
Journal of Software Engineering and Applications, 2021, 14, 1-10
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2021.141001 Jan. 12, 2021 1 Journal of Software Engineering and Applications

Linguistic Economy Applied to Programming
Language Identifiers

Michael A. Dorin1,2*, Sergio Montenegro2

1University of St. Thomas, St. Paul, USA
2Universität Würzburg, Würzburg, Germany

Abstract
Though many different readability metrics have been created, there still is no
universal agreement defining readability of software source code. The lack of
a clear agreement of source code readability has ramifications in many areas
of the software development life-cycle, not least of which being software
maintainability. We propose a measurement based on Linguistic Economy to
bridge the gap between mathematical and behavioral aspects. Linguistic
Economy describes efficiencies of speech and is generally applied to natural
languages. In our study, we create a large corpus of words that are likely to be
found in a programmer’s vocabulary, and a corpus of existing identifiers
found in a collection of open-source projects. We perform a usage analysis to
create a database from both of these corpora. Linguistic Economy suggests
that words requiring less effort to speak are used more often than words re-
quiring more effort. This concept is applied to measure how difficult program
identifiers are to understand by extracting them from the program source and
comparing their usage to the database. Through this process, we can identify
source code that programmers find difficult to review. We validate our work
using data from a survey where programmers identified unpleasant to review
source files. The results indicate that source files identified as unpleasant to
review source code have more linguistically complicated identifiers than
pleasant programs.

Keywords
Corpus, Programming Languages, Comprehension, Complicated

1. Introduction

Even though many guidelines exist for identifier creation, there is no specific

How to cite this paper: Dorin, M.A. and
Montenegro, S. (2021) Linguistic Economy
Applied to Programming Language Iden-
tifiers. Journal of Software Engineering and
Applications, 14, 1-10.
https://doi.org/10.4236/jsea.2021.141001

Received: October 16, 2020
Accepted: January 9, 2021
Published: January 12, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2021.141001
https://www.scirp.org/
https://doi.org/10.4236/jsea.2021.141001
http://creativecommons.org/licenses/by/4.0/

M. A. Dorin, S. Montenegro

DOI: 10.4236/jsea.2021.141001 2 Journal of Software Engineering and Applications

metric to measure the overall readability of identifiers. Selecting understandable
identifiers is a crucial part of program maintenance. In the field of linguistics,
semantics is the area that focuses on meaning which is crucial to understand.
Identifiers represent source code elements such as variables and method names,
and are chosen by a human programmer during software development. Since up
to 70% of source code is made up of identifiers [1], they are a critical component
of program semantics.

Zipf’s “law” of vocabulary balance was chosen as the basis for measuring un-
derstandably. George Zipf’s “law” of vocabulary balance predicts an orderly dis-
tribution between word size and word usage in spoken languages. Zipf described
how words used in speech were subject to two opposing forces. One force from
the speaker endeavors to economize efforts by reducing their vocabulary size to
have the smallest vocabulary necessary to convey all meanings. Opposing this
force is the need for precise communication, which encourages an ever-increasing
vocabulary until there is a word for every meaning [2]. The result is that words
that are easier to speak and understand are used more often. The work Écono-
mie des changements phonétiques by André Martinet, supports Zipf’s ideas by
describing these opposing forces of communication needs and the natural hu-
man tendency of wanting stability, as Linguistic Economy. [3].

While analyzing word usage from James Joyce’s novel Ulysses, Zipf [2] no-
ticed word rank (r) multiplied by the frequency of use (f) yielded a constant (C)
(Equation (1)). For example, the tenth ranked word in Ulysses was used 2653
times in the book, giving a constant of 26,530. The 20th ranked word multiplied
by its frequency of 1311 gave a constant of 26,220. Notice the resulting constants
from both examples are very close in value. We can show this as an equation be-
low:

r f C× ≈ (1)

Using algebra, the equation can be modified as follows in Equation (2):

Cf
r

≈ (2)

When Zipf plotted the rank of words from Ulysses against frequency of use on
a double logarithmic scale, the result was a line with slope of negative one. Since
Zipf’s plots are logarithmic, we take the logarithm on both sides and adjust our
equation to see Zipf’s equation in a different light:

() () ()log log logf C r≈ − (3)

Equation (3) demonstrates Zipf’s equation, when plotted on a double loga-
rithmic scale, with a slope of negative one. For the purpose of consistent termi-
nology in this paper, going forward, log(f) will be referred to as Zipf Frequency.
That is to say, the Zipf Frequency is the logarithm of the frequency of use.

Reviewing existing literature, it is apparent there is no universal agreement on
the correctness of Linguistic Economy. Duarte describes how the concept has
been studied and reviewed by many scholars, and their conclusions are not all

https://doi.org/10.4236/jsea.2021.141001

M. A. Dorin, S. Montenegro

DOI: 10.4236/jsea.2021.141001 3 Journal of Software Engineering and Applications

supportive [4]. Even in 1965, George Miller wrote in the introduction to the re-
print of Zipf’s “The Psycho-Biology of Language: An Introduction to Dynamic
Philology” that a collection of monkeys with typewriters would get the same
word size and frequency distribution as indicated by the Law of Vocabulary
Balance [5]. Duarte seemed to focus on the concept of Linguistic Economy as an
application of laziness [4]. However, a close reading of Zipf and Martinet shows
the focus is not on laziness, but on efficiency, which is very applicable to soft-
ware development. We must also remember that even Zipf described this phe-
nomenon as an observational study. With this caveat in mind, we believe it is
not unreasonable to recognize patterns of Linguistic Economy in the work of
humans. Yu et al. are supportive of Zipf, and Martinet has shown the applicabil-
ity of Zipf’s Law in fifty different languages [6]. Zipf’s Law and software have al-
so been explored, and the work by Zhang shows that Zipf’s law can be applied to
improve to the classic software length metric as originally developed by Halstead
in 1977 [7] [8]. This initial usage of Zipf’s law to improve existing metrics is very
promising, and shows additional research is warranted to further establish how
the law can be used to connect human behavioral and mathematical aspects of
programming.

Although the work of Zipf has been applied in the area of software, Linguistic
Economy has not sufficiently been leveraged to measure program readability.
Therefore we investigate how Zipf Frequencies can be applied to measure the
complicacy of identifiers found in program source code. From a natural lan-
guage perspective, if an identifier is composed of intricate and uncommon
words, it will be more difficult for a programmer to comprehend. From a pro-
gramming language perspective, rarely used identifiers will be harder for a pro-
grammer to understand.

To create a metric to measure identifier quality, we first build necessary cor-
pus databases using vocabulary and identifiers programmers would likely be fa-
miliar with. We then compared data from an earlier survey where programmers
were asked to rate the desirability of a program source file for review. The results
show that our methodology can give a metric for identifier readability. Using
methods from linguistic economy, it is possible to review and evaluate the quali-
ty of identifiers.

2. Methods and Data
2.1. The Five Finger Rule

In season three, episode twelve of the American sitcom Seinfeld, the character
Elaine helped the character George land a job at a publishing company. As a
“thank you” present, George buys Elaine a cashmere sweater that has a minor
flaw, a red dot, for which the price was reduced considerably. George believes
she will not notice the spot, but when Elaine becomes aware of it, she becomes
angry and returns the sweater [9]. Humans seem to have a negativity bias, giving
greater importance to negatives rather than positives [10]. In the Seinfeld epi-

https://doi.org/10.4236/jsea.2021.141001

M. A. Dorin, S. Montenegro

DOI: 10.4236/jsea.2021.141001 4 Journal of Software Engineering and Applications

sode, Elaine was unable to overlook the tiny flaw in an otherwise beautiful swea-
ter. In software engineering, we can overlook the quality of the nicely written
parts of the source code because of the difficult and complicated parts.

Another way of approaching negativity bias lies in when a person would give
up reading a book. Research in the field of foreign language acquisition suggests
what is known as the “Five Finger Rule” for text difficulty can apply to second
languages. The rule states as you read text, each time you encounter a word too
difficult for you, you lift a finger. If you lift five fingers before completing a page,
the text is likely too difficult for you [11] [12]. Irrespective of how many words
are understandable, a few incomprehensible words make text more difficult for
readers. We apply these concepts to software readability.

2.2. Existing Data: Programmer Survey

In preparation for XP’18: The 19th International Conference on Agile Software
Development, a survey was performed in an attempt to determine if we could
identify aspects of source code that programmers find unpleasant [13]. In this
survey ninety, C++ source files were made available for evaluation on a public
website. Volunteers were presented source code files and asked if they would be
pleasant or unpleasant to review. More than 400 people participated in the sur-
vey.

The original research for XP’18 was focused on the ascetic nature of the
source code with no consideration of language syntax and semantics [14]. A
summary of the results is shown in Table 1. In order to qualify files for further
review, a ratio was made between pleasant to review and unpleasant to review
results. For example, if a file had 20 respondents state it would be pleasant to re-
view and 15 state it would be unpleasant to review, the result would be 1.3. For
this paper, we considered files with a ratio of less than 1.0 leaning unpleasant to
review and those was a ratio greater than or equal to 1.0 leaning pleasant to re-
view.

2.3. Natural Language Corpus Creation

In order to evaluate the words that are put together to make an identifier, a nat-
ural language corpus was necessary to perform measurements against. Though it
is not difficult to find a corpus of word and usage frequency data for English, we
required a collection that included domain-specific words that programmers
would likely have encountered in their professional careers. This goal was
achieved by using words found in technology and programming related internet
Usenet newsgroups. Though officially discontinued now, in the past, Usenet

Table 1. Pleasant vs. unpleasant to review.

Total C++ Files 91

Leaning pleasant to Review Files 41

Leaning unpleasant to Review Files 50

https://doi.org/10.4236/jsea.2021.141001

M. A. Dorin, S. Montenegro

DOI: 10.4236/jsea.2021.141001 5 Journal of Software Engineering and Applications

newsgroups were a popular way of exchanging information [15]. We selected
Usenet newsgroups as they provide a wealth of conversations among people with
technical backgrounds. We wrote a small program to separate words, with very
rudimentary filtering applied to remove things like routing information. The
resulting corpus made up of the words found in these technical newsgroups de-
monstrates a Zipf distribution. When plotted as shown in Figure 1 the line is
very close to having a slope of negative one. The most popular words found in
the corpus are shown in Table 2. The resulting corpus contained 1,228,823 en-
tries. As a final note, no attempt was made to remove words considered spam
from the corpus, and the corpus includes many invented words designed to trick
spam filters.

2.4. Existing Identifier Corpus Creation

For the corpus based on existing code identifiers, we downloaded more than
eight hundred open-source projects found on GitHub [16]. Identifiers were then
extracted from all the C and C++ files, and the corpus was compiled with their
usage frequency data. This corpus also demonstrates a Zipf equation with a slope
very close to negative one as shown in Figure 2. Many of the most popular iden-
tifiers happen to be very short. See Table 3 for a breakdown of popular identifi-
ers. The resulting corpus has 8,420,238 entries.

2.5. Source Code Analysis

For pleasant and unpleasant program files presented in the survey, we extracted
the identifiers. For the natural language measurements, we further segmented
identifiers into component words. For example, a camelCase formatted identifi-
er would be segmented into “camel” and “case,” as that is how a human might

Figure 1. Usenet words rank frequency distribution.

Table 2. Most popular words.

Word Count

the 2,921,314

to 1,930,521

a 1,920,627

is 1,214,419

https://doi.org/10.4236/jsea.2021.141001

M. A. Dorin, S. Montenegro

DOI: 10.4236/jsea.2021.141001 6 Journal of Software Engineering and Applications

Table 3. Most popular identifiers.

Identifier Count

i 4,976,942

std 4,085,864

NULL 1,946,649

T 1,645,339

p 1,615,373

x 1,597,532

type 1,581,043

s 1,426,045

size 1,318,116

a 1,308,500

value 1,256,133

size_t 1,161,173

data 1,039,361

c 1,014,945

b 934,781

h 932,624

n 927,145

j 903,268

y 895,105

Figure 2. Program identifiers rank frequency distribution.

read them. As negativity bias and the “Five Finger Rule” play a strong role in de-
ciding what is pleasant or unpleasant, we selected a collection of the five least
popular component words from each source file considered leaning pleasant to
review and leaning unpleasant to review. At this point, popularity of the selected
component words was looked up in the natural language corpus and tallied.

The second step was to compare the identifiers found in source code from the
survey to a corpus we made of identifiers from large projects found on GitHub
[16]. In this analysis, we did not segment the component words of the identifier;
we used the entire identifier when searching the identifier database. As before,

https://doi.org/10.4236/jsea.2021.141001

M. A. Dorin, S. Montenegro

DOI: 10.4236/jsea.2021.141001 7 Journal of Software Engineering and Applications

we considered negativity bias and the “Five Finger Rule,” and selected five of the
least popular identifiers from each leaning pleasant to review and the leaning
unpleasant to review source file. As before, the popularity of the selected iden-
tifiers was found and scores were tallied.

3. Results
Human Language Corpora

The Usenet corpora results results are shown in Table 4. Programs which un-
pleasant to review, as reflected by the median frequency of use, have identifiers
created from more complicated natural language words. For example, consider-
ing the Five Finger Rule, pleasant to review files have a median Zipf frequency of
1.87, which was about 25% higher than unpleasant to review files. Considering
all the identifiers, pleasant to review files have a median Zipf frequency of 4.05,
which is still higher than unpleasant to review files. Also, an interesting result,
unpleasant to review program files, have more words missing from the corpus,
as shown in Table 4.

The Five Finger Rule evaluation the corpus based on actual program identifi-
ers. Files that were pleasant to review have a median frequency use of 1.4, which
was much higher than the median for unpleasant to review files. Considering all
the identifers, the median Zipf frequency of pleasant to review files is 5.6, which
is considerably better than unpleasant to review files. As before, unpleasant to
review files had more identifiers that were missing from the corpus. This can be
seen in Table 5.

Table 4. Results based on Usenet corpus.

Five Finger Rule and Usenet Value

Total unique words 455

Not included words from unpleasant files 36

Not included words from pleasant files 4

Unique words from pleasant files 205

Unique words from unpleasant files 250

Median Zipf frequency of pleasant Files* 1.86

Median Zipf frequency of unpleasant Files* 1.36

All Usenet Words Value

Total unique words 11,543

Not included words from unpleasant files 36

Not included words from pleasant files 4

Unique words from pleasant files 4052

Unique words from unpleasant files 7491

Median Zipf frequency of pleasant Files* 4.05

Median Zipf frequency of unpleasant Files* 3.87

https://doi.org/10.4236/jsea.2021.141001

M. A. Dorin, S. Montenegro

DOI: 10.4236/jsea.2021.141001 8 Journal of Software Engineering and Applications

Table 5. Results based on actual project identifiers.

Five Finger Rule Identifiers Count

Total ids 455

Missing from Pleasant Files 3

Missing from Unpleasant Files 163

Median Zipf frequency for pleasant files* 1.4

Median Zipf frequency for unpleasant files* 0.15

All Identifiers count

Total ids 99,365

Missing from Pleasant Files 1609

Missing from Unpleasant Files 3534

Mean Zipf frequency for pleasant files* 5.6

Mean Zipf frequency for unpleasant files* 0.75

Table 6. Results based on book based corpus.

Five Finger Rule Reasonableness Count

Total unique words 455

Unique words from pleasant files 205

Unique words from unpleasant files 250

Not included words from Pleasant Files 74

Not included words from Unpleasant Files 200

Median Zipf frequency of pleasant files* 1.25

Median Zipf frequency of unpleasant files* 0.62

All Words from Reasonableness Count

Total unique words 11,543

Not included words from unpleasant files 274

Not included words from pleasant files 74

Unique words from pleasant files 4052

Unique words from unpleasant files 7491

Median Zipf frequency of unpleasant Files* 3.08

Median Zipf frequency of pleasant Files* 3.26

*Higher is better.

4. Discussion

The results do reflect a connection between the Zipf Frequency of an identifier
and desirability of review source code where that identifier is found. This analy-
sis used two different styles of corpus, one common words found in a program-
mers vocabulary, the second actual identifiers found in open source projects. To
gain additional confidence in the results, a “reasonableness check” was run using
an additional, but much smaller corpus (91,948 entries) created from open-source

https://doi.org/10.4236/jsea.2021.141001

M. A. Dorin, S. Montenegro

DOI: 10.4236/jsea.2021.141001 9 Journal of Software Engineering and Applications

computer books, science books, and miscellaneous novels. The same test was
run and the results are summarized in Table 6. A difference between pleasant to
review and unpleasant to review files is still reflected with this corpus with plea-
sant to review files having a median frequency of use higher than unpleasant to
review files.

As an additional confidence check, we reran the overall analysis increasing the
number of identifiers measured to 100% from each file (rather than the least
popular five). Even with the new numbers, files classified as pleasant to review
still had an advantage over files classified as unpleasant to review. For example,
evaluating using the Usenet corpus, the median of the pleasant to review files
was 4.05. while the median of the unpleasant files was 3.87. When evaluating the
program identifiers corpus, the value difference was much pronounced. Files
classified as pleasant to review had a Zipf frequency median of 5.6, while files
classified as unpleasant to review had a Zipf frequency mean of 0.75.

5. Conclusion

Since identifiers play such a prominent part of program source, it is important
that they are readable and understandable. A tendency does exist for more com-
plicated identifiers to make a program less desirable to review. In our study, we
demonstrated that the concept of Linguistic Economy can be applied to pro-
gramming, and specifically applied to program readability. Using the results
from the survey, asking programmers to identify unpleasant code demonstrates
that the words used in human-created identifiers impact the desirability of re-
view. The survey analyses and also shows that actual identifiers themselves,
when measured against our identifier corpus, impact the desirability of review.
The differences between pleasant and unpleasant to review are files much more
pronounced in the actual identifier corpus. There seems to be a significant im-
pact on identifier names that programmers do not see frequently. This demon-
strates a connection between the Linguistic Economy of identifiers and program
readability. This knowledge can be employed to make more readable, higher
quality programs.

Acknowledgements

Sincere thanks to Patrick Dorin and Anders Koskinin for their efforts editing
and reviewing this work.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Deissenboeck, F. and Pizka, M. (2006) Concise and Consistent Naming. Soft-Ware

Quality Journal, 14, 261-282. https://doi.org/10.1007/s11219-006-9219-1

https://doi.org/10.4236/jsea.2021.141001
https://doi.org/10.1007/s11219-006-9219-1

M. A. Dorin, S. Montenegro

DOI: 10.4236/jsea.2021.141001 10 Journal of Software Engineering and Applications

[2] Zipf, G.K. (1949) Human Behavior and the Principle of Least Effort. Addi-
son-Wesley Press, Boston.

[3] Martinet, A. (1955) Économie des changements phonétiques. Francke, 396, 2-15.

[4] Duarte, M.J.P. (2007) El principio de economía lingüística. Pragma-Lingüística, 15-16,
166-178.

[5] Zipf, G.K. (1936) The Psychobiology of Language: An Introduction to Dynamic
Philology. Houghton-Mifflin, Boston.

[6] Yu, S., Xu, C. and Liu, H. (2018) Zipf’s Law in 50 Languages: Its Structural Pattern,
linguistic Interpretation, and Cognitive Motivation.
https://arxiv.org/abs/1807.01855

[7] Zhang, H. (2008) Exploring Regularity in Source Code: Software Science and Zipf’s
Law. 15th Working Conference on Reverse Engineering, Antwerp, 15-18 October
2008, 101-110. https://doi.org/10.1109/WCRE.2008.37

[8] Halstead, M.H., et al. (1977) Elements of Software Science. Elsevier, New York.

[9] David, L. and Seinfeld, J. (1991) Seinfeld the Red Dot Episode.

[10] Rozin, P. and Royzman, E.B. (2001) Negativity Bias, Negativity Dominance, and
Contagion. Personality and Social Psychology Review, 5, 296-320.
https://doi.org/10.1207/S15327957PSPR0504_2

[11] Darby, M., et al. (2008) Library Reading Program for Secondary esl Students. Access,
22, 9.

[12] Bryan, S. (2011) Extensive Reading, Narrow Reading and Second Language Learn-
ers: Implications for Libraries. The Australian Library Journal, 60, 113-122.
https://doi.org/10.1080/00049670.2011.10722583

[13] Dorin, M. (2018) Coding for Inspections and Reviews. Proceedings of the 19th In-
ternational Conference on Agile Software Development: Companion, Porto, May
2018, 1-3. https://doi.org/10.1145/3234152.3234159

[14] Dorin, M. and Montenegro, S. (2019) Eliminating Software Caused Mission Fail-
ures. 2019 IEEE Aerospace Conference, Big Sky, 2-9 March 2019, 1-4.
https://doi.org/10.1109/AERO.2019.8741837

[15] Hauben, M. and Hauben, R. (1998) Netizens: On the History and Impact of Usenet
and the Internet. First Monday, 3. https://doi.org/10.5210/fm.v3i7.605
https://journals.uic.edu/ojs/index.php/fm/ article/view/605

[16] GitHub. http://www.github.com

https://doi.org/10.4236/jsea.2021.141001
https://arxiv.org/abs/1807.01855
https://doi.org/10.1109/WCRE.2008.37
https://doi.org/10.1207/S15327957PSPR0504_2
https://doi.org/10.1080/00049670.2011.10722583
https://doi.org/10.1145/3234152.3234159
https://doi.org/10.1109/AERO.2019.8741837
https://doi.org/10.5210/fm.v3i7.605
https://journals.uic.edu/ojs/index.php/fm/article/view/605
https://journals.uic.edu/ojs/index.php/fm/article/view/605
http://www.github.com/

	Linguistic Economy Applied to Programming Language Identifiers
	Abstract
	Keywords
	1. Introduction
	2. Methods and Data
	2.1. The Five Finger Rule
	2.2. Existing Data: Programmer Survey
	2.3. Natural Language Corpus Creation
	2.4. Existing Identifier Corpus Creation
	2.5. Source Code Analysis

	3. Results
	Human Language Corpora

	4. Discussion
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

