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Abstract

This work extends to third-order previously published work on developing
the adjoint sensitivity and uncertainty analysis of the numerical model of a
polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor
physics benchmark. The PERP benchmark comprises 21,976 imprecisely
known (uncertain) model parameters. Previous works have used the adjoint
sensitivity analysis methodology to compute exactly and efficiently all of the
21,976 first-order and (21,976)* second-order sensitivities of the PERP
benchmark’s leakage response to all of the benchmark’s uncertain parame-
ters, showing that the largest and most consequential 1%- and 2"-order re-
sponse sensitivities are with respect to the total microscopic cross sections.
These results have motivated extending the previous adjoint-based deriva-
tions to third-order, leading to the derivation, in this work, of the exact ma-
thematical expressions of the (180) third-order sensitivities of the PERP lea-
kage response with respect to these total microscopic cross sections. The
formulas derived in this work are valid not only for the PERP benchmark but
can also be used for computing the 3*-order sensitivities of the leakage re-
sponse of any nuclear system involving fissionable material and internal or
external neutron sources. Subsequent works will use the adjoint-based ma-
thematical expressions obtained in this work to compute exactly and effi-
ciently the numerical values of these (180)° third-order sensitivities (which
turned out to be very large and consequential) and use them for a third-order
uncertainty analysis of the PERP benchmark’s leakage response.

Keywords

Polyethylene-Reflected Plutonium Sphere, 1*-Order, 2"-Order, and
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Total Cross Sections, Expected Value, Variance and Skewness of Response
Distribution

1. Introduction

Until recently, only the first-order sensitivities (i.e., functional derivatives) of a
computational model’s responses (Ze., quantities of interest) to the respective
model’s imprecisely known (Ze., uncertain) parameters have been taken into ac-
count when assessing the uncertainties induced in the respective responses by
the parameter uncertainties. The second- and higher-order sensitivities could
not be computed, except for very simple models comprising a handful of para-
meters, so these sensitivities were ignored. The Second-Order Adjoint Sensitivity
Analysis Methodology (2"-ASAM) recently conceived by Cacuci [1] is the only
practical method that enables the exact computation of the large number of
2"d_order sensitivities arising in large-scale problems comprising many parame-
ters. The application of the 2"-ASAM to a multiplying nuclear system with
source [2] [3] [4] has opened the way for the large-scale application presented in
[5]-[10] to a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA
reactor physics benchmark [11]. The numerical model of the PERP benchmark
includes 21,976 uncertain parameters, as follows: 180 group-averaged total mi-
croscopic cross sections, 21,600 group-averaged scattering microscopic cross
sections, 120 fission process parameters, 60 fission spectrum parameters, 10 pa-
rameters describing the experiment’s nuclear sources, and 6 isotopic number
densities.

All of the 21,976 first-order sensitivities and (21,976)? second-order sensitivi-
ties of the PERP leakage response with respect to the benchmark’s parameters
were computed, ranked, and analyzed in [5]-[10]. The results obtained in [5]-[10]
showed that the contributions stemming from the second-order sensitivities of
the leakage response with respect to the group-averaged microscopic total cross
sections are the largest, by a significant margin, by comparison to the contribu-
tions from the other uncertain model parameters, including the number of den-
sities, fission parameters, microscopic scattering cross sections, source parame-
ters, etc. For the extreme case of fully correlated microscopic total cross sections,
for example, neglecting the 2"d-order sensitivities of the leakage response with
respect to the total cross sections would cause an error as large as 2000% in the
expected value of the leakage response and up to 6000% in the variance of the
leakage response [5]. Given that the effects of these 2"-order sensitivities are
much larger than the effects of the 1%-order sensitivities [5] [10], it is logical to
posit the question of quantifying the magnitudes and contributions that would
stem from the 3"-order sensitivities of the PERP benchmark’s total leakage re-
sponse with respect to the microscopic total cross sections. To enable to
compute such 3"-order sensitivities, Cacuci [12] has recently conceived the

“third-order adjoint sensitivity analysis methodology for reaction rate responses
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in a multiplying nuclear system with source.” Cacuci’s results [12] are applied in
this work to the PERP benchmark in order to derive the exact analytical expres-
sions of the 3"-order sensitivities of the PERP benchmark’s leakage response
with respect to this benchmark’s microscopic total cross sections. Two subse-
quent works, designated as Part II [13] and Part III [14], respectively, will report
numerical results as follows: 1) Part IT [13] will present the numerical values the
3*-order sensitivities derived in the present work, showing that the largest of
these is over 400 times larger than the largest 2nd-order sensitivity and is over
20,000 times larger than the largest 1st-order sensitivity; and 2) Part III [14] will
quantify the effects of the 3™-order sensitivities on the expected values, the stan-
dard deviation and the skewness of the PERP’s leakage response, and will com-
pare these effects to those produced by the 1*-order and, respectively, 2*¢-order
sensitivities.

This work is organized as follows: Section 2 describes the methodology for
computing the leakage response of the PERP benchmark. Section 3 presents the
derivation of the exact analytical expressions of the third-order mixed sensitivi-
ties of the PERP leakage response to total cross sections. Section 4 concludes this

work.

2. Mathematical Methodology for Computing the Leakage
Response of the Polyethylene-Reflected Plutonium
(PERP) Metal Sphere Benchmark

This section presents the derivation of the exact analytical expressions of the
3*-order sensitivities of the polyethylene-reflected plutonium (acronym: PERP)
metal sphere OECD/NEA benchmark [11] total leakage response with respect to
this benchmark’s total cross sections, thus continuing the work presented in
[5]-[10]. The numerical modeling of the PERP benchmark has been already de-
scribed in [5]-[10] but, for convenient reference, the materials of the PERP
spherical core and spherical-shell reflector, respectively, are specified in Table
Al in the Appendix. As in [5]-[10], the multigroup discrete ordinates particle
transport code PARTISN [15] together with neutron sources computed using
the code SOURCES4C [16] have been employed to perform the numerical
computations of the various quantities to be derived in this section. The multi-
group neutron fluxes computed by PARTISN are the solutions of the following

multigroup neutron transport equation with a spontaneous fission source:
BY(a)¢? (.Q)=Q°(r), g=1-,G, ey
9°(r,,Q)=0, Q-n<0, g=1---,G, (2)

where I, is the radius of the PERP sphere, and where
BY(a)p? (r,Q)£Q-Vo® (r,Q)+2! (a;r)e® (r.Q)

-3 [d0ef (1 Q)20 (@i @ - Q)+ 2 (ar) (1) (air) |,

9'=l4z

3)
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by

Nt
QU(r)2 éﬂk Ny R vsF [%fbke 4 JJEE;ldE e “*sinh o, E. (4

The Boltzmann-operator B° (a) in Equation (3) contains implicitly a fac-
tor 1/4n in its scattering and fission terms, to conform to the convention
used by PARTISN [15]. As in [5]-[10], the PARTISN [15] computations used
the MENDF71X [17] 618-group cross sections collapsed to 30 energy-groups,
as shown in Table A2 in the Appendix, in conjunction with a P-Legendre ex-
pansion of the scattering cross section, an angular quadrature of Sy, and a
fine-mesh spacing of 0.005 cm (comprising 759 meshes for the plutonium sphere
of radius of 3.794 cm, and 762 meshes for the polyethylene shell of thickness of
3.81 cm). The symbols used in Equations (1) through (4) have their usual mean-
ings and are summarized, for convenient referencing, in the Appendix.

The mathematical expression of the PERP benchmark’s leakage response, de-
noted as L(a), is provided below:

L(a)2 jdsi [ d@Q-ne®(r,Q). (5)
Sp 9=1Q.n>0

The vector «, which appears in the expressions of the Boltzmann-operator
BY (a) and the leakage response L(a) , in Equation (3) and Equation (5), re-
spectively, represents the “vector of imprecisely known model parameters”, and
is defined as follows:

a2 [, ] 2oioiomiman]. ®
o =3+t 3,0+, +3,+3,+d,.

The components of the vector a are described in the Appendix. Since only
the effects of the uncertainties in the total macroscopic cross sections will be
considered in this work, only the components of the vector t for the parame-
ters of macroscopic total cross sections will be explicitly used; they are repro-

duced below from the Appendix:

t2[t, oty i [,y iy n, T 26N, 3, =3, +13,, 7)

where
A T a f
o'l=|:'|'1'...,t\]m] =':O-tl,i:l’O-lz,izl"u'alc,:’i:l’”.’o-t?i’.”’O-tl,i:I’”"Glc,;i:I] s (8)
i=1--,1=6;g=1--,G=30; J_, =1xG,
t t
N é[nll""nJJ é[Nl,l'NZ,l’N3,1’N4,1’N5,2’N6,2:| v J, =6. )

In Equations (7) through (9), the dagger denotes “transposition,” oy; de-
notes the microscopic total cross section for isotope 7 and energy group g
N; , denotes the respective isotopic number density for isotope 7and material

m, J_, denotes the total number of microscopic total cross sections, and J,

ot
denotes the total number of isotopic number densities in the model. Thus, the
vector t comprises atotalof J, =J_ +J, =30x6+6=186 uncertain model

parameters. However, only the components
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o 2ty ]f é[J;izlygtfi:ll...,U;’si:l,...,ggi,...,U;i:l 08 T,
i=1--,1=6, g=1---,G=30, J, =1xG =180, will be considered in this
work. Thus, the numbers of sensitivities of the PERP leakage response with
respect to the total microscopic cross sections are as follows: 1) 180 first-order
sensitivities; 2) 32,400 second-order sensitivities, of which 16,290 are distinct;
and 3) 5,832,000 third-order sensitivities, of which 988,260 are distinct. The 180
first-order and 16,290 second-order sensitivities were obtained and analyzed in
[5]. The exact mathematical expressions of the 988,260 distinct third-order sen-
sitivities will be obtained in Section 3 of this work, and their numerical values
and numerical effects on the variance and skewness of the PERP leakage re-
sponse will be presented in the accompanying Part IT [13] and Part III [14].

3. Exact Analytical Expressions of the Third-Order Mixed
Sensitivities of the PERP Leakage Response to Total Cross
Sections

This Section will present the derivation of the 3™-order mixed sensitivities
(33L(ot)/@tja'[katf ).k, 0=1--,J_, of the PERP leakage response with respect to
the group-averaged microscopic total cross sections. These 3*-order sensitivities
will be derived by using two alternative procedures, which will be presented in
sections 3.1 and 3.2, respectively. In section 3.1, the sensitivities

(33L(ot)/@tja'[katf ).k, 0=1---,J_, will be obtained as a particular case of the
general expressions derived in [12]. In section 3.2, the expressions of
CL(a)/otetet,, jk 0 =13,
the expression of the 2™-order sensitivities 0°L(c) / oo, j,k=1--J

which were derived in Ref. [5]. It will be shown that these two alternative pro-

by applying the concepts presented in [12] to

ot >

cedures will yield identical expressions for the corresponding 3™-order sensitivi-

ties, as would be expected.

3.1. Computing 63L(a)/6tj6tk6t(, jk,£=1,--3_ by

Particularizing the General Expressions Obtained in
Ref. [12] for the PERP Leakage Response Sensitivities
to Total Cross Sections

The general expression of the 3*-order sensitivities of a reaction-rate type response
to the nuclear data characterizing a physical system modeled by the multigroup
neutron transport equation has been derived in the Appendix of [12]. This general
expression can be specialized for the PERP benchmark’s leakage response and total

microscopic cross sections by introducing the following correspondences:

9 (@)2Q-ns(r-r,), (10)

&, =1 Eat?ijj; o j=1 0
a, >t =0k k=10 (11)
o, >t =0k iy —>0=1]

ot*
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It has been shown in [5] and it can also be observed directly that the following

relations hold when t; = O'fijj and t, =oyf , respectively:

Mo
g
= - = - 25 . Ni- m: (12)
ot ool ool 9j9 " Tij.m;
] tij tj
0°x? (t)é o?z (t) :6(591.9 ij,mj)zo 13)
ot o0l ao do '
dj ik Wk

where the subscripts i;, g; and m; denote the isotope, the energy group and
material associated with the parameter offj , respectively; the subscripts i,, g,
and m, denote the isotope, the energy group and material associated with the
parameter Gf”ikk , respectively; and 59;9 denotes the Kronecker-delta functional
(e.g. 6gjg =1if g;=9; égjg =0 if g;#9).

It has been shown in the Appendix of [12] that the multigroup 3™-order sensi-
tivities of a reaction-rate type response to the parameters in a physical system
modeled by the multigroup neutron transport equation are generally given by
the following expression:

°R(a,p)

oa, Oa; Oc,
3 2 1

, ©)

'Oa, da, O, '0a, da, O,
3 2 1 3 2 1

2~ (1).9 2~ (2).9
+<l//1(2)v9 (il;r’Q),aQ—(a)> +<V/£2),g (il;l’,Q), o°Q (a)>
<1> o (4

oa, Oq, oo, O,
3 2 3 2

. QY (a o 0Q?9 (g
+<(//1(3),g (ll,lz;r,Q),T() + .//£3)’g (|1,|2;r:Q)’ 60{( )
® o)

i3 I3

o aQ(3)~9 a o 6Q(3)'g a
+<'/’§3)’9(|1,|2;r,g), 160!( ) (1)+ ngg)vg(ll,lz;r'g)l Zaa-( ) (1)’

i i3

for i, =1---,J,;0i,=1-,i;;i;=1-i,,

where the inner product <u(r,Q),W(r,Q)> o between two vector-values func-
tions, each having G components of the form

u(r.Q) 2[ut(r,Q),,u? (r,Q),u®(r,Q)] and

w(r.Q)= [Wl(r,Q),---,Wg (r.Q),---,we (r,Q)T , is defined as follows:

<ug (r,Q),w (r,Q)>(1) = gi_l_[dvirdﬂug (r,Q)w° (r,Q). (15)

In Equation (14), the 3-level adjoint functions
1//23)’9 (i,i,;r.Q),1=12,34;9=1---,G are the solutions of the following mul-
tigroup form of the “third-level adjoint sensitivity system” (34-LASS) presented
in the Appendix of [12]:

A (@)y?C (i,iyr, Q) =V ,, RP9(a), (16)

v (i)
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w9 (iniyir,, Q) =0, Q-n>0,0, =1, 3,5 i, =1,-++,i; (17)

A% (@)y!?° (i1, 2) =V, RD (@) - [FP? | v (iLiir. @), (18)
w9 (i1 QE)=0, QN> 0, =13, |, =L, i; (19)
B @)y (ini,ir, Q) =V @ -)R(Z)’g (@), (20)

w9 (i, i1, Q) =0, Q-n<0, iy =1, 3,5 |, =1, i; (21)

B (@)y? (iniyir, @) =V RD? (@) [ FS |yl (iiir. ), (22

w9 (i,iyir,, Q) =0, Q-n<0, iy =135 i, =1+, (23)
where
A? (@)y (i1, Q)
2_Q.vydo (|1,|2;r Q)+ 28 (1)p29 (i,iy;r,Q) (24)
—z de R (A 52)[2‘;”‘*'(3;(2—>Q')+;gg'(p)v2‘~}l (f)}
9 Lin

and where the various quantities serving as “sources” on the right-sides of the
3"-LASS are defined as follows:

oQWe (a:0) . oQ° (a;r,Q) B 8[89 (@)9® (r,Q)]

, 25
5ai2 aO{iz aaiz -
QY (aip) , 0°Q° (a1, Q) °[B (@)’ (r.Q)] (26)
aai36ai2 - a0‘i3605i2 aaisaaiz ,
Q™ (i) st (@nQ) o] A (a)y ¥ (r,0) | 27)
o, - oaq, o, '
2 2 2
Q"9 (a)
v . ROI(ga 9 28
u/§2)(i1) (a) aaiz ( )
[T vl Guiir)
RPN ] (S I i
2y (i) = U -2 [e@yd? (ihing) 29
@ 9'=l4n
g—g’ g
e (se-0) [ ! ( ]Zg o (n 2
5% aail 0 1
Q" (a.¢)
(2).9 AV~ \®¥)
v%(z)(il)R () 5a, : (30)
v, R (a)
L OB (r Q)
= ' | ’ dQ ! Q
aahaaiz v, (I1 r,Q 8alz +Z_1‘{|; l//1 |1 r, )
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-9 (s; : o o[l ()]
JeErseoa) e [V ( )]Xg
oo, oa;, oa,

] ]

%59 (1)
—y e dQ’
v (ne )80: oa,, +gz_14'|; '// @)
(s o0) [ )] Lol ()] oy
X
oq, aaiz d oa; Oa, o, o,

h I

(31)

*zI(t) & : 0?27 (5,9 > Q)
A_ 9 Q i S dQ’ »° Q s
9°(r.Q) +ZI o (r ){ Oa;, 0ax,

0o, 00, g4y

9’ 2 g’ g9’
R Y () La[(m Jor o
o, o, oa;, 0a;, o, o,

I h 2 I h

g’ 62)(9 (2).9
+(V2f) W} v, (Il r, Q . +gz:li[cdg ‘//2

= Y (i;r, Q)

oz (5.0 > Q {(szﬂ ' oy°
§ (aaiz = o, Zng(VE‘)g% '

[ I

IE (il,iz;r,g)

oz (t
299 (i1, Q)

j dQ’ P (i, 1,1, Q) (33)

50! 9'=lan

02970 (5,9 > Q) 5[ J v 0y°
N 6% ) B
The particular forms taken on by the general expressions given Equations (25)
through (33) when considering solely the group-averaged microscopic total
cross sections are obtained specializing these expressions to the particular cases
a, >t o, >t e, >t,. Thus, the expression in Equation (25) becomes:

aQ(l),g (a; (0)
oa, t
iy >

L Q% (@rQ) o

o, at, {Q'V‘”g (rQ)+2¢ (t)e* (r.Q)

(34)
G .
et (ran[s s @) ) ()]
9'=l4an
o () _
=—¢°(r,Q) 2% 9% (r,Q)8, N o -
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In view of the result obtained in Equation (34), it follows that the expression

in Equation (26) vanishes, ‘e,

Ofora b, o, >t (35)

The expression in Equation (27) becomes:

aQ(z),g (a; (//(1),9 )

oa,
iy >t
. OZ8 (a1, Q) 8{ (00 O
2 Qv (r,Q)+Z (1) (r,Q
i &, y O (rQ)+3P () (r.Q) 36)
+21de' (r.Q)[z? (sQ—>Q)+ng(f);(9]}
9=1l4rn
o%¢ (1)
— /0 t _
==y g(rlQ)W_ (r Q) %9 'k m
In view of Equation (36), the expression in Equation (28) becomes:
aQ(z),g (a; V/(l),g )
(29 - - 1).9
VR @) s N 67)
The expression in Equation (31) becomes:
. oxd (t .
{VwR(z)'g (oz)}a_ﬁtk 2 29 (i; r,Q)?g(k) =29 (i1, Q)5 N, . (38)
! t,ii
The expression in Equation (29) becomes:
{[Fd(f)vg] ‘//4(13)@ (il,iz;r,Q)}
ail—>tj
ozl (t) &
(i) S faar 8 (i)
atj 9'=l4n
g9’ nNoolvee(f ’ o (39)
ey o[ )]lg s (02
ot ot ot
ox) (t
=y (i,i,;r,Q) g( ):l// P9 (i, iy, Q); 4Ni -
(30'“J
In view of Equation (34), the expression in Equation (30) becomes:
o (1).9 :
Vo R ) 20O )
yr (i) Py ot,
oxd (t
=—¢° (I’,Q) 8;?(.“ ) (40)
Wk
= _¢g (r’Q)égnglk Mg

The expression in Equation (32) becomes:
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{V R (“)}ah»u

iy -ty

— o () L S e (re)

k™) 9'=l4x

g g’
y 8223'%9 (S,Q, N Q) . 6)(9 8[(V2f ) :| . . 62 |:(V2f ) :|
at,at, a, o, F T aer

J

o
+—8|:(v§lf ) ] %Jr (vZf )g’ T

ot, ot at ot
Zg
—yPe (ll,rQa +Zjd§2w (i1, Q)
o, 9'=l4n
v
Zg’»g e X a[ 12> i| , g
JEre sa) 0% o) 2
ot, ot, ot,
_ o%{ (t) _ oZ{ (1)
— D9 t — 29 (i - t
=-y Q) ——==-y i;r,Q (41)
2 (1 ) a,[k 2 (1 )aat?ikk
= _V/£2)v9 (il; r’Q)59k9 le my
The expression in Equation (33) becomes:
{[FS)’QTV/S)Q(illiz;r'Q)} ‘
ay ot
ai2—>1k
. ox? (t ,
=y (j,k;r,Q) a‘( )_ de w9 (jkir,Q)
t] 9'=lan
: v 42
27 (5Q > Q) a[(vzf) ] ] g Oy° 42
X + V4 +(v2f) -
ot; ot ot
oz (t
99 (j,k;r,Q) ()_V/s P kir Q)8 Ni -

9j
doy;,

Collecting the results obtained in Equations (34) through (42), inserting them
into Equations (16) through (23) and recalling that i, — j,i, >k vyields the
following particular form for the 3%-LASS, specialized for computing the
3-level adjoint functions needed for computing the 3™-order sensitivities of the

PERP leakage response to the group-averaged total microscopic cross sections:

Ag(a)y/f)'g(j,k;r,ﬂ):—l//( (r,.Q)s, oo Niom o =13, k=21--]j, (43)

Vjé(la)vg(juk;rdyg)zo, Q'n>0, j:]'""v‘]ot’k:ll"'yj, (44)
A () (Jkir.Q)
(45)
=_[ (J’r’Q) 99 |k mk+‘//4 (Jak,r,Q)5 ij:|,
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p (i ki, QE)=0, Q:n>0, j=1-, 3, k=1, ], (46)
B¢ (a)l//§3),g (j,k;l’,Q) (r Q)égng'k My * J J"t’ k=1, j' 47)
l//§3),g(j7k;rdlg):0, Q-n<0, j=1---,3, k=1-,], (48)
BY (a) (j,k,l’,Q)
o (49)
|:l// Jvr’Q 90 'k my +l//3 (J k,I’,Q)5 ijm Ji|7
r,uf)'g(j,k;rw )=0, Q-n<0, j=1-,J,, k=1--,]. (50)

The 2"-level adjoint functions l,{/l (j,r,Q) and l//2 (j,r,Q) are the
solutions of the following 2"¢-LASS [5]:

A (@) (51 Q) ==, Ny o v (1), j=10,; g=1+,G, (51)
p9(r,Q)=0,Q-n>0; j=1,-,; g=1-,G, (52)
B (@)p i (i1, Q) = =6, (Ny, 1 #° (1, Q), j=1--3,; g=1.-,G, (53)
p20 (r,2)=0,Q:n<0; j=1-J,; g=1-G, (54)

while the 1*-level adjoint function y'? (r,Q) is the solution of the following
1%-LASS [5]:

A (a)y (r,Q)=Q-ns(r-r,), g=1,-,G, (55)
y"(r,Q)=0,Q-n>0, g=1,-,G. (56)

Next, each of the quantities on the right-side of Equation (14) will be specia-
lized to obtain the specific expression for computing the 3*-order sensitivities of
the leakage response in the PERP benchmark to the 180 total cross sections
J“,i =6;g=1--,G=30 defined in Equation (8). Thus, in view of
Equatlon (10), it follows that the first term on the right-side of Equation (14) va-
nishes, since

°sy(a)  0°%Y(a)
0w, 00,0ty 6t ot ot,

=0. (57)

In view of Equation (35), the second term on the right-side of Equation (14)

<y/1)g(r Q) agQ(1 ( )> -0 (58)
)

Ooa; Oat, Ocx,
I3 12 h (

vanishes, ie.,

In view of Equation (35), the third term on the right-side of Equation (14) va-

2~ (1).9
<V/§Z>’g(i1;r,g),w—(“)> =0. (59)
&

nishes, ie,

Oa, Oq
3 2

In view of Equation (36), the fourth term on the right-side of Equation (14)

vanishes, ie.,
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oa; Oq,
3 2

2~(2).9
<z,/§2)'9(i1;r,g),aQ—(a)> =0. (60)
®

In view of Equation (34), the fifth term on the right-side of Equation (14)

takes on the following particular form:

(2).9
<l//f?’)'g (il’ |21 r, Q) ,a(g—(a)>
@)

8043 (61)

R (R (X R (XA m«>(1)'

In view of Equation (36), the sixth term on the right-side of Equation (14)

takes on the following particular form:

. aQ(Z)vG a
(e 20

I3

(62)
=_<W£3),g(il,i2;r,g), V9 (r,Q)8 ooNi, m/>(l),

The seventh term on the right-side of Equation (14) takes on the following

particular form:

o aQ(3)~9 a
<l//§3)~9 (i, iy; r,Q),laT()
¢ ®

(63)
=y (i Q) (11, Q) 6, N, m:><1)’
since
Q¥ [ asr it (i) |
oo,
) a[Ag( Y2 (|1'rg):| a[va<1>(a;,>,,u),g)J
s N (64)
oq, et

i3 I3
ox¢ (t
=y (i;r,Q)——-2 ( )=—1//{2)'9 (i;r, Q)8 N,

O-t ! 9,9 Vipmg*
The result obtained in Equation (64) stems from the fact that repeating the
derivation shown in Equation (36) yields the results
8[A(a)t//1(2)’g (i; r,Q)}/&ai3 =y P9 (i;r,Q) [629 /6 ], and from the fact

that the second term on the right side of Equation (64) vanishes, as shown be-

8|:V¢R(l) (a; l//(l),g ):|

low:

aai3 aj, >t
LGS
lli34)t/f
7’2 (air o*xd (t
2 aigt )—l//(l)'g(r ) ot ( +ZIdQ‘// )
| j 9'=14z
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9
{azzgﬁg’ (sQ'->Q) o [(sz ) }
X

+
ata, T
(65)

g g
. a[(‘/zf ) } oy . 6[(v2f ) J oxY +(v2f )g Y } _o.
a o a, ot atat,

] ]

The eighth term on the right-side of Equation (14) takes on the following par-

<l//4(13)'g (il’ iz; r,Q),w>
(O]

ticular form:

oa,

i3 (66)
= _<l//4(13)yg (ill I2' r’Q)"/lga’g (Il’ r’Q)591‘9 Nip,m, >(1)
since
QP [a;r, @i (i) |
oo,

. 8[89 (a)wgz)g ('11"'9)} . G[V R (a,go)}
2 oa o, (67)

= (1)
_ ., . t
=y 9 (|l,r,Q) 60’3}/
= _‘//52)’9 (il; r'Q)5g/g Ni/vmf '

as can be shown by repeating the derivations used in Equation (34) to obtain the
result G[Bg (a)l//gz)’g (iy; r,Q)J/@ai3 = t//éz)'g (iy; I’,Q)[@Z? (a; r)/aag;f] , and
by noting that

0 [VW RY (; (o)}
o,
s ai1—>tJ
Qg =Y
2A9 . 259
A air) o T )
Gté@tj thatj
G
+> J.dQ'¢9'(r,Q’) (68)
9'=l4g

.
I (s Q) oy 5[(%) }
ot a, ot

i

2 g’ [
ga l:(sz) }+5|:(V2f) }alg +(sz)g, 524 o
oot o, ot ot ot

]

+x

Collecting the results obtained in Equations (57)-(63), and (66), and replacing

them in Equation (14) yields the following expression:
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3
L)
+<¢/§3>9 (i.kir,Q),p?e (r,Q)>(l)
+<1//§3)~9 (i.krQ) w2 (j; r,Q)>(1) (69)
W (ikrQ) w0 (jir,Q)) }%N,[mﬂ
for j=1--,3_, k=1, j, £=1--- k.

3.2. Computing 63L(a)/6tj6tk6tl ik, 2=1,0.0
Second-Order Sensitivities 62L(a)/6tj6tk j, k=1, of
the PERP Leakage Response to Total Cross Sections

by Using the

ot

In Ref. [5], the specific 2™-order sensitivities of the PERP leakage response to the
group-averaged microscopic total cross sections were shown to have the follow-
ing expression:
2 2
oL oL _ ,mjdvjdg[w”k(rg) % (r,Q)
ot; ot 60‘9J 80‘9“ o
J t,ig (70)

+,7[,1(Y21)vgk(rlg)¢gk( )} for j=1,--,d ;k=1--J_,9=1--G,

where the first-level adjoint functions l//(l)'g (r,Q),g=1--,G are the solutions
of the 1%-Level Adjoint Sensitivity System (1*- LASS) show in Equations (55) and
(56), while the 2"-level adjoint functions 1//1 i 4 (r,Q) and ylézj)g (r,Q) are
the solutions of the 27-LASS presented in Equations (51) through (54).

The total G-differential of Equation (70) provides the 3*-order sensitivities of

the leakage response involving the 2™-order derivatives to the total cross
sections. Since this work is limited to computing the sensitivities of the PERP
leakage response solely with respect to the group-averaged microscopic total
cross sections, it follows that the sensitivities 83L(a) / oot , jk,0=1---,3,
are obtained by taking the following G-differential of Equation (70), limited to

variations just in the group-averaged total microscopic cross sections, namely:

oL
5[atjath Ny m J, 0V [, dQ[ w7 (r. @)y (r.Q)
+y o (r,Q) sy (r,Q)+ oy % (r,Q)p% (r,Q)

]
)% (r,Q) 8% (r,0) |

(71)

= —al,forjkl Jo
= ot ot ot,

where the functions 51,1/(1)'9’k (r,Q) and Jp% (F,Q) are the solutions of the
1*-LFSS and, respectively, 2"-LFSS, which are reproduced below from Ref. [2],
omitting the subscript “&”:

BY (@)d¢° (r,Q)=QY* (@, p;62), g=1---,G, (72)
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5p° (r,;,Q)=0, Q-:n<0, g=1--,G, (73)
A? (a)&,zl(l)'g (r.Q)= Qe (a,l//(l);&x), g=1---,G, (74)
sy (r,,Q)=0, Q-n>0, (75)

while the functions 5(//1(,21-)'9" and 51//;2]-)’9k are the solutions of the G-differentiated
2"4.1ASS defined by Equations (51) through (54), namely:

A (@) [ 8042 (1,0)] 8, )N, o, [00° (1, Q)] = Q2 [ (i): e, 76)

5://1(121.)'9(@,9):0, Qn>0j=1---J,,9=1---G, (77)
BY (@) w7} (1) [+ 6, Ny, [00° (@) ] = QP [ @l (i,);62 ], (78)
5!//521)'g (rd,Q)ZO, Q-n <0, J :1,---,‘]0_“ g :1,...’G_ (79)

The source Q(l)’g (a,go; 50:) on the right side in Equation (72) is defined as

follows:

Ix 50W-9
Q(l)'g (a’q); §a) = zaQ—w

da, , 80
2 on o (80)

]

where, in view of Equation (34),

{ao_u} s (e 0 s a)a

— - (81)

I3

The source Q(Z)'g (a, 1//(1) ; 50:) on the right side in Equation (74) is defined as

follows:

Q¥ (q,yV;sa)2 o, (82)
a2 501,
where, in view of Equation (36),
Q" (a®) o%8 (1)
A ()9 t — ;19
a(li3 =y (I’,Q) ao_g;l =y (r’Q)aglgNillmll (83)

aig =t
The source Q1(3)'g [a,l/ll(z) (il);é'a] on the right side in Equation (76) is de-
fined as follows:

ot O 1(3),g ) 1(2) il
Ql(s),g[a,%(z)(il);ga}éz Q [a!// ( )}5%’ (84)

i3=1 aai3

where, in view of Equation (64),

oo [l (1)]
oq,
3
Qg =Y
N G[Ag (a)w P (i; r,Q)] a[a‘gjg N (r,Q)] )
B oA o,

ozd (t
=y (i;r, Q) 2 ( ):—l//l(z)'g (i;r, Q) 5, N

a 919 im T
60},iI
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The source Q) [a, wl? (il);é'aJ on the right side in Equation (78) is defined

as follows:

2]
Q [a,wﬁz) (h);&a] = 2 ) [a e lh )J Sa, , (86)

i3
i3=1 a O(i3

where, in view of Equation (67),

QP [yt (i)]

o,

3
iz =l

G[Bg (a)wgz)g(lﬂrlg)} 6[5 N, . o (r Q)]
a_ — (87)
o, o
. oxl (a;r .

= _‘//22)’9 (i r’Q)# = _l//gz),g (i1, Q) 8y o Ny, -

oo,

The 3"-Level Forward Sensitivity System (3'4-LFSS) comprises Equations (72)
through (79). The 3"-Level Adjoint Sensitivity System (3"-LASS) that corres-
ponds to the 3"-LFSS is derived by following the general procedure described in
Ref. [12], which involves the following sequence of operations:

A. Use the definition of the inner product provided in Equation (15) to per-

form the following operations:
1) Form the inner product of Equation (72) with a yet undefined vector-valued
function

- A = - =| - T
w07 (iar@) 2 [ (1 kir @), ¥ (1 ki, Q) w7 (j ki, Q)|

having G square-integrable components l//1 “(j.k;r,Q), to obtain the follow-

ing relation:

<y/1(3>'9 (i.k;r,Q),B? (a)dp° (r,Q)>(l)
I (88)
:<l//1(3)’g(j,k;r,Q),Z[—é‘ngNil,mlgog(r,Q)]5t|> :

-1 )

2) Form the inner product of Equation (74) with a yet undefined vec-
tor-valued function

w2 (inkin@) 2 [p7 (kir @) (ikir @), 98 (ki @) |

having G square-integrable components !//2 ?(j,k;r,Q) to obtain the follow-

ing relation:

(w17 (ikir. @), A% (@) (r. Q)
Iot
- <l//£3)'g (i.kr.Q), Z[—(Sglg Ni m y o (r,Q)} 5t,>

1=1

(89)

@
3) Form the inner product of Equation (76) with a yet undefined vec-
tor-valued function

- A = . . = . t
yff’)'g(J.k;r,Q)=[l//§3)'g 1(j,k;r,Q),-~,l//§3)'g(J,k;r,Q),‘-',l//éa)'g G(Lk;r,g)]
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having G square-integrable components !//3 ?(j,k;r,Q) to obtain the follow-

ing relation:

(P (i kir. @), A° ()] o047 (r,Q)]>(l)

+59j9 Nij!"‘j <V/§3)‘g (J’ k; r’Q)’&/’(l)’g (r’Q)>(1) (40)

Jot
= <V/§3)'g (i.kir,Q), lZ[—églg N m ,/,1('21_%9 (r, Q)} St >
- ®

4) Form the inner product of Equation (78) with a yet undefined vec-
tor-valued function

w0 (k@) 2[00 (jkir, Q) (jkir @),y (ki) |
having G square-integrable components square integrable function

l,//‘(‘s)'g ( jk;r, Q) to obtain the following relation:

(v (i kir.2).8° (@) [owf]* (n@) )

#8,0N o, (W79 (k. Q) 6p° (r,Q)>(1) (91)

Jot

:<W§s>,g(j,k;r,g),j[ 8Ny WS (1 ,Q)]at,>

1=1

o
5) Add Equations (88) through (91) to obtain the following relation:

(w27 (i.kir.Q),B° (@) dp° (“Q)><1>

0 (k). 4 (@) (ra),
#(v? (Jkrﬂ),A"‘()[5‘”“9“9)]>
+8y,0Ny i, (137 (1 Kir. Q). 8922 (r,Q))
H? (kir@). 8 (@) oyl (r@) )
0,10y (V7% (1.7, Q2), 60 (rg)>

Jot
= Z|:_59|9Ni|rm| <l//1(3)yg (j,k;l’,Q),gpg (I’,Q)>
=1 (]

=g Nim < *(ikrQ)y (r Q)> (92)

_5g|g Ni|,m| <l//§3)g (J! k, rrg)il/ll,j 9 (r'Q)>(l)

1)

=Ny (W (BT, Q) w7 (r,Q)>(lJ5t,.

B. Use the relations between the forward and adjoint multigroup transport

operators to recast the left side of Equation (92) into the following form:

P —

W (ikirQ), A (a) sy (r,Q)>(1)
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+<W§3)’g (ik;r,Q), A’ (a)sy’) (r,Q)>(l)
0559 Nij m, <w§3)’g (ik;r.Q), sy (r,Q)>(l)

(i (ikir, Q) B (@)al]* (ra))

+8,0Ny o, (W (i kr.Q), 600 (r,Q)>

= (00° (), A° (@)yrl? (1 ki, Q)+ 6, 4Ny i ? (i1 rQ)>()
{89 (r,Q),B° (@)pf (1.kir, Q)+ 8, Ny oy (iKir, Q)> .

+{ond]® (r.0) B (a)pi (i ki)

+<5l//£,zj)'g (r.2),A°(a )'//4(1) (J'k;r’g)>(1) (93)

PO 80, 6y owd? (i), 0w (1);

‘//1(3)1g (il*iz)"//gs)’g (illiz) ‘/’e(, o ('11'2)"/’4(13)'9 (i1'i2 ):|v

where P® denotes the corresponding bilinear concomitant on the domain’s
boundary in the phase-space of independent variables.

C. Use the boundary conditions provided in Equations (73), (75), (77) and
(79), and impose on the functions l//m (j,k,r,Q) m=12,34, the boundary
conditions provided in Equations (95), (97), (99) and (101), below, in order to
cause the bilinear concomitant P®) in Equation (93) to vanish.

D. Identify the right side of Equation (93) with the right side of Equations (71)
to obtain the following equations for the 3-LASS, where

j:]- “y o-lak 1 7jag:117G

A (a@)y (5 kr Q)+, N i (1 kir, Q) ==8, (N, 1) (r,Q),
(94)

p9(jkir,Q)=0,Q-n>0, j=1--3,,k=1-jg=1-,G, (95

ot?

B (@) (5.kir Q)+, o Ny o w87 (51, Q) = =33 Ny vl (r,Q),

99
(96)
VP (160, 0) =0, @N<0, =Ly k=1 ), 9=1-.6, ()
B (@)t (1ir Q) =5y, N, 0" (1.0), o)

w9 (i, ki, Q)=0, Q-n<0, j=1--3,, k=L ], g=1--,G, (99)

ot?

A (@)y P9 (i ki, Q) =-8, N, , w0 (r.Q), (100)
w0 (jkir,Q)=0, @:n>0, j=1-J, k=1, g=1--G.  (101)

ot?

E. It follows from the 3™-LASS defined in Equations (94) through (101) that
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the right-sides of Equations (92) and (71) represent the same functional, which
implies that

O L(a) B, g
Fm Mm@ ()

@)

+<y/§3>’9 (.k;r,Q),p e (r,Q)>(l)

+<z//§3)'g (ik;r,Q),p? (r.Q) (102)

+{(w? (i ker,Q)p (o)

for j=1---,3 ., k=1--]j, £=1---k.

Vot

As expected, the 3"-LASS obtained in Equations (94) through (101) is identic-
al to the 3"-LASS obtained in Equations (43) through (50), and the expression
obtained for the 3™-order sensitivities @3L(a)/8tj8tk8t4, K 0=1-J_ ob-

tained in Equation (102) is identical to the expression obtained in Equation (69).

4. Concluding Remarks

This work has presented the derivation of the exact mathematical expressions of
the (180)° third-order sensitivities of the PERP leakage response with respect to
the total microscopic cross sections. By using the solution of the 37-Level Ad-
joint Sensitivity System, the expressions of these 3™-order sensitivities can be
computed selectively and most efficiently. The formulas derived in this work are
valid not only for the PERP benchmark but can also be used for computing the
3"-order sensitivities of the leakage response of any nuclear system involving fis-
sionable material and internal or external neutron sources. Subsequent works will
use the adjoint-based mathematical expressions obtained in this work to com-
pute exactly and efficiently the numerical values of these (180)° third-order sen-
sitivities (which turned out to be very large and consequential) and use them for

a third-order uncertainty analysis of the PERP benchmark’s leakage response.
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Appendix

The dimensions and material composition of the polyethylene-reflected plu-
tonium (PERP) metal sphere considered in this work are presented in Table
Al.

The scattering cross section X¢~°(r,Q >Q)—>2I7%(s;r,Q > Q) will

be characterized by the vector of parameters s, which is defined as follows:

sE[s,,8, T é[sl,---,sjgs;nl,-~~,n3n}T é[aS;N]T, J. =3 +J,, (103)

Table Al. Dimensions and material composition of the PERP benchmark.

Materials Isotopes Weight Fraction  Density (g/cm?) Zones

Isotope 1 (*°Pu) 9.3804 x 10!
Homogeneous sphere

i 240 -2
Material 1 Isotope 2 (**Pu) 5.9411 x 10 of radius . =3.794 cm,
(plutonium 19.6 . w o
metal) Isotope 3 (*Ga)  1.5152 x 107 designated as “material 1

and assigned to zone 1
Isotope 4 (""Ga) 1.0346 x 10°°

Isotope 5 (C) 8.5630 x 107! Homogeneous spherical
shell of inner radius
Material 2 0.95 r,=3.794 cm and outer
(polyethylene) Isotope 6 (H)  1.4370 x 10°! ' radius r,=7.604 cm,

designated as “material 2”
and assigned to zone 2

Table A2. Presents the group boundaries, E?, of the G =30 energy groups used in the
PARTISN forward and adjoint neutron transport computations.

g 1 2 3 4 5 6

= 150 x 100 1.35x10'  1.20x10'  1.00x10'  7.79 x 10° 6.07 x 10°

Esr 170x10'  150x10'  1.35x10'  120x10'  1.00 x 10" 7.79 x 10°
g 7 8 9 10 11 12

Es 3.68x 100 2.87x10°  223x10°  1.74x10°  135x10°  8.23x 107

g9 6.07 x 10° 3.68 x 10° 2.87 x 10° 2.23 x 10° 1.74 x 10° 1.35 x 10°

g 13 14 15 16 17 18
E°  500x107  3.03x10" 1.84x107 676x102 248x102%  9.12x 107
Evt  823x1070  5.00x 107 3.03x10" 1.84x 107  676x 102  2.48x 1072
g 19 20 21 22 23 24

E°  335x10° 124x10° 454x10% 1.67x10% 614x10°  226x107°
Evt  9.12x10°  335x 107  124x10°  454x10% 1.67x10%  6.14x 107
g 25 26 27 28 29 30

E°  832x10° 3.06x10° 113x10° 414x107 152x107  1.39x 1070

Eot 226x10°  832x10° 3.06x10° 1.13x10° 414x107  1.52x 107
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where
A
o, 25,08, ]
A g'=1->g=1 g'=2—>g=1 g'=G—>g=1 g'=1->g=2
=1 0s1=0i=1 +O0si=0i=1 1 "1 O0sj=0=1 10s1=0,i=1 1 (104)
) . T
9'=2>9=2 9'>g .. G—-G
si=0i=1 " O0s1i ’Gs,ISCT,i:I] :

=0,---,ISCT;i=1-,1;9,9'=1---,G; J  =(GxG)x1x(ISCT +1).

The quantity (VZf )g - (VEf )g (f;r) in the fission integral
f(vZ)?y(r)(og'(r,Q')dQ’ depends on the vector of parameters f , which is
defined as follows:

. . T
f é[fll'“’ fJ(,f ) fJ(,f+1""' fJ”fuv’ fJ(,f+JV+1""I fJfJ
: (105)
oGN] 3 =0+, +3,,
with
t
Oy é[G#,izl'af,izl’”"G(fs,izl"”’O-?,i’”"o-#,i:Nf !"'vU?,i:NfJ (106)

1>

[fl"”’fJaf ]T’ i=1--N¢; g=1--,G; J,; =GxNy,
1 t
vé[Viil,viip---,vi‘il,-~~,vig,---,V?:Nf,-~~,vi‘iNfJ ST LRE N 107

i=1-,N;; g=1--G; J, =GxN,,

where o denotes the microscopic fission cross section for isotope 7 and
energy group g Vv denotes the average number of neutrons per fission for
isotope 7 and energy group g and N; denotes the total number of fissionable
isotopes.

The fission spectrum is considered to depend on the vector of parameters p,

defined as follows:

p2[puopy, | 2[a a2, |

for i=1---,N;; g=1---,G; J, =GxN,.

(108)

The quantities y°(r) further depend on the parameters 2, N, f?,
(vaf )Ig , but these latter dependences can be taken into account by applying the
chain rule on the 1%-order sensitivities dL/8y°, once these sensitivities will
have been obtained.

The source Q(r)—Q°(q;N;r) depends on the vector of model parame-

ters (, defined as follows:
A A T
02 a0y, | 2[4k RT R Ay a,ibubn 5T ] 3 =10, (109)

In summary, the model parameters characterizing the PERP benchmark can
all be considered to be the components of the following “vector of model para-
meters:”

asla,a ]T 20000V piG; N]T,

o=+t 3,0+, +3, 43, +d,.

(110)
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Thus, the total number of imprecisely known model parameters for the PERP

benchmark is:

J, =(1%G)+(GxG)xIx(ISCT +1)+2(Gx N, )+Gx N, +10+1J, = 21976.

Nomenclature

a,, b, :parameters used in Watt’s fission spectra approximation for isotope &
B: forward Boltzmann operator

E®: boundary of energy group g

FF : fraction of isotope k decays that are spontaneous fission events
f;, f,, : parameters in vector o indexed by jand m,

G: total number of energy groups
I total number of isotopes

J, : total number of parameters in vector N

J, : total number of parameters in vector p

J, : total number of parameters in vector q

J, : total number of parameters in vector o
J ., : total number of parameters in vector o

J,; : total number of parameters in vector o,

J, : total number of parameters in vector t

J, : total number of parameters in vector v

| : variable for the order of Legendre-expansion of the microscopic scattering
cross sections, | =1,---,ISCT

L () : total neutron leakage from the PERP sphere

M: total number of materials

N : total number of fissionable isotopes

N; , : atom number density for isotope /and material m

R (Q' -Q) : Legendre and associated Legendre polynomials appreciate for the
geometry

R (u): spherical harmonics appreciate for the geometry

Q° (I’) : source term in group g
r: spatial variable

I, : external radius of the PERP benchmark

S, : outer surface of the PERP sphere

S?‘i : standard deviation associated with the model parameter O'?’i

Svgyi : standard deviation associated with the model parameter v?

S;,Sy, : parameters in vector o, indexed by jand m,

t;,t,, : parameters in vector o, indexed by jand m,

Vectors and Matrices

"
@ : vector of imprecisely known model parameters, a = [O’t 100 v; Pig; N ]

@’ : nominal values of the parameters in the vector «

. . t
t : vector of imprecisely known total parameters, t= [O't; N ]
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s: vector of imprecisely known scatter parameters, S = [0' N ]
. . . t
f : vector of imprecisely known fission parameters, f = [O'f i N ]

0o, : vector of imprecisely known total cross sections

o, : vector of imprecisely known scattering cross sections

o : vector of imprecisely known fission cross sections

v : vector of imprecisely known parameters underlying the average number of
neutrons per fission

N : vector of imprecisely known atom number densities

p: vector of imprecisely known fission spectrum parameters

q : vector of imprecisely known source parameters

S® : vector of first-order relative sensitivities of the leakage response

S matrix of first-order relative sensitivities of the leakage response

A, : decay constant for isotope &

F : the spontaneous emission of an average neutrons of an isotope &

O-?,i : microscopic fission cross section in group g of isotope 7

0'3;79 :the I" order Legendre-expanded microscopic scattering cross section
from energy group Q' into energy group g for isotope 7

O'Si : microscopic total cross section in group gof isotope 7

xs (t; I’) : macroscopic total cross section for energy group g

xd ( f; l’) : macroscopic fission cross section for energy group g

qug (S; rQ — Q) : macroscopic scattering transfer cross section from energy

group Q' into energy group g
¢ (I‘ Q) : forward angular flux in group gat point rin direction Q

g
Py
g

zeroth order of forward flux moment in group gat point r

r): 1™ (I (I=1---,I1SCT) order forward flux moment in group g at point 7,

AS)

(r):
(r):
HUE deP 1)@° (r,Q),1=1,---,I1SCT
°(r):
’(r,

AS)

material fission spectrum in energy group g

X
l// ®)g Q) : adjoint angular flux in group gat point rin direction €
Q,Q' : directional variable

Subscripts, Superscripts

£ fission

0,9’ : energy group variable g¢,9'=1---,G

9;, 0, energy group associated with parameter indexed by j (e.g., f;, t;
and s;)or m, (eg, f ., t, and s, )

F index variable for isotopes, i=1,---, 1

i, i
sj)or m, (eg., f
J index variable for parameters

n, : isotope associated with the parameter indexed by j (e.g., f;, t; and
m o tm, and S, )

k: index variable for isotopes, k =1,---,1

l;, 1,,: order of Legendre expansion associated with the microscopic scattering

cross section parameters indexed by j(e.g., ;) or m, (eg, s, )
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v : number of neutrons produced per fission
m: index variable for materials, m=1,---,M
m, : index variable for parameters

m., m

i m

sj)or m, (eg., f,, t, and s )
¢ total

, : material associated with parameter indexed by ; (e.g., f;, t; and

s: scatter

Abbreviations

I*-LASS: 1%-Level adjoint sensitivity system

2" ASAM: second-order adjoint sensitivity analysis methodology
2M_-CASAM: comprehensive second-order adjoint sensitivity analysis metho-
dology

2741 ASS: 27-Level adjoint sensitivity system

3*-LASS: 3"-Level adjoint sensitivity system

Nu: the average number of neutrons per fission

ISCT: order of the finite expansion in Legendre polynomial
PERP: polyethylene-reflected plutonium

sigf: fission cross sections

sigs: scattering cross sections

sigt: total cross sections
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