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Abstract 
 
Security incidents targeting information systems have become more complex and sophisticated, and intruders 
might evade responsibility due to the lack of evidence to convict them. In this paper, we develop a system for 
Digital Forensic in Networking, called DigForNet, which is useful to analyze security incidents and explain 
the steps taken by the attackers. DigForNet combines intrusion response team knowledge with formal tools 
to identify the attack scenarios that have occurred and show how the system behaves for every step in the 
scenario. The attack scenarios construction is automated and the hypothetical concept is introduced within 
DigForNet to alleviate missing data related to evidences or investigator knowledge. DigForNet system sup-
ports the investigation of attack scenarios that integrate anti-investigation attacks. To exemplify the proposal, 
a case study is proposed. 
 
Keywords: Formal Digital Investigation, Incident Response Probabilistic Cognitive Map, DigForNet, Anti- 

Forensic Attacks Investigation, Attack Scenarios Reconstruction 
 
1. Introduction 
 
Considering the state of digital security incidents which 
has dramatically increased in terms of complexity, num-
ber, and sophistication, it becomes evident that the tradi-
tional ways of protecting information systems (e.g., Fire-
walls, IDSs) are no longer sufficient. Faced to this situa-
tion, security experts have started giving a great interest 
to a novel discipline called the digital investigation of 
security incidents, which is defined by the literature as 
preservation, identification, extraction, documentation and 
interpretation of computer data [1]. Digital investigation 
aims to perform a post-incident examination on the com-
promised system while achieving several objectives in-
cluding evidence collection, attack scenarios construction, 
and results argumentation with non refutable proofs. 

Performing a digital investigation is a very complex task 
for many reasons. First, attacks may use multiple sources 
and become difficult to trace using the available trace-back 
techniques. Second, systems may not be initially prepared 
for investigation, leading to the absence of effective logs 
or alerts to be used during the analysis of the incident. 
Third, the attackers may use a number of techniques to 
obfuscate their location or to hide traces on the system 
that could be used to prove their malice. Fourth, attack 
scenarios may use several automated tools that create 

intensive damaging activities on the compromised sys-
tems. A large amount of data should thus be analyzed 
and several evidences need to be identified and extracted. 

To face the above complexity, the digital investigation 
should, first, be well structured by reconciling both the 
expertise of the incident response team (IRT) and the use 
of formal reasoning techniques about security incidents. 
This reconciliation allows to: 1) better filter the data to 
be analyzed and source of evidences to be explored, 
based on the skills developed by the IRT; 2) validate the 
results of the formal techniques, by the IRT, before pre-
senting them and also use them to improve the content of 
the attacks library. Second, digital investigation should in-
tegrate the use of formal techniques that are useful to 
develop non-refutable results and proofs, and avoid er-
rors that could be introduced by manual interpretations. 
Moreover, it should consider the development of tools to 
automate the proof provided by these formal methods. 
Third, since the collected evidences may be incomplete 
and describing all potential malicious events in advance 
is impractical, hypotheses need to be put forward in or-
der to fill in this gap. 

Despite the usefulness of formal methods and approaches, 
digital investigation of security incidents remains scarcely 
explored by these methods. Stephenson [2] took interest 
to the root cause analysis of digital incidents and used 
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Colored Petri Nets as formalism for modeling occurred 
events. The methodology may become insufficient to 
deal with sophisticated attack scenarios, where there is a 
lack of information on the compromised system that re-
quires some hypotheses formulation. Stallard and Levitt 
[3] proposed a formal analysis methodology entitled se-
mantic integrity checking analysis. It is based on the use 
of an expert system with a decision tree that exploits 
invariants relationship between existing data redundan-
cies within the investigated system. To be usable with 
highly complex systems, it is imperative to have a prior 
list of good state information; otherwise, the investigator 
has to complete its analysis in ad hoc manner. Gladychev 
[4,5] provided a Finite State Machine (FSM) approach to 
reconstruct potential attack scenarios discarding scenar-
ios that disagree with the available evidences. Since in-
vestigation may occur on systems that could not be com-
pletely described due to their complexity, if unknown 
system transitions are ignored, the event construction 
may freeze or its accuracy may be severely affected. 
Carrier and Spafford [6] proposed a model that supports 
existing investigation frameworks. It uses a computation 
model based on a FSM and the history of a computer. A 
digital investigation is considered as the process that for-
mulates and tests hypotheses about occurred events or 
states of digital data. Additionally, the model allows de-
fining different categories and classes of analysis tech-
niques. A key idea in the proposed approach is that every 
computer has a history, which is not fully recorded or 
known in the practice. A digital investigation is consid-
ered as the process that formulates and tests hypotheses 
about occurred events or states of digital data. Wil-
lanssen [7] took interest in enhancing the accuracy of 
timestamp evidences. The aim is to alleviate problems 
related to the use of evidences whose timestamps were 
modified or referred to an erroneous clock (i.e., which 
was subject to manipulation or maladjustment). The pro-
posed approach consists in formulating hypotheses about 
clock adjustment and verifying them by testing consis-
tency with observed evidences. Later, the testing of hy-
potheses consistency is enhanced by constructing a model 
of actions affecting timestamps in the investigation sys-
tem [8]. In [9], a model checking-based approach for the 
analysis of log files is proposed. The aim is to search for 
pattern of events expressed in formal language. Using 
this approach logs are modeled as a tree whose edges 
represent extracted events in the form of algebraic terms. 
P. Sencar and Memon [10] proposed a methodology to 
recover files from unallocated space of disk without the 
assistance of meta-data or file system table. The pro-
posed technique assumes that files may be initially frag-
mented and several contiguous blocks may be scattered 
around the storage area. To enhance the effectiveness of 
file recovery, the technique looks for detecting the point 
of fragmentation of a file, using a sequential hypothesis 
testing (SHT) procedure. Peisert [11] proposed to deter-

mine what data are necessary to perform investigation 
and basis its idea on the use of the requires/provides 
model, which is commonly used for intrusion detection. 

We develop in this paper, a system for Digital Foren-
sic in Networking called DigForNet. It integrates the analy-
sis performed by the Incident Response Team on a com-
promised system, through the use of a new Cognitive 
Map [12,13] called the Incident Response Probabilistic 
Cognitive Map (IRPCM), which extended the Cognitive 
Map proposed in [14]. DigForNet uses formal approach 
to identify potential attack scenarios using a formal speci-
fication language entitled, I-TLA. The formal approach 
allows specifying different forms of evidences. It identi-
fies an attack scenario as a series of elementary actions, 
retrieved from a used library, which, if executed on the 
investigated system, would produce the set of available 
evidences. We developed in DigForNet the concept of 
executable specification of attack scenarios, which shows 
with details how an attack is performed progressively on 
the system and how the latter behaved during the attack. 
DigForNet uses I-TLC, an automated verification tool 
for I-TLA specifications. To alleviate any missing evi-
dences or details related to attack scenarios, DigForNet 
integrates a technique for generating hypothetical actions 
to be appended to the scenario under construction. 

Our contribution is three-fold. First, DigForNet recon-
ciles in the same framework conclusions derived by the 
incident response team and theoretical and empirical 
knowledge of digital investigators. To the best of our 
knowledge, it is the first investigation system which sup-
ports such feature. Second, we proposed a new IRPCM 
which integrates the temporal aspect. In fact, during 
IRPCM construction, the appending of anti-investigation 
relations between concepts could make other concepts inac-
tive. Several IRPCM snapshots could thus be obtained 
depending of time. Third, using the concept of hypo-
thetical actions, DigForNet stands out from the other 
existing approaches and allows generating sophisticated 
and unknown attack scenarios. The new generated hypo-
thetical actions could be used to extend the content of the 
library of attacks. Fourth, the formal techniques used by 
DigForNet allow supporting a collaborative working be-
tween the IRT members, and generating a formal specifi-
cation useful for conducting an investigation, where a model 
checking-like technique could be used to automate the 
generation of executable specification of attack scenarios. 

This paper is organized as follows. Section 2 defines 
the important concepts related to the digital investigation 
of security incidents and describes the DigForNet’s meth-
odology for reasoning about security incidents. The use 
of the IRPCM technique to represent the intrusion re-
sponse team members’ view about the security incidents 
is shown in Section 3. Section 4 describes I-TLA as logic 
for specifying evidences and identifying potential attack 
scenarios that satisfy them. It also shows how to pass 
from IRPCM to I-TLA specification. Section 5 intro-
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duces I-TLC as an automated verification tool for I-TLA 
specifications, which allows generating executable specifi-
cation of attack scenarios. Section 6 illustrates an exam-
ple of the use of DigForNet in investigating a real secu-
rity incident. Finally, Section 7 concludes this paper. 

 
2. Methodology of Structured Investigation 

 
We start this section by introducing the need for digital 
investigation and then we describe the DigForNet’s 
methodology. 

 
2.1. Need for Digital Investigation 
 
Focusing merely on restoring the system, which is the 
simplest and easiest method, is disadvantageous. In fact, 
valuable information and traces that allow understanding 
the attack could be removed if the compromised system 
is straightforwardly formatted or reinstalled. The above 
mentioned weaknesses in the response point up the need 
for conducting a post-incident digital investigation [15]. 
The latter can be considered as the process that allows to: 
1) determine how the computer attack was performed and 
what are the security weaknesses and design mistakes 
that let the incident succeeds; 2) trace the attackers to 
their source to identify their identities; 3) build a proof 
from the collected information to bring a prosecution 
against attackers who committed the attack; 4) argument 
and underline the results with well-tested and proved 
methods and techniques; 5) Study the attackers’ trends and 
motives, and take the accurate security measures to pre-
vent future similar attack scenarios. 

Since digital investigation [16,17] focuses on the in-
vestigation of an incident after it has happened, a digital 
evidence should be gathered from the system to support 
or deny some reasoning an investigator may have about 
the incident. Digital evidence is defined as any data 
stored or transmitted that support or refute a theory of 
how an offence occurred or that address critical elements 
of the alibi [16]. 

 
2.2. DigForNet Methodology 

 
DigForNet integrates the incident response team con-
tributions under the form of Incident Response Probabil-
istic Cognitive Maps (IRPCMs). An IRPCM is built 
with a collaborative fashion by the IRT members based 
on the information collected on the system. IRPCMs 
provide a foundation to mainly investigate and explain 
occurred security attacks. 

DigForNet provides a formal way for reconstructing 
potential attack scenarios. It defines a novel logic entitled 
Investigation-based Temporal Logic of Actions (I-TLA), 
and its logic-based language entitled I-TLA+. DigForNet 
methodology is composed of six steps organized in a 

waterfall model as shown in Figure 1. They are de-
scribed as follows. 

The first step collects evidences available within three 
different sources, namely the operating systems, networks, 
and storage systems. The second builds the IRPCM, which 
is nothing but a directed graph representing security events, 
actions and their results along with the relations between 
these concepts. The third step consists in extracting the 
sets of evidences and actions from the cognitive map for 
the formal specification of the potential attack scenarios. 
The fourth step generates a formal specification. A for-
mal approach is necessary for this purpose. DigForNet 
uses logic, referred to as I-TLA, to generate a specifica-
tion containing a formal description of the set of ex-
tracted evidences and actions, the set of elementary at-
tack scenario fragments retrieved from the library of at-
tacks, and the initial system state. During this step, Dig-
ForNet uses I-TLA to prove the existence of potential 
attack scenarios that satisfy the available evidences. To 
be able to generate a variety of attack scenarios, Dig-
ForNet considers the use of a library of elementary ac-
tions supporting two types of actions: legitimate and ma-
licious. Malicious actions are specified by security ex-
perts after having assessed the system or appended by 
investigators upon the discovery of new types of attacks. 

The fifth step generates executable specification [18,19] 
of potential attack scenarios using a model checker tool 
associated with the formal specification. DigForNet builds 
Investigation-based Temporal Logic model Checker called 
I-TLC composed of two sub-steps. The first works to re-
build the attack scenarios in forward and backward chain-
ing processing, showing details of all intermediate sys-
tem states through where the system progresses during 
the attack. The second sub-step provides a tolerance to 
the incompleteness of details regarding the investigated 
incident and the investigator knowledge. It interacts with 
a library of hypothetical atomic actions to generate hy-
pothetical actions, append them to the scenarios under 
construction, and efficiently manage them during the whole 
process of generation. The library of hypothetical atomic 
actions is composed of a set of entries showing interac-
tion between a set of virtual system components and a set 
of rules used to efficiently create hypothetical actions as 
a series of hypothetical atomic actions. 

The sixth step uses the generated executable potential 
attack scenarios to identify the risk scenario(s) that may 
have compromised the system, the entities that have origi-
nated these attacks, the different steps they took to con-
duct the attacks, and the investigation proof that confirms 
the conclusion. These results are discussed with the IRT 
members in order to check the hypotheses added by I-TLC 
and update the initial IRPCM by: 1) omitting some con-
cepts because they do not present an interest for the at-
tack scenario construction, and/or 2) adding other con-
cepts, corresponding to the hypothetical actions, to the 
IRPCM and linking them to the other concepts. Links in  
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Figure 1. DigForNet methodology. 
 
the IRPCM are deleted in the case where the concepts 
originating from or going to them are omitted. New links 
are also added to the IRPCM to link the newly added 
concepts. Hypothetical actions are also added to the at-
tack library. In addition, tools collecting the evidences 
are enhanced to be able to detect the newly discovered 
vulnerabilities. 
 
3. Intrusion Response Probabilistic Causal 

Maps 
 

We have defined in [20] a category of cognitive maps to 
support the intrusion response activity. In this paper, we 
provide an extension to these cognitive maps referred to 
as Incident Response Probabilistic Cognitive Maps (IRPCMs) 
by introducing the notions of probability and activation 
degree of concepts, and integrating links with complex 
semantics. IRPCMs provide the foundation to investigate 
and explain security attacks which have occurred in the 
past and to predict future security attacks against the 
system. These aspects are important for negotiation or 
mediation between IRT members solving thus disparities 
which are generated by the difference in their view 
points and which can lead to conflicting decisions. 

 
3.1. IRPCM Definition  

 
An Incident Response Probabilistic Cognitive Map (IRPCM) 
is a directed graph that represents intrusion response 
team members’ experience-based view about security 
events related to an incident. The nodes of the graph 

represent concepts belonging to the network security 
field and a set of edges representing relationships be-
tween the concepts. 

IRPCM concepts can be symptoms, actions, and un-
authorized results related to network security field. Symp-
toms are signs that may indicate the occurrence of an 
action. System crashes or the existence of new user ac-
counts or files are examples of symptoms. An action is a 
step taken by a user or a process in order to achieve a 
result. Probes, scans and floods are samples of actions. 
An unauthorized result is an unauthorized consequence 
of an event (defined by an action directed to a target). 
For instance, an authorized result can be an increased 
access or a disclosure of information or a theft of resources. 
IRPCM concepts are labeled by values in the interval 
[0,1] informing about the activation of the correspondent 
concepts. They are also labeled by a value indicating their 
occurrence time. 

IRPCM edges link concepts to each others. An edge eij 
linking concept ci to concept cj is labeled as (πij , qij) 
where πij is the predicate expressing the relation between 
the two nodes (examples include , , ) and qij 

(taking values in ]0,1]) the probability expressing the 
certitude degree that the relationship πij really occurred 
between the concepts ci and cj. Quantitative values are 
given by security experts. Notice that the semantic of the 
predicate πij depends on the nature of the concepts ci and 
cj. For the sake of simplicity, we consider seven cases of 
relationships in this paper. They are described here after.  

t< OI/ CE

1) Input/output relation: Let ci be a symptom and cj be 
a symptom or an action. An input/output relation, which 
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is expressed using the predicate πij=I/Q, means that part 
of output of the concept ci is the input of the concept cj.  

2) Temporal relation: Let ci and cj be two actions. A 
temporal relation, which is expressed using the predicate  
πij=＜t, means that ci is an action that precedes cj.  

3) Cause/Effect relation: Let ci be an action and cj be an 
unauthorized result. The cause/effect relation, which is 
expressed using the predicate πij=CE, means that the effect 
produced by concept ci is visible through concept cj.  

4) Concealment relation: Let ci and be an action and cj 
be an action, a symptom or an unauthorized result. The 
concealment relation, expressed using the predicate πij= 
conceal, means that concept ci when it happens, leads to 
the hiding of concept cj. This corresponds to the situations 
where the attackers execute some actions on the compro-
mised system to hide information revealing their access to 
this system, or to hide the results on this system.  

5) Destruction relation: Let ci be an action and cj be an 
action, a symptom or an unauthorized result. The de-
struction relation, which is expressed using the predicate 
πij=destroy, means that the occurrence of concept ci wipes 
out the existence of concept cj. This corresponds to the 
situation where the attacker executes some actions to de-
stroy any trace that may inform about his access to the 
compromised system.  

6) Forgery relation: Let ci be an action and cj be an ac-
tion, a symptom or an unauthorized result. The forgery 
relation, which is expressed using the predicate πij=forge, 
means that the occurrence of concept ci creates a new 
forged concept cj with random time of occurrence. This 
corresponds to the situation where the attacker tries to 
deceive the investigation activity.  

7) Replacement relation: Let ci be a forged action, 
symptom, or unauthorized result and cj be a concept be-
longing to the same category as ci. The replacement rela-
tion expressed using the predicate πij=replace, means that 
the concept cj is replaced by concept ci when the latter 
has been forged by an action.  

Notice that relations conceal, destroy, forge and re-
place corresponds to an anti-investigation activity. 

 
3.2. Appearance-Period 

 
Let ci and cj be two concepts belonging to the IRPCM 
having respectively occurrence times equal to ti and tj. 
Appearance period of cj, say Acj is determined as follows:  
 If  then ],[= ijjc tt   = , ,ij conceal destroy replace A

 If forgeECOI tij ,/,<,/=  then ],[= jj
  c tA

 
3.2.1. Snapshot Function 
An IRPCM may vary as anti-forensic actions and rela-
tions are appended. Therefore, some concepts in the IRPCM 
may be invalid at a given time, and the analysis of the 
IRPCM becomes complex. To make the analysis simple, 

we need a snapshot of the IRPCM for different instants. 
To this end, we introduce the snapshot function. The 
main feature of this function is to show a sub-view of the 
IRPCM which hides the concepts in the IRPCM that are 
invisible at that time. To do so, the appearance period of 
concepts is exploited. 

Formally, let Vsisible(c,t) be the function that returns 
the Boolean value True if the time t is within the ap-
pearance period of the concept c. The IRPCM snapshot 
at time instant t is created by deleting any concepts c in 
that IRPCM, such that Vsisible(c,t)=false, and all edges 
which are connected to ci. 

 
3.3. Building IRPCMs 

 
The IRT members are responsible for building the IRPCM 
(second step in the DigForNet methodology). The basic 
elements needed in this activity are the events collected 
on the information system. These events may be IDS 
alerts; compromises of services offered by the network, 
or any sign indicating the occurrence of malicious or 
suspect actions against the network. IRT members ana-
lyze these signs and define the appropriate symptoms, 
actions and unauthorized results and assign the appropri-
ate probabilities and relationships to the edges linking 
the defined concepts. The process of building an IRPCM 
has two properties: completeness (if an attack has oc-
curred and a sufficient number of events are collected to 
identify this attack, then we can find an IRT able to build 
an IRPCM allowing to identify the attack) and conver-
gence (if an IRPCM is built and is large enough to col-
lect all the events related to a given attack, then the IRT 
must build in a finite time an IRPCM allowing to provide 
the right solution to protect against this attack). 

The building of an IRPCM follows a methodology based 
on the iterative process described in the following steps:  

1) Collect a first set of security events observed in the 
compromised system or detected by security tools.  

2) Build an IRPCM based on the collected events.  
3) Continue to collect security events.  
4) Update the IRPCM based on the new recollected 

events. Events which do not belong to the previous 
IRPCM are added. Probable links related to the newly 
considered concepts are also added to the IRPCM.  

5) Refine the IRPCM.  
6) Update the probabilities of the links and the activa-

tion degree of the concepts.  
7) If the stopping criterion is satisfied, stop the 

IRPCM building process; else, return to step 4.  
In the second step of the above methodology, the gen-

eration and building of the IRPCM is the duty of the In-
cident Response Team (IRT). Two main tasks should be 
handled within this step. First, the IRT members should 
collaborate to append concepts based on their knowledge 
and skills, and negotiate between them to classify the 
appended concepts into necessary and unnecessary con-
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cepts. Concepts can be considered as unnecessary if they 
are duplicated, do not cope with the properties of the 
attack or the system under investigation, or are erroneous. 
The unnecessary concepts will thus be deleted from the 
IRPCM under construction. Second, the IRT members col-
laborate to locate concepts in the IRPCM that could be 
linked together and append edges. Obviously, such activ-
ity is subject to discussion and negotiation in order to 
correct or delete erroneous edges. 

In the fifth step of the methodology, the refinement of 
the IRPCM is done through the analysis of the semantic 
of concepts. Two forms of modifications on the IRPCM 
take place during the refinement. The first consists in 
substituting a concept by a more accurate one, merging 
some concepts together, or segmenting a concept into 
many other ones to make relations more significant. While 
attack scenarios look different, they, in most cases, reuse 
techniques of attacks and actions. The IRT, which is al-
ways in charge of constructing IRPCMs for the investi-
gated scenarios, could exploit IRPCMs related to previ-
ously resolved incidents to complete and update the cur-
rent IRPCM under construction. To do so, it suffices to 
define patterns that allow detect similarities between 
similar fragments of IRPCMs. The IRT has just to detect 
patterns in the IRPCM under construction and find IRPCM 
fragments that could be integrated from the previously 
constructed ones. 

Two criteria can be considered to decide about the end 
of the IRPCM building process. The first is when all the 
candidate actions in the library (those which have a rela-
tionship with the collected events) are present in the 
IRPCM. The second is based on the decision of the IRT 
members. If the latter agree that the IRPCM is large 
enough, then the building process is stopped. The IRT 
decision can be shared by all the members or it can be 
taken by a mediator (a member of the IRT in charge of 
coordinating activity helping solving conflicts and ter-
minating the process). 

 
3.4. Activation Degree of a Concept 

 
IRPCM concepts values give indications about their ac-
tivation. These values, referred to as activation degrees, 
belong to the interval [0,1]. We define the function dac 
assigning activation degrees to the concepts as follows: 

),(,

[0,1]:

scdacsc

SCdac




           (1) 

where C represents the set of concepts in the IRPCM and 
S stands for the set of snapshots. A concept is said to be 
dac-activated if its activation degree is equal to 1. In the 
following, we show how to build a dac function based on 
a given set of selected concepts in the IRPCM for a 
snapshot s. Let I be the set of concepts related to col-
lected events of involvement in attack with respect to 

detected intrusions. .  CccI n }{= 1
1) Let .  niscdac i 1=1,=),(

2) Compute iteratively the remaining activation de-
grees as follows: Let F be the set of the concepts for 
which we have already computed the activation degree. 
F is initially equal to the set I.  

3) Let G be the set of concepts that have a relation 
with one or more concepts belonging to F. 

}),(,/{= edgeaniscdFdCcG  .Then,  

where qdc is the probability ex-

pressing the certitude degree that there is a relationship 
between the concepts d and c.  

=),( scdac

)}({ ddacqsup dcGd

4)  and return to step 3 if .  GFF := F
In the case where the IRT members have detected ma-

licious actions against the secured system, they start con-
structing the IRPCM corresponding to this situation. The 
concepts that represent the collected events are activated 
and will form the set I in this case. The activation degree 
of the remaining concepts is determined according to the 
previous algorithm. 

The dac function is used in the third step of the Dig-
ForNet methodology to extract set of evidences. Nodes 
having a dac degree greater than a predefined threshold 
are extracted as evidences for the formal specification. 

Notice that the activation degree of concepts may vary 
from one snapshot to another if some concepts are de-
leted or, in the contrary, added to the current snapshot. In 
the first case, a concept cm is deleted from a given snap-
shot of the IRPCM. If cf is a concept to which cm is di-
rectly linked, then the activation degree of the concept cf 
is reduced if the activation degree of cm is the most im-
portant over the set of concepts directly linked to cf . In 
the second case, if cm is a concept which is added to the 
current snapshot, we distinguish three sub-cases: 1) the 
new concept is not evidence and has no concepts directly 
linked to it. In this case the dac value of the new concept 
is unknown and must be set by the investigation team; 2) 
the new concept is evidence. In this case its dac value is 
set to one; 3) the new concept is not evidence and there 
are concepts directly linked to it. In this case, the dac 
value of the new concept is calculated according to the 
previous algorithm. Having determined the dac value of 
the new concept cm and if we represent by P the set of 
concepts to which cm is directly linked, then the for every 
concept c in P, the activation degree increases if cm has the 
highest activation degree over those directly linked to c. 

During IRPCM construction, it may happen that in 
some snapshots, some concepts constitute evidences, 
while they did not in the preceding IRPCM snapshot. In 
this case, we set to one the activation degree of these 
concepts and, using the previous algorithm, we update 
the dac values of the concepts to which these evidences 
are directly or indirectly linked. Conversely, if some 
anti-forensic relations appear in the new snapshot show-
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ing that some data sources were affected by attacks to 
alter the stored evidences, the dac values of concepts 
related to evidences collected from these sources should 
be reduced. Consequently, the algorithm is re-executed 
to update the dac values in the new IRPCM snapshot. 

 
4. Generation of a Formal Specification of 

Attack Scenarios 
 

The Investigation-based Temporal Logic of Actions, 
I-TLA [21], is a logic for the investigation of security 
incidents. It is a extension to the Temporal Logic of 
Actions (TLA [22]). I-TLA defines a theoretical frame- 
work for: 1) modeling and specifying evidences left by 
intruders further to the occurrence of a security incident; 
2) supporting advanced description and specification of 
potential happened attack scenarios as a series of ele- 
mentary attacks, extracted from the library of attacks, 
that if assembled together, would satisfy the available 
evidences. Similarly to TLA, I-TLA allows to reason 
about systems and their properties in a uniform logic 
formalism. I-TLA is provided with I-TLA+, a highly 
expressive formal language that defines a precise syntax 
and module system for writing I-TLA specifications. I- 
TLA will be used in this paper to generate a specification 
describing potential attack scenarios that satisfy the 
available set of evidences. 

In the sequel, we focus on describing the different 
forms of evidences supported by I-TLA, showing how 
they can be specified and how they should be satisfied by 
the expected attack scenario. The reader is referred to [21] 
for more details of I-TLA and I-TLA+ and a complete 
semantic and syntactic description. 

 
4.1. Modeling Scenarios and Evidences in I-TLA 

 
I-TLA is typeless and state-based logic. It allows the 
description of states and state transitions. A state, while it 
does not explicitly appear in a I-TLA specification formula, 
is a mapping from the set of all variables names to the 
collection of all possible values. An I-TLA specification 
  generates a potential attack scenario in the form of: 

 nsss ,...,,= 10 , as a series of system states ( to n) 

that satisfies all available evidences. I-TLA supports four 
different forms of evidences, namely history-based, non- 
timed event-based, timed event-based, and predicate- 
based evidences. A state-based representation of attack 
scenarios allows a security expert to observe how its 
system progresses during the attack and how it interacts 
with the actions executed in the scenario. 

is 0=i

 
4.1.1. History-Based Evidences 
Typically, security solutions do not have direct access to 
all system components. Some of them are able to provide 

evidences as histories of the values of the monitored 
system variables, during the spread of an attack scenario. 
These security solutions cannot realize that the system 
has progressed or not from a state to another if the value 
of the monitored component is either blind, or does not 
change. I-TLA encodes a history-based evidence, say E, 
as an observation over a potential attack scenario ω, gener-
ated by Obs(ω) (Obs() is the observation function that 
characterizes the ability of a security solution to monitor 
the history of the system during an attack scenario). It 
uses a labeling function that allows a third party to only 
see limited information about states of an execution. 
Since a state is a valuation of all system variables, a la-
beling function allows to either:  
 Totally observe the content of variable value. Vari-

able v is visible and its value is interpretable by the ob-
server. It represents a system component whose modifi-
cation is monitored by some security solution.  
 Observe a fictive value instead of the real variable 

value. Variable v is visible but not interpretable by the 
observer, meaning that its variation does not bring any 
supplementary information to an observer. It can repre-
sent an encrypted data whose decryption key is unknown 
by the observer.  
 Observe empty value. Variable v is completely in-

visible, such that none information regarding its value 
could be determined. It represents a system component 
which is not monitored by any security solution.  

Obs(ω) is obtained by following two steps:   
1) Transform each state si to iŝ , by hiding some of 

the details it provid . iŝ  is obtained from si by making 
the value of every system variable v in si to b

 

es
e: 

a) Unmodified. In this case the variable is visible and 
its value is interpretable by the observer. It represents a 
system component whose modification is monitored by 
some security solution;  

b) Equal to a fictive value fictive value. In this case 
the variable is visible but not interpretable by the ob-
server, meaning that its variation does not bring any sup-
plementary information to an observer. It can represent 
an encrypted data whose decryption key is unknown by 
the observer;  

c) Equal to an empty value, denoted by ε. In this case, 
the variable is completely invisible, such that none in-
formation regarding its value could be determined. It 
represents a system component which is not monitored 
any security solution.  

2) Delete any  which is equal to null value (i.e., all 

values are invisible) and then collapse together each 
maximal sub-sequence 

iŝ

 ji ss ˆ...,,ˆ  such that , 

into a single .  

iss ˆ=...=ˆ0

iŝ

Taking into consideration the availability of a his-
tory-based evidence E, consists in generating, an attack 
scenario ω such that Obs(ω)=E. 
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4.1.2. Ordering of Observations 
A step in the scenario may not change all the values of 
the system variables. As the scope of the observations 
differs, they may not allow noticing that the system has 
progressed during the attack at the same time. I-TLA 
allows to specify for two given observations, which one 
will vary first (respectively last) when the attack scenario 
starts (respectively finishes). Consider the following exam-
ple involving an attack scenario ω and two observations 

 and , generated by 

observation functions  and , respectively. 

 is said to be an observation that allows to notice 
the occurrence of an incident before observation 

]...,,[= 1 neeOBS

OBS

]...,,[= ''
1 meeSOB 

)(Obs (sOb  )

SOB  , 
if and only if: x  such that: yx =   

11 =)( eobs x 

mj <1

]...,,[=)( '
12 jx ee obs  for some j 

( ). 

 
4.1.3. Non-Timed Events-Based Evidences 
As the length of observations is different from the length 
of an attack scenario, reconstructed attack scenarios may 
differ by the manner in which observations are stretched 
and aggregated together to generate intermediate states 
of the execution. I-TLA defines non-timed events based 
evidences in the form of predicates over I-TLA execu-
tions, which specify the modification pattern of variables 
values through an execution. For instance, the execution 
predicate AtSameTime, states that state predicate p1 
switches to true at the same time the state predicate p2 
switches to false.  

1 2 1

1 1 1 2 1 2

( , ) , :

( )
i i

i i i i

AtSameTime p p s s

)s p s p s p s p





  
  


   

   (2) 

Taking into consideration the availability of a non- 
timed event-based evidence E, is amount to generate an 
attack scenario ω such that E  . 

 
4.1.4. Timed Events-Based Evidences 
Starting from a set of available alerts, an investigator 
can extract some indications related to occurred 
events. I-TLA defines timed event-based evidence 

 as a set of ordered actions (A0 to Am) 

that should be part of an expected execution. While the 
order in which events appear should be respected, there 
is no need that these events be contiguous. Given a timed 
event-based evidence , an execution 

]...,,[= 0 mAAE

 nss ...,= 0

]...,,[= 0 mAAE

  satisfies evidence E if and only if: 

:EAA xx   ),( 1  )1i

true=

 ,( i ss

s j ), 1

 such that  

true and  for some . 

=),( 1iix ssA

1 isAx (1 j j

 
4.1.5. Predicate-Based Evidences 
With regards to the security response team’s members, 

an unexpected system property is a preliminary argument 
supporting the incident occurrence (e.g., the integrity of a 
file was violated). I-TLA defines predicate-based evi-
dence as a predicate, say E, over system states, that 
characterizes the system compromise. An execution   
satisfies evidence E if E divides ω into two successive 
execution fragments ω1 and ω2 (ω can thus be written as 
ω=ω1ω2). ω1 is composed of secure states ( 1s   : 

s pr ), while ω2 is composed of insecure system states 
( 2s   : s pr ). 

 
4.1.6. Illustrative example 
The following example clarifies the use of I-TLA in 
digital investigation, and illustrates the mechanism of 
handling evidences during the construction of potential 
attack scenarios. We consider a system under investiga-
tion which is specified by three variables x, y, and z. The 
initial system state, described in advance, is the state 
defined by variables x, y, and z are all equal to 0. The 
library of elementary actions contains two actions A1 and 
A2 that can be executed by the system. 

1 =

=

= 2

A x x

y y

z z


 
 


1               (3) 

2 = 1

=

= / 2

A x x

y y

z z

 




              (4) 

Action A1, for instance, keeps the value of variable x 
in the new state unchanged with respect to the previous 
state, and sets the values of y, and z in the new state 1 
and 2 higher than its values in the old state, respectively. 

Three different evidences are provided. The two first 
ones represent history-based evidences, defined as 
E1= 0 ,1 ,2     and E2= 0 , 1 , 2 , 3        

1 1 )i i

, where ε 

stands for the invisible value. These evidences are gener-
ated by observation functions obs1() and obs2(), respec-
tively. The first observation function obs1(), allows a 
security solution to only monitor variable x, meaning that, 
when it is applied to a state s, makes the value of y and z 
both equal to ε, and keeps the values of variable x un-
changed. The second observation function obs2() allows 
a security solution to only monitor variable y. The order-
ing of observations indicates that observation provided by 
obs2() allows to notice the occurrence of an incident before 
the observation provided by obs1(). The third evidence E3, is 
provided as a predicate-based evidence defined as 

. The fourth evidence E4, defined as  3 1E z 
, :i i

4E 

2 )1 1( is s s  p s p s   p   

1

, is an 

non-timed evidence, stating that predicate , 

false in a state si, could not switch to true in the next state 

= 1p x
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si+1, unless predicate 2 4p z   is true in that state. 

Finally, evidence E5, indicates that sequences of events 
(A1, A2) is part of the attack scenario. 

Figure 2 shows how I-TLA guarantees the satisfaction 
of evidences during the construction of the potential at-
tacks. Two potential attack scenarios satisfying the avail-
able evidences are provided by I-LA, namely ω1 and ω2. 
The first scenario ω1 is described as ω1=<s1, s3, s4, s7, s12, 
s15>, and consists in consecutively executing the five 
following actions A1→A1→A1→A2→A2. The second sce-
nario ω2 is described as ω1=<s1, s3, s5, s9, s11, s18>, and 
consists in a consecutive execution of the five actions 
A1→A2→A1→A1→A2. 

Starting from state s1, I-TLA cannot execute action A2 
as it moves the system to a state that does not satisfy the 
ordering of observations. In fact, the sub-scenario <s0, 
s1> is observed by obs1() as <0εε,1εε> and by obs2() as 
<ε0ε>. Thus, the event A2 is detected by E1 but not by E2. 
Starting from state s4, I-TLA does not execute action A2 
as it moves the system to a state that violates evidence E4. 
State s8 could not be considered in the construction 
process as it violates predicate E3. In fact, the predicate 
p1 has become already true in state s3 and should not 
change to false in state s8 again. I-TLA discards states s13, 
s14, and s19 as each one of them would create an execu-
tion that violates evidence E2 if appended to the scenario 
under construction. In the same context, state s16 is also 
not added to the scenario under construction as it creates 
an execution that violates E1. 

 
4.2. Handling Anti-Investigation Attacks 
 
To elude the process of digital investigation, a seasoned 
attacker may try to conduct an anti-investigation attack 
[23, 24] to remove, hide, obfuscate, or alter available 
evidences after breaking into the system. Available tech-
niques include deletion of relevant log entries, installa-
tion of root-kits, steganography, and even wiping of 
disks [25] to disable any further recovery. 

Let obs(-) be an available observation function, and 
OBS be a history-based observation which corresponds 
to the output of obs(-) when executed on the attack sce-
nario under progression, say ω. Formally, an anti- inves-
tigation attack represents any action which moves the 
system to some state, say sj in ω, and does not only ap-
pend obs(sj) to OBS, but also affects OBS to modify any 
content related to obs(s0,…,sj-1). 

We remind that I-TLA reconstructs attack scenarios by 
executing an action unless it satisfies all the available 
history-based evidences. Let si be the current state reach-
able from the initial state s0 through the execution 
<s0,…,si-1>. If an I-TLA action A is executed from state 
si to produce state si+1, the execution obtained after 
reaching the new state should satisfy the available ob-
servation. Formally, . We dem-

onstrate in the following the impact of the anti-investigation 
attack on the process of attack scenarios reconstruction in 
I-TLA using the regular definition of observation functions. 

OBSssobs i   )...,,( 10

 
4.2.1. Example  
We consider a system modeled using two variables p and 
l which are related to the user granted privilege and the 
content of the system log file, respectively. Variable p 
can take three values: 0, 1, and 2 which stand for no ac-
cess, unprivileged access, and privileged access, respec-
tively. As the log file is typically accessed in append 
mode, variable v takes a series of values representing the 
commands executed on the system. These values are 
included in chronological order of their execution. 

 50 ..,,= ss  represents an attack scenario composed of 

five states, where actions A1, A2 and A3 stand for the 
execution of arbitrary commands. Every one of these 
actions appends an entry to the tail of the log file. A4 con-
sists in exploiting vulnerability on the system to get a 
privileged access. Action A5 is an anti-investigation at-
tack. It consists in getting a privileged access on the sys-
tem and altering the content of the log file by deleting the 
entry corresponding to the execution of action A2. The 
attack scenario ω is described as a series of six states, 
where every state is a valuation of the two variables, and 
edges are labeled by the executed action. 

 1,  1A   1,1, Act     2A   21,,1, ActAct

 3A   321 ,,,1, ActActAct  4A  

  321 ,,,2, ActActAct    5A   31,,,2 ActAct

We consider a security solution which is modeled by 
the observation function obs(). The latter allows observ-
ing the current executed commands on the system by 
looking for new entries appended to the log file. For-
mally, obs(s)=tail(s(log)), where tail(x) returns the last 
entry in x. Using the regular definition of observation 
function obs(), the history-based evidence generated by 
the security solution further to the execution of the attack 
scenario is given by: 

1 2 3 4 5 6

1 2 3

( ) =

( ), ( ), ( ), ( ), ( ), ( )

= , , ,

obs

obs s obs s obs s obs s obs s obs s

Act Act Act


 
 

 (5) 

Starting from this definition, it is expected that the 
provided observation content will be in the form of <-, 
Act1, Act2, Act3,>. However, since this history-based evi-
dence is provided by the content of the log file, which is 
retrieved after the attack, only the content <-, Act1, Act3,> 
will be visible. The difference between the expected and 
the available output is due to the execution of the 
anti-investigation attack. 

If this history-based evidence is considered during the 
reconstruction of the attack scenario, starting from state s2,     
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Figure 2. I-TLA attack scenario specification: an illustrative example. 

 
\

action A2 cannot be executed since it does not provide a 
state whose observation is included in the evidence. In other 
words, there is no entry in the log file after the one corre-
sponding to the execution of A1, which shows an indication 
regarding the executed action A2. 

Starting from this statement, we describe in the sequel 
a new observation function which allows coping with 
anti-investigation attacks. 
 
4.3. Observations 

 
Let {v1,...,vn} represents the set of system variables. A 
variable in this set could represent a system component 
which is accessed in append mode (e.g., log or alert file, 
raw traffic capture) and takes a value or a series of values. 
Let v x(s) and Card(v(s)) represents the xth value, and the 
number of values, in the series v(s), respectively. We 
denote by  the operation which consists in 

superimposing the series v(si) on the series v(si-1) while 
keeping elements in v(si) and discarding those situated 
beyond the limit of the intersection. Formally, 

where  

. 

1( ) ( )i iv s v s 

1
1) = [ ( ),..., y

iv s v

))]

( ) ( ( )]i iv s v s s

1( ( iCard v s 

i ,

)n



= [ ( ( ))iy min Card v s

1 1 1 1 1= [ ( ) ( ),..., ( ) ( )]i i i i n i n is s v s v s v s v s      (7) 

By applying * ( )obs   function on the scenario ω pro-

vided in the example of subsection 4.2, we obtain obs*(ω)= 
<-, A1, A3>. The output of this function is equal to the con-
tent retrieved from the system after the execution of the 
attack scenario which included an anti-investigation attack.  

Theorem 1: Given an executed attack scenario ω, and 
an observation function obs(-). If *( ) ( )obs obs  , the 
attack scenario ω includes an anti-investigation attack. 

Proof: We suppose that *( ) ( )obs obs   and there is 
no anti-investigation attack in the scenario ω. In the fol-
lowing we will disapprove this proposition. 

Let v be an observable variable (with regard to obs(-) 
function). Typically, since the variable v is in append 
mode, and the modifications are introduced to the tail of 
the series, the xth value in v(si) should be the one corre-
sponding to the xth value in v(si-1). In the absence of 
anti-investigation attack, none action executed from state 
si would modify the xth value in v(si-1). Formally, the fol-
lowing condition should be satisfied:  

1[1.. ( )] : ( ) = ( )x x
i i ix Card s v s v s         (8) 

Therefore, . Assuming that the 

investigated system is modeled using only variable v and 
the attack scenario is composed of two states si and si-1, 
we obtain and

1( ) ( ) = ( )i i iv s v s v s

1( ) = ( )i i is s s obs s

1

ob * ( ) = ( )obs obs  . 

The proposition is therefore disapproved.  

We denote by obs*(ω) a new observation function 
over the executed attack scenario which allows capturing 
the situation where an anti-investigation attack has been 
conducted. Formally, 

*

0 1

( ) =

( ... ), ( ... ),..., ( )n n

obs

obs s s obs s s obs s


    

  (6)  
4.4. From IRPCM to I-TLA Specification 

 
where  Starting from the IRPCMs built by the IRT, useful in-
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formation, in the form of symptoms, unauthorized results, 
or actions, will be extracted and used to formally de-
scribe different type of evidences with I-TLA. We denote 
by useful information, any concept in the IRPCM having 
a degree of activation value that exceeds some prede-
fined threshold, denoted by extraction threshold. 

Symptoms are typically extracted from log files, traf-
fic capture, or even keystrokes. They can be traduced to 
history-based evidences by transforming the whole con-
tent of the log file (including the record indicating the 
symptom itself) into an I-TLA history-based evidence. 
Symptoms extracted from alerts files indicate the occur-
rence of an events whose position in the reconstructed 
attack scenario cannot be determined. They will typically 
be transformed to non-timed I-TLA based evidence. 

Actions selected from an IRPCM represent steps taken 
by a user or a process in order to achieve some result. A 
well intentioned reader has noticed that actions in the 
I-TLA library and actions in the IRPCM may not have 
the same form, and are not of the same granularity. In 
fact, an IRPCM action can be traduced to one or several 
consecutive I-TLA actions. In this context, for every 
selected IRPCM action an investigator has to extract 
sequence of elementary actions from the I-TLA library. 
The different obtained sequences will represent timed 
events-based evidences. 

Unauthorized results represent unauthorized conse-
quence of events. They are traduced to I-TLA predicate- 
based evidences. An investigator has to identify the sys-
tem variable affected by the unauthorized consequence 
and then use it to describe the evidence. 

Since the attack scenario may integrate anti-investiga-
tion attacks, the investigator has to locate in the IRPCM 
the set of concepts that are linked by anti-investigation 
relations (i.e., conceal, destroy, forge, and replace). Since 
anti-investigation attacks are executed to compromise 
evidences, the investigator has to determine which of the 
system variables, specified with I-TLA, describe the 
content of these compromised evidences. After that, it 
has to select observation functions that are defined to 
observe the content of these affected variables. This fea-
ture is highly essential for the reconstruction of the attack 
scenarios. 

 
5. Executable Scenarios Generation Using 

I-TLC 

To automate the proof in the context of digital investigation 
and generate executable attack scenarios showing with 
details how the attack was conducted and how the system 
progressed for each action part of the scenario, I-TLC 
[21], a model checker for I-TLA+ specifications can be 
used. I-TLC is somehow an extension to TLC, the model 
checker of TLA+ specification. It works by generating an 
optimized directed graph of states representing the space 
of possible scenarios generated from the I-TLA+ specifi-

cation. Despite checking that some types of computation 
are impossible as they violate safety properties, I-TLC 
aims to reconstruct execution (i.e., potential attack sce-
narios) that satisfy each form of evidences supported by 
I-TLA. I-TLC provides a novel concept entitled hypo-
thetical action, defines techniques for its generation and 
management, and improves the representation of states. 
The directed graph is built by ensuring that a given node 
is reachable under optimal sets of hypothetical actions. 

5.1. I-TLC’s States Representation 

I-TLC represents a node in the graph as a tuple of two 
information: node core and node label. The core of a 
node represents a valuation of the entire system vari-
ables, and the node label represents the potential sets of 
hypothetical actions under which the node core is 
reached. A reading of the node label indicates a) the 
state of the system in the current node, and b) the alter-
natives (hypothetical action sets) under which the sys-
tem state is reachable. 

}}],{},,{{[(1,3), 3241 HHHH  represents an example 

of a node which can be represented by the graph gener-
ated by I-TLC. (1,3) is the node core, {H1,H4} and 
{H2,H3} represent the set of hypothetical actions under 
which the node core is reachable, and {H1, H4}，{H2, H3} 
is the node label. This representation means that the sys-
tem state (1,3), representing a valuation of the two vari-
ables x and y, respectively, is reachable under one of the 
two sets of hypothetical actions {H1,H4} or {H2,H3}. 

5.2. Generation of Hypothetical Actions 

Generation of potential attack scenarios may fail if the 
library of actions is incomplete. In fact, for the particular 
case of attack scenarios that involve the use of unknown 
techniques, the system may come at some state while 
being unable to reach another state that if appended to 
the scenario under construction, will make it satisfy all 
the available evidences. To alleviate this issue, I-TLC 
tries to generate a hypothetical action and append it to 
the graph under construction, whenever available evi-
dences are not completely satisfied. 

The idea behind the generation of hypothetical actions 
is based on the fact that unknown actions can be gener-
ated if additional details about internal system compo-
nents (i.e., those abstracted by the specification) are 
available. This detail involves a description of how these 
internal system components are expected to behave (if 
atomic actions are executed on them) and how they de-
pend on each other. These internal system components 
are modeled by a specific set of variable denoted by in-
ternal variables. The other variables specified by I-TLA 
are denoted by external variables. 

Semantically, a hypothetical action is true or false for 
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a pair of states <s, t>. Syntactically, a hypothetical action 
is modeled as a series of hypothetical atomic actions, 
executed one after the other from state s to move the 
system to state t. It is defined in the following form 

.  defines a mapping from 

the external variables values to the internal variables 
values in state s and  defines a mapping from the 

internal variables to the external variables in state t. The 
set of hi (i from 0 to n) represents executed hypothetical 
atomic actions. A hypothetical atomic action hi only 
modifies a single internal variable, and represents a rela-
tion between two consecutive internal system states. 
During hypothetical actions generation, I-TLC needs 
access to the library of hypothetical atomic actions. This 
library describes all the potential hypothetical atomic 
actions that can be executed on the investigated system. 

einie mhhmH  ...= 0

eim

iem

During scenarios generation, several hypothetical ac-
tions may be appended whenever needed. I-TLC man-
ages hypotheses following the two key ideas. First as 
hypotheses are not completely independent from each 
others and some hypotheses are contradictory, I-TLC 
avoids reaching a state under a contradictory situation. In 
this context, the library of hypotheses indicates potential 
contradictory sequence of hypothetical atomic actions. 
Second, in order to ensure that generated hypothetical 
actions are at the maximum close to real actions per-
formed on the system, I-TLC defines techniques to refine 
the selection of hypothetical atomic actions. 
 
5.3. Generation of Anti-Investigation Attacks 

 
Typically, when an I-TLA action is to be executed, 
I-TLC verifies whether it satisfies all available evidences, 
especially history-based observations. Similarly to the 
case of unknown actions (as discussed in the previous 
subsection), the generation of potential attack scenarios 
may fail if the history-based observations were compro-
mised using an anti-investigation attack. To cope with 
such an issue, I-TLC handles separately actions which 
modify the compromised evidences (with regard to his-
tory-based observations detected by I-TLA in the previ-
ous phase to be compromised using anti-investigation 
attacks). 

Let  be the set of observations compromised by 
anti-investigation attacks, and V be the set of variables 
affected by these attacks. I-TLC could execute, during 
the reconstruction of the attack scenario, an action, say A, 
which do not create states satisfied by the available ob-
servations in , provided that the executed action modi-
fies at least a variable in V. In the sequel, an action which 
satisfies the above conditions will be entitled Prep-anti- 
investigation action. 





To support the generation of Prep-anti-investigation ac-
tions, heuristics can be used so that only accurate actions 
will be integrated to the attack scenario under construction. 

These heuristics exploit the values that could be taken by 
some other variables in the execution. For instance: 
 Execute an action A if one of the collected evi-

dences, namely the history-based evidences, shows that 
later the user will get a privileged system access. Such 
condition would mean that an anti-investigation attack 
can potentially be executed.  
 Discard the attack scenario under construction if the 

number of states between the first generation of action A 
and the execution of the anti-investigation action has 
exceeded a threshold.  

While staring from the first generation of Prep-anti 
-investigation action, the generated attack scenario will 
no longer satisfy the available observations, I-TLC 
should verify later that, further to the execution of some 
I-TLA action, which will typically be an anti-investigation 
attack (included in I-TLA as evidence), the attack sce-
nario under construction, say ω, becomes satisfied by all 
evidences. For a completely generated attack scenario, 
say ω, which included, at some step in the execution, an 
anti-investigation action, I-TLC should verify that 

*( ) ( )obs obs  . 

 
5.4. Inferring Scenarios with I-TLC 

 
To generate potential scenarios of attacks, DigForNet 
uses I-TLC Model Checker, which follows three phases. 
The reader is referred to [21] for a detailed description of 
I-TLC algorithms. 

 
5.4.1. Initialization Phase 
During this step, the generated scenarios graph is initial-
ized to empty, and each state satisfying the initial system 
predicate is computed and then checked whether it satis-
fies the system invariants and the set of evidences. In that 
case, it will be appended to the graph with a pointer to 
the null state, and a label equal to  (as no hypotheti-
cal action is generated). 



 
5.4.2. Forward Chaining Phase 
The algorithm starts from the set of initial system states, 
and computes in forward chaining manner the entire suc-
cessor states that form scenarios satisfying evidences de-
scribed in I-TLA. Successor states are computed by exe-
cuting an I-TLA action or by generating a hypothetical 
action or Prep-anti-investigation action, and executing it. 

When a new state is generated, I-TLC verifies if an-
other existing node in the graph has a node core equal to 
that state. If the case is false, a new node, related to the 
generated state, is appended to the graph under construc-
tion, and linked to its predecessor state. If the case is true, 
the label of the existing node is updated so that it em-
bodies the set of hypothetical actions under which the 
new system state is reachable. During label update, 
I-TLC ensures that each node label is provided with the 
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following properties: soundness (a node holds the set of 
hypothetical actions under which its core is reachable), 
consistency (none set of hypothetical actions in the node 
label is an inconsistent or contradictory one), complete-
ness (every set of hypothetical actions in the node is a 
superset of some other hypothetical actions), and mini-
mal (none set of hypothetical actions is a proper subset 
of any other). If the scenario yielding the new generated 
state satisfies all the evidences, the system state is con-
sidered as a terminal state. 

 
5.4.3. Backward Chaining Phase 
All the optimal scenarios that could produce terminal states 
generated in forward chaining phase and satisfy the 
available evidences, are constructed. This helps obtain-
ing potential and additional scenarios that could be the 
root causes for the set of available evidences. During this 
phase, the algorithm starts with a queue holding the set 
of terminal states generated in forward chaining phase. 
Afterwards, and until the queue becomes empty, the tail 
of the queue is retrieved and its predecessor states is 
computed. The new generated states are managed and 
appended to the graph under construction with the same 
manner followed in forward chaining phase. 

All potential scenarios are supposed to be generated 
by I-TLC. The only exception may occur due to the lack 
of actions in the library of elementary actions. Nonethe-
less, the use of hypothetical actions concepts allows alle-
viating this problem. 

 
6. Case Study 

 
To demonstrate how DigForNet works, we provide in the 
following a case study related to the investigation of a 
compromised Linux Red Hat 7.2 operating system, 
which was deployed as a Virtual Honeypot in a VMWare 
session. The compromised system was suspended with 
VMWare immediately after the attack and a live image 
was created and posted by the Honeynet Project1 for 
investigation. This case study deals with an investigation 
of a live system, the attack is highly complicated and 
requires advanced digital investigation skill knowledge, 
and the conducted scenario integrates several anti- 
investigation actions. In this case study, we will start by 
describing the attack. Then, we will show the use of 
DigForNet to investigate such incident. 

 
6.1. Attack Description 

 
First, the attacker probed the HTTP server from the ma-
chine identified by the IP address 213.154.118.219. Then, 
the attacker tried to exploit the Apache SSL handshake 
bug. Using this vulnerability, he gained a remote access 
as the Apache user. After that, he escalated his privilege 
and gained root access. At this level, the attacker con-

ducted many attempts to install a rootkit. Only one of 
these attempts has succeeded. The following paragraphs 
describe the rootkits installation attempts. 

The attacker has downloaded the tarball rk.tar.gz from 
geocities.com/mybabywhy/rk.tar.gz. Obviously, he then 
installed the rk.tar.gz. This install operation infected some 
binary files on the system, including ifconfig, ls, netstat, 
ps and top, and saved their original version in /usr/lib/ 
libshtift. When the install script of rk.tar.gz finished the 
installation process, some system files (such as /bin/ps) 
have been replaced; mails with information about the 
system have been sent to mybabywhy@yahoo.com and 
buskyn17@yahoo.com; new unknown processes have 
been run as daemon; and the log file has been deleted to 
hide the attacker actions. After this, the hacker downloaded 
other tools including abc.tgz, an installation script for the 
current SSH server; and mass2.tgz, which is an exploit 
used to hack the server. However, the attacker has failed 
to stop the SSH daemon and has installed an SSH server 
under the file name “smbd -D”. The attacker does not even 
know the backdoor password. So, he carried out a novel 
attempt. He downloaded adore rootkit and tried to install 
it. But the install operation failed. 

The attacker did not give up. He again gained a root 
access. This time, the attacker used the program gods (a 
shell script from izolam.net), to download adore LKM 
and an SSH server. After this, the attacker has installed 
the SucKIT rootkit using the installation script inst. This 
time, the rootkit installation has succeeded. The attacker 
also run xopen and lsn programs and moved /lib/.x/.boot 
from /var/tmp/.boot. After this, the attacker has con-
nected to the FTP server identified by the IP address 
63.99.224.38. Then, the file /root/sslstop.tar.gz has been 
moved from /lib/.x/s.tgz. It contains the sslstop program 
which modifies httpd.conf to disable the SSL support. 
The program sslport modifies httpd.conf to change the 
default SSL port (443) to another port (3128 in this case). 
The primitive HAVE_SSL has been replaced by HAVE_ 
SSS in /etc/httpd/conf/httpd.conf. This indicates that sslstop 
has been run. In addition, the attacker downloaded psyBNC 
from www.psychoid.lam3rz.de/ psybnc and installed it. 
This program is used to hold open an IRC connection 
and run a proxy IRC in order to hide the user’s IP ad-
dress. Using psyBNC, the user sic has connected from 
sanido-09.is.pcnet.ro to fairfax.va.us. undernet.org, an 
IRC server. He has created an account named redcode. 

 
6.2. IRPCM Construction 

 
The generated IRPCM is given by Figure 3. Actions, symp-
toms, and unauthorized results in this IRPCM are de-
picted by plain, dashed, and dotted ellipses, respectively. 

To construct the IRPCM, we used the evidences which 
*Honeynet Project-Scan of the Month #29 http://old.honeynet.org/
scans/scan29/ 
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were collected on the compromised system. Three con-
cepts in the form of symptoms, namely S1, S2, and S3, are 
initially appended to the IRPCM. Symptom S1 indicates 
that the httpd log file contains suspicious entries showing 
potential exploit of ssl. Symptom S2 indicates the exis-
tence of suspicious connections to the web server from 
213.154.118.218 in the /var/log/ messages. Symptom S3 
shows that the web server banner is indicating a vulner-
able version of Apache/OpenSSL. These three symptoms 
are linked to the concept A1 which represents the action 
“Execution of mod_ssl/OpenSSL exploit”. The latter action 
leads to the creation of the following unauthorized result, 
denoted by U1 “Unauthorized access to the system with 
privileged rights” meaning that the intruder can execute 
some commands on the compromised system. Therefore, 
an edge is appended to the IRPCM from the concept A1 
to the concept U1, creating a Cause/Effect relation. 

The attacker reconnected to the system from the IP 
address 213.154.118.218. In the IRPCM this action is 
defined by the concept A2, succeeds the action A1, and 
precedes the action A3 which represents a tentative to 
install the Adore rootkit. Action A3 is vindicated by the 
content of log files and some mails from Apache indi-
cating a failed installation of the Adore rootkit. In this 
context, the symptom S5 is linked to the action A3. 

Always using the privileged access, the attacker down- 
loaded rk.tar.gz from geocites and installed the rootkit it 

contains. This is shown by the action A4 in the IRPCM. 
The latter is vindicated by the content of swap-colon.txt 
(symptom S8 in the IRPCM). This rootkit leads to the 
unauthorized result U2 which indicates that an unauthor-
ized installation of programs on the system was per-
formed. The attacker succeeded to install other programs 
such as a port scanner called sl2. Such activity is repre-
sented by action A5 in the IRPCM. It is vindicated by 
some entries in the swap-colon.txt file too. By the com-
pletion of the installation, the attacker erased the log in-
stallation history of the tools contained in rk.tar.gz. Since 
this behavior represents an anti-forensic attack, the con-
cept A4 is linked to the concept S9 using a destruction 
relation. The investigation process did not show any fur-
ther use of this rootkit. 

After this, the attacker used his privileged access to 
run the /lib/.x/hide script (action A6 in the IRPCM) in 
order to destroy the symptoms “gods is running” and 
“inst is running”. Two destruction relations are therefore 
created from the action A6 to the symptoms S10 and S11, 
respectively. The two latter symptoms give a proof re-
garding the execution of actions “Install SucKIT” and 
“Download SucKIT”, respectively. In reality, the at-
tacker installed the SucKIT rootkit as proven by the / 
partition analysis which shows the use of gods, a script 
used to download SucKIT, and inst, a script used to in-
stall this rootkit. SucKIT installation led to the unauthori-  
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Figure 3. IRPCM related to the attack against the VMWare Linux honeypot.  
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zed result “unauthorized programs install/ modification”, 
namely U3. This rootkit was installed on 10 August 2003 
as indicated by a trusted version of the date command. 
This information was provided by symptom S12 which is 
linked to the action A8. The action representing the SucKIT 
installation was followed by action A9 denoted by “run 
xopen SSH server”. This action is vindicated by the 
symptom S12 which is provided by the output of a trusted 
version of the lsof command. The latter shows that xopen 
is running on the compromised system. This output 
shows also that SSL is using port 3128 instead of 443. 
After this, the attacker executed action A10 to run sslstop 
and sslport programs. The content of the concept A10 is 
vindicated by symptom S10. The latter is indicated by the 
analysis of /etc/httpd/conf/httpd.conf which shows that 
the primitive HAVE_SSL was replaced by HAVE_SSS. 
The script sslstop modifies httpd.conf to disable the SSL 
support. sslport modifies httpd.conf to change the default 
SSL port (443) to something else (3128 in this case) and  
then to conceal any port scanner output that can provide 
the symptom informing about the use of SSL. A conceal-
ment relation is appended from Action A10 to symptom 
S14 in the IRPCM. 

After installing the SucKIT rootkit, the attacker closed 
the first connection and reconnected to the same web 
server from 213.154.118.219. This action, namely A12, 
succeeds the action A11 in the IRPCM, which consists in 
setting the parameters of /dev/ttyop, /dev/ttyoa and /dev/ 
ttyof to hide processes, addresses and files, respectively 
and then to conceal symptoms such as NetStat output. 
Action A11 conceals also the action of connecting to the 
server 213.154.118.219. A concealment relation is cre-
ated from the concept A11 to the concept A12. 

Using the new shell, the attacker conducted three other 
actions. He first installed the swapd network sniffer (Ac-
tion A14 in the IRPCM). This action is supported by the 
two symptoms S19 and S20. S19 indicates that a trusted 
version of ifconfig showed that the network card was in 
promiscuous mode. S20 represents the output of a trusted 
version of the lsof command indicating that swapd was 
running using the pid 3153. Second, the attacker exe-
cuted a remote FTP access (Action A16 in the IRPCM). 
This action is vindicated by the concept S18 representing 
the analysis of xinetd configuration. It shows that /etc/ 
ftpaccess is configured to allow anonymous access. Ac-
tion A16 leads to the unauthorized U5 showing that an 
unauthorized downloading of programs via FTP was per-
formed. Third, the attacker installed psyBNC (Action A13 
in the IRPCM) which is an Internet Relay Chat (IRC) 
proxy. This action conceals the unauthorized result U4 
which shows a communication with other crackers. By 
concealing U4, the IRC program allows communications 
without revealing the intruder identity. Action A13 is vin-
dicated by the symptom S17. In fact the execution of a 
trusted lsof command on the compromised system shows 
that psyBNC is running. Using psyBNC, the attacker con-

nected to the IRC server fairfax.va.us.undernet.org (Action 
A15 in the IRPCM). An edge labeled by a concealment 
relation is created from the concept A13 to the concept S17. 

 
6.3. Extracting Evidences from IRPCMs 

 
We model the investigated system using six variables; 
namely Pr, hhtplog, port2003, ConAddr2003, SorftLog, 
and AppSoft. They represent the system privilege granted 
to the remote user (i.e., the attacker), the tail of the con-
tent of the web service http log file, the service running 
on port 2003, the IP address connected to port 2003, the 
content of residual software installation logs, and the 
additional software installed on the system. 

The evidences extracted from the IRPCM in conjunc-
tion with the library of elementary actions are then used 
by the I-TLA logic to specify the set of potential attack 
scenarios. For the sake of space, we will only consider a 
specific part of the IRPCM and we will describe the re-
lated I-TLA specification. Concepts in the IRPCM hav-
ing a degree of activation that exceeded a pre-defined 
threshold are traduced into I-TLA evidences. 

The concept “Disk sectors: Log installation history” is 
traduced to history-based evidence in I-TLA. This evi-
dence, which is provided by the log installation file, al-
lows monitoring the content of variable SoftInsLog. The 
provided evidence represents an observation over such 
variable. Since it was targeted by an anti-investigation 
attack, it is equal to <-> showing that none log file, 
which could be left by the installed software, is on the 
system. Some concepts from the IRPCM, in the form of 
actions, are mapped to I-TLA actions. For instance, the 
two actions “Execution of mod_ssl/OpenSSL exploit” 
and “Install rk.tar.gz” are traduced to the two following 
I-TLA actions, say A1 and A2, respectively: 

1 = 1

=

2003 = " / / "

2003, ,

A Pr

httplog modsslattack

port bin sh

ConAddr SoftInsLog AppSoft


  


 



     (9) 

2 = 2

2003 =< >

2003 =< >

, , 2003, ,

A Pr

port

ConAddr

Pr httplog port ConAddr AppSoft


 
 
 



(10) 

Action A1 can be executed to compromise the web 
service using the SSL vulnerability. It consists in induc-
ing the system to grant a shell on port 2003. Further to 
the execution of such action, an entry is appended to the 
HTTP log file showing that a suspicious behavior has 
occurred. Since, the exploitation of the OpenSSL vul-
nerability gives access using the privilege of the Apache 
user, variable Pr gets value 1. This value means that the 
access level is more privileged that the user access but 
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less privileged than the root one. 

Action A2 cannot be executed unless variable Pr is 
equal to 2 to mean that the user should have gained a 
root privilege on the system. The action consists in hid-
ing the execution of services on port 2003, and the con-
nection of suspicious hosts on port 2003, if the Linux 
commands ps and netstat are used. Actions A1 and A2 
stand for timed event-based evidence showing that A1 is 
executed before A2 and both of them are part of the con-
ducted attack scenario. 

 
6.3.1. Executable Scenarios Generation by I-TLC 
I-TLC was used to generate executable specification [18], 
of the potential attack scenarios from I-TLA specifica-
tion. One potential attack scenario is generated and is 
shown by Figure 4. The scenario is composed of nine 
states where every state shows the value of the modeled 
variables. Edges linking states, are labeled by the name 
of the executed action. 

The system starts with an empty HTTP and system log 
file. The attacker first connects to the web service and 
runs the modssl exploit to get system access with the 
Apache user privilege. After that, it connects to the shell 
granted on port 2003. Thus, variable ConAddr2003 gets 
the value of the IP address of the remote user. After that,  

 

the attacker makes a tentative to install the rk rootkit. 
The operation is logged to the installation log of this tool. 
However, since it fails, no files were integrated to the 
system directory and variable AppSoft remains unchanged. 
Later, the attacker conducts a storage-based anti-inves-
tigation attack to hide the content of the installation log 
file. It reconnects from another host identified by the IP 
address 213.154.118.218, escalates its privilege, installs 
the suckit rootkit, and configures it to hide the execution 
of the shell on port 2003 and connected the IP address. 

In this execution, it can be noticed that the execution 
of action A2 creates state s3 which does not satisfy the 
content of the history-based evidence. In fact, since an anti- 
investigation attack was executed and detected during the 
IRPCM construction, I-TLC has allowed the execution 
of A2 because it modifies the content of variable SoftIns-
Log which was affected by the anti-investigation attack. 

6.3.2. Hypothetical Actions Generation 
I-TLC has generated some hypothetical actions. For the 
lack of space, we only kept one hypothesis among those 
generated. Starting from state s6, I-TLC could not find an 
action described in I-TLA specification, which, if exe-
cuted, lets obtaining a potential attack scenario that satis-
fies the history-based evidence. I-TLC looks within the 
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Figure 4. Fragment of the generated executable specification by I-TLC. 
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library of hypotheses and generates, a, hypothetical ac-
tion H, and executes it to move the system to state s7. 
The hypothetical action consists in uploading an exploit 
to the compromised system and executing it to get a root 
privilege. Further to the execution of the hypothetical 
action, variable pr gets value 2, and the value exploit is 
appended to the content of variable AppSoft. Later ac-
tions A7 and A8 are executed. I-TLC specifies that states 
s7, s8 and s9 are reachable under the hypothetical action H 
by setting their label equal to the singleton H. 
 
7. Conclusions 
 
In this paper, we have developed a system for digital 
investigation of networks security incidents. This system 
uses formal techniques as well as the IRT members’ 
knowledge to analyze the attacks performed against the 
networks. We have introduced the intrusion response 
probabilistic cognitive maps that are constructed by the 
IRT upon the occurrence of the attack. A formal language 
has been introduced to help specifying the attack scenar-
ios based on the cognitive map. A model checker was 
built to automatically extract the attack scenarios and a 
hypothetical concept is introduced here to help in the 
construction process. To illustrate the proposed system, 
we used it in a real case of security attack. 
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