whole plane with 
seven-fold point-group symmetry C7v with full covering. 

Apart from the regular heptagon in the center we have only 4 other types of 
tiles in form of not fully regular pentagons for covering the whole plane by a 
parquet. These 4 tile forms are shown in Figure 13. The first two tiles, we call 
them “Lantern” and “Häusle”, possess a mirror line as symmetry. The second 
two tiles, we call them “Kite 1” and “Kite 2” are two mutually enantiomorphic 
forms of an asymmetric pentagon. The 4 forms of tiles are best understood if 
we show them in connection with the regular heptagon (red color) from which 
they are made by changes of their form. Interesting is that all 4 types of tiles 
possess 2 right angles which are signified by double rings in Figure 13.  
 

 
Figure 13. The four basic pentagon tiles for a parquet with seven-fold point-group 

symmetry. Each tile contains two right angles, two angles 9
14
π  and one angle 5

7
π . The 

two “Kites” are enantiomorphic forms meaning that they are mutually mirror-symmetric. 
The angle sum 5NS =  (sum of inner angles at the corners) of an arbitrary pentagon is 

equal to 3π  and, generally, for an arbitrary N-gon equal to ( )2NS N= − π . The “Häusle” 

contains two sides of the regular heptagon with side-length a  the others contain exactly 
one side but some other sides are along some sides of the regular heptagon. By slicing the 
pentagons along the dashed lines one obtains more simple basic building stones for 
tessellation. 

https://doi.org/10.4236/apm.2021.111005


A. Wünsche 
 

 

DOI: 10.4236/apm.2021.111005 88 Advances in Pure Mathematics 
 

Furthermore, all types of tiles have at least parts of the basic regular heptagon in 
common. 

If the radius of the heptagon is equal to 1 as before than the side length of the  

heptagon is 2sin
7

a  =  
 

π
 and the tiles possess only two different side-length  

which we denote by b and c. Their lengths are  

2sin 0.867767,
7

a π = = 
 

 

3 22cos sin sin sin 1.215715,
14 14 7 7

b        = = + =       
    

π π

 

π



π
 

3 22cos cos cos cos 1.524459.
14 14 7 7

c        = = + =       
    

π π

 

π



π
              (9.1) 

The angles within the corners of the tiles in form of pentagons are shown in 
Figure 13. It is interesting that each tile form possesses two right angles signified 
by double circles. 

One may modify the tiles covering the plane without leaving gaps but pre-
serving the symmetry C7 or at least v sC C≡  in many ways. The center can be 
modified by substitution of the regular heptagon by the two possible 
star-heptagons. Then we have also to change the polygons of the first generation 
but the further generations may remain the same ones. Removing some separa-
tion lines in the higher generations one may obtain the larger tiles of different 
forms. Another possibility is to divide the tiles into two equal parts and color 
one parts black and the other part red. In this way one obtains the simplest ex-
tension of the symmetry C2v to a color symmetry. 

We now give the numbers of the different types of tiles which are needed in 
each generation. This is given by Table 1. 

For high order of generations the number of tiles of the “Häusle”-type be-
comes predominant and the border of parquet becomes more and more similar 
to a regular heptagon with small damages at the edges and from generation to  

next higher generation the position of the border rotates by an angle of 
7
π . For  

the total number of tiles nS  up to the n-th generation follows then  
 
Table 1. Numbers of dierent tiles in parquet. 

Ring Nb. Lantern Kite 1 + 2 Häusle Sum 

k = 1 7 0 0 7 

k = 2 0 7 + 7 0 14 

k = 3 0 7 + 7 7 21 

k = 4 0 7 + 7 14 28 

k = 5 0 7 + 7 21 35 

k = 6 0 7 + 7 28 42 

          

k ≥ 2 0 7 + 7 7(k − 2) 7k 
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( ) { }
1

7 1
1 7 1 1,8,22,43,71,106,148,197, .

2

n

n
k

n n
S k

=

+
= + = + =∑       (9.2) 

This arithmetic sequence nS  contains prime numbers as well as composite 
numbers. 

It is clear that the tiles can be varied in an infinite number of ways, for exam-
ple, by omission of separating lines or addition of new separating lines in sym-
metric way (deflation and inflation [30]). 

10. A Second Dual Form of Parqueting with Seven-Fold  
Symmetry 

There exists a second basic covering of the plane with seven-fold symmetry C7v 
which in certain sense is dual to the covering considered in Figure 12. The 
starting point from a regular star heptagon {7/2} in the center (or also {7/3}; see 
Figure 6) is shown with overlapping by the arrangement of regular heptagons in 
Figure 14. The overlaps and the gaps can be removed in similar way as this was 
made from Figures 10-12 in the formerly considered case. We do not draw here 
these next steps since they are clear. The distance from the symmetry center  
 

 
Figure 14. To parqueting of whole plane in seven-fold symmetry in alternative 
form. One may consider this parqueting in some sense as dual to the parqueting 
in Figure 12 with the prestep in Figure 10. Due to analogues we did not produce 
here the corresponding pictures in analogy to Figure 11 and Figure 12. 
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(coordinate origin) to the first “ring” of regular heptagons is 2cos
7

D  =  
 

π
 if  

the circumscribed radius of the regular heptagons is taken 1R =  that is the 
same as in first case but the position of the regular heptagons is now rotated by  

an angle π  (or equivalently 
( )2 1

7
n + π

). 

For the first two generations of tiles depending on cut-off two further tiles in 
form of non-regular pentagons are possible which are represented on Figure 15. 
We call them “Kite” and “Birdhouse”. These tiles can be also seen in Figure 6 in 
the lower part. The number of tiles in form of non-regular pentagons after 
cut-off of the overlaps is analogous to the numbers given in Table 1. 

It is often fascinating for scientists if objects with an infinite number of ele-
ments (here translations of elementary cells) can be combined with other ele-
ments (here uncountable number of point-group symmetries) only to a finite 
number of types in such way that the number of types can be listed. 

11. Anti-Symmetry, Shubnikov Groups, Time Inversion and  
Magnetic and Non-Magnetic Groups 

In this Section we explain shortly anti-symmetry first considered by Heesch and 
later by Shubnikov and Koptsik and others. It possesses physical importance if 
the element of anti-symmetry is time inversion which changes the direction of 
electric currents and the direction (or rotational sense) of the magnetic field and 
magnetic moments. It preserves the electric charges and the direction of the 
electric field. 

In pure geometry, both considered forms of parqueting with sevenfold sym-
metry can be extended to antisymmetry or “black-white” symmetry (“white” is 
sometimes unfavorable for the paper color and often “red” is taken instead for  
 

 
Figure 15. Two additional basic pentagon tiles for a parquet with seven-fold point-group 
symmetry. Both figures contain three sides of the basic regular heptagon. The angles (no 
right angle) are shown in the figures. One may recognize these tiles also in the lower 
pictures of Figure 6. 
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graphical representations, e.g., [15]). We mentioned that the group C7v can be 
obtained from C14 represented in the form  

( )14 7 14 7 ,C C C C= + −                       (11.1) 

by multiplication of the coset ( )14 7C C−  to the subgroup C7 with an element of 
mirror symmetry v sm Cσ ≡ ∈  that means here mirror symmetry with respect 
to a line through coordinate origin in the plane (σ  is the notation of Landau 
and Lifshits [18] for such an element). This leads to the group structure of C7v  

( )7 7 14 7 .vC C C Cσ= + −                     (11.2) 

with 14 elements. If we substitute herein the group element σ  by another (in-
dependent) element, for example, by the color transition from “black” to “white” 
then we obtain an antisymmetry group or, equivalently, a color group. Similar to 
this procedure was the construction in three-dimensional case of the 90 = 32 + 
58 generalized magnetic and 32 non-magnetic crystal classes where the element 
of antisymmetry is then the time inversion [17]. In our paper [24] we gave a 
structure which involves spatial inversion, time inversion and product of spatial 
and time inversion on an equal level and shows the analogies between magnetic 
and gyrotropic classes (for optics). In abstract sense of the mathematical group 
structure the groups (11.1) and (11.2) are isomorph and therefore possess the 
same number of elements, the same irreducible representations and the same 
character tables. 

The non-magnetic classes are the direct products of a usual class (in our case 
C7) with the group of time inversion (two elements: identity element and time 
inversion; we denote it here iC )  

7 7 ,iC C C= ×                          (11.3) 

and possesses 14 elements. This is a non-magnetic class but not a crystal class3 
(since C7 is not compatible with translations) or in case that iC  means a group 
of black-to-white transitions a colorless group. A simple realization is, for example  

a regular heptagon where each pattern in the basic sectors of angle 2
7
π  is  

colored with black and red color at once. There are 32 non-magnetic crystal 
classes and together with the 90 magnetic crystal classes 122 generalized crystal 
classes. The groups of symmetry and anti-symmetry are called Shubnikov 
groups. Three basic articles of Shubnikov from 1961-1966 to this topics are re-
published in [14] (last three articles under “Symmetry”, pp. 161-204). Shubnikov 
used the name “black-white” groups for groups of symmetry and anti-symmetry. 
This together with rich other material to symmetry is represented in the beauti-
ful monograph of Shubnikov and Koptsik [15]. The voluminous graphical re-
presentation of the symmetry elements of all crystallographic space groups of 
symmetry and anti-symmetry by Koptsik [16] although needed only for very few 
specialists is a highly intellectual achievement. 

By analogous constructions one may obtain color groups with more than two 

 

 

3Whether or not it is somewhere realized in nature is another problem. 
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colors. In our case of sevenfold symmetry one may start for n colors from the 
pure rotation group C7n and may consider the subgroup C7 with all its 1n −  
cosets to this subgroup and may multiply all these n sets by the transition to the 
n colors in all possible combinations. The color groups are also called Byelov 
groups in Russian literature. 

12. Periodic Tilings of the Whole Plane, Translations and  
Net or Lattice Symmetry 

Adding discrete translation symmetry to an elementary cell with point-group 
symmetry one obtains a lattice, in our case a two-dimensional lattice. Two 
principal cases are possible, first a group with translations in only one direc-
tion (bordures) and second a group with two basic translations in two inde-
pendent directions (net). It is well known that sevenfold point-group symme-
try C7 and C7v combined with discrete translation symmetry is not possible. 
This is true as well for two-dimensional lattices as also for three-dimensional 
lattices. Therefore, we may only ask wether or not subgroups of C7 and C7v can 
be combined with translation symmetry. The point group C7 possesses only the 
genuine subgroup C1 (only identity element) and, clearly, it fits to be combined 
with translation symmetry. The point group C7v possesses as genuine subgroups 
C7 which we already excluded and the subgroup v sC C≡  which is possible to 
be combined with translation symmetry. One may choose a part of the picture 
with point-group symmetry C7v or C7 which at least possesses the group C1 (no 
symmetry) or the mirror symmetry 1v sC C≡  and declare it as an elementary 
stripe or an elementary cell and may apply to it a one-dimensional or a 
two-dimensional translation group. 

There exist 17 two-dimensional lattice groups (or reticular ornaments or net 
groups in Russian literature [16]) which were first derived by E. S. Fyodorov and 
later by Pólya [12] [20] and correspond to the 230 crystallographic space groups 
[15] [16] [21]. The 17 net groups are illustrated schematically and (or) by basic 
patterns, for example, by Steinhaus [10] (chap. 4), Shubnikov and Koptsik [15] 
(chap. 7, Figs. 149 and 150), Conway et al. [27] (chap. 3, pp. 34-39), Grünbaum 
and Shephard [26]. 

The sevenfold point-group symmetry C7v or C7 vanishes if we combine it with 
translations and the result may possess as maximal point-group the symmetry Cs 
(mirror symmetry) or C1 (no symmetry) and it is therefore not simple to obtain 
aesthetic forms of ornamental bordures or net groups because they do not fit to-
gether very well after translation. The chosen elementary stripe or cell may pos-
sess arbitrary general form and may degenerate to arbitrary simpler form. Satis-
fying patterns from an aesthetical point of view for tiling one may obtain by 
choosing simple elements as, for example, regular heptagons or star-heptagons 
as content of the elementary cell with some place to the border of the elementary 
cell and if we then apply to them a translation group. 

These remarks may form the transition to the next more important aperiodic 
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tilings and to analogues of Penrose tiles but with basic elements of sevenfold 
symmetry. 

13. Aperiodic Tilings of Whole Plane with Elements of  
Seven-Fold Symmetry and Penrose Tiling 

Periodic tiling or parqueting of the whole plane with a few types of tiles in form 
of regular polygons is very restricted in their number. For example, there are 
only 3 forms with triangle, square and hexagon with which one may cover the 
whole plane without gaps. All tilings with 2 or more species of regular polygons 
are also known [10]. For periodic tiling with regular polygons plus some irregu-
lar polygons there are more possibilities. In contrast, aperiodic tiling with 
non-regular polygons admits an infinite number of possibilities which is difficult 
to overview. It seems to be possible to cover the whole plane with regular hepta-
gons and star-heptagons and additionally other irregular polygons of a low 
number of species in a way which is analogous to Penrose tiles (e.g., [26] [27] 
and the first two articles in [30]). A special class of them are asymmetric tilings 
with a central symmetry. From this type is the tiling or parqueting in Figure 12. 

In this Section we consider by a few examples aperiodic tilings of the whole 
plane with basically elements of sevenfold symmetry that means of regular hep-
tagons and star-heptagons which can be considered as some analogues to Pe-
nrose tilings or tessellations. If we look to pictures of aperiodic tessellations by 
Penrose tiles in the literature, in particular, in [26] [27] [28] and the first two ar-
ticles in [30], then we see that here basically elements of fivefold symmetry that 
means that regular pentagons and semi-regular star-pentagons play a main role. 
Figure 7 shows a possible basis for an analogue with star-heptagons. Clearly, 
with elements of only fivefold symmetry (regular heptagons and star-heptagons) 
or seven-fold symmetry alone we cannot cover the whole plane without gaps and 
there remains a short number of other polygon species which fill the gaps. 

Obviously, there are many possibilities to cover the whole plane aperiodically 
with tiles of basically sevenfold symmetry. We give here an example starting 
from Figure 16 where seven regular heptagons touch their neighbors in two dif-
ferent ways. Figure 17 shows how we may continue with covering the whole 
plane by further rings of polygons. However in the left-hand pattern in Figure 
17 we have small overlaps which have to be removed. Since it was difficult to see 
all possibilities in advance we did not calculate the centers of the rings of new 
generations but experimented by computer with elements such as shown in Fig-
ure 18 where we could change some parameters. Figure 8 shows that the 
semi-regular heptagon with the right-hand figure can be also taken as starting 
point for aperiodic tilings with basically elements of sevenfold symmetry but this 
must be investigated in future. The possibilities of aperiodic tiling with basic 
elements of sevenfold symmetry are by far not exhausted and this can be only 
the beginning for a more systematic search. 

Last but not least let us show for comparison in Figure 19 an example of tiling  
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Figure 16. Presteps for Penrose tiles with elements of sevenfold symmetry. The angles at 

the borders 3
7
π  and 

7
π  of the two figures and of the jags of the star-heptagons in the 

center are dual to each other. They are equal to the inner angles of the jags of the two 
regular star-heptagons in Figure 5. If the radius of the circumscribed circles to the regular 
heptagons is set equal to 1 then the distance from the coordinate center to the centers of 
the regular heptagons in the first generation is equal and is  

3sin
2 17 1 2cos
7sin 2sin

7 14

R

π 
    = = + = 

π
π π    

   
   

. 

 

 
Figure 17. Two basic patterns for Penrose tiles with elements of sevenfold symmetry and 
with symmetry center. In the first figure we have small overlaps of regular heptagons at 
the border which can be removed similar to the procedure for parqueting in Figure 11. 

The inner angle of the jags of regular star-heptagons are 
7
π  and 3

7
π  and of the regular 

heptagon 
7
5π . The outer angles at the border should be equal only to multiples of 

7
π . 

At least, this should be makable with higher rings. The outer angle at the concave points 

of the whole border is 
7
π  in left-hand figure and a star-heptagon of such size as in the 

center seems to be possible in the next generation. The outer angles at the concave 

corners in the right-hand figure are 
7
5π  and 

7
6π . 
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Figure 18. Rings of basic elements of the patterns for Penrose tiles in case of sevenfold 
symmetry. Patterns of such kind plus analogous ones for regular heptagons where it is 
possible to change some parameters were generated to make figures such as Figure 17 in 
“experimental” way by computer. However, Figure 16 was generated by exactly 
calculating the centers of the regular heptagons. 
 

 
Figure 19. The most simple aperiodic parqueting with symmetry center of five-fold 
symmetry. The partial figures are analogous to Figure 10 and Figure 14 for seven-fold 
symmetry with the difference that the small quadrilaterals there are overlaps whereas the 
small rhombuses here are gaps. We have shown here rings of the fifth and the eighth 
generation of pentagons. This should be one kind of a Penrose tiling if it is continued to 
the whole plane. 
 
with basis elements of five-fold symmetry such as regular pentagons plus one 
additional type of rhombuses. In analogy to seven-fold symmetry in Figure 11 
and Figure 12 one may remove the gaps and arrive at (not fully) irregular types 
of pentagons which cover the whole plane and, clearly, such pictures are known. 
In most pictures of aperiodic tilings and Penrose tiles the semi-regular pentagon 
plays a role as an element but Figure 19 should be also an example for aperiodic 
tiling. One feels that the name “aperiodic” (or “non-periodic”) tiling is too gen-
eral in comparison to “periodic” tiling and the gap between them has to be filled 
with life that means with further classification and ordering. 

14. Objects with 7-Fold Symmetry in Nature and in Art 

It is believed and true that sevenfold symmetry does not play a great role in 
geometry. The regular heptagon is the first of the n-gons which cannot be con-
structed by compass and ruler. The symmetry of the point group C7 and C7v such 
as the symmetry groups C5 and C5v cannot be extended by translation symmetry 
to one of the possible lattice symmetries (Bravais lattice). Multiples of the angle  
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2 51.429
7
π



  and regular heptagons and star-heptagons are not easily to draw  

without computer. 
Seven-fold symmetry in nature and art is possible but in contrast to five-fold 

symmetry is very rare. In nature we find it in relatively stable form in the flowers 
of chickweed wintergreen (Trientalis europaea, Trientalis borealis, family Myr-
sinaceae (myrsine family in the Ericales; formerly positioned within Primulaceae 
that is in the family of “primroses” with usually fivefold symmetry of the flow-
ers). This is the only example from kingdom of plants known to me. Shubnikov 
and Koptsik [15]4 reproduce in Fig. 29 on p. 28 a (“Lower”) animal (a colony of 
sea squirts Botryllus sp. from ascidians of the Tunicata, phylum Chordata) with 
sevenfold symmetry from the work of Ernst Haeckel [32] and we found it too 
[8]5. Among the sea stars (or star-“fishes”) which possess mostly 5 arms are also 
a small number of species with sevenfold symmetry as one may see from pub-
lished pictures. 

An example in art is given by D. Sutton in the Section “Perfect Fourteen” pp. 
100, 101 of [33]. Here we find a picture of a pattern from the mausoleum of 
Mamluk Sultan Qaytbay in Cairo with a non-perfect (by good will) seven-fold 
symmetry which contains regular star-heptagons and in the center a regular 
star-14-gon. It seems that also in Islamic design this is an exception. Although I 
did not discuss in detail in this paper the constructibility of the regular 17-gon 
by compass and ruler discovered in young age by Gauss I mention here that in 
the book of Maor and Jost [3] (pp. 75, 76 with hint to Jost who discovered it) I 
found to my astonishment an architectural realization of a 17-gon with a photo 
made in the town of Leipzig which long ago (1955-1961) was the town where I 
studied physics at the University. It is a 17-sided pattern decorating the floor in a 
17-sided glass dome in the “Mädler-Passage” (built in 1912-1914) in the center 
of the town. I never heard about this during my time in Leipzig. 

It seems to be appropriate here to mention the impressive and unparalleled 
artistic work of Maurits Cornelis Escher who used the symmetry and antisym-
metry of figures and the slow transition between them in all shadings playing 
with light and the transition to hyperbolic and spherical geometry and to spatial 
geometry in the perspective (e.g., [34] [35], one easily may find other editions). 
Many authors of the here cited scientific books and mathematical and physical 
articles liked to include reproductions of the work of Escher. What could have 
made Escher in his life (1898-1972) from all this by suggestions from Penrose 
tiles, from seven-fold symmetry and from other novel mathematics by including 
this in his work? 

In many of our figures the color of the objects does not play a role and was 
chosen more or less incidentally but in some figures I tried to play with color to 

 

 

4I amend here the transcription of the author name “Koptsik” cited in our paper [24]. 
5Due to a photo in a book of Ross Piper (Animal Earth) I have now heavy doubts that it should be 
mentioned for a species with sevenfold symmetry since it concerns a colony of individuals where 
this symmetry is by far not stable, even not approximately. 
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find a favorable variant. 

15. Conclusions 

In this article, we started from the constructibility of the regular heptagon by 
bicompasses and ruler that is a pleasure and a delight. Then we considered cov-
ering of the plane by regular heptagons that is only possible by overlapping and 
(or) gaps between a few sorts of tiles obtained from regular heptagons by cut-off 
of (small) parts and filling gaps that partially lead to beautiful and unusual pat-
terns applicable for parqueting of rotundas and are also a delight. There is a 
great number of possible variations and only a few principal ones could be 
shown. The frustration is that their calculation is time-consuming in many cases. 
The regular heptagon and the possible regular and semi-regular star-heptagons 
were rarely used up to now for patterns with full or partial seven-fold symme-
tries. Although it is not possible to make fully periodic tessellations with sev-
en-fold point-group symmetry with some centers for the whole plane it seems to 
be possible to find analogs of Penrose tiles and also generalizations to color 
groups and to spherical and hyperbolic geometry seem to be possible. Thus, 
there is a high potential for future generalization and extension of the shown 
possibilities of using the regular heptagons for unusual patterns, parqueting, til-
ing and tessellation. 

The next numbers after the 7 which make difficulties in geometry of regular  

figures are number 9 (trisection of angle 2
3
π  by compassess and ruler is not  

possible but neusis construction can be applied) and number 11. The number 13 
is a little more friendly [8] but the ready form of the construction by bicom-
passes and ruler is not yet fully clarified. 

The frustration with number “Seven” in planar geometry of figures was that 
many details of their characteristics are troublesome to calculate and to program 
(though not for principal reason) but errors, to our pleasure, were easily to see 
when making the drawings by computer. All in all one may say that delight from 
the results was predominant. 
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Appendix A. Multiples of 
14
π  Expressed in Practical Angle  

Measure 

For convenience of the reader we give here Table A1 of the equivalence of an-
gles in natural measure to the practical measure in angle degrees 2 360π 

  
 
Table A1. Equivalences of angle measures. 

n 
14
nπ

 Angle degrees n 
14
nπ

 
Angle 

degrees 

1 0.22439948  12.857  15 3.36599213  192.857  

2 0.44879895  25.714  16 3.59039160  205.714  

3 0.67319843  38.571  17 3.81479108  218.571  

4 0.89759790  51.429  18 4.03919055  231.429  

5 1.12199738  64.286  19 4.26359003  244.286  

6 1.34639685  77.143  20 4.48798951  257.143  

7 1.57079633
2

=
π

 90  21 34.71238898
2

=
π

 270  

8 1.79519580  102.857  22 4.93678846  282.857  

9 2.01959528  115.714  23 5.16118793  295.714  

10 2.24399475  128.571  24 5.38558741  308.571  

11 2.46839423  141.429  25 5.60998688  321.429  

12 2.69279370  154.286  26 5.83438636  334.286  

13 2.91719318  167.143  27 6.05878583  347.143  

14 3.14159265 = π  180  28 6.28318531 2= π  360  

 

Multiples of the angle 
14
π

 are not the only ones which play a role in our  

considerations (see, e.g., (8.2) and (8.3)) but they are the most important ones. 
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