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Abstract 
This paper is made out of necessity as a doctoral student taking the exam 
from Lie groups. Using the literature suggested to me by the professor, I felt 
the need to, in addition to that literature, and since there was more superficial 
in that book with some remarks about the examples given in relation to the 
left group. I decided to try a little harder and collect as much literature as 
possible, both for the needs of me and the others who will take after me. 
Searching for literature in my mother tongue I could not find anything, in 
English as someone who comes from a small country like Montenegro, all I 
could find was through the internet. I decided to gather what I could find 
from the literature in my own way and to my observation and make this kind 
of work. The main content of this paper is to present the Lie group in the 
simplest way. Before and before I started writing or collecting about Lie 
groups, it was necessary to say something about groups and subgroups that 
are taught in basic studies in algebra. In them I cited several deficits and an 
example. The following content of the paper is related to Lie groups primarily 
concerning the definition of examples such as The General Linear Group 
GL(n, R), The Complex General Linear Group GL(n, C), The Special Linear 
Group ( ) ( ),SL n R SL V= , The Complex Special Linear Group SL(n, C), Un-

itary and Orthogonal Groups, Symplectic Group, The groups * * 1, ,R C S  and 
nR  and others. In addition, invariant vector fields and the exponential map 

and the lie algebra of a lie group. For me, this work has the significance of 
being useful to all who need it. 
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Groups, Subgroups, Lie Groups, Invariant Vector Fields,  
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1. Introduction 

A Lie group is, roughly speaking, an analytic manifold with a group structure 
such that the group operations are analytic. Lie groups arise in a natural way as 
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transformation groups of geometric objects. Lie groups are not linear they are 
curved manifolds. Nevertheless, Lie’s theorem reduces many questions about Lie 
groups to questions about Lie algebras. Questions about curved manifolds turn 
out to be equivalent to questions about linear algebra. This is a profound simpli-
fication, and it leads to a very rich theory. The theory of Lie groups answers 
these questions by replacing the notion of a finitely generated group with that of 
a Lie group—a group which at the same time is a finite-dimensional manifold. It 
turns out that in many ways such groups can be described and studied as easily 
as finitely generated groups—or even easier.  

Lie groups and Lie algebras, together called Lie theory, originated in the study 
of natural symmetries of solutions of differential equations. However, unlike say 
the finite collection of symmetries of the hexagon, these symmetries occurred in 
continuous families, just as the rotational symmetries of the plane form a conti-
nuous family isomorphic to the unit circle. The theory as we know it today be-
gan with the ground-breaking work of the Norwegian mathematician Sophus Lie, 
who introduced the notion of continuous transformation groups and showed the 
crucial role that Lie algebras play in their classification and representation theory. 
Lie’s ideas played a central role in Felix Klein’s grand “Erlangen program” to 
classify all possible geometries using group theory. Today Lie theory plays an 
important role in almost every branch of pure and applied mathematics, is used 
to describe much of modern physics, in particular classical and quantum me-
chanics, and is an active area of research [1]. 

The General Linear Group GL(n, R) is the group of invertible n × n matrices with 
real entries under matrix multiplication. This forms a group, because the product of 
two invertible matrices is again invertible, and the inverse of an invertible matrix is 
invertible, with identity matrix as the identity element of the group. The group is 
so named because the columns of an invertible matrix are linearly independent, 
hence the vectors/points they define are in general linear position, and matrices in 
the general linear group take points in general linear position to points in a general 
linear position. https://en.wikipedia.org/wiki/General_linear_group  

The special linear group SL(n, F) of degree n over a field F is the set of n × n 
matrices with determinant 1, with the group operations of ordinary matrix mul-
tiplication and matrix inversion. This is the normal subgroup of the general li-
near group given by the kernel of the determinant  

( )det : , XGL n F F→  

where we write F× for the multiplicative group of F (that is, F excluding 0). 
These elements are “special” in that they form a subvariety of the general li-

near group—they satisfy a polynomial equation (since the determinant is poly-
nomial in the entries). https://en.wikipedia.org/wiki/Special_linear_group  

The orthogonal group in dimension n, denoted O(n), is the group of dis-
tance-preserving transformations of a Euclidean space of dimension n that pre-
serve a fixed point, where the group operation is given by composing transfor-
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mations. An orthogonal group is sometimes called the general orthogonal 
group, by analogy with the general linear group. Equivalently, it is the group of 
n × n orthogonal matrices, where the group operation is given by matrix multip-
lication; an orthogonal matrix is a real matrix whose inverse equals its transpose. 
The orthogonal group is an algebraic group and a Lie group. It is compact. 

The orthogonal group in dimension n has two connected components. The 
one that contains the identity element is a subgroup, called the special ortho-
gonal group, https://en.wikipedia.org/wiki/Orthogonal_group.  

The unitary group of degree n, denoted U(n), is the group of n × n unitary 
matrices, with the group operation of matrix multiplication. The unitary group 
is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is 
an archaic name for the unitary group, especially over finite fields. For the group 
of unitary matrices with determinant 1, see Special unitary group.  

The purpose of researching this paper is, as I have already stated in the sum-
mary, to gather as much information as possible and introduce it into the basic 
meaning of Lie groups. That everyone can benefit from this work at the begin-
ning and find guidelines for further study of Lie groups. To get the most impor-
tant information through this work without having to use a lot of literature like 
me and to get information in an easier way. 

2. Groups, Subgroups, Definitions and Examples 

Definition 1: Group is a set G together with a map : G G Gµ × → ; 
( ),x y xy→  and an element Ge e→ ; such that the following conditions are 
fulfilled 

1) An associative algebra is algebra A whose associative rule is associative: 
( ) ( )x yz xy z=  for all , ,x y z G∈   
2) There exists an element e G∈ , such that for all x G∈  we have 

x e e x x∗ = ∗ = . Such an element e G∈  is called an identity in G. 
3) For every x G∈  there exists an element 1x G− ∈  such that 

1 1x x x x x− −∗ = =  is called an inverse of a in G. 
Definition 2: If in the group (G; ·) for all ,x y G∈  is  

x y y x⋅ = ⋅ ; 

Then we say that this structure is commutative (or Abel’s), so we can speak of 
a commutative group. 

Example 1: Let (G, ·) be a group in which 2x e=  holds for each element a. 
We claim that is then G a commutative group. Namely, 

( )( ) ( ) ( )( ) ( ) 1xy xy e xx xex x yy x xy yx xy −= = = = =  

xy yx⇒ =  

Example 2: If (V; +; ·) is a vector space, then (V; +) is an Abel group. 
Definition 3: Let { }S e=  be a one-membered set and define a binary opera-

tion on S by the formula e e e⋅ = . Then ({e}; ·) is a group we call a trivial group.  
Definition 4: Subgroup of G is a subset H G⊂  such that 
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1) He H∈ ; 
2) xy H∈  for all x H∈  and y H∈ ; 
3) 1x H− ∈  for every x H∈ . 
Definition 5: [2] nonempty subset H of a group G is a subgroup of G if H is a 

group under the same operation as G. We use the notation H G⊂  to mean 
that H is a subset of G, and H ≤ G to mean that H is a subgroup of G. For a 
group G with identity element e, {e} is a subgroup of G called the trivial sub-
group. For any group G, G itself is a subgroup of G, called the improper sub-
group. Any other subgroup of G besides the two above is called a nontrivial 
proper subgroup of G. 

Definition 6: Let (G, ·) and (H, ∗) groups. Function :f G H→  is a homo-
morphism if for all ,x y G∈  is valid: 

1) ( )G Hf e e=  
2) ( ) ( ) ( )f xy f x f y= ∗  for all ,x y H∈  
Proof: a) If x G∈ , ( ) ( ) ( ) ( )G Gf x f xe f x f e= =  and H is group, hitting 

the left with ( ) 1f x − , ( )G Hf e e= , so ( ) ( )1 1f x f x− −= . 
Definition 7: If :f G H→  is a homomorphism. The kernel of f defined by 

( ) ( ){ }1
H Hkerf f e f x e−= = =  

is also readily seen to be a subgroup of G. 
Proof. We have to show that the kernel is non-empty and closed under prod-

ucts and inverses. Note that ( )e fϕ = . Thus Kerf is certainly non-empty. Now 
suppose that a and bare in the kernel, so that  

( ) ( )f x f y ϕ= = . 

( ) ( ) ( )f xy f x yϕ ϕϕ ϕ= = = . 

Thus xy Kerf∈  and so the kernel is closed under products. Finally suppose 
that ( )f x e= . Then ( ) ( ) 11f x f x ϕ−− = = . Thus the kernel is closed under in-
verses, and the kernel is a subgroup. 

Example 3: Let R+  denote the set of positive real numbers. Then there is the 
function ln : R R+ →  is a homomorphism of a group ( )1, , ;1R+ −⋅  into a group 
( ), , ,0R + − .  

( )1ln ln and ln1 0x x− = − =  

( ) ( ) ( )ln ln lnxy x y= +  

Example 4: Conjugation, i.e., function :g C C→ , given by ( )g z z= , 
represents the automorphism of the algebra ( ), , ,0,1C C= + ⋅  

Function f G H→∶  is a homomorphism 
- Subjective group homomorphism is called an epimorphism 
- Injective group homomorphism is called a monomorphism. 
- Bijective group homomorphism is called an isomorphism. 
- If A B= , we say that x is an endomorphism. 
- If f is an isomorphism and an endomorphism, we say that x is an automor-

phism. 
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- Automorphism of G we mean an isomorphism of G onto itself. 
Definition 9: The map f G H→∶  is called an isomorphism and G and H 

are said to be isomorphic if 
1) f is a homomorphism. 
2) f is a bijection.  

- If G is a group and x G∈ ; then the map ,:x G G y xy→ → ; is called left 
translation by x. 

- If x G∈ ; then : ,xr G G y yx→ →  is called right translation by x 
- If x G∈ ; then 1: ,xC G G y xyx−→ →  is called conjugation by x: 

LIE GROUPS, DEFINITION AND EXAMPLES 
A Lie group is a smooth (i.e., C 1) manifold G equipped with a group struc-

ture so that the maps 
: G G Gµ × →  

( ): xy xyµ →  

and the inversion map 

: G G Gι × →  
1: x xι −→  

are smooth. 
In other words, the coordinates of the product must be differentiable func-

tions of the coordinates of factors, and the coordinates of the inverse element 
must be differentiable functions of the coordinates of the element itself. 

A Lie group over   is also called a complex Lie group and a Lie group over 
  is called a real Lie group. Any complex Lie group may be considered as a real 
Lie group of doubled dimension. 

Example 1: 
1) nR  together with addition+ and the neutral element 0 is a Lie group. 
2) { }* \ 0R R=  is an open subset of R; hence a smooth manifold. Equipped 

with the ordinary scalar multiplication and the neutral element 1; *R  is a Lie 
group. 

3) nC  together with addition + and the neutral element 0 is a Lie group. 
4) { }* \ 0C C=  is an open subset of C; hence a smooth manifold. Equipped 

with the ordinary scalar multiplication and the neutral element 1; *C  is a Lie 
group. 

Example 2: Let 

( ){ }1 1, , , ,G R R S x y p x R y R p S C= × × = ∈ ∈ ∈ ⊂  

Equipped with the group product given by 

( ) ( ) ( )1 2
1 1 1 2 2 2 1 2 1 2 1 2, , , , , , eix yx y p x y p x x y y p p∗ = + +  

Then G is a Lie group. 
[3] The General Linear Group GL(n, R) 
Let n be a positive integer, and let ( ),M n R  be the set of real n × n matrices. 
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Equipped with entry wise addition and scalar multiplication ( ),M n R  is a li-
near space, which in an obvious way may be identified with 

2nR . For 
( ),A M n R∈  we denote by ijA  the entry of A in the i-th row and the j-th 

column.  
The maps :ij ijA Aξ →  may be viewed as a system of (linear) coordinate 

functions on ( ),n R . In terms of these coordinate functions, the determinant 
function ( )det : ,M n R R→  is given by 

( ) ( ) ( )1 1det sgn
n

n n
S

σ σ
σ

σ ξ ξ
∈

= ∑   

where nS  denotes the group of permutations of { }1, , n  and where sgn de-
notes the sign of a permutation. It follows from this formula that det is smooth. 

The set ( ),GL n R  of invertible matrices in ( ),M n R  equipped with the 
multiplication of matrices, is a group. As a set it is given by 

( ) ( ){ }, , det 0GL n R A M n R A= ∈ ≠  

Thus, ( ),GL n R  is the pre-image of the open subset { }* \ 0R R=  of R un-
der det. As the latter function is continuous, it follows that ( ),GL n R  is an 
open subset of ( ),M n R . As such, it may be viewed as a smooth manifold of 
dimension 2n . In terms of the coordinate functions ijξ  the multiplication map 

( ) ( ) ( ): , , ,GL n R GL n R GL n Rµ × →  is given by  

( )( ) ( ) ( )
1

,
n

kl ki il
i

A B A Bξ µ ξ ξ
=

= ∑  

It follows that µ is smooth. Given ( ),A M n R∈  we denote by TA  the 
transpose of A. Moreover, for 1 ,i j n≤ ≤  n we denote by ( )ijM A  the matrix 
obtained from A by deleting the i-th row and j-th column.  

The co-matrix of A is defined by  

( ) ( )T1 deti jco
ij ijA M A+= −  

Clearly, the map coA A→  is a polynomial, hence smooth map from 
( ),M n R  to itself. By Cramer’s rule the inversion ( ) ( ): , ,GL n R GL n Rι → , 

1A A−→  is given by 

( ) ( ) 1det coA A Aι −=  

It follows that ι  is smooth, and we see that ( ),GL n R  is a Lie group. 
Obviously ( ),GL n R  is an n2-dimensional noncompact Lie group, and it is 

not connected. In fact, it consists of exactly two connected components, 

( ) ( ){ }, , det 0GL n R A M n R A+ = ∈ >  

( ) ( ){ }, , det 0GL n R A M n R A− = ∈ <  

[4]: The Complex General Linear Group GL(n; C) 
This calls for some explanation, since ( ),GL n C  is not a group of real ma-

trices, as required by Definition:. A linear group is a closed subgroup of 
( ),GL n R . However, we can represent each complex matrix ( ),Z M n C∈  by a 
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real matrix ( )2 ,RZ M n R∈  in the following way. If we “forget” scalar multip-
lication by non-reals, the complex vector space nV C=  becomes a real vector 
space RV of twice the dimension, with basis 
( )1,0, ,0 , ( ),0, ,0i  , ( )0,1, ,0 , ( )0, , ,0i  ,  , ( )0,0, ,1 , ( )0,0, , i : 

Moreover each matrix ( ),Z M n C∈ , i.e. each linear map 

:Z V V→  

Defines a linear map 

:RZ RV RV→  

i.e. a matrix ( )2 ,RZ M n R∈ . 
Concretely, in passing from Z to RZ each entry 

, , ,j k j k j kZ X iY= +  

is replaced by the 2 × 2 matrix  

, ,

, ,

j k j k

j k j k

X Y
Y X

− 
 
 

 

The map 

( ) ( ): , 2 ,Z RZ M n C M n R→ →  

is injective; and it preserves the algebraic structure, i.e.  
• ( )R Z W RZ RW+ = +  
• ( ) ( )( )R ZW RZ RW=  
• ( ) ( ) ,R aZ a RZ a R= ∀ ∈  
• RI I=  
• ( ) ( )*R Z RZ ′=  

It follows in particular that RZ is invertible if and only if Z is; so R restricts to 
a map 

( ) ( ): , 2 ,Z RZ GL n C GL n R→ →  

Whenever we speak of ( ),GL n C , or more generally of any group G of com-
plex matrices, as a linear group, it is understood that we refer to the image RG of 
G under this injection R. 

The matrix ( )2 ,X GL n R∈  belongs to ( ),GL n C  if is built out of 2 × 2 ma-
trices of the form 

x y
y x

− 
 
 

 

This can be expressed more neatly as follows. Let 

0 1
1 0

0 1
1 0

iI J

− 
 
 
 → = −
 
 
 
 

 

Since any scalar multiple of the identity commutes with all matrices, 
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( ) ( ) ( ),X M n C iI X X iI∈ ⇒ =  

Applying the operator R,  

( ),X RM n C JX XJ∈ ⇒ =  

Conversely, if JX XJ=  then it is readily verified that X is of the required 
form.  

Thus  

( ) ( ){ }, 2 , :RM n C f X M n R JX XJ= ∈ =  

and in particular  

( ) ( ){ }, 2 , :GL n C T GL n R JX XJ= ∈ =   

[3]: The Special Linear Group S(n, R) = SL(V) 
Let V be a finite dimensional real linear space. We define the special linear 

group 

( ) ( ){ }det 1SL V A GL V A= ∈ =  

Note that det is a group homomorphism from ( )GL V  to *R . Moreover, 
( )SL V  is the kernel of det. In particular, ( )SL V  is a subgroup of ( )GL V . We 

will show that ( )SL V  is a sub-manifold of ( )GL V  of co-dimension 1. Suffic-
es to do this at the element = IV. 

Since ( )G GL V=  is an open subset of the linear space ( )End V  its tangent 
space IT G  may be identified with ( )End V . The determinant function is 
smooth from G to R hence its tangent map is a linear map from ( )End V  to R. 
Tangent map is the trace ( ) ( ): ;tr End V R A tr A→ → . Clearly tr is a surjective 
linear map. This implies that det is submersive at I. That ( )SL V  is a smooth 
co-dimension 1 sub-manifold at I: 

[4]. The Complex Special Linear Group SLn, 

( ) ( ){ }, , det 1SL n C A GL n C A= ∈ =  

Note that the determinant here must be computed in ( ),M n C , not in 
( )2 ,M n R . 

Thus 

( ) ( )1,T i SL C= ∉  

Although 

( )
0 1

2,
1 0

RT SL R
− 

= ∈ 
 

 

[5] Unitary and Orthogonal Groups 
An n n×  complex matrix A is said to be unitary if the column vectors of A 

are orthonormal, that is, if 

1

n

kl kj lj
i

A A ξ
=

=∑  

https://doi.org/10.4236/alamt.2020.103004


A. Hasić 
 

 

DOI: 10.4236/alamt.2020.103004 43 Advances in Linear Algebra & Matrix Theory 
 

We may rewrite as 

( )*

1

n

kj ljlk
i

A A ξ
=

=∑  

where ljξ  is the Kronecker delta equal to 1 if l j=  and equal to zero if l j≠ . 
Here A is the adjoint of A, defined by 

( )*
kllk

A A=  

Equation says that *A A I= ; thus, we see that A is unitary if and only if 
* 1A A−= . In particular, every unitary matrix is invertible. 
The adjoint operation on matrices satisfies ( )* * *AB B A= . from this, we can 

see that if A and B are unitary, then 

( )* * * 1 1AB B A AB B A AB I− −= = =  

showing that AB is also unitary. Furthermore, since ( )*1 *AA I I− = = , we see 
that ( )*1 *A A I− = , which shows that ( ) ( )* 11 *A A

−− = . Thus, if A is unitary, we 
have 

( ) ( ) ( )* 1 11 1 * 1 *A A A A AA I
− −− − −= = =  

showing that 1A−  is again unitary. 
Thus, the collection of unitary matrices is a subgroup of ( ),GL n C . We call 

this group the unitary group and we denote it by ( )U n . We may also define 
the special unitary group ( )SU n , the subgroup of ( )U n  consisting of uni-
tary matrices with determinant 1. It is easy to check that both ( )U n  and 

( )SU n are closed subgroups of ( ),GL n C  and thus matrix Lie groups. 
Meanwhile, let .,.  denote the standard inner product on nC , given by 

, j j
j

x y x y= ∑  

(Note that we put the conjugate on the first factor in the inner product.) 
We have 

*, ,x Ay A x y=  

for all , nx y C∈ . Thus 
*, ,Ax Ay A Ax y=  

from which we can see that if A is unitary, then A preserves the inner product on 
nC , that is, 

, ,Ax Ay x y=  

for all x and y. Conversely, if A preserves the inner product, we must have 
* , ,A Ax y x y=  for all ,x y . It is not hard to see that this condition holds 

only if *A I= . Thus, an equivalent characterization of unitarity is that A is un-
itary if and only if A preserves the standard inner product on nC . 

Finally, for any matrix A, we have that *det detA A= . Thus, if A is unitary, 
we have 
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( ) 2*det det det 1A A A I= = =  

Hence, for all unitary matrices A, we have det 1A = . 
In a similar fashion, an n n×  real matrix A is said to be orthogonal if the 

column vectors of A are orthonormal. As in the unitary case, we may give equiv-
alent versions of this condition. The only difference is that if A is real, A is the 
same as the transpose trA  of A, given by 

( )tr
kjjk

A A=  

Thus, A is orthogonal if and only if 1trA A−= , and this holds if and only if A 
preserves the inner product on nR . Since ( )det dettrA A= , if A is orthogonal, 
we have 

( ) ( ) ( )2det det det 1trA A A I= = =  

so that ( )det 1A = ± . The collection of all orthogonal matrices forms a closed 
subgroup of ( ),GL n C . which we call the orthogonal group and denote by 
( )O n . 
The set of n n×  orthogonal matrices with determinant one is the special or-

thogonal group, denoted ( )SO n . Geometrically, elements of ( )SO n . are ro-
tations, while the elements of ( )O n . are either rotations or combinations of ro-
tations and reflections. Consider now the bilinear form ( ).,.  on nC defined by 

( ), j j
j

x y x y= ∑  

This form is not an inner product because, for example, it is symmetric rather 
than conjugate symmetric. The set of all n n×  complex matrices A which pre-
serve this form (i.e., such that ( ) ( ), ,Ax Ay x y=  for all , nx y C∈ ) is the com-
plex orthogonal group ( );O n C , and it is a subgroup of ( );GL n C . Since there 
are no conjugates in the definition of the form ( ).,. , we have 

( ) ( ), ,trx Ay A x y=  

for all , nx y C∈  where on the right-hand side of the above relation, we have 
trA  rather than *A . Repeating the arguments for the case of ( )O n , but now 

allowing complex entries in our matrices, we find that an n n×  complex matrix 
A is in ( );O n C , if and only if trA A I= , that ( );O n C , is a matrix Lie group, 
and that ( )det 1A = ±  for all A in ( );O n C . Note that ( );O n C  is not the same 
as the unitary group ( )U n . 

The group ( );SO n C  is defined to be the set of all A in ( );O n C  with 
( )det 1A =  and it is also a matrix Lie group.  

[5] Symplectic Groups 
Consider the skew-symmetric bilinear form B on 2nR  defined as follows 

( ) ( )
1

,
n

j n j n j n
j

x y x y x yω + +
=

= −∑  

The set of all 2 2n n×  real matrices A which preserve ω  (i.e., such that 
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( ) ( ), ,Ax Ay x yω ω=  for all 2, nx y R∈ ) is the real symplectic group ( ),Sp n R , 
and it is a closed subgroup of ( )2 ,GL n R . (Some authors refer to the group we 
have just defined as ( )2 ,Sp n R  rather than ( ),Sp n R  If is the 2 2n n×  matrix  

0
0
I

I
 

Ω =  − 
 

Then 

( ), ,x y x yω = Ω  

From this, it is not hard to show that a 2 2n n×  real matrix A belongs to 
( ),Sp n R  if and only if 

1trA A−−Ω Ω =  

Taking the determinant of this identity gives ( ) 1det detA A −= , i.e. 
( )2det 1A = . This shows that det 1A = ± , for all ( ),A Sp n R∈ . In fact, 

det 1A =  for all ( ),A Sp n R∈ , although this is not obvious. One can define a 
bilinear form ω  on 2nC  by the same formula as in  

( ) ( )
1

,
n

j n j n j n
j

x y x y x yω + +
=

= −∑  

(with no conjugates).  
Over C, we have the relation 

( ) ( ), ,z w z wω = Ω  

where ( ).,.  is the complex bilinear form in ( ), j jjx y x y= ∑ . The set of 
2 2n n×  complex matrices which preserve this form is the complex symplectic 
group ( ),Sp n C . A 2 2n n×  complex matrix A is in ( ),Sp n C  if and only if 

1trA A−−Ω Ω =  holds. (Note: This condition involves trA  not A.) Again, we can 
easily show that each ( ),A Sp n C∈ . Satisfies det 1A =  and, again, it is actually 
the case that det 1A = . Finally, we have the compact symplectic group ( )Sp n  
defined as 

( ) ( ) ( ), 2Sp n Sp n C U n=   

[6]: The groups * * 1, ,R C S  and nR  
The groups *R  and *C  under matrix multiplication are isomorphic to 
( )1,GL R  and ( )1,GL C , respectively, and so we view them as matrix Lie 

groups. The group 1S  of complex numbers with absolute value one is isomor-
phic to U(1) and so we also view it as a matrix Lie group. The group nR  under 
vector addition is isomorphic to the group of diagonal real matrices with posi-
tive diagonal entries, via the map 

( )
1

1

e 0

0 e n

x

n
x

x x
 
 

→  
 
 

     

One easily checks that this is a matrix Lie group and thus we view nR  as a 
matrix Lie group as well. 
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Definition 2. [7] A subgroup H of a Lie group G is called a Lie subgroup if it 
is a Lie group (with respect to the induced group operation), and the inclusion 
map :H H Gι →  is a smooth immersion (and therefore a Lie group homo-
morphism). 

Example 8. [7] Consider 2 1 1G T S S= = × . Then { }1 0S ×  and { } 10 S×  are 
Lie subgroups. Moreover, for any co-prime pair of integers (p; q), 

( ){ }, e , ep q ipt iqtH t R= ∈  

is a Lie subgroup of 2T . These are submanifolds as well. However, there are al-
so many Lie subgroups of 2T  which are not submanifolds. In fact, for any irra-
tional number α, 

( ){ }e ,eit i tH t Rα α= ∈  

is a Lie subgroup of 2T . But 2H Tα = , so they are not submanifolds. 
Definition 3. A Lie subgroup H of G is said to be a closed Lie subgroup if H is 

both a Lie subgroup and also a submanifold of G. 
Lemma 1 [7]. Suppose G is a Lie group, H is a subgroup of G which is a sub-

manifold as well. Then H is closed in the sense of topology. 
Proof. Since H is a submanifold of G, it is locally closed everywhere. In par-

ticular, one can find an open neighborhood U of e in G such that 
U H U H=  . Now take any h H∈ . Since hU is an open neighborhood of h 
in G, hU H ≠ ∅ . Let h hU H′∈  , then 1h h U− ′∈ . On the other hand, 
since h H∈ , there is a sequence nh  in H converging to h. It follows that the 
sequence 1h h H− ′∈  converges to 1h h− ′ . 

In other words, 1h h U H− ′∈  . So h H∈ , i.e. H H⊂ . Therefore, H is 
closed. 

3. Homomorphisms of Lie Groups 

Lie group homomorphism  
Let G and H be Lie groups. A map : G Hϕ →  is called a Lie group homo-

morphism if 
1) ϕ  is a group homomorphism, and 
2) ϕ  is continuous. 
Lie group isomorphism 
Let G and H be Lie groups. A map : G Hϕ →  is called a Lie group isomor-

phism if 
1) ϕ  is one-to-one and onto, and 
2) the inverse map is 1ϕ−  continuous. 
Examples 1 [6]:  
1) The map ( )1R U→  given by eiθθ →  is a Lie group homomorphism. 
2) The map ( ) ( )1 2U SO→  given by 

cos sin
e

sin cos
iθ θ θ

θ θ
− 

→  
 
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is a Lie group isomorphism (you should check that this map is well-defined and 
is indeed an isomorphism). 

1) Composing the previous two examples gives the Lie algebra homomor-
phism ( )2R SO→  defined by  

cos sin
sin cos

θ θ
θ

θ θ
− 

→  
 

 

2) The determinant is a Lie group homomorphism ( ) *,GL n C C→ . 

4. Invariant Vector Fields and the Exponential Map 

Definition 1. A vector field ( )v V G∈  is left-invariant if g v v∗ =  for every 
g G∈ , and right-invariant if v g v∗ =  for every g G∈ . A vector field is called 
bi-invariant if it is both left- and right-invariant. 

Theorem 1 [8]. The map ( )1v v→  (where 1 is the identity element of the 
group) defines an isomorphism of the vector space of left-invariant vector fields 
on G with the vector space eT G , and similarly for right-invariant vector spaces. 
Proof. It suffices to prove that every ex T G∈  can be uniquely extended to a 
left-invariant vector field on G. Let us define the extension by 
( ) gv g g x T G= ⋅ ∈ . Then one easily sees that the so-defined vector field is 

left-invariant, and ( )1v x= . This proves the existence of an extension; unique-
ness is obvious. 

Definition 2. A smooth homomorphism ( ): ,R Gϕ + →  is called a one pa-
rameter group subgroup of G. 

Definition 3. Let G be a real or complex Lie group. Then the exponential map 
exp : eT G G→  is defined by  

( ) ( )exp 1xx α=  

where ( )x tα  is the one-parameter subgroup with tangent vector at 1 equal to x. 
Example 3 [3]. We return to the example of the group ( )GL V  with V a fi-

nite dimensional real linear space. Its neutral element e equals VI I= . Since 

( )GL V  is open in ( )End V , we have ( ) ( )TeGL V End V= . If ( )x GL V∈  

then xl  is the restriction of the linear map :xL A xA→ ; ( ) ( )End V End V→  

to ( )GL V  hence ( )e x xT l L= . Hence, the integral curve xα  satisfies the equa-
tion: 

( ) ( )d
d

t t X
t
α α=  

Since etXt →  is a solution to this equation with the same initial value, we 

must have that ( ) etX
X tα = . Thus in this case exp is the ordinary exponential 

map eXX → , ( ) ( )End V GL V→ . 

Proposition 1 [9]. The exponential map exp : eT G G→  satisfies: 
1) For each eX T G∈ , ( ) ( )expt tXα =  is a one parameter group with 
( )0 Xα′ = . 
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2) The integral curve c of the left invariant vector field eX T G∈  with 
( )0 ec T G=  is  

( ) ( )expec t T G tX= . 

3) exp is smooth with ( )0expd Id= . 
4) If : H Gϕ →  is a Lie group homomorphism, then  

( )( ) ( )( )exp expH GX d Xϕ ϕ=  for X h∈ . 
5) If H G⊂  is a Lie subgroup then  

( ){ }exp for for some 0e Gh X T G tX H t ε ε= ∈ ∈ < >  

Proof: First observe that Xα  is an integral curve of X through e since 

( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( ) ( )( )
0 0

d d
d d

0
X X

X X X Xt t

e X e Xs se e

s s t s t
t t

T L T L X X sα α

α α α α

α α

= =
′ = + =

′= = =
 

Thus ( ) ( )tX Xs tsα α= , since, for fixed t, both are integral curves of tX 
through e. To see this for the right hand side, observe that in general if γ(s) is an 
integral curve of a vector field X, then γ(ts) is an integral curve of tX. Hence 

( ) ( ) ( )exp 1tX XtX tα α= = , which implies (a). Since 
eT GL  takes integral curves 

to integral curves, (b) follows as well. 
To see that exp is smooth, define a vector field Z on eG T G×  by 
( ) ( )( ), ,0e eZ T G X X T G= . Z is clearly smooth and by part (b), its flow is 
( ) ( )( ), exp ,t eT G X tX Xγ = . Thus ( ) ( )( )1 , exp ,e X X Xγ =  is smooth in X and 

hence exp is smooth as well. Finally, ( ) ( ) ( )( )0 0

dexp exp
d t

d X tX X
t =

= = , which 
proves the second claim in (c). 

To prove (d), observe that a homomorphism takes one parameter groups to 
one parameter groups. Thus ( ) ( )( )expt tXγ α=  is a one parameter group with 
( ) ( ) ( )( ) ( )00 expd d X Xγ α α′ = =  and hence ( ) ( )( )expt td Xα α= , which 

proves our claim by setting t = 1. 
Part (e) follows easily by applying (d) to the inclusion of H in G. 
Example 4. ( );GL n R  and ( );GL n C , the set of invertible matrices, are Lie 

groups. For these groups we claim that ( )exp eAA = , which explains the name 
exponential map. Indeed, from the power series definition of eA  it easily fol-
lows that ( )e e et s A tA sA+ = , i.e. ( ) etAtα =  is a one parameter group. Furthermore 

( )0 Aα′ =  and hence ( ) ( )exp 1 eAA α= = . 
Lemma 1 [3]: Let : G Hϕ →  be a homomorphism of Lie groups. Then the 

following diagram commutes 

exp exp
e

G H
T

e e

G H

T G T H

ϕ

ϕ

→

↑ ↑
→

 

Proof: Let eX T G∈ . Then ( ) ( )( )expGt tXα ϕ=  is a one-parameter subgroup 
of H: Differentiating at 0t =  we obtain ( ) ( ) ( ) ( )00 expe G eT T X T Xα ϕ ϕ= = . 
Now apply the above lemma to conclude that ( ) ( )( )expH et tT Xα ϕ= . The re-

https://doi.org/10.4236/alamt.2020.103004


A. Hasić 
 

 

DOI: 10.4236/alamt.2020.103004 49 Advances in Linear Algebra & Matrix Theory 
 

sult follows by specializing to 1t = . 

5. The Lie Algebra of a Lie Group 

For x G∈  consider the conjugation map 1x x x
C l r −=  . Since xC  is a homo-

morphism 

( ) e xAd x T C=  

is a Lie algebra homomorphism. 
The map ( ): eAd G GL T G→  is called the adjoint representation of G in 

eT G . 
For eX T G∈  let : e eadX T G T G→  be defined by ( ) [ ],Xad Y X Y= . The 

Jacobi identity is equivalent to saying that  

[ ] [ ], ,X Y Y X X YX Yad ad ad ad ad ad ad= − =  i.e. 

( ): e ead T G End T G→  

is defined by 

ead T Ad=  

We note that, by the chain rule, for all eX T G∈ ; 

( ) ( )
0

d exp
d t

ad X Ad tX
t =

=  

Proposition [5]. If eg T G→  is a Lie algebra, then 

[ ] [ ], ,X Y Y X X YX Yad ad ad ad ad ad ad= − =  

that is, ( ): e ead T G End T G→  is a Lie algebra homomorphism. 
Proof. Observe that 

[ ] ( ) [ ], , ,X Yad Z X Y Z =    

whereas 

[ ]( ) [ ] [ ], , , , ,X Yad ad Z X Y Z Y X Z   = −     

Thus, we want to show that 

[ ] [ ] [ ], , , , , ,X Y Z X Y Z Y X Z     = −       

which is equivalent to the Jacobi identity 
Lemma 1: The adjoint representation satisfies: 
1) ( )( )e XT Ad X ad=  or simply eT Ad ad=  
2) ( )( )exp e XadAd X =  
Proof: For part a) we see that for any eY T G∈  

( )( )( ) ( )( )( )

( )( ) ( )( )( )

( )( ) ( )( )( )

0

exp exp
0

exp
0

d exp
d

d
d
d exp
d

e
t

e etX tX
t

e tX
t

T Ad X Y Ad tX Y
t

T R T L Y
t

T R Y tX
t

=

−
=

−
=

=

=

=

  
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[ ],XL Y X Y=  

where XL  is the Lie derivative. In the last passage, we used the definition of Lie 
derivative, and the fact that ( )exp tXR  is the flow of X. 

We may apply Lemma 1 with ( )eH GL T G=  and Adϕ = . Since  

( ) ( )e I e eT H T GL T G End T G= =  whereas expH  is given by eXX → ; we see 

that the following diagram commutes: 

( )

( )

( ).exp e

Ad

e

ad

e e

G GL T G

T G End T G→

↑ ↑
→

 

Example 1. [3] Let V be finite dimensional real linear space. Then for 
( )x GL V∈  the linear map ( ) ( ) ( ):Ad x End V End V→  is given by  

( ) 1Ad x Y xYx= : Substituting etXx =  and differentiating the resulting expres-

sion with respect to t at 0t =  we obtain: 

( )
0

d e e
d

tX tX

t

adX Y Y XY YX
t

−

=

 = = −   

Hence in this case. ( )adX Y  is the commutator bracket of X and Y. 

Definition 3. For , eX Y T G∈  we define the Lie bracket [ ], eX Y T G∈  by 

[ ] ( ),X Y adX Y=  

Example 2. Let X and Y be n n×  matrices. Show by induction that 

( ) ( ) ( )
0

m
m m ii

X
i

m
ad Y X Y X

i
−

=

 
= − 

 
∑  

where 

( ) ( ) [ ], , ,m
X

m

ad Y X X X Y
 
  =   
 

 



 

Now, show by direct computation that 

( ) ( )e e eXad X X
eY Ad x Y Y −= =  

Lemma 1. [3] Let : G Hϕ →  be a homomorphism of Lie groups. Then the 
following diagram commutes: 

[ ]( ) [ ] ( ), , , ,e e e eG H
T X Y T X T Y X Y T Gϕ ϕ ϕ= ∈  

Proof: One readily verifies that ( )
G H
x xC Cϕϕ ϕ=  . Taking the tangent map of 

both sides of this equation at e, we obtain that the following diagram commutes: 

( ) ( )( )

e

e

T

e e

G H
T

e e

T G T H
Ad x Ad x

T G T H

ϕ

ϕ

ϕ
→

↑ ↑

→

 

Differentiating once more at x D e; in the direction of eX T G∈ ; we obtain 
that the following diagram commutes: 
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( ) ( )

e

e

T

e e

G H e
T

e e

T G T H
ad X ad T X

T G T H

ϕ

ϕ

ϕ
→

↑ ↑

→

 

We now agree to write [ ] ( ),X Y adX Y= . 

6. The Future Perspective of This Paper 

The future perspective of this paper is that since this is a work of a general nature, 
it is necessary to extract the most important things from it. It is possible to do a 
paper for each of the titles in the paper. Each of the titles creates an opportunity 
for research because from each title there are many opportunities to explore and 
write. It is my future to work on comparing many facts and the application of left-
ist groups in everyday life. To give a glimpse of a better tomorrow of this beautiful 
science called both left groups and left algebras and their close connection to other 
mathematical disciplines primarily thinking of linear algebra, geometry, analysis 
and topology. Comparing all these disciplines with the left groups, we see a close 
connection and the need to apply and use them in the right way. 
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