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Abstract

Clifford algebra as an approach of geometrization of physics plays a
vital role in unification of micro-physics and macro-physics, which
leads to examine the problem of motion for different objects. Equa-
tions of charged and spinning of extended objects are derived. Their
corresponding deviation equations as an extension of geodesics and
geodesic deviation of vectors in Riemannian geometry have been
developed in case of Clifford space.

Keywords

Cifford Space, Poly-Vectors-Geodesics, Geodesic Deviation,
Spinning Objects, Extended Objects

1. Clifford Space: Aims and Prospects

Motion of objects is regarded as a mirror to identify the behavior of
field equations on manifolds. This may give rise to examine the trajec-
tories of different particles to ensure the existence of any theory and
its viability. From this perspective, we ought to study the problem
of spinning objects in depth, as it is very close to the reality, rather
than examining its simplicity by means of determining the equation
of motion of test particles, i.e. the geodesic equation. The spinning
object has been studied by many authors long time ago, Mathisson [1]
started the idea; Papapetrou amended its content [2] and then it was
developed to include charged objects by Dixon [3], which led many
of their followers to obtain the corresponding equations of motion of
moving objects in different types of geometries [4-9]. Not only these
path equations but also their deviation equations play a fundamental
role in regulating the stability of objects [10]. This is mandatory in
case of examining the perturbation problem of an object orbiting a
gravitational field. Yet, such a description may be in need to be revis-
ited thoroughly for sake of unification of physics. Since the problem of
unification of all fields of nature is a far fetched goal, it is wise enough
to search for different methods and concepts that enable us to achieve
this goal one day.
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Accordingly, examining the problem of unification may be found
by studying the motion of particles subject to these fields. This may
give rise to search for different types of geometries or philosophies to
achieve this task. One of proposals is to reconsider a specific geom-
etry based strings, 1 loop, 2-loops, 3-loops, etc. In general it can be
described as p-branes rather than points. This shows vectors as can-
didates of poly-vectors to represent objects in nature as extended ones
rather than point-like. Consequently, it has been found that Clifford
Algebra is a good candidate to describe these quantities, leading to the
concept of Clifford space (C-space) [11]. From this perspective, and
relying to examine the problem of motion for those extended objects,
Pezzaglia (1997) performed an introductory step toward this task by
studying the equations of motion [11,12]. Throughout his work, he fo-
cussed on the nature of the bases of C-space that are non-orthogonal,
which widens the scope to reveal some obscure relations that are al-
ready untested. Such an approach has been given an additional role
for quantities like the tetrad formalism as a tool for defining skew
symmetric quantities like torsion of space-time, and spin connection
in non-Riemaniann geometries. This tendency would be able to re-
vise the absolute parallelism approach [13-15], as well as the Poincare
gauge theories of gravity [16,17]. Moreover, it gives a clear vision
to detect the effect of spin of space-time as appeared in skew part
of g [12]. Accordingly, the principle geometrization of physics has
been applied in an extensive way rather than before in the conventional
point-like manifold theories [18] .

Consequently, the concept of a manifold composing points to iden-
tify space-time is amended to include, lines, ares, volumes, ... etc.
According to this descriptive vision particles may be defined as ex-
tended objects, rather than point-like ones [19]. This is performed
by means of applying the Clifford algebra, which is regarded as pan-
dimensional continuum or Clifford space (C-space). Due to this type
of classification it is worth mentioning that, Castro and Pavsic (2005)
revisited Clifford space to perform its extended relativity [18]. This
theory has two fundamental parameters: the speed of light ¢ and a
length scale which can be set to the Planck length. The poly vector
coordinates x*, x"*¥, x#¥P... are now connected with basis poly-vector,
bi-vector, tri-vector, ... r-vector, the generators «y,, A...A ... Ay, of
the Clifford algebra, including the Clifford algebra unit element [20].

From this perspective, it can be found that strings and p-branes are
expressed in the following way:

For a closed string (1-loop) which is embedded in a target flat
background of D-dimensions whose projection is appeared within
coordinate-planes in terms of variables x,,. Similarly, a closed mem-
brane (a 2-loop) may be described by anti-symmetric variables x,,
representing the corresponding 3-volume enclosed by the the 2-loop
[21].

The aim of the present work is to extend the Castro-Pavsic approach
of poly-vectors in C-space to derive modified equations of motion for
extended objects and spinning ones. The significance of the derivation
of these equations is in examining the existence of the notion of mass,
charge and spin of an extended object associated with poly-vectors
and compare them with the conventional ones as described within the
context of vectors.

The paper is organized as follows: Section (2) displays briefly the
geometry of C-space and its implications in physics. Section (3) per-
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forms the trajectories of poly-vectors in C-space. Section (4) discusses
the relationship between geodesics and geodesic deviations of poly-
vectors and their link with charged and spinning poly-vectors. Sec-
tion (5) displays a modified Lagrangian which enables us to determine
both charged and spinning poly-vector equations as well as their de-
viation equations. Section (6) discusses the impact of determining
these equations in revisiting the old notations of problem of motion
using the conventional methods of a point-like manifold of describing
space-time.

2. C-Space: A Brief Introduction

Following the geometrization scheme of physics, a new elegant formal-
ism has been performed, which may explore new hidden physics to
show an insightful vision for revisiting the old notations of physics.
Such a trend is a crystal clear using Clifford Algebra which leads to
express many physical quantities in a compact form [22]. Due to the
richness of Clifford algebra, scalars, vectors, bi-vectors and r-vectors
are expressed in one form called Clifford aggregate or poly-vector. The
coordinates of poly-vectors contain, vectors, areas, volumes ... etc ex-
pressed as follows The poly-vector XM is defined as follows [23]

XM = xHimaps... (2.1)

Accordingly, it can be shown that poly-vector coordinates of C-
space are parameterized not only by 1-vector coordinates x* but also
by the 2-vector coordinates x*¥, 3-vector coordinates x#*” ... etc called
holographic coordinates, such that

XM =51 + aty,
:x’w')/u ANYy + x/wp,yu ANYe NYp
+ 2Py, Ay AYp A Yoo (2.2)

where the component s is the Clifford scalar components of a poly-
vector valued coordinates.

Thus, in C-space proper time interval may be described as in
Minkowski space [18]

(dS)? = (ds)? + dzda” + dwy,dat™ + ... (2.3)

2.1. C-Space: Underlying Geometry

A point in C-Space is defined as a set of holographic coordinates
(s,z*, z#”,...) forming the coordinates of a poly-vector. Each one
is expressed within bases {va} = {1, Yays Yaiazs Yarasaz--} , 01 < Az <
az < ag < as < ...,r=1,2,3...., where V4, a5a5... = a1 Aaz Aas.... [23].
It is well known that the local basis v, is related to the tetrad field
e;, such that
Y = €4 Ya-

An element of a Clifford algebra is a superposition, called Clifford
aggregate or poly-vector:
A= 1o 1w L oenn 4
=a+ ¢ %"‘2!@ Vu NV F e i Vs AN eeeee Y- (2.4)

The differential of C-space is defined as follows [21]

0A

A=
4= 5%

dx?®, (2.5)
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i.e

dz' + ... (2.6)

If one takes A = v, then

d M_@ %d’x“—i— Ll dzHv +

= — + —Sdat + —=da" + ... 2.7
ds 0w T famw ’ @7)
which becomes
dry = 2T der 170 e 2.8
Yy = 88+‘”’x+”[”"]$ + ; (2.8)
and can be reduced to
87 « v 1 (o3 1%
dy, = D5 + I, dz” + iRﬁUpdx Pt , (2.9)
where Rg,  is the curvature of space-time.
Also, it can be found that for an arbitrary poly-vector AM
DAJVI o
Dxrv = [D;,“DU]A . (210)

where % is the covariant derivative with respect to a plane x*",
such that

Ds
Dayrv
such that K}, is the torsion tensor.

= [Dy, Dy]s = K[}, 0,5, (2.11)

Da®
Dxrv

= [Dy, D)Ja* = R}, a” + K}, D,a” (2.12)
Yet, this type of torsion (2.12) can related to the notion of torsion as

mentioned by Hammond as commutator the potential associated by a
prescribed scalar field ¢ [25]

KSV = (5a¢ v = ¢,/L) (213)

Thus, we can figure out that the torsion as defined in C-space
(Riemannian-type) by means of the parameter(s) s may act like an
independent scalar field defined in the usual context of the Riemann-
Cartan geometry.

From examining Equation (2.11) and Equation (2.12), one can find
the existence of torsion tensor even in the presence of symmetric affine
connection apart from its conventional notation definition of being the
antisymmetric part of an affine connection as in the context of non-
Riemannian geometries [13-15]. Accordingly, owing to C-space one
may realize the dispute between the reliability of torsion propagating
or non-propagating this can be resolved by means of of we describe tor-
sion as a result of covariant differentiation of areas of holographic coor-
dinates and non-propagating as being defined as anti-symmetric parts
of an affine connection of poly-vectors or vectors, if one utilizes in the
internal or external coordinate and its corresponding non-symmetric
affine connection.

Consequently, we can regard that the geometry described within
the coordinates of poly-vector described not only Riemannian but al-
so a non-Riemannian, i.e. the composition of a Riemannian affine
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connection for the poly-vector is not necessarily Riemannian as well.
This may shed some light to find out that a Riemannian Poly-vector
affine connection and curvature (external coordinate capital Latin let-
ters) may be described by non Riemannian quantities as describing its
holographic coordinates (internal coordinate (Greek letters).

Accordingly, in C-space it is convenient to distinguish two frame
fields [21]:

(i) Coordinate frame field, whose bases elements vy, M =
1,2,3....2" depend on the position of X in C-space such that their
expressions as the wedge products of vectors can not be preserved
globally. Thus, one writes

VM = Vygooopir- (2.14)

The scalar product of two such basis elements gives the metric tensor
of the C-space
j:’}/1\4.’}/]\[ :GY]\/[N7 (215)

(ii) Orthonormal frame field, whose bases elements 74y, (4) =
1,2,3,...2 can at every point be expressed as a wedge product,
YA) = Yar....ar = Yar A Vaz N Vag--ee- AYa, s (2.16)

The scalar product of the latter basis elements gives

i'Y(A)fY(B) =1NAB (2.17)

where 7 is the metric tensor in flat space.
The derivative of a poly-vector is classified as follows [24]:
(1) Scalar field: Acting on a scalar field, it behaves as an ordinary
partial derivative, i.e.
9¢

(ii) Coordinate bases: Acting on coordinate basis elements, it gives

(2.18)

v =T5inve (2.19)

where ch\)/l ~ is an affine connection. The commutator of the derivatives
acting on -y gives the Riemann tensor in C-space:

(01, On vy = RE vy (2.20)

(iii) Orthonormal bases (local frame field): These types of bases
turn to be as follows

Ovay = - vvm) (2.21)

such that QX  u acts as its appropriate spin connection.
Thus, the commutator of the derivatives acting on v, gives

[On,On]va = RE apny- (2.22)
Thus, for an aggregate poly-vector A one finds that:

O (AN ) =0m AN yn + AN Oy
:(8MAN + FAN4KAK)’}/N = (DMAN)’}/N, (223)

where Dj; AN is the covariant derivative acting on the plyvector com-
ponents AN,
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2.2. C-space and the Tetrad Field

The relationship between the two bases are related by the tetrad field
E# associated with poly-vectors [24]

A
Y™ = EJ(W)V(A), (2.24)

where Ej\44 is the C-space vielbein, such that
Gun =EWNEP nap. (2.25)

Such a description does not preclude the non-Riemannian version of
poly-vectors, which is a step to revisit the definition of the funda-
mental quantities that play an active role of describing such a type of
geometry.

Accordingly, it is vital to note that the covariant derivative of C-
space associated with Vielbein of poly-vector takes the following con-
dition [20]

ONES —THNES — Ef Q5 v =0, (2.26)

Consequently, the covariant derivative acting on the tetrad field is in-
variant under general coordinate transformation by means of FAN/[Q and
local Lorentz invariance as expressed in terms of Q§  representing
the spin connection in C-space.

The curvature of C-space is defined, as usually, by the commutator
of derivatives acting on basis poly-vectors [23]:

[Dar, Dnlys = Rign sk (2.27)
or
(D, DNveay = Rﬁf?vmm, (2.28)

where D,y 1s its associate covariant derive.
Meanwhile, introducing the reciprocal basis poly-vectors v and
4 satisfying
(M)t * = 0w, (2:29)

A _ s(A)
(Y)Y 5 () = 8- (2.30)

The components of curvature in the corresponding bases are defined
as follows

Rying =0T Ny — OnThyy + D5 T — T (2.31)
or

RﬁN(A) :6MQ(,I4() N — aNQ(E) M

+25 v v = 2500 & (2.32)
The latter expression is a generalization to C-space of the analogous
expression in Riemannian geometry for manifolds of point-like objects
[26].

Moreover, there is a counterpart version of non-vanishing curvature
and torsion as defined in non-Riemannian geometry, in C-space leading
to define torsion of poly-vectors to become

Ay =T 8 =T (2.33)
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Also, the contortion of poly-vectors Qg is given by
Qpen = SED (A A A 2.34
som = 5By (Bamie) — Mm@ + Aoaim)  (2:34)
where Ajay(p))(c) is defined as the Ricci coefficient of rotation [23]

M N
Ajayme) = EayEp) (OmEnc) — OuEN(c))-

Moreover, another covariant derivative associated with non-
symmetric affine connection T/, is defined as follows

XN = on XM + T X5, (2.35)
such that -
DM xS =TM X5 4 AN, (2.36)
XMg— X[dy = Ry X9+ AT X[ (2.37)
such that
Riiny =0mTN; — OnDhyy + T8 T — ThsThe- (2.38)

Due to richness of these quantities this type work will be going to
examine the behavior of extended objects subjects having sensitivity
to these quantities in our future work ; while in our present work we
focus on deriving the equations of motion and their deviation paths
for different extended objects spinning and charged for poly-vectors
defined within the context of Riemannian-like C-Space as explained
in the following sections .

2.3. C-Space: An Arena of Unifying Physics

It is worth mentioning that, physical objects considered as matter
in space-time, can be in the form of membranes (brane) of various
dimensions (p-branes) [18]

From this perspective, the notation of Clifford aggregate as de-
scribed in (2.1) , it may be important to revisit the conventional no-
tations of mass and charge in the presence of C-space to be

M =ml+p"y, +S" v, (2.39)

and
e=el + Ay, + F"y,,, (2.40)

where M and e are mass and charge of extended objects respectively.

Nevertheless, it is vital to be noted that in Clifford Space, there
is a striking virtue, unlike the conventional string theory which ex-
pressed within 26 dimensions in which gauge fields are described as
compact dimensions; while in C-space there is only 16 non-compact
dimensions. Consequently, Pavsic (2005) generalized the conventional
4-dimensional space-time into 16 dimensional & la Klauza-Klein theo-
ry [23].

(i) There is no need for extra-dimensions of its corresponding space-
time.

(ii) There is no need to have compact extra-dimensions. The extra-
dimensions of C-space, namely z#, x*” zH*P and x""P? describe the
extended objects, therefore they are regarded as physical dimensions.
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(iii) The number of components G »#=0,1,2,3 and M # pis
12, which is the same as the number of gauge fields in the standard
models.

Thus, the line element of poly-vectors in C-space become

|dX|> = dS? = GpndXMdX ™V, (2.41)
ie.
dS? = ds* + L *dx,da" + L™ dwy ™ + L 0dz 0" + ...,

where Gy = E;/[EN is C-space metric, L is the Planck length [12].
Consequently, Equation (2.43) can be expressed as

L dz,,, dzh” n LS dx ., dxhv?
¢z dt dt ¢z dt dt

+.0) (2.42)

with taking into account that the parameter s is described only in the
ordinary space-time i.e. (ds)? = g, dztdz” [22].

Meanwhile, in C-space, Castro and Pavsic (2005), showed that,
there are some principles must be revisited especially the speed of
light which is no longer the upper limit to be reached, but anoth-
er combination of constants made of Planck’s length in the following
way [18]:

(i) Maximum 1-vector speed 22 = 3 x 10%ms~ ,

(ii) Maximum 2-vector speed 2% = 1.6 x 10~3%m2s~! |

ds
(iii) Maximum 3-vector speed dxd:w =7.7x1072m3s71 |
(iv) Maximum 4-vector speed 92" = 7.7 x 10~%m*s~1 ... etc.

Also, it is worth mentioning that by means of C-space a particle
as observed from 4-dimensional space, that can be speed of particles
may be more than the conventional speed of light due to involvement
of holographic coordinates z*”, z#¥? ... etc ; but does not exceeds the
modified speed of light due to C-space. This can lead us to consider
there will be specific upper limit to objects due to p-brans as p =
0,1,2,3,...

The Line element of poly-vectors in C-space is defined as follows [23]:

dS? = GyndXM x dx ¥, (2.43)

provided that the matrix G is defined as

_ Guv G,U,N ]
GunN { G Grx | (2.44)

These degrees of freedom are in principle not hidden by which we
describe the extended objects, therefore we do not need to compact
dimensions of its internal space.

The metric of C-space Gy is subdivided into G, = g,, which
relates to gravity, while gauge fields G, y;, where u # M assumes 12
possible values, excluding the four values of v = 0,1, 2, 3, and other 12
gauge fields ;to be defined as follows: 1 photon, 3 weak gauge bosons
and 8 gluons described A,, Ajj,a = 1,2,3 and by Ajc=1,1,3,..8.
respectively.

It can be found that the number of mixed components in G,y =
(Gu1s Guias)y Gulayls Gulapys)) of Clifford metric coincides with the

DOLI: 10.4236/jmp.2020.1111116

1863 Journal of Modern Physics


https://doi.org/10.4236/jmp.2020.1111116

M. E. Kahil

number of gauge fields in the standard model. For a fixed p, there
are 12 mixed components of G, ;; and 12 gauge fields Aj, W7, A7.
This coincidence is fascinating and it may indicate that the known
interactions are incorporated in curved Clifford space. The number of
mixed metric G, y; is 12 the same numbers as the number of gauge
fields in the standard model.

In addition, there are also interaction due to components G ;5 but
do not have the properties of Yang-Mills fields. Thus, Pavsic (2006)
has considered it as a metric of an internal space [24], which may be
a glimpse to express bi-metric theory of gravity within the context of
C-space . Such a study will be examined in our future work.

3. Trajectories of Poly-Vectors in C-Space
3.1. Equations of Motion in C-Space

Pavsic [24] considered the classical action for a point particle in C-
space:

I[X*, Gun] = / dry/[Gun XM XN + % / dlz]R.  (3.45)

The above classical action is a combined action for path equations
and gravitational field equations respectively. One obtains its path
equation by taking the variation with respect to X¢ to der ve corre-
sponding geodesic equation i.e.

1 d XM XMXN
— TN —— =0. (3.46)
v x2dT \/x2

X2
Also, from the same function (3.47) by taking the variation with
respect to Gj;n one obtains its corresponding field equation

1 . .
RMN _ 5GMNR = 87k / Soy(z — X)XMXN, (3.47)

where 0y is the delta function in C-space. The latter equation can
be expressed as

1
RMN _ §GMNR = 8mTunN, (3.48)
where Thsy is the energy-momentum tensor as defined in C-space.

3.2. C-Space and Problem of Motion: Pezzaglia’s
Approach

As an introductory step to the C-space formalism obtained by Castro-
Pavsic [18], it is worth to mention that Pezzaglia had presented a
speculative vision about the need to utilize Clifford space, the problem
of unification can be passed by stages of composing scalar, vectors
and bi-vectors in one form with taking into consideration that the
corresponding bases vectors are described in non-orthonormal curved
space in the following way [11].

1 1
YT = 5{7#71/} = 5{7//7” + ’YV'V/L} = Guv; (3.49)

where g, is the metric tensor which may be a function of position.
The outer product of two different bases vectors yields a new object
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called a bi-vector, which is the basis of a plane spanned by two basis
vectors

1 1
Y = Vo == Yu NV = 5[’}%%] = 5('7;/71/ — VW) = Sy (3.50)

where s, acts as the skew symmetric part of the metric g, i.e.

) = Sy

This illustration can be clarified by describing the momentum poly-
vector and spin bi-vector angular momentum

1 ’ 1 L
= Xpl Y + )\2 St V’Yp,l/v (351)
such that A is a universal length constant
p ot
b= ds '
and da
a
SHY —
M as

where S*¥, in which is defined to be a bi-vector coordinate. In flat
space one finds its corresponding equation of motion

. AM*H
MF = = .52
=0 (3.52)
i.e. dp
g — T
P IS 0, (3.53)
and J5m
SV — =0. 54
S 7 0 (3.54)

It is worth mentioning that the modified momentum which include
both linear and spin angular momentum may give rise to describe the
momentum of the extended object not consider it as a test particle
but a dipole one has an impact on its spinning case. Thus, studying
momentum with taking its spinning motion may give rise to regard the
spinning of the particle increases its mass as shown in Equation (3.51)
and Equation (3.54) [12]. Now, the arising question is the situation
of these equations in the presence of gravitational field, which may be
expressed as follows

dx daP®

— ” — — T
P ds ds +F”[”>5] ds ds 0 (3.55)

A2zt dz¥ dxf
NG
ds? Ty

to become in the following way

d2 dx? dxP 1 d”
T~ > 4L T RH Spé -0 356
a2 T s ds T 2mved gy (3.56)
and . " »
v T "
T~ SUVi Tv Sl“fi _ 0’ 357
ds tlop ds TLop ds ( )
D?gH 1 dx?
Dz = g e 3.58
DS2 2m vpo dS ) ( )
and ,
DS*  da®
— I ov v o\
D5~ a5 Vel Hlapa5") =0, (3.59)
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i.€.

DSH 1
_ af ( pH ov v o
Ds —QmS (RQBUS + Ry 5,8 ), (3.60)
such that £ is the conventional covariant derivative as defined in

Ds
Riemannian Space. It can be figured out that the Equation (3.60)

acts exactly as the Papapetrou equation for short; while extra terms
in terms of curvature and spin tensor are added in Equation (3.61).

Following this stream of thinking in case of electro-magnetic field in
the presence of flat space, one my find out that

A2t e dz”
— = —F# 3.61
ds? m Y ds’ ( )
and 25
. e
S =2 — Zplegvle 3.62
ds m " ’ (3.62)

where F},,, is the elecro mangnetic tensor, which turns to be in case of
gravitational field as

D2gH 1 dx? e dz¥
—— =_—Rl SP—— + —F— 3.63
Ds? o2m~ vPo ds + m ds’ (3.63)
and
DSHv e 1 da®P
= —Fplgvle 4 — R!. S 4 RV, SHo 3.64
DS m P + 2 dS ( afo + afo )7 ( )
such that
DSHY e 1
= —Flngvle 4 — GoB(RE .SV 4 RV, SH7). 3.65
Ds m P + m ( afo + afo ) ( )

Thus, it can be shown that Equation (3.66) acts as the Dixon equa-
tion, extra terms in terms of curvature and spin tensor are added in
Equation (3.67). From studying these equations, we can see the in-
volvement of bi-vector to be affected by additional factors of curvature
of the space-time and spin tensor. This may give rise to make sure
that in case of tri-vectors and other multi-vectors these effects will be
added. Such an argument may impose the necessity to find a general
formula capable to embody all these effects. It was found that using
poly-vector coordinates may represent all these forms in a compact
way. So it is essential to display the underlying geometry of poly-
vectors prior to examining the corresponding equations of motion and
the deviation ones.

3.3. The Bazanski Approach for Poly-Vectors

Equations of geodesic and geodesic deviation equations in Riemanni-
an geometry are required to examine many problems of motion for
different test particles in gravitational fields. This led many authors
to derive them by various methods, one of the most applicable ones is
the Bazanski approach [27] in which from one single Lagrangian one
can obtain simultaneously equation of geodesic and geodesic devia-
tions which has been applied in different theories of gravity [4-9],and
[28-30]. Thus, by analogy this technique in case of Poly-vectors to
become [31],

DN
where, Gy is the metric tensor, UM = dfg ! , s a unit tangent poly-

vector of the path whose parameter is S, and ¥” is the deviation
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poly-vector associated to the path (.5), ]% is the covariant derivative
with respect to parameter S.

Applying the Euler Lagrange equation , by taking the variation with
respect to the deviation poly-vector U¢

d OL oL
——— — —— =0 3.67
ds ggc  ovc ’ ( )
to obtain the geodesic equation
DU¢
=0 3.68
5 =0 (3.69)

and taking the variation with respect the the unit poly-vector UC,

d 0L oL
1S9UC 920 = 0, (3.69)
to obtain the geodesic deviation equation,
D?UF
TSQ = RchUAUB\IIC, (370)

where Réc p is Riemann-Christoffel tensor described by poly-vectors.

3.4. Geodesic and Geodesic Deviation of C-Space:
An Alternative Approach

Equations geodesic deviation of poly-vector are derived in a way of
modifying the conventional Bazanski method, using the commuta-
tion relations and a condition between deviation poly-vector and poly-
vector as well. This method has been worked successfully to derive de-
viation equation for extended objects with wobbling as shown in [6-9].

Applying the usual commutation relation [32] on Equation (3.70)
we obtain:

D DAP D DAP

»D ByiC\, E
il - = A L .71
DO DS DS pa ~ fwepd UL (8.71)
provided that
DUA  DyA
= . (3.72)
DS DO
Thus, we obtain its corresponding geodesic deviation equations
D2y
B = R$,zUBUPTE, (3.73)

4. Transformation of Geodesic Poly-Vectors
to Charged and Spinning Poly-Vectors

4.1. From Geodesic Poly-Vector to Charged Object
Poly-Vector

In this approach we are going to utilize the famous application for
transforming geodesics to spinning object differently [32] to become
reliable for charged object. In this case, one can assume that charged
object travels on a deviated trajectory belongs to family of deviation
parameters such that

we =0+ ——— (4.74)
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where W¢ = %.
Thus, differentiating both sides by % and taking that 22 =1, one

d=
obtains,

DW¢ D e ¢ DvC . dS

— = — —. 4.75
D= DS M DS ]dE (475)
Now, if we consider electro-magnetic tensor as follows
FABUB — (RA L, zUPUEYUE, (4.76)
then Equation (4.75) becomes
DW¢ € o..gdsS
= —_FCUB-= 4.77
Do M B7 d= (4.77)

which becomes the equivalent Lorentz force (Charged object) in
Curved Clifford Space

DWC _ € AB B
4.2. From Geodesic Poly-Vector to Spinning
Poly-Vectors

If we consider spinning poly-vectors are regarded as geodesics trans-
ferred from one path defined by a parameter S into another one S,
such a translation may cause the object behave as a spinning particle
rather moving as a test particle. We suggest the following poly-vector
V¢ defined in the following way

DY¢

DS
By taking the covariant derivative on both sides we obtain, with taking
into account % =1,

Ve =U%+3 (4.79)

Dve D e DV dS
DS DS

+h 755 ]CTS" (4.80)

Assuming that g = % , and S is the magnitude of the spin tensor as
defined by

SAB = SIUAwE — UBwA) (4.81)
Accordingly, substituting Equations (3.70), (3.72) and (4.83) into
(4.82), provided that g—g =1, we get after some manipulations:
DU“ (e B oDE
DS —%RBDEU S7F, (4.82)

which is the corresponding Papapetrou equation, for short, in C-space.

5. The Bazanki Approach for Extended
Objects of C-Space
5.1. Equations of Charged and Charged Deviation
Equations in C-Space
The Bazanski approach to obtain an equation of a charged object may

be found as follows:

DB
+ S P pWASE, (5.83)

L =G W4
AB DE M
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Taking the variation with respect to ®¢ and W¢ we obtain after some
manipulations one finds

DW¢
55 = FCBWEB, (5.84)
and
D*®¢ EvirD&E € BB D
TSZ:RgDEW wPae +M(F0 W?=).p®”. (5.85)

5.2. Spinning and Spinning Deviation Equations of
C-Space

We suggest the equivalent Bazanski Lagrangian for deriving the equa-

tions for spinning and spinning poly-vectors to be

DB DUAB
L=G pP*~—+S —— + Fa04 + Myp0AP, 5.86
apP—= AB— 3 A AB (5.86)
such that
" N U SAB
P%=mU ,
% D5

where P* is the momentum poly-vector F* = 1R} ;S*°U”, Rf,, is
the Riemann curvature, % is the covariant derivative with respect to
a parameter S,S% is the spin poly-tensor, and M** = P*UY — PYUH
such that U* = dd% is the unit tangent poly-vector to the geodesic

one. In a similar Wéy as performed in (5.83), by taking the variation
with respect to ¥# and¥*” simultaneously in (5.86) one obtains

DpM
and GMN
D
Using the following identity
A;[J)VH - A;LJ)LIN = RgNHABv (5.89)

on both Equation (5.87) and Equation (5.88), such that AP is an ar-
bitrary poly-vector. Also, multiplying both sides with arbitrary poly-
vectors, U and WP as well as using the following condition [33]

UfeH = v U, (5.90)

and U4 is its deviation poly-vector associated to the unit poly-vector
tangent U4. And in a similar we can find out that:

SaPut = wiPUt. (5.91)

Consequently, one obtains the corresponding deviation equations
which are inspired from the workings of Mohseni [34]

D?gA .
and o AB
D=V
—5g = SEPRAL UTWC + MAP W (5.93)
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5.3. The Generalized Dixon Equation in C-Space

In this part, we suggest the following Lagrangian which enables us to
obtain the spinning charged poly-vector in Clifford space.

DUB DUAB -
_ A ArrB AB
L =GP DS + SuB DS + FppU?U" + Mup¥”©®, (5.94)
such that ) )
Fap = —(eFap + ~RapcpSP)
m 2
and

Mag = (PaUP — PpUY + FacSCs — FacS,©).

Taking the variation with respect to U# and U*” simultaneously in
(5.94) we obtain

DpM € 1
- 7FM B - pM EQyrN )
B — 3 FE V" + o BNeeS U, (5.95)
DSMN
55 = pMyN — pNyM 4 pMCG N _ pONGM (5.96)

Thus, applying the same laws of commutation as illustrated in (5.92)
and (5.93) we obtain their corresponding deviation equations

DD%D; =RppcPPUM &¢
+ (ﬁFgUB + ﬁR%EQsEQUN);H‘I’Hv (5.97)
and
%523 =SB RAl L UTwC 4 (PMUN — pNyM

+ FMOG N _ pONGM ) U, (5.98)

6. Concluding Remarks

In our approach, we have obtained the relevant equations of spinning
and spinning of charged poly-vectors, as well as their deviation equa-
tions in C-space i.e. (4.84), (5.97) and (5.98). This type of work
is regarded an extension to a previous work, obtaining equations of
spinning and spinning objects in Riemannian and non-Riemannian
geometries, using the Bazanski approach [4-9].

Throughout, this study, it has been found the necessity to regard
extended objects, the most reliable ones to express the actual nature
of objects, rather than relying to a point-like system. Due to this tran-
sition, the associate building block of space-time has to be revisited in
the context of C-space. This approach has served to redefine different
notations and quantities like mass and charge of any object as shown in
(2.41) and (2.42). Not only the definitions of mass and charge for any
object are needed to be revised, but also the notation of the torsion of
space-time as defined in the internal coordinates (2.13) is obtained due
to imposing the rules of differentiation of Clifford space as shown in
equations (2.10), (2.11) and (2.12); while their corresponding external
coordinates (poly-vector) are purely Riemannaian. This is due to tak-
ing the covariant derivative affected oriented areas x** of holographic
coordinates as shown in (2.10), and (2.11) from (2.12). Consequently,

DOLI: 10.4236/jmp.2020.1111116

1870 Journal of Modern Physics


https://doi.org/10.4236/jmp.2020.1111116

M. E. Kahil

the meaning of torsion is becoming as similar as being obtained in
terms of commutation relation of differential operator on a potential
scalar field as expressed by Hammond [25] on dealing with internal co-
ordinates. While, the conventional definition of torsion (2.35) in the
context of non-symmetric affine connection is also preserved, if one
applies the associate geometry describing the external coordinates as
a non-Riemaniann geometry [13-17].

Moreover, we have extended our study to derive the equivalent
charged spinning equations and their deviation ones for poly-vectors
in C-space, to be considered its corresponding generalized Dixon equa-
tion (5.97) and (5.98) in which their corresponding deviations (5.99)
and (5.100) are obtained. This approach may help to examine the
stability of extended objects in C-space.

To sum up, the problem of motion in C-space becomes a paradigm
shift towards identifying the behavior of objects in a deterministic way
which can be detected in terms of both internal coordinates and their
external ones. Such a tendency may inspire many scientists to find out
such a unified theory describing both micro-physics and macro-physics
in one form.
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