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Abstract 
Sensitivity analysis of neural networks to input variation is an important re-
search area as it goes some way to addressing the criticisms of their black-box 
behaviour. Such analysis of RBFNs for hydrological modelling has previously 
been limited to exploring perturbations to both inputs and connecting weights. 
In this paper, the backward chaining rule that has been used for sensitivity 
analysis of MLPs, is applied to RBFNs and it is shown how such analysis can 
provide insight into physical relationships. A trigonometric example is first 
presented to show the effectiveness and accuracy of this approach for first 
order derivatives alongside a comparison of the results with an equivalent 
MLP. The paper presents a real-world application in the modelling of river 
stage shows the importance of such approaches helping to justify and select 
such models. 
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1. Introduction 

Rapid developments in artificial intelligence in recent years, and ever more 
powerful computing resources, have led to a plethora of machine learning tech-
niques being used to solve all kinds of hydrological problems—for example, 
multi-layer perceptrons, radial basis function networks, support vector ma-
chines, deep learning, etc. Numerous studies have compared different tech-
niques in different regions for different hydrological problems (for example, [1] 
[2] [3] [4]). The bulk of the research has involved the use of artificial neural 
networks (ANNs) including the popular multi-layer perceptron (MLP). 

Although MLPs are arguably the most recognised feed forward neural net-
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work models, Radial Basis Function networks (RBFNs) have proved to be a 
popular alternative as they can be trained relatively quickly and perform com-
parably well against equivalent MLPs. RBFNs [5] [6] [7] were developed from an 
exact multivariate function interpolation [8] and have attracted a lot of interest 
since their conception in the late 1980s. Although there are differences in the 
transfer functions, how these functions combine and how they are trained, the 
conceptual structure of MLPs and RBFNs is equivalent—consisting of several 
interconnected, layered nodes in a feed forward structure. Thus, RBFNs and 
MLPs are both classed as feed forward neural networks (FFNNs). 

However, with such a diverse choice of tools open to the hydrologist, the 
challenge of deciding which technique to use can be daunting. The choice of 
which machine learning technique to use can be broken down into three funda-
mental issues: 

1) Difficulty—how difficult is it to calibrate the chosen model—how long will 
it take; and how complex is the solution? 

2) Accuracy—how accurate is the model we have produced? 
3) Confidence—how confident are we that the model has some physical in-

terpretability of its behaviour so we believe in the predictions it is making and 
can justify these predictions in a rational sense? 

While studies have shown the MLP and RBFN can address the difficulty and 
accuracy issues defined above (they are relatively easy to implement and under-
stand; and studies have shown them to be accurate), there has been little work 
addressing the third concern—that of physical interpretability. The objective of 
this paper is thus to contrast these two common machine learning variants 
within this context by exploring an approach to sensitivity analysis which pro-
vides some physical interpretation. 

Sensitivity analysis of FFNNs is an important research issue as it allows us to 
explore relationships, provide physical and/or mechanical rationality in certain 
practical applications and justify model behaviour. Chen [9] identified several ap-
proaches in the literature to sensitivity analysis of FFNNs. For example, one such 
FFNN is Madaline—developed in 1988 by Winter and Widrow. A number of ap-
proaches have been used to explore the sensitivity of Madaline Neural Networks 
including Stevenson et al. [10] who derived sensitivity from a percentage error of 
the network’s weights; Piche [11], based on a statistical model; and Zeng et al. 
[12] who applied a hypercube probability model. In terms of MLPs, a number of 
approaches have been explored including Hashem [13] who applied backward 
chaining to derive the partial derivatives and hence sensitivity of the model to 
each input; Yang et al. [14] who considered sensitivity of MLP outputs with re-
spect to input perturbations; and Zeng et al. [15] who employed a similar tech-
nique that also perturbed connection weights. Binary neural networks have also 
attracted some attention in terms of sensitivity analysis. For example, Huang et 
al. [16] used matrix and probability theory to determine a network’s sensitivity 
which was less computationally demanding than previous approaches. 
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The RBFN has also attracted interest in terms of sensitivity analysis—most 
notably by Ng et al. [17] who looked at output changes based on input perturba-
tions; Shi et al. [18] who examined squared output deviations; and Chen et al. [9] 
who defined a quantified measure of sensitivity based on input perturbations. 

This paper applies the backward chaining rule of Hashem [13] to derive par-
tial derivatives of the network output with respect to each input for RBFNs con-
sisting of a linear output unit and Gaussian basis functions. Although the partial 
derivative of RBFNs has been defined and used before (for example, [19] [20]), 
no study has been made into such an application in flood peak estimation. 

The remainder of this paper is structured as follows. Section 2 discusses the 
derivation of the first order partial derivative of the RBFN (and, briefly, the MLP 
for background) and includes a simple trigonometric example to show this 
working in practice. Section 3 introduces a real-world example and explains how 
rainfall-stage RBFN and MLP models were developed to modelling river levels in 
the River Ouse, UK. Section 4 presents the results of the sensitivity analysis using 
the partial derivative equations outlined in Section 2, before Section 5 concludes 
the paper with some thoughts and further work. 

2. First Order Partial Derivatives of the RBFN and MLP 
2.1. Introduction 

In this section, we will focus on the calibration and the derivation of first order 
partial derivatives of the RBFN. The equivalent equation for the MLP is pre-
sented for completeness. A simple trigonometric function is presented by way of 
example to show the derived equations working in practice. 

Both the MLP and RBFN are structured in a similar way—shown in Figure 1. 
This is a typical structure employed in hydrological modelling with a single hid-
den layer and a single output node. The n input nodes reside in Layer 0, the m 
hidden nodes in Layer 1, and the output node makes up Layer 2. The number of 
nodes in the input layer is determined by the data set (the number of predictors 
available) and then there is usually one output node (the predictand). The number 
of nodes in the hidden layer can be resolved by the training algorithm employed 
(for example, pruning algorithms for an MLP) but is often determined through a 

 

 
Figure 1. Typical feed forward neural network with one hidden layer and a single output 
unit (only some of the connection weights are shown for clarity). 
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trial and error approach. For an RBFN, the hidden nodes represent the basis 
functions employed. 

2.2. RBFN 

The RBFN consists of basis functions in the hidden layer and (typically) a linear 
activation function in the output layer. The basis functions in the hidden layer 
are typically represented by a Gaussian function (although it is acknowledged 
that other functions are sometimes used: [21]): 

( ) ( )2 22e x ch x σ− −=                        (1) 

in which c represents the distance from the centre of the Gaussian function and 
σ represents its width (sphere of influence). 

When calibrating an RBFN the first step involves establishing the centres of the 
m basis functions. If m is set to the number of training samples in the data set, the 
centres can be set to the values of the inputs of each training pair. However, for 
large data sets, this can lead to networks that are unwieldy and over-fitted. An al-
ternative is to use some form of data-clustering such as k-means to identify the 
centres of a much smaller number of basis functions. These centres are repre-
sented by the connection weights between Layer 0 and Layer 1 in Figure 1 ( 0

ijw  
for i = 1 to n inputs; j = 1 to m basis functions). 

While the basis centres are calculated, the width of the basis functions, jσ  (j 
= 1 to m basis functions) are also determined. There are a number of ways this 
can be achieved, but the most common is to set the basis width to the root 
squared distance between the basis function and its next nearest neighbour. 

With the basis functions established it remains for the weights connecting 
Layer 1 to Layer 2 to be calculated. With a linear activation function in the out-
put layer the output O can be calculated as: 

H=O w                            (2) 

in which w is the vector of weights connecting Layer 1 to Layer 2 and H is the 
arranged as: 

( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1

1 2

m

p p m p

h X h X h X
H

h X h X h X

 
 

=  
 
  



  



               (3) 

in which Xi represents the input vector of data sample i (i = 1 to p data samples). 
Thus, the weights w can be calculated as: 

1H −=w O                           (4) 

Unfortunately, because H is not necessarily square, the pseudo inverse of H 
must be calculated: 

( ) 1T TH H H
−

=w O                        (5) 

With the RBFN calibrated the output from the network, O, can be calculated 
as follows. The output from each node (basis function) in the hidden layer, hj j = 
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1 to m), is calculated from: 
1

e jS
jh −=                            (6) 

in which: 

( ) ( ) ( )( )2 2 21 0 0 0 2
1 1 2 2 2j j j n nj jS I w I w I w σ= − + − + + −

         (7) 

The output from the network, O, can then be calculated as ( 1
bOw  is the bias): 

2 1 1 1 1 1
1 1 2 2 3 3O O O O m mO bOO S h w h w h w h w w= = + + + + +            (8) 

2.3. RBFN Partial Derivative 

The partial derivative of the output O with respect to input iI  is calculated as: 
1

1
j j

j
i j ij

h SO O
I h IS

∂ ∂∂ ∂
=

∂ ∂ ∂∂∑                      (9) 

for all hidden nodes, j. 
In the case of the RBF (from (8)): 

1
jO

j

O w
h
∂

=
∂

                         (10) 

From (6): 
1

1 e jSj
j

j

h
h

S
−∂

= − = −
∂

                      (11) 

From (7): 

( )
1

2j O
i ij j

i

S
I w

I
σ

∂
= −

∂
                     (12) 

Thus, by substitution, (9) becomes: 

( )1 0

2

jO j ij i

j
i j

w h w IO
I σ

−∂
=

∂ ∑                    (13) 

2.4. MLP Partial Derivative 

An MLP is typically trained using the error back propagation algorithm (al-
though many other training algorithms exist)—the detail of which is beyond the 
scope of this paper as it is covered in many other texts elsewhere. The connec-
tion weights between input i ( 1, ,i n=  ) and hidden node j ( 1, ,j m=  ) are 
denoted by 0

ijw  (0 representing layer 0); while the connection weights between 
hidden node j and the output node are donated by 1

jOw  (1 representing layer 1 
and O representing the single output node). By convention, a bias is also added 
as an additional input to each node which enables the network to model more 
complex relationships. The biases are represented in as 0

bjw  for nodes in the 
hidden layer and 1

bOw  for the output node. 
By using the backward chaining rule of Hashem [13] as before, for an MLP 

with sigmoid activation functions throughout, the partial derivative of the out-
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put O with respect to input iI  is: 

( ) ( )1 01 1jO j j ijj
i

O O O w h h w
I
∂

= − −
∂ ∑                (14) 

For j = 1 to m hidden nodes. 

2.5. Trigonometric Example 

As an example, take the simple trigonometric function as used by Hashem [13]: 

( )sin 4y x=                          (15) 

Thus, 

( )d 4cos 4
d
y x
x
=                         (16) 

Data were generated for these two single-input, single-output functions for 
values between [−2, 2] in steps of 0.01. An MLP was trained with seven hidden 
units for 50,000 epochs and an RBFN was created with seven basis functions us-
ing these data. The first derivative for each model was then calculated using 
Equations 13 (for the RBFN—referred to as RBFN’) and 14 (for the MLP—referred 
to as MLP’). 

Table 1 presents error measures (Root Mean Squared Error—RMSE; Coeffi-
cient of Determination Pearson R squared—RSqr) for both these models with 
respect to the full data set along with error measures for the calculated partial 
derivatives for both models (RBFN’ and MLP’). Figure 2 shows the correspond-
ing models (RBFN and MLP respectively) of Equation 15; and Figure 3 shows 
the RBFN’ an MLP’ models of the derivative given in Equation 16. RMSE and 
RSqr are standard error measures used to evaluate the performance of hydro-
logical models [22]. They are calculated according to Equations 17 and 18: in 
which iQ  is the observed value (i = 1 to n values); ˆ

iQ  is the modelled value (i 
= 1 to n values); Q  is the mean of the observed values; and Q  is the mean of 
the modelled values. 

( )2

1
ˆ
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n
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n
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
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             (18) 

 
Table 1. Selected error measures for trigonometric models. 

 RMSE RSqr 

RBFN 0.0495 0.9952 

MLP 0.0452 0.9960 

RBFN’ 0.4575 0.9743 

MLP’ 0.5737 0.9573 
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Figure 2. RBF and MLP models of y = sin(4x). 
 

 
Figure 3. RBF and MLP sensitivity to input: equivalent of y = 4cos(4x). 
 

Both models show “good” accuracy in modelling the underlying equation with 
RSqr values of over 99%. The first derivative also shows “good” accuracy with 
the RBFN’ model, achieving an RSqr score of 97.4% while the MLP’ achieves a 
score of 95.7%. Although the MLP’ is marginally worse than the RBFN’ accord-
ing to both error measures, the results confirm the accuracy of the partial de-
rivative equations presented in Equations (13) and (14). 

3. Rainfall-Stage Forecasting 
3.1. Introduction 

Although the partial derivative equations presented for the RBF in the previous 
section are not new, their application within a hydrological context has yet to be 
explored. With this in mind, we present here a rainfall-stage model for the River 
Ouse in the UK. This has been used in previous studies such as [22] [23] [24]. 

3.2. Catchment 

Six-hourly stage data for the River Ouse were available for this study. This 
catchment, situated in North Yorkshire, UK, covers an area of 3315 km2 and 
contains an assorted mix of urban and rural land uses. It embraces three main 
rivers—the Swale, Ure and Nidd. It has a base flow index of 0.439; an average 
annual rainfall of 899 mm and its longest drainage path is 149.96 km. Figure 4 
provides an overview of this catchment and identifies the location of four river 
gauging stations (measuring stage in metres) and five rainfall stations (measur-
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ing precipitation in millimetres) within the study area (the details of which are 
presented in Table 2 and Table 3). 

 

 
Figure 4. River Ouse catchment in North Yorkshire, UK. 

 
Table 2. Gauging stations. 

Name River 
Station 
Code 

Grid Ref Latitude Longitude 
Catchment 
Area (km2) 

Crakehill Swale 27071 SE 425733 54.153767 −1.3507459 1363 

Skelton Ouse 27009 SE 568553 53.990631 −1.1351792 3315 

Skip Bridge Nidd 27062 SE 482560 53.997793 −1.2662224 516 

Westwick Ure 27007 SE 355670 54.097678 −1.4586607 915 

 
Table 3. Rainfall stations. 

Name Station Code Grid Ref Latitude Longitude Elevation (m) 

Arkengarthdale 051684 NY 999030 54.4223 −2.00154 294 

East Cowton 054261 NZ 308041 54.4313 −1.52516 48 

Malham Tarn 073420 SD 893671 54.0996 −2.16228 381 

Osmotherly 055223 SE 457967 54.3644 −1.29557 147 

Snaizeholme 047282 SD 829866 54.2752 −2.26166 290 
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3.3. Modelling 

In this study, we focus on modelling stage at the downstream site of Skelton 
(Skeltont) using lagged water level (m) data at that location (Skeltont−1); up-
stream stage at Crakehill (Crakehillt−1); and a moving average (over 12 time 
steps) of rainfall (mm) at Tow Hill (Tow Hillt−1). These three predictors were 
chosen as they allowed us to explore the sensitivity of the derived models with a 
lagged input, an upstream driver, and a rainfall component. Their selection is 
based on results from previous studies [23] and the strength of correlations with 
the predictand. 

The data cover two winter periods between 1993 and 1996 (1 October to 31 
March) and were split so that the winter of 1993-1994 was used for training (716 
data points); while the winter of 1995-1996 was used for evaluation (720 data 
points). Note that in normal circumstances of ANN modelling three data sets are 
used—a training set, a validation set, and a test set. However, as the intention of 
these experiments was not to derive and test an independent model, but to ex-
plore the use of partial derivatives for sensitivity analysis, only two data sets were 
required. Thus, a training set was used to calibrate the models and the evaluation 
set was used to select the “best” models and perform the sensitivity analyses. 

Several RBFNs were created using the training data set with 2, 4, 6, 8, 10, 12, 
14, 16, 18, and 20 radial basis functions. Several MLPs were trained using error 
back propagation for 1000 to 20,000 epochs (in steps of 1000) with 2 - 10 hidden 
units. A learning rate of 0.1 and a momentum term of 0.9 were used. The RBFNs 
and MLPs were then evaluated (using RMSE) against the evaluation data set to 
choose the optimum configurations. The best RBFN had 10 basis functions; the 
best MLP had 9 hidden nodes and was trained for 2000 epochs. 

Figure 5 and Figure 6 show the result of each model’s output with respect to 
the validation period (RBFN and MLP respectively). Although the RBFN ap-
pears to model the flood peaks accurately, it seems to overestimate some of the 
low flow periods. Having said this, the error measures presented in Table 4 for 
the validation period provide reassurance of overall accuracy of the RBFN giving  

 

 
Figure 5. RBFN performance at modelling stage. 
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Figure 6. MLP performance at modelling stage. 

 
Table 4. Selected error measures for the validation period. 

 RMSE RSqr 

RBFN 0.2041 0.9149 

MLP 0.0976 0.9772 

 
an RSqr value of 91.49%. 

4. Sensitivity Experiments 

In this section, we apply Equations (13) and (14) to evaluate the sensitivity of the 
RBFN and MLP models to the three predictors. We present the results of the 
MLP first as these provide more meaningful insight than the RBFN which are 
presented later. 

4.1. MLP Sensitivity Experiments 

Note, because the data were standardised to [0.1, 0.9] for MLP training, the 
outputs from Equation 14 need adjusting by multiplying by range y/range x to 
return the actual dy/dx values. However, because the predictors have different 
ranges it would be wrong to compare dy/dx as changes in the predictor would 
not be consistent from one driver to the next. For example, if one predictor (say, 
x1) ranges from 1 - 10; another (say, x2) ranges from 1 - 1000, it would be wrong 
to compare change y/change x as it would take a large change in x2 to affect y. 
However, in practice x2 would be making large changes because we are dealing 
with real data. Therefore, Equation (14) is adjusted by multiplying by the range 
of each predictor to get the proportionate change in that predictor. This is a 
fairer comparison of the inputs. 

Figures 7-9 show the sensitivity of the MLP model to each of the three inputs. 
As expected, the MLP is not particularly sensitive to rainfall (Tow Hillt−1)—ex- 
hibiting a gradually increasing level of sensitivity across the range of rainfall 
data. This is to be expected, as the catchment will not respond to low levels of  
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Figure 7. Sensitivity of MLP to Crakehillt−1 predictor. 

 

 
Figure 8. Sensitivity of MLP to Tow Hillt−1 predictor. 

 

 
Figure 9. Sensitivity of MLP to Skeltont−1 predictor. 
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rainfall which have little impact on base flow but will react to higher levels. 
The MLP exhibits similar sensitivity levels to both upstream flow at Crakehill 

and antecedent flow at Skelton. What is interesting is how these sensitivities 
seem to tail off for—particularly for the Skeltont−1 predictor. The answer to this 
may lie in the content of the training data set. Figure 10 and Figure 11 present 
frequency histograms of the data in the training set for the Skeltont−1 and Crake-
hillt−1 predictors, respectively. The available data for Skeltont−1 steadily decreases 
for higher values. This broadly follows the sensitivity of this driver. With fewer 
data points available at higher flows, the MLP has not been able to capture the 
behaviour of the catchment as well as it was at lower flows, where data were 
more abundant and more differentiation between values could be made. 

A similar scenario has occurred for the Crakehillt−1 predictor, but to a lesser 
extent. In this case, above values of around 1 m, the frequency of data does not 
tail off as much as the data did for Skeltont−1. This has probably led to a less se-
vere decline in the sensitivity of the model to Crakehillt−1 which decreases only  

 

 
Figure 10. Frequency distribution of Skeltont−1 data in the validation data set. 

 

 
Figure 11. Frequency distribution of Crakehillt−1 data in the validation data set. 
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slightly for values over 1 m. 
In conclusion, Equation (13) does provide a way of exploring the sensitivity of 

a real-world model to different inputs. Investigations of the sensitivities give in-
sight into the model behaviour and provide the user with a better understanding 
of why the model performs as it does and how data can affect the training and 
performance of the final model. 

4.2. RBFN Sensitivity Experiments 

Figures 12-14 show the sensitivity of the RBFN (10 basis functions) to each of 
the three inputs which are calculated using Equation 13. A best fit polynomial 
line of order three has been added to these plots to highlight the general shape of 
the sensitivity. The sensitivity of the model to Crakehillt−1 and Skeltont−1 are 
similar in nature—rising to a peak before falling away again with similar sensi-
tivity values. The sensitivity of the model to Tow Hillt−1 is less clear appearing to 
rise and fall across the range of values. The sensitivities of Crakehillt−1 and 

 

 
Figure 12. Sensitivity of RBFN to Crakehillt−1 predictor. 

 

 
Figure 13. Sensitivity of RBFN to Tow Hillt−1 predictor. 
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Figure 14. Sensitivity of RBFN to Skeltont−1 predictor. 

 
Skeltont−1 do not really provide any meaningful physical interpretation of how 
the model is behaving—for example, why would the model have low sensitivity 
for small Crakehillt−1 values, high sensitivity for values of around 1.5 m, and low 
sensitivity again for values of Crakehillt−1 above around 3 m? Equally puzzling 
are the fluctuating sensitivity values of the model with respect to the rainfall in-
put of Tow Hill. The conclusion would be that these sensitivities, rather than 
representing a physical relationship within the RBFN model, are presenting the 
behaviour of the RBFN itself in which the model is distributed throughout the 
basis centres. 

As these sensitivities may be peculiar to the RBFN chosen (i.e. the one with 10 
basis functions) the sensitivities of all other RBFNs (from 2 to 20 basis functions 
in steps of 2) were explored for each of the three inputs. These sensitivities are 
presented in Figures 15-17 (for Skeltont−1, Tow Hillt−1 and Crakehillt−1 respec-
tively). Although no obvious physical pattern emerges, the figures do show how 
the models become more pronounced as more basis centres are used. The con-
clusion in this case is that the models are reflecting the physical relationship in 
the catchment as a distributed relationship with the basis functions themselves. 

The lack of any physical meaning in the interpretation of the sensitivities of 
the RBFN models to their inputs led to an additional question of whether they 
were representing the physical nature of the model within the basis functions 
themselves. With this idea in mind, the RBFNs were analysed further by deter-
mining which of their basis functions was aligned most closely to each individual 
data point. In other words, for each data point, we identified (by Euclidian dis-
tance) which was its nearest basis function centre in each model. Figure 18 and 
Figure 19 show these results for the RBFNs with two and three basis functions, 
respectively. These figures show by colour, for each data point in the data set, 
which of the two (or three) basis centres the model has aligned the data point 
with. Only the two and three basis function models are presented as more clus-
ters over-complicates the plots and makes relationships less clearly visible. 
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Figure 15. Sensitivity of RBF to Skeltont−1 values. A to J represent increasing numbers of basis functions from two to twenty (steps 
of two). 
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Figure 16. Sensitivity of RBF to Tow Hillt−1 values. 
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Figure 17. Sensitivity of RBF to Crakehillt−1 values. 
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Figure 18. Data aligned with nearest RBF (2 clusters). 

 

 
Figure 19. Data aligned with nearest RBF (3 clusters). 

 
Figure 18 (two basis functions) appears to show that one basis function is 

picking out peak stage (blue) while the other is modelling the low stage compo-
nent (red). A similar result is seen in Figure 19 in which one basis function is 
clearly aligned with low stage events (purple), one with peak stages (red) and 
one with intermediate stage (blue)—particularly within a given time frame. 
These results show that the model is picking out some physical relationship 
within the data that was not clear from the sensitivity analysis performed earlier. 
Although the RBFN is behaving as a black box in terms of the relationship be-
tween its inputs and its outputs, there is an underlying physical behaviour within 
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the model that can be explored by reviewing the basis functions and their links 
with the data. 

5. Conclusions 

This paper has applied, for the first time, a new means of directly calculating the 
partial derivatives of inputs with respect to the output in RBFNs for a rain-
fall-stage model. The derived solution is shown to work in simple cases and a 
complex, real world example for the MLP. Such analysis is particularly impor-
tant as it allows modellers to explore the behaviour of their models more thor-
oughly, justify their performance and determine their ability to generalise. While 
such an analysis appears to work for an MLP, the results are less conclusive in 
the case of RBFNs. This leads us to the conclusion that such a technique does 
not work well real-world applications of RBFNs and alternative analysis should 
be performed. Such an analysis can involve exploring the relationship between 
each of the basis functions with the data points themselves. A preliminary analy-
sis with the data set used in this study shows promise—in that there seems to be 
a clear relationship between aspects of the hydrograph and individual basis 
functions. 

The results presented in this paper lead to several further investigations. First, 
it would be prudent to determine partial derivatives for RBFs that use alternative 
basis functions to the popular Gaussian function as these may provide more 
meaningful physical rationality. Second, looking at how the information gar-
nered from such analysis can help to explain, justify, evaluate, and generalise 
from such models. There is currently no framework whereby sensitivity results 
can be used to derive such information. Such a framework would prove benefi-
cial in the evaluation of neural networks and go a long way to addressing the 
criticisms levelled at such models due to their black-box behaviour. Finally, ex-
ploring the relationship between basis functions and components of the hydro-
graph shows promise from this work. 
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