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Abstract 

In this article, a physics aware deep learning model is introduced for multi-
phase flow problems. The deep learning model is shown to be capable of 
capturing complex physics phenomena such as saturation front, which is 
even challenging for numerical solvers due to the instability. We display the 
preciseness of the solution domain delivered by deep learning models and the 
low cost of deploying this model for complex physics problems, showing the 
versatile character of this method and bringing it to new areas. This will re-
quire more allocation points and more careful design of the deep learning 
model architectures and residual neural network can be a potential candidate.  
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1. Introduction 

Physics problems are usually expressed in a succinct way by partial differential 
equations (PDEs). The study of many physics phenomena and the forecast of 
physics dynamics require solving those expressed PDEs with the specified initial 
and boundary conditions. This procedure is conventionally conducted by im-
plementing different numerical methods such as central difference in space di-
mension [1] and explicit/implicit Euler method [2] in time dimension. Those 
implementations, on one hand, are usually problems-centered and cannot be 
extended to other physics problems. On the other hand, the implementations 
need domain knowledge of numerical analysis to guarantee numerical stability 
and can be expensive to implement. Moreover, much commercial software for 
the numerical analysis of certain types of physics problems can be costly prohi-
bitive for individual researchers and students.  
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The recent advance of deep learning technologies provides a potential alterna-
tive for researchers to obtain a quick understanding of the investigated physics 
problems. Those methods are developed to solve the PDES describing physics 
rules based on deep learning and avoid the need of numerical implementation. 
Those studies on the domains referred as physics informed neural network (PINN). 

Khoo et al. [3] established a theoretical model for neural network to solve 
PDEs problems, which have uncertainties and used elliptic equations and nonli-
near Schrödinger equations as examples considering a continuous-time dimen-
sion. Raissi et al. [4] incorporated PDEs residuals into the training objective of 
neural network and validated the methods on classic PDEs (including Burger’s 
equation and Navier-Stokes equation) with initial and boundary constraints. 
Bruton et al. [5] expanded the application of physics-informed neural network 
to fluid mechanics, and Kissas et al. [6] applied PINN to cardiovascular flows. 
Mauilk et al. [7] applied physics-informed machine learning to investigate prob-
lems concerning eddy-viscosity in fluid dynamics. All the works mentioned 
above focus on continuous time and space domains and fully connected neural 
networks are applied to surrogate the PDE solution. 

Moreover, the theories of physics informed network have been extended on 
the discrete domains: Gao et al. [8] had extended the physics informed neural 
network to solve parametric PDEs on any irregular geometric domains; the 
Conservative Physics Informed Neural Network (CPINN) is invented to force 
nonlinear conservation laws on discrete domains by Jagtap et al. [9]; a parareal 
PINN, dividing a long time into parts of short time to solve the time-dependent 
PDEs more accurately to suit the physics problem into a coarse-grained solver, 
was introduced by Meng et al. [10]. Pang et al. have also extended the neural 
network into fractional PINN (fPINN) to solve inverse and forward questions 
when the data given is scattered. 

In this study, we are particularly interested in investigating the applicability of 
PINNs on practical yet complex multi-phase flow problems. Despite the claimed 
success of PINNs on solving PDEs, the investigated PDES problems in existing 
literature are all simple, weakly coupled PDEs with relatively low nonlinearities. 
As far as we are concerned, no research has been conducted on the application 
of PINN for complex coupled flow problems.  

In order to investigate the applicability of PINNs on practical yet complex 
multi-phase flow problems, the paper will proceed as follows. In Section 2, we 
present the model to the underground water physics problem, and how specifi-
cally our neural network model works. In Section 3, the general setup of the 
neural network, the data obtainment, and the process hyper-parameter tweak-
ing. The results are presented in Section 3 and further insight and work in Sec-
tion 4. 

2. Methodology 

2.1. Multi-Phase Flow Problems 

In this study, we are interested in a multi-phase flow system. The study of mul-
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ti-phase flow problems is an important key to understand the subsurface flow 
phenomenon that are common in aquifers, oil, and gas reservoirs, as well as 
many CO2 sequestration fields. Specifically, here, we set up a two-phase oil water 
system described by two mass conservation equations: 

( ) ( )o o o o oq S
t

ρ ϕρ∂
−∇ ⋅ − =

∂
u , for oil,               (1) 

And 

( ) ( )w w w w wq S
t

ρ ϕρ∂
−∇ ⋅ − =

∂
u , for water,             (2) 

Here ∇  is the Laplace operator which calculates the divergence of gradient, 
ρ  is the phase density, q is the source/sink term, ϕ  is the rock porosity, S is 
the phase saturation which describes the proportion of the current phase in the 
porous media, and u  is the phase velocity respectively and can be computed by 
Darcy’s law: 

( ) ( ) , ,rj j
j j j

j

k S
p g z j o wρ

µ
= − ∇ − ∇ =

k
u                (3) 

where k  is the rock permeability that describes the rock capacity to transport 
fluids and rjk  is the relative permeability that describes the additional capacity 
of the porous media to transport fluid with phase j, jµ  is the viscosity of phase 
j, jp  is the pressure, and z∇  quantifies the depth change.  

Pressure p and saturation S are the key variables that can describe the mul-
ti-phase flow dynamics and two extra equations are added here to conclude the 
mass conservation equations. First, the saturation of different phases ( oS  
represents the saturation of oil, wS  represents the saturation of water) sums to 
be 1, i.e., 

1o wS S+ =                             (4) 

and the pressure of different phases ( op  represents the pressure of oil, wp  
represents the pressure of water) is constrained by capillary pressure cP  which 
can be usually assumed to be 0: 

0o w cp p P− = ≈                          (5) 

Traditionally, the above mass conservation equations are closed by saturation 
and pressure constraints are solved by numerical methods on meshed grids. In 
this study, we will investigate the deep learning methods for the above two-phase 
flow problems in a one-dimensional scenario. 

2.2. Deep Learning Models 

Machine learning has had a splendid leap in the past few years, while deep 
learning, a sub-field of machine learning, has gradually reformed and enhanced 
the study of many research areas, including natural language processing and 
computer vision [11], image reconstruction [12], recognition [13] and general 
processing [14]. In this section, we explain the principals behind the deep learn-
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ing technique from a higher, general level.  
In a neural network, there are many neuron layers with neurons filled on each 

layer. The nonlinear activation functions applied on the matrix computation 
between adjacent layers result in a good approximation of complex nonlinear 
functions after combination of many connected layers. The Fully Connected 
Network (FCN), also named as multi-layer perceptron (MLP), is the most 
prominent architecture of this kind. Figure 1 is exemplary of the standard FCN 
architecture. Specifically, Figure 1 shows that Self-Made Neural Network Dia-
gram has one hidden layer, one input layer and one output layer. Inside the 
FCN, the parameters used are the matrix weights defining the new relationship 
between two adjacent layers by the activation function. The output of the neuron 
of the former layer becomes the input of the neuron on the next layer. In all, the 
recursive function can be expressed by: 

( )T
1l l l lx f W x b+ = + ,                      (6) 

where lx  is the neuron values and lb  is the bias at layer l, and f is the nonli-
near activation function. There are many activation functions, the most promi-
nent of which are sigmoid [15], tanh [16] and Relu [17].  

On the low level of the mechanics of FCN, the weights are calculated using a 
loss function (a metric quantifying the difference between the target data and the 
neural network’s output) and back propagation. In this process, the lost function 
is minimized using an optimizer: a stochastic mini-batch gradient decent [18] 
and its variants such as RMSProp [19]. 

2.3. PDE-Aware Deep Learning 

The core idea of utilizing deep learning on approximating PDE solutions is for-
mulating the PDE residuals, as well as the initial and boundary conditions as the 
training loss. The objective of training deep neural network models is minimiz-
ing the defined loss by back-propagation [20]. To approximate the PDE solution 
of the studied two-phase problem, we construct a fully connected neural net-
work (FCN) described in Section 2.2. The input of this FCN is the variable at 
space dimension x and time dimension t, the output of the neural network is the 
primary variables pressure p and saturation S, which are the solutions of the 
PDEs. The high-level implementation python code using tensorflow package 
[21] is presented. (Code Block 1) 
 

 

Figure 1. Self-made neural network diagram. 
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Code Block 1. Neural network. 
 

Furthermore, to guide the constructed FCN to learn solving the target PDEs, 
the PDEs, along with its initial and boundary conditions, is reformulated in the 
residual form and treated as the training loss. The derivative terms in the PDE 
formulations are approximated by the gradient of the FCN output (p and S) with 
respect to the FCN input (x and t) and are computed by chain rule. We consider 
incompressible (fluid density is not a function of pressure) two phase flows and 
assume that the capillary pressure is 0. We also consider highly nonlinear prob-
lems with relative permeability defined as a nonlinear function of water satura-
tion Sw. Viscosities of both oil and water are constant, and the absolute permea-
bility k is assumed to be constant in this case. The code block below describes 
the formulation of PDE residuals using tensorflow, where “residuals” defines the 
two PDE residuals for mass conservation equations of two phase fluid (Equa-
tions (1) and (2)). (Code Block 2) 

And the training objective will be the combination of three loss terms: mass 
conservation residuals, initial condition loss and boundary condition loss. The 
implementation of those losses can be as simple as what is shown in the code 
chunk. (Code Block 3) 

3. Experiment Setup 

In this section, we describe the detailed problem we are solving, data retrieving 
and model setup. 

3.1. Physics Problem 

The specific problem studied here is a water displacing oil problem in a 
one-dimensional tube filled with oil in the initial state, where water is injected 
from the left side of the tube to displace oil out of the tube, due to the immisci-
bility of those two phases.  

As shown in Figure 2, water phase is injecting from the left end of the tube 
(colored by blue in the figure), while oil phase is displaced from the tube (co-
lored by red in the figure). The Neumann boundary conditions are imposed at 
left and right boundaries, i.e., the inlet and outlet pressure gradients are con-
strained and set to be constant. Here, the normalized pressure gradient at both 
inlet and outlet boundaries are −2. Meanwhile, the injected water saturation is  
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Code Block 2. Neural network for PDE residual. 
 

 

Code Block 3. Loss function. 
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Figure 2. Problem setup illustration. Water phase is injected from the inlet to displace the 
oil phase in the tube. 
 
0.6, meaning water fraction is 60% while oil fraction is 40% in the injected water 
phase, and the water saturation in the oil phase is 0.3, meaning that water frac-
tion is 30% and oil fraction is 70% in the oil phase. Furthermore, we assume that 
the tube is filled up with oil phase, meaning that the initial water saturation in 
the tube is 0.3.  

With Equations (1)-(3), the relative permeability of different phases is the 
square of the corresponding saturation. More implementation’s details can be 
referred to code block 2.  

3.2. Data Preparation 

To prepare the data for the introduced deep learning model, we generate the da-
ta on the initial and boundary conditions as well as allocation points, which are 
the meshed data points in the domain of space and time. The one-dimension 
space and time are meshed with 500 and 200 grids respectively and therefore, we 
have 500 × 200 = 100,000 allocation points in total. Only the mass balance equa-
tion loss is enforced on those allocation points, meaning that the solved pressure 
and saturation should follow the mass balance equations at any of those alloca-
tion points. Meanwhile, on the boundary (space) locations and initial time, the 
solved pressure and saturation should also follow those constraints. It is worth 
noting that except for boundary and initial conditions where pressure (or the 
pressure gradient) and saturation have to follow the specified values, all the data 
are essentially just meshed grids over the space and time domain. 

3.3. Solution Domain  

The model takes about 200 seconds to converge on a single K80 GPU for this 1D 
problem with 100,000 allocation points. The solution domain is presented in 
Figure 3. As illustrated, the inlet is at x = 0 and outlet is at x = 500. The initial 
time is at t = 0 and the end time is at t = 200. Initially, the tube is filled with oil 
phase whose water saturation is 0.3, and therefore, the horizontal “line” at t = 0 
is entirely colored dark blue. As time goes by, more water phase enters the tube 
and displaces the oil phase in the original tube. This phenomenon is reflected in 
Figure 3: as t increases from 0 to 200, the water phase colored by yellow gradu-
ally occupies the tube. The interface between the yellow and dark blue color in 
Figure 3 reflects the two phase interface. The immiscible property of two phases 
forms this interface, which is named “shock” in physics, is captured by the deep 
learning model. “Shock” in physics is noncontiguous, while the continuous deep 
learning model is able to capture this shock by approximating the discontinuity 
by sharp continuous changes. 
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Meanwhile, the pressure domain solution is displayed in Figure 4, where the 
color denotes the normalized pressure distribution. Remember we have Neu-
mann boundary conditions, i.e. constant pressure gradient at the inlet and outlet 
boundaries, and therefore the pressure at boundaries is derived from the solu-
tion. Furthermore, unlike the saturation governed by hyperbolic equation, where 
the shock can be formed, the pressure is described by elliptic equation and 
therefore, the overall pressure solution field is continuous. The pressure in the 
inlet has to increase along with time to maintain the inlet pressure gradient, and 
so is the outlet pressure, which is captured by the deep learning solution as well. 

3.4. Shock Propagation  

In Figure 5, we present the visualization of front water saturation at different 
space locations at different time. This water saturation shock wave will march 
forward as water phase is kept injecting from the inlet of the tube. It can be ob-
served that the overall shock march is captured by the deep learning model, as 
the vertical line describes correctly the saturation shock concept. However, it is 
also evident that the deep learning model smooths the transition a little bit, 
which is due to the fundamental continuity of deep learning models. This can be 
further solved by introducing nonlinear activation functions with sharper transi-
tion properties such as sigmoid in the last few deep learning model layers. 
 

 

Figure 3. Saturation field solution in space x and time t. The color denotes the water sa-
turation. The left side of the interface is the water phase and the right side of the interface 
is the oil phase. This interface denotes the “shock” in physics and is captured by the deep 
learning model. 
 

 

Figure 4. Pressure field solution in space x and time t. The color denotes the normalized 
pressure distribution. 
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Figure 5. Water saturation front at different space locations. 

4. Conclusions 

In this study, we introduce the PDE is aware deep learning models for complex 
coupled multiphase flow problems. The fundamentals are formulating the go-
verning PDEs, as well as initial and boundary conditions, into the training ob-
jective of the deep learning models, which can guide the deep learning models to 
find the physics pattern behind the governing PDEs and deliver the PDE solu-
tion over the interesting domain. The introduced deep learning model is a fully 
connected neural network with input as the PDE variables such as space x and 
time t and output such as the PDE solution at that specific x and t. In this way, 
the trained PDE aware deep learning model can effectively solve the coupled 
PDEs and deliver reasonable solutions. The PDE aware deep learning model 
provides an effective method for researchers in various physics field to quickly 
evaluate PDE solutions of the problems that they are interested in without the 
need to access expensive numerical solvers, which can be a potential and useful 
tool to fill the gap between expensive commercial software tools and research 
groups with limited funding.  

For future work, we will consider more complex multiphase problems with 
compressible fluid and extend it to 2D space domains. This will require more al-
location points and more careful design of the deep learning model architectures 
and residual neural network can be a potential candidate. Moreover, it will also 
be interesting to combine with physics experiment data to invert the solid and 
fluid properties in the multiphase flow governing equations. 
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