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Abstract 
In the present manuscript, we formulate and prove rigorously, necessary and 
sufficient conditions for all kinds of separation of variables that a solution of 
the irrotational Stokes equation may exhibit, in any orthogonal axisymmetric 
system, namely: simple separation and R-separation. These conditions may 
serve as a road map for obtaining the corresponding solution space of the ir-
rotational Stokes equation, in any orthogonal axisymmetric coordinate sys-
tem. Additionally, we investigate how the inversion of the coordinate system, 
with respect to a sphere, affects the type of separation. Specifically, we prove 
that if the irrotational Stokes equation separates variables in an axisymmetric 
coordinate system, then it R-separates variables in the corresponding inverted 
coordinate system. This is a quite useful outcome since it allows the deriva-
tion of solutions for a problem, from the knowledge of the solution of the 
same problem in the inverted geometry and vice-versa. Furthermore, as an 
illustration, we derive the eigenfunctions of the irrotational Stokes equation 
governing the flow past oblate spheroid particles and inverted oblate sphe-
roidal particles. 
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1. Introduction 

The flow of a Newtonian fluid, where the viscous forces dominate over the iner-
tial ones is called Stokes flow [1]. Assuming the velocity field ( )v r  and the 
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pressure field ( )P r , it is mathematically described through the system of equa-
tions ( ) ( )Pµ∆ = ∇v r r , ( ) 0∇⋅ =v r , ∈Ωr , where 3Ω ⊆   is the fluid do-
main, r  is the position vector and µ  is the shear viscosity. This system of 
equations has been firstly used in spherical geometry for solving the flow: of the 
translation of a sphere [2], of two spheres in a viscous fluid [3], past a porous 
sphere with Brinkman’s model [4], inside a porous spherical shell [5], around 
spherical particles moving along a line perpendicular to a plane wall [6], past a 
sphere with slip-stick boundary conditions [7], of a rising bubble near a free 
surface [8], in a plane microchannel in the case that both walls have super hy-
drophobic surfaces [9] etc. 

The assumption of axisymmetric Stokes flow has been usually employed for 
modeling engineering, physical and medical problems, such as filtration, fluidi-
zation, crystallization, hydrodynamic chromatography, transport phenomena, 
flow through membranes, flow of emulsions, colloids, suspensions of living cells, 
etc. employing models of either one or more particles in different arrangements. 
Axis symmetry is a well justified assumption when the fluid flows symmetrically 
around objects through channels and conduits. In general, these particles may be 
considered as bodies of revolution (being generated by rotation of a symmetrical 
surface along its axis of symmetry), e.g. sphere, prolate and oblate spheroids. In 
this way, 3-D problems turn out to depend only on two variables, let’s say: radial 
and azimuthal, while exhibiting polar angle independence (invariance under ro-
tations). Consequently, the governing partial differential equation describes var-
iations of physical quantities of only two independent variables. 

Axisymmetric Stokes flow has been used to model: flow through porous me-
dia [2] [10], swarm of particles [6] [11] [12] [13], flow around a fluid prolate 
spheroid [14], flow around rotating objects [15], flow of microswimmers [16], 
flow inside a cylindrical container [17], flow of biological fluids like blood plas-
ma [18] [19] or the relative flow of low density lipoproteins in blood plasma [20] 
[21]. When treating such problems, we are able to describe the flow field and the 
other quantities of interest: velocity, drag force, pressure, etc., through a scalar 
function, namely the stream function ψ , which satisfies the fourth order elliptic 
partial differential equation (PDE) 4 0E ψ =  where ( )4 2 2 2 2E E E E E= =  is 
the (rotational) Stokes operator and 2E  is the irrotational Stokes operator [2]. 
The stream function is obtained analytically using PDE techniques. Historical 
and technical information for the derivation of the analytical solutions can be 
found in [2] [22] and references therewith. 

Analytical solutions provide the most accurate description of these hydrody-
namic quantities at every point of the fundamental domain, without the compu-
tational effort a numerical approach would need. Despite the profound benefits 
of obtaining an analytical solution these are feasible only in few cases, when the 
translation of the equation in the assumed geometry allows for a separable form 
of the solution. It is utilized to any number of dimensions and becomes of sig-
nificant importance when solving physical, biomedical or engineering problems, 
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since the analytical form of the solutions of the associate Boundary Value Prob-
lems (BVPs) provide information for the physical characteristics of the problem 
and may shed to light limitations imposed by the model. The formulation of a 
well posed BVP requires the appropriate set of boundary conditions. For ob-
taining separable solutions, it is necessary to adopt a particular curvilinear coor-
dinate system such that the boundary of the problem coincides to the one of the 
coordinate surfaces. In the case that the curvilinear coordinate system is an or-
thogonal one, the coordinate surfaces are orthogonal to each other. The separa-
tion of variables of a PDE is possible only if the coordinate surfaces are ortho-
gonal, which unlikely it is not always achievable. 

Attempts for obtaining analytical solutions of Stokes flow 4 0E ψ =  are dat-
ing back to 19th century, aiming to serve mostly engineering needs. Oberbeck 
[23] in 1876 derived a solution for Stokes flow caused by the steady translation 
of an ellipsoid in an unbounded fluid using Cartesian coordinates, while in 1891 
Sampson [24] used spheroidal coordinates to obtain a partial solution of the 
Stokes flow around a translating spheroid along its main axis in an unbounded 
fluid. Payne and Pell in 1960 [25] derived a solution for Stokes flow around a 
spheroid. The analytical solution of the equation 4 0E ψ =  in spherical coordi-
nates is known for almost 170 years [2], but only 25 years ago, closed form solu-
tions of Stokes equations were obtained in other than the spherical coordinate 
systems, namely the prolate and the oblate spheroidal ones. Precisely, Dassios et 
al. [11] managed to derive the complete solution of Stokes equations introducing 
for the first time the concept of semiseparation of variables. This delay may be 
due to the fact that in many engineering applications, the solutions in spherical 
geometry seem to be adequate for solving a problem. Semiseparation of variables 
is a kind of separation where particular combinations of products of functions of 
one variable are solutions while each component of the product is not. For an 
extensive review of the relative literature one may see [11]. Since then the semi-
separation method has been used by many authors in many different problems. 
Zlatanovski [26] used the semiseparable solutions and the Brinkman’s model to 
study the flow past a porous prolate spheroidal particle, while Deo and Datta 
[14] solved the flow past a fluid prolate parallel to its axis of revolution. Moreo-
ver, Hadjinicolaou and Protopapas have shown that Stokes equation in the in-
verted prolate and oblate spheroidal systems of coordinates R-semiseparates va-
riables [27] [28] [29]. 

The analytical solution of the irrotational Stokes flow 2 0E ψ =  is also de-
rived in each one of the aforementioned coordinate systems [2] [11] [27] [28] 
[29]. Furthermore, Deo and Tiwari in 2008 [30] derived the complete solution of 
the irrotational flow in R-separable form in bispherical and toroidal coordinate 
systems, while Protopapas [31] proved that Stokes operator separates variables 
in the parabolic coordinate system and it R-separates variables in the cardiod 
and the tangent sphere coordinate systems deriving the corresponding eigen-
functions. 
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Regarding mathematical rigor, Moon and Spencer in [32] and Morse and 
Feshbach in [33] presented a systematic way of deriving the necessary and suffi-
cient conditions for the separation and the R-separation of the Laplace and the 
Helmholtz equations, in several coordinate systems. Although solutions and 
theoretical investigation for the Laplace and the Helmholtz equations in various 
orthogonal coordinate systems have been studied exhaustively, very few have 
been proved for the Stokes stream equation 2 0E ψ =  and Stokes bistream equ-
ation 4 0E ψ = , that govern the axisymmetric irrotational and the rotational 
creeping flow of an incompressible fluid. 

In the present manuscript, we expand the existing theory for the separability 
criteria of the Laplace and Helmholtz operator to another elliptic operator, the 
Stokes one, 2E . Particularly, we investigate, formulate and derive the necessary 
and sufficient conditions for the separation or the R-separation of equation 

2 0E ψ =  in any axisymmetric coordinate system. The obtained results can serve 
as a criterion for determining whether irrotational Stokes equation 2 0E ψ =  
can accept a solution in separable or R-separable form, and thus assistance to at-
tain it. In the case of R-separability, the exact form of the function R is also de-
fined as part of the process. Taking into account that the solution of 4 0E ψ =  is 
obtained through the use of the kernel space of 2 0E ψ = , these necessary and 
sufficient conditions, may serve as a tool for deriving the analytical solution of the 
irrotational Stokes equation 4 0E ψ =  in every axisymmetric coordinate system. 

In the present study, we also reveal the interrelation of the type of separation 
of a solution in a coordinate system and the type of separation of the solution in 
the inverted one. Particularly, we prove that if the irrotational Stokes equation 
separates variables in one system, then it R-separates variables in the inverted 
one, while if it R-separates variables, it can also R-separates variables in the cor-
responding inverted system of coordinates. This is quite useful result since if 
analytical solution in any axisymmetric coordinate system is derived, then solu-
tion in the corresponding inverted one can be calculated without solving analyt-
ically the equation, by employing radial transformation. 

The structure of this manuscript is as follows: In section 2 we provide the re-
levant mathematical background. In section 3 we present and prove our theoret-
ical results for the necessary and sufficient conditions for the simple or the 
R-separability of Stokes equation and we derive the connection of the metric 
coefficients in any axisymmetric system and its inverted one. In section 4 we ap-
ply analytically the obtained results in the oblate, in the inverted oblate coordi-
nate systems and briefly in other axisymmetric systems of coordinates, while all 
the outcomes are organized in tables, for convenience. To this end, we discuss 
the findings and present some final remarks. 

2. Mathematical Background 

We consider a Riemannian n-space with an orthogonal coordinate system where 
any point is defined by the variables ( )1 2, , , nu u u . 
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Definition 1. If the assumption 

( )
1

n
i i

i
u U u

=

=∏                          (1) 

allows the separation of the partial differential equation into n ordinary differen-
tial equations, the equation is said to be simply separable. 

Definition 2. If the assumption 

( ) ( )1 2
1

1
, , ,

n
i i

n
i

u U u
R u u u =

= ∏


                  (2) 

allows the separation of the partial differential equation into n ordinary differen-
tial equations, and R is a function of at least two variables which cannot be writ-
ten as a product of one variable functions, the equation is said to be R-separable. 

An axisymmetric system of coordinates ( ) [ )1 2, , , 0, 2q q ϕ ϕ ∈ π  is related to 
the Cartesian one ( )1 2 3, ,x x x  with 

( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 1 2 1 2 1 2, , , cos , , sin , , .x x x q q q q z q qρ ϕ ρ ϕ=        (3) 

The scaling factors or the metric coefficients needed for describing the lengths 
of the basis vectors in the new orthogonal system are 

1 2 2

1 1

1 ,h
z

q q
ρ

=
   ∂ ∂

+   ∂ ∂   

                     (4) 

2 2 2

2 2

1h
z

q q
ρ

=
   ∂ ∂

+   ∂ ∂   

                     (5) 

and the radial cylindrical coordinate is 

( )1 2, .q qϖ ρ=                         (6) 

The operator 2E  in the axisymmetric system of coordinates ( )1 2, ,q q ϕ  has 
the form 

2 1 2
1 2

1 2 1 2 1 2

.
h hE h h

q h q q h q
ϖ

ϖ ϖ
    ∂ ∂ ∂ ∂

= +    ∂ ∂ ∂ ∂     
            (7) 

Assuming a function ( )1 2,q qψ ψ= , this satisfies the irrotational Stokes equ-
ation 2 0E ψ = , which can be written as 

1 2

1 2 1 2 1 2

0.
h h

q h q q h q
ψ ψ

ϖ ϖ
   ∂ ∂ ∂ ∂

+ =   ∂ ∂ ∂ ∂   
                (8) 

3. Theoretical Results 
3.1. Simple Separability of the Irrotational Stokes Equation 

In this section, we investigate the restrictions posed on the metric coefficients 

1 2, ,h h ϖ  of an axisymmetric coordinate system, under which the irrotational 
Stokes stream Equation (8) admits simple separable solution. 
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Theorem 1. Let ( )1 2, ,q q ϕ  an axisymmetric system of coordinates with me-
tric coefficients 1 2,h h  and radial cylindrical coordinate ϖ . The equation 

2 0E ψ =  separates variables if and only if there exist functions ( )1 1f q , 
( )2 2f q , ( )1 1F q , ( )2 2F q  such that 

1
1 2

2

h f f
hϖ

=                           (9) 

and 

2
1 2

1

.
h F F

hϖ
=                          (10) 

Proof. We assume that the function ψ  can be written in the form 

( ) ( ) ( )1 2 1 1 2 2, .q q Q q Q qψ =                    (11) 

Substituting (11) into (8) we get 

1 1 2 2
2 1

1 2 1 2 1 2

d d
0

d d
h Q h QQ Q

q h q q h qϖ ϖ
   ∂ ∂

+ =   ∂ ∂   
            (12) 

or equivalently 

1 1 2 2
1 2 1 2 1 2 1 2

2 1 2 1 2 1

0,
h h h hQ Q Q Q Q Q Q Q

h q h h q hϖ ϖ ϖ ϖ
   ∂ ∂′′ ′ ′′ ′+ + + =   ∂ ∂   

     (13) 

which by dividing with the product 1 2Q Q  becomes 

1 1 1 1 2 2 2 2

1 2 1 1 2 2 1 2 2 1

0,
Q h Q h Q h Q h
Q h Q q h Q h Q q hϖ ϖ ϖ ϖ
′′ ′ ′′ ′   ∂ ∂

+ + + =   ∂ ∂   
        (14) 

where the primes denote the derivatives of the corresponding functions. 
The “if” part: If Stokes stream equation separates variables, we will prove that 

the metric coefficients are given by (9) and (10). 
Since 2 0E ψ =  separates variables, due to the definition 1, the two dimen-

sional PDE decomposes in two ordinary differential equations (ODEs). This is 

true only if the quantities 1

2

h
hϖ

, 1

1 2

h
q hϖ
 ∂
 ∂  

, 2

1

h
hϖ

, 2

2 1

h
q hϖ

 ∂
 ∂  

 can be written  

as products of functions of one single variable each ( 1q  or 2q ). In that case, 
(14) can be rewritten as a sum of two ODEs i.e. ( ) ( )1 2ODE1 ODE2 0q q+ = , 
thus (9) and (10) hold. 

The “only if” part: Assuming that 1
1 2

2

h f f
hϖ

=  and 2
1 2

1

h F F
hϖ

= , we shall 

show that 2 0E ψ =  separates variables. 
Substituting (9), (10) in (12) we get 

1 2
2 2 1 1 1 2

1 1 2 2

d dd d 0
d d d d

Q QQ f f Q F F
q q q q
   

+ =   
   

            (15) 

or 

https://doi.org/10.4236/jamp.2020.811176


E. Protopapas, M. Hadjinicolaou 
 

 

DOI: 10.4236/jamp.2020.811176 2385 Journal of Applied Mathematics and Physics 
 

1 2
1 2

1 1 2 2

1 1 2 2

d dd d
d d d d

,

Q Qf F
q q q q

Q F Q f

   
   
   = −                 (16) 

which according to the definition 1, the equation separates variables.   

3.2. R-Separability of the Irrotational Stokes Equation 

Next we provide the necessary and sufficient conditions, that the metric coeffi-
cients 1 2,h h  and ϖ  of any axisymmetric coordinate system must satisfy in 
order to the irrotational Stokes equation admits R-separable solution. 

Theorem 2. Let ( )1 2, ,q q ϕ  an axisymmetric system of coordinates with me-
tric coefficients 1 2,h h  and radial cylindrical coordinate ϖ . The Stokes stream 
equation R-separates variables if and only if there exist functions ( )1 1f q , 

( )2 2f q , ( )1 1F q , ( )2 2F q , ( )1 2,R q q , ( )1 1R q , ( )2 2R q  such that 

21
1 2

2

,
h R f f

hϖ
=                         (17) 

22
1 2

1

,
h R F F

hϖ
=                        (18) 

( )1 2 1 2
1 1 1 2 2 2

1 1 ,R Rf F R R R
F q q f q q

   ∂ ∂ ∂ ∂
+ = +   ∂ ∂ ∂ ∂   

          (19) 

where ( ) ( ) ( )1 2 1 1 2 2,R q q g q g q≠ . 
Proof. We assume that the function ψ  can be written in the form 

( ) ( ) ( )
( )

1 1 2 2
1 2

1 2

, .
,

Q q Q q
q q

R q q
ψ =                    (20) 

Substituting (20) into (8) we arrive at 

1 2

1 2
2 1

1 2 1 2 1 2

0

Q Q
h hR RQ Q

q h q q h qϖ ϖ

   ∂ ∂   ∂ ∂
+ =   

∂ ∂ ∂ ∂      
   

            (21) 

or 

1

1 1 1 2 1
2

1 2 1 1 2 1

2

2 2 2 1 2
2

2 1 2 2 1 2

1 2
2 2

1 1 2 22 1

1 2

1 2

0.

h
Q h Q h h RR
Q Rh Q q h qR

h
Q h Q h h RR
Q Rh Q q h qR

h hR R
q q q qR h R h

ϖ
ϖ ϖ

ϖ
ϖ ϖ

ϖ ϖ

 ∂ ′′ ′ ∂ + −
∂ ∂ 

 
 
 ∂ ′′ ′ ∂ + + −

∂ ∂ 
 
 

    ∂ ∂ ∂ ∂
− + =    

∂ ∂ ∂ ∂     

           (22) 

The “if” part: If Stokes stream equation R-separates variables, then (17), (18), 
(19) hold. 
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Since 2 0E ψ =  R-separates variables, from (22) yields that: 

• each one of the functions 1

2

h
Rhϖ

, 

1

2 1
2

1 2 1

1 2

h
h h RR
q h qR
ϖ

ϖ

 ∂ ∂ −
∂ ∂ 

 
 

, 2

1

h
Rhϖ

, 

2

1 2
2

2 1 2

1 2

h
h h RR
q h qR
ϖ

ϖ

 ∂ ∂ −
∂ ∂ 

 
 

 has to be a product of three functions, one should 

be of the form ( )1 2,R q q  and the other two functions should be of one single 
variable each, which according to definition 2 proves (17), (18) and 

• the function 1 2
2 2

1 1 2 22 2

h hR R
q q q qR h R hϖ ϖ

    ∂ ∂ ∂ ∂
+    

∂ ∂ ∂ ∂     
 can be written as a 

product of the functions R and Φ  defined appropriate to allow separation 
of variables. 

From (21), using the notation imposed in (17) and (18) we obtain 

1 2

2 2
2 2 1 1 1 2

1 1 2 2

0.

Q Q
R Rf Q R f F Q R F

q q q q

   ∂ ∂   ∂ ∂
+ =   

∂ ∂ ∂ ∂      
   

          (23) 

Calculating the partial derivatives of (23) we get 

1
2 2 1 2 2 1 1

1 1 1 1

2
1 1 2 1 1 2 2

2 2 2 2

dd
d d

dd 0,
d d

Q Rf Q R f f Q Q f
q q q q

Q RF Q R F F Q Q F
q q q q

   ∂ ∂
−   ∂ ∂   

   ∂ ∂
+ − =   ∂ ∂   

          (24) 

which indicates that (19) is also sufficient for the R-separability of the irrotational 
Stokes equation. Furthermore function Φ  is defined as ( )1 2 1 2RF f R RΦ = +  
which allows R-separation. 

The “only if” part: Assuming that  

( )1 2 1 2
1 1 1 2 2 2

1 1R Rf F R R R
F q q f q q

   ∂ ∂ ∂ ∂
+ = +   ∂ ∂ ∂ ∂   

, 21
1 2

2

h R f f
hϖ

=  and  

22
1 2

1

h R F F
hϖ

=  then equation 2 0E ψ =  R-separates variables. 

If we substitute (17), (18) in (21) we have 

1 2
2 2 1 1 1 1 1 2 2 2

1 1 1 2 2 2

d d
0

d d
Q QR RQ f f R f Q Q F F R F Q

q q q q q q
   ∂ ∂ ∂ ∂

− + − =   ∂ ∂ ∂ ∂   
   (25) 

or 

1 2
2 2 1 1 1 2

1 1 2 2

1 2 1 2 2 1
2 2 1 1

d dd d
d d d d

Q QR f Q f F Q F
q q q q

R RQ Q F F f f
q q q q

    
+    

     
    ∂ ∂ ∂ ∂

= +    ∂ ∂ ∂ ∂     

            (26) 
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and using (19) we obtain 

1 2
1 2 1 2

1 1 1 1 2 2 2 2

d d1 d 1 d ,
d d d d

Q Qf F R R
F Q q q f Q q q

   
+ = +   

   
         (27) 

which shows that the equation 2 0E ψ =  separates variables.      

3.3. Inverted Coordinate Systems. 

Next, we expand the proposed methodology to treat the case of the inverted 
coordinate systems (with respect to a sphere of radius 0b > ). 

Lemma 1. Let an axisymmetric system of coordinates ( )1 2, ,q q ϕ  with metric 
coefficients 1 2,h h , radial cylindrical coordinate ϖ  and the corresponding sys-
tem of coordinates under the inversion with respect to a sphere of radius 0b >  
having metric coefficients 1 2,h h′ ′  and radial cylindrical coordinate ϖ ′ , then the 
following relations, interconnecting the metric coefficients hold true. 

2

1 12 ,rh h
b

′ =                          (28) 

2

2 22 ,rh h
b

′ =                          (29) 

2

2 .b
r

ϖ ϖ′ =                          (30) 

Proof. Any point ( )1 2 3, ,x x x  in the Cartesian coordinate system, is expressed 
in an axisymmetric system of coordinates as ( )1 2, ,q q ϕ . If ( )1 2 3, ,x x x′ ′ ′  is the 
image of the point ( )1 2 3, ,x x x  under an inverse transformation with respect to 
a sphere of radius 0b > , it yields 

( )

( )

( )

1 1 22 2

2 1 22 2

3 1 22 2

1 , cos

1 , sin

1 ,

x q q
z

x q q
z

x z q q
z

ρ ϕ
ρ

ρ ϕ
ρ

ρ

 ′ = +

′ =

+

′ =

+

                  (31) 

since 2 2 2 2 2 2
1 2 3r x x x zρ= + + = + . The new system of coordinates is also axi-

symmetric with 

( ) ( )1 2 1 22

1, , ,q q q q
r

ρ ρ′ =                    (32) 

( ) ( )1 2 1 22

1, ,z q q z q q
r

′ =                     (33) 

and the corresponding metric coefficients (4), (5) are defined as 

1 2 2

1 1

1 ,h
z

q q
ρ

′ =
   ′ ′∂ ∂

+   ∂ ∂   

                    (34) 
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2 2 2

2 2

1 .h
z

q q
ρ

′ =
   ′ ′∂ ∂

+   ∂ ∂   

                   (35) 

Calculating the partial derivatives of ( ) ( )1 2 1 2, , ,q q z q qρ′ ′  with respect to 

1 2,q q  and substituting into (34), (35), we obtain that (28), (29) are true. 
Furthermore, the radial cylindrical coordinate (6) is given by 

( )1 2, ,q qϖ ρ′ ′=                        (36) 

so from (32), (6) it yields that (30) is also true.                 
This way we provided relations interconnecting the metric coefficients of any 

axisymmetric coordinate system and its inverse. 

4. Applications 
4.1. Simple Separation of Stokes Stream Equation  

in the Oblate Spheroid Coordinate System 

In this section we will demonstrate that in the oblate geometry equation 
2 0E ψ =  separates variables. It is known that any point ( )1 2 3, ,x x x  in the Car-

tesian coordinate system, is expressed using the oblate spheroid coordinates 
( ), ,λ ζ ϕ  where λ ∈ , [ ]1,1ζ ∈ −  and 0α >  is the semifocal distance, 
through the relations 

( )
( )

2 2
1

2 2
2

3

1 1 cos

1 1 sin

x

x
x

α λ ζ ϕ

α λ ζ ϕ
αλζ

 = + −

 = + −
 =

                 (37) 

For constant λ we obtain oblate spheroidal coordinate surfaces in Figure 1. 
Using (4), (5) we obtain 

22

1 22 2 2 2

11 ,h h
a a

ζλ

λ ζ λ ζ

−+
= =

+ +
                (38) 

and since 2 21 1aϖ λ ζ= + −  we derive 

( ) ( )
1 2

2 2
2 1

1 1, ,
1 1

h h
h ha aϖ ϖζ λ

= =
− +

               (39) 

while from (9), (10) assuming 1 2,q qλ ζ= = , we get 

( ) ( ) ( ) ( )1 2 1 22 2

1 1 1 1, , , .
1 1

f f F F
a a

λ ζ λ ζ
ζ λ

= = = =
− +

        (40) 

These calculations prove that theorem 1 holds, therefore Stokes stream equa-
tion separates variables in the oblate spheroidal coordinate system. This result 
verify the findings by Dassios et al. [11], where they showed that Stokes equation 
separates variables in the oblate geometry, taking into account the proof of the 
simple separability of the equation in the prolate geometry and the transformation 

, , 1, 0i c ia cτ λ τ= = − ≥ >  which connects the oblate coordinate system and the 
prolate one ( ) [ ], , , 1,1τ ζ φ ζ ∈ − . The eigenfunctions ( ) ( ), , 1, 2,3, 4i

n iλ ζΘ =  in 
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the oblate spheroid coordinate system are 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

4

,

,

,

,

n n n

n n n

n n n

n n n

G i G

G i H

H i G

H i H

λ ζ λ ζ

λ ζ λ ζ

λ ζ λ ζ

λ ζ λ ζ

Θ =

Θ =

Θ =

Θ =

                  (41) 

where ,n nG H  are Gegenbauer functions of the first and the second kind re-
spectively [34]. These eigenfunctions form a basis for the solution space of the 
irrotational flow problems around oblate spheroidal bodies. In Figures 2-5 we  

 

 
Figure 1. The oblate spheroid. 

 

 

Figure 2. Streamlines for ( )4
2Θ . 
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Figure 3. Streamlines for ( )2
4Θ . 

 

 

Figure 4. Streamlines for ( )3
4Θ . 
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Figure 5. Streamlines for ( )4
4Θ . 

 

present sample streamlines of eigenfunctions ( ) ( ),i
n λ ζΘ  in the oblate spheroid 

coordinate system in the plane 2 0x = . 

4.2. R-Separation of Stokes Stream Equation in the Inverted  
Oblate Spheroid Coordinate System 

Next we will prove that the equation 2
. 0invE ψ′ =  R-separates variables in the in-

verted oblate geometry, where 2E′  denotes the Stokes operator in the inverted 
system. Any point ( )1 2 3, ,x x x′ ′ ′  in the Cartesian coordinate system is expressed as 

( ) ( )
2

1 2 3 1 2 32 2, , , , .
1

ax x x x x x
λ ζ

′ ′ ′ =
− +

                (42) 

For constant λ we obtain inverse oblate spheroidal coordinate surfaces in 
Figure 6. 

The metric coefficients 1 2,h h′ ′  and the radial cylindrical coordinate ϖ ′  are 

( ) ( )2 2 2 2 2 2

1 22 2 2 2

1 1 1 1
, ,h h

a a

λ λ ζ ζ λ ζ

λ ζ λ ζ

+ − + − − +
′ ′= =

+ +
        (43) 

2 2

2 2

1 1
1

a λ ζ
ϖ

λ ζ
+ −

′ =
− +

                     (44) 

and we calculate that 
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( ) ( )
2 2 2 2

1 2
2 2

2 1

1 1, .
1 1

h h
h ha a

λ ζ λ ζ
ϖ ϖζ λ

′ ′− + − +
= =

′ ′ ′ ′− +
              (45) 

We observe that Equation (45) do not fulfill the conditions set in (9), (10) and 
therefore theorem 1 does not hold. Subsequently, we investigate whether the 
conditions of theorem 2 are satisfied. From (45) with (17), (18) we get 

( ) ( ) ( ) ( )1 2 1 22 2

1 11, , , 1
1 1

f f F Fλ ζ λ ζ
ζ λ

= = = =
− +

        (46) 

and ( ) 2 2, 1R λ ζ λ ζ= − +  since 1 2,q qλ ζ= = . 
Moreover we calculate 

1 2
1 1 1 2 2 2

1 1 0,R Rf F
F q q f q q

   ∂ ∂ ∂ ∂
+ =   ∂ ∂ ∂ ∂   

              (47) 

which verifies (19) when 1 2 0R R= = . This proves that Stokes stream equation 
in inverted geometry R-separates variables with ( ) 2 2, 1R λ ζ λ ζ= − + . 

This result is in agreement with the one given in [11], where the obtained ei-
genfunctions of Stokes stream equation were 

( ) ( ) ( ) ( )
2 2

1, , , 1, 2,3, 4, 0,1, 2,
1

i i
n n i nλ ζ λ ζ

λ ζ
′Θ = Θ = =

− +
      (48) 

Figures 7-10 show sample streamlines for the eigenfunctions of the Stokes 
operator in the inverted oblate spheroid in the plane 2 0x = . 

 

 
Figure 6. The inverted oblate spheroid. 
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Figure 7. Streamlines for ( )3
1′Θ . 

 

 

Figure 8. Streamlines for ( )2
3′Θ . 
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Figure 9. Streamlines for ( )2
4′Θ . 

 

 

Figure 10. Streamlines for ( )3
4′Θ . 
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Furthermore, taking into account (38), (43), (44) we derive that (28), (29), 
(30) are true if b a= , which means that since irrotational Stokes equation sepa-
rates variables in the oblate spheroid coordinate system, it R-separates variables 
in its inverted one, as it was stated in lemma 1. 

4.3. Separability Results in Known Orthogonal Axisymmetric 
Systems of Coordinates 

In this section we investigate whether theorems 1 and 2 hold true in various axi-
symmetric coordinates [33] and we reveal the particular type of separability that 
the irrotational Stokes flow equation 2 0E ψ =  admits. 

Particularly, in the spherical coordinate system we obtain  
( ) [ ], , , 0, 1,1r rζ ϕ ζ≥ ∈ −  

1 2
2 2

2 1

1 1, ,
1

h h
h h rϖ ϖζ

= =
−

                   (49) 

in the prolate spheroid ( ) [ ], , , 1, 1,1 , 0r ζ ϕ τ ζ α≥ ∈ − >  we get 

( ) ( )
1 2

2 2
2 1

1 1, ,
1 1

h h
h ha aϖ ϖζ τ

= =
− −

               (50) 

in the parabolic coordinate system ( ), , , , 0µ ν ϕ µ ν ≥  it yields 

1 2

2 1

1 ,
h h

h hϖ ϖ µν
= =                       (51) 

which all verify successively (9), (10). Thus the conditions of theorem 1 are satis-
fied so Stokes equation separates variables in spherical, parabolic and spheroidal 
geometries. 

Moreover, in the tangent sphere coordinate system ( ), , , 0,µ ν ϕ µ ν> ∈  we 
derive 

2 2
1 2

1 2
2 1 1 1 1 2 2 2

1 1, 0,
h h R Rf F

h h F q q f q q
µ ν

ϖ ϖ µ
   + ∂ ∂ ∂ ∂

= = + =   ∂ ∂ ∂ ∂   
     (52) 

in the cardioid coordinate system ( ), , , , 0µ ν ϕ µ ν ≥  we get 

( )22 2
1 2

1 2
2 1 1 1 1 2 2 2

1 1, 0,
h h R Rf F

h h F q q f q q

µ ν

ϖ ϖ µν

+    ∂ ∂ ∂ ∂
= = + =   ∂ ∂ ∂ ∂   

    (53) 

in the bispherical coordinate system ( ) [ ), , , , 0, , 0η θ ϕ η θ α∈ ∈ π >  we obtain 

( ) ( )
( )

1 2
1 2

2 1 1 1 1 2 2 2

cosh cos 1 1, ,
sin 4

h h R R Rf F
h h a F q q f q q

η θ
ϖ ϖ θ

−    ∂ ∂ ∂ ∂
= = + =   ∂ ∂ ∂ ∂   

 (54) 

in the toroidal coordinate system ( ) ( ], , , 0, , , 0η θ ϕ η θ απ− π≥ ∈ >  we get 

1 2
1 2

2 1 1 1 1 2 2 2

cosh( ) cos( ) 1 1= = , = ,
sinh( ) 4

h h R R Rf F
h h a F q q f q q

η θ
ϖ ϖ η

   − ∂ ∂ ∂ ∂
+ −   ∂ ∂ ∂ ∂   

  (55) 

and in the inverted prolate coordinate system ( ) [ ], , , 0, 0, , 0η θ ϕ η θ α∈ π≥ >  
we have 

https://doi.org/10.4236/jamp.2020.811176


E. Protopapas, M. Hadjinicolaou 
 

 

DOI: 10.4236/jamp.2020.811176 2396 Journal of Applied Mathematics and Physics 
 

( ) ( )
( ) ( )

2 2
1 2

1 2
2 1 1 1 1 2 2 2

cosh sin 1 1, 0,
sin sinh

h h R Rf F
h h a F q q f q q

η θ
ϖ ϖ θ η

−    ∂ ∂ ∂ ∂
= = + =   ∂ ∂ ∂ ∂   

  (56) 

which verify (17), (18), (19). Therefore the conditions of theorem 2 are satisfied 
so Stokes equation R-separates variables in tangent sphere, cardioid, bishperical, 
toroidal and inverse prolate geometries. For convenience, we group the out-
comes together in Tables 1-3. 

5. Discussion 

When a solution is obtained in separable form (product of functions of one va-
riable alone) qualitative and quantitative information can be extracted by study-
ing the behaviour of each of these functions independently, e.g. behaviour at in-
finity, close to singularities, etc. Additionally, when dealing with Boundary Val-
ue Problems, the appropriate curvilinear system is chosen so that the boundary  

 
Table 1. Simple separation of Stokes operator in axisymmetric systems of coordinates. 

Coordinate system 
( ) [ )1 2, , , 0, 2q q ϕ ϕ∈ π  

In Cartesian coordinates 
( ), ,x y z  

1h  2h  ϖ  
1

2

h
hϖ  

2

1

h
hϖ  

Spherical ( ), ,r θ ϕ  

[ ]0, 0,r θ≥ ∈ π  

( ) ( )
( ) ( )
( )

sin cos

sin sin

cos

x r

y r

z r

θ ϕ

θ ϕ

θ

=


=
 =  

1 1
r  

( )sinr θ  ( )
1

sin θ  ( )2

1
sinr θ  

Modified Spherical 
( ), ,r ζ ϕ  

[ ]0, 1,1r ζ≥ ∈ −  

( )
( )

2

2

1 cos

1 sin

x r

y r
z r

ζ ϕ

ζ ϕ
ζ

 = −
 = −
 =  

1 
21

r
ζ−

 

21r ζ−  2

1
1 ζ−  

2

1
r  

Prolate Spheroid 
( ), ,η θ ϕ  

[ ]0, 0,η θ≥ ∈ π  0α >  

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

sinh sin cos

sinh sin sin

cosh cos

x

y

z

α η θ ϕ

α η θ ϕ

α η θ

=


=
 =  

2h  ( ) ( )2 2

1
sinh sina η θ+

 
( ) ( )sinh sina η θ  

2

1

h
hϖ  

( ) ( )
1

sinh sina η θ
 

Modified Prolate 
Spheroid ( ), ,τ ζ ϕ  

[ ]1, 1,1τ ζ≥ ∈ −  0α >  

( )
( )

2 2

2 2

1 1 cos

1 1 sin

x

y
z

α τ ζ ϕ

α τ ζ ϕ
ατζ

 = − −
 = − −
 =  

2

2 2

1
a

τ
τ ζ

−

−  

2

2 2

1
a

ζ
τ ζ
−

−  

2 21 1a τ ζ− −  ( )2

1
1a ζ−

 ( )2

1
1a τ −

 

Oblate Spheroid 
( ), ,η θ ϕ  

[ ]0, 0,η θ≥ ∈ π  0α >  

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

cosh sin cos

cosh sin sin

sinh cos

x

y

z

α η θ ϕ

α η θ ϕ

α η θ

=


=
 =  

2h  ( ) ( )2 2

1
cosh sina η θ−

 
( ) ( )cosh sina η θ  

2

1

h
hϖ  

( ) ( )
1

cosh sina η θ
 

Modified Oblate 
Spheroid ( ), ,λ ζ ϕ  

[ ], 1,1λ ζ∈ ∈ −  
0α >  

( )
( )

2 2

2 2

1 1 cos

1 1 sin

x

y
z

α λ ζ ϕ

α λ ζ ϕ
αλζ

 = + −
 = + −
 =  

2

2 2

1
a

λ
λ ζ

+

+  

2

2 2

1
a

ζ
λ ζ
−

+  

2 21 1a λ ζ+ −  ( )2

1
1a ζ−

 ( )2

1
1a λ+

 

Parabolic ( ), ,µ ν ϕ  

, 0µ ν ≥  

( )
( )

2 2

cos

sin

2

x

y

z

µν ϕ

µν ϕ

µ ν


 =
 =
 − =
  

2 2

1
µ ν+  

2 2

1
µ ν+  

µν  
1
µν  

1
µν  
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Table 2. R-separation of stokes operator in axisymmetric systems of coordinates (part 1). 

Coordinate system 
( )

[ )
1 2, , ,

0, 2

q q ϕ

ϕ∈ π
 

In Cartesian coordinates 
( ), ,x y z  1h  2h  ϖ  

1

2

h
hϖ  

2

1

h
hϖ  

Tangent-Sphere 
( ), ,µ ν ϕ  

0,µ ν> ∈  

( )

( )

2 2

2 2

2 2

cos

sin

x

y

z

µ ϕ
µ ν
µ ϕ
µ ν
ν

µ ν


= +

 = +


=
+  

2 2µ ν+  
2 2µ ν+  2 2

µ
µ ν+  

2 2µ ν
µ
+

 

2 2µ ν
µ
+

 

Cardioid 
( ), ,µ ν ϕ  , 0µ ν ≥  

( )
( )

( )
( )

( )

22 2

22 2

2 2

22 2

cos

sin

2

x

y

z

µν ϕ

µ ν

µν ϕ

µ ν

µ ν
µ ν


=

+

 =

+


− =
 +  

( )32 2µ ν+
 ( )32 2µ ν+

 ( )22 2

µν
µ ν+

 

( )22 2µ ν
µν
+

 

( )22 2µ ν
µν
+

 

Bispherical 
( ), ,η θ ϕ  

[ ), 0,η θ ∈ π∈  
0α >  

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )
( ) ( )

sin cos
cosh cos

sin sin
cosh cos

sinh
cosh cos

x

y

z

α θ ϕ
η θ

α θ ϕ
η θ

α η
η θ


= −

 = −

 =
 −  

2h  
( ) ( )cosh cos

a
η θ−

 

( )
( ) ( )

sin
cosh cos

a θ
η θ−  

2

1

h
hϖ  

( ) ( )
( )

cosh cos
sina
η θ

θ
−

 

Toroidal ( ), ,η θ ϕ  

( ]0, ,η θ≥ ∈ π− π  
0α >  

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )

sinh cos
cosh cos

sinh sin
cosh cos

sin
cosh cos

x

y

z

α η ϕ
η θ

α θ ϕ
η θ

α θ
η θ


= −

 = −

 =
 −  

2h  
( ) ( )cosh cos

a
η θ−

 

( )
( ) ( )
sinh

cosh cos
a η
η θ−  

2

1

h
hϖ  

( ) ( )
( )

cosh cos
sinha
η θ

η
−

 

Inverse Prolate 
Spheroid 

( )
[ ]

, , , 0,

0, 0

η θ ϕ η

θ α

≥

∈ >π
  

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )

2 2

2 2

2 2

sinh sin cos
cosh sin

sinh sin sin
cosh sin

cosh cos
cosh sin

x

y

z

α η θ ϕ
η θ

α η θ ϕ
η θ

α η θ
η θ


= −

 = −

 =
 −  

2h  
( ) ( )
( ) ( )

2 2

2 2

cosh sin
sinh sina

η θ

η θ

−

+
 

( ) ( )
( ) ( )2 2

sinh sin
cosh sin

a η θ
η θ−  

2

1

h
hϖ  

( ) ( )
( ) ( )

2 2cosh sin
sin sinha

η θ
θ η
−

 

Inverse Oblate 
Spheroid 

( )
[ ]

, , , 0,

0, 0

η θ ϕ η

θ α

≥

∈ >π
  

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )

2 2

2 2

2 2

cosh sin cos
cosh cos

cosh sin sin
cosh cos

sinh cos
cosh cos

x

y

z

α η θ ϕ
η θ

α η θ ϕ
η θ

α η θ
η θ


= −

 = −

 =
 −  

2h  
( ) ( )
( ) ( )

2 2

2 2

cosh cos
cosh sina

η θ

η θ

−

−
 

( ) ( )
( ) ( )2 2

cosh sin
cosh cos

a η θ
η θ−  

2

1

h
hϖ  

( ) ( )
( ) ( )

2 2cosh cos
cosh sina

η θ
η θ
−

 

 
coincides with one of the coordinate surfaces which allows for simpler calcula-
tions, clear and comprehensive results. Conclusively, the separation of variables 
or the Fourier method, apart from a convenient method for deriving solutions of 
PDEs, it is also a method for revealing inherent characteristics of the problem.  
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Table 3. R-separation of stokes operator in axisymmetric systems of coordinates (part 2). 

Coordinate system 
( ) [ )1 2, , , 0, 2q q ϕ ϕ∈ π  R 1f  2f  1F  2F  1 2

1 1 1 2 2 2

1 1R Rf F
F q q f q q

   ∂ ∂ ∂ ∂
+   ∂ ∂ ∂ ∂     

( )1 2R R R+  

Tangent-Sphere ( ), ,µ ν ϕ  

0,µ ν> ∈  

2 2µ ν+  
1
µ  

1 
1
µ  

1 0 ( )0 0R +  

Cardioid ( ), ,µ ν ϕ  , 0µ ν ≥  2 2µ ν+  
1
µ  

1
ν  

1
µ  

1
ν  

0 ( )0 0R +  

Bispherical ( ), ,η θ ϕ  

[ ), 0,η θ ∈ π∈  0α >  
( ) ( )cosh cosη θ−

 
1
a  ( )

1
sin θ  

1
a  ( )

1
sin θ  

( ) ( )cosh cos
4

η θ−

 

1 0
4

R  + 
   

Toroidal ( ), ,η θ ϕ  

( ]0, ,η θ≥ ∈ π− π  0α >  
( ) ( )cosh cosη θ−

 ( )
1

sinh η  

1
a  ( )

1
sinh η  

1
a  

( ) ( )cosh cos
4

η θ−

−  

1 0
4

R  − + 
   

Inverse Prolate Spheroid 
( ) [ ], , , 0, 0,η θ ϕ η θ≥ ∈ π  0α >  ( ) ( )2 2cosh sinη θ−

 ( )
1

sinh η  ( )
1

sina θ  ( )
1

sinh η  ( )
1

sina θ  
0 ( )0 0R +  

Inverse Oblate Spheroid 
( ) [ ], , , 0, 0,η θ ϕ η θ≥ ∈ π  0α >  

( ) ( )2 2cosh cosη θ−
 ( )

1
cosh η  ( )

1
sina θ  ( )

1
cosh η  ( )

1
sina θ  

0 ( )0 0R +  

 
Some crucial questions are answered in the present manuscript, regarding the 
different kinds of separability one can have when solving irrotational Stokes flow 
problems in different axi-symmetric geometries. We provide “necessary and suf-
ficient conditions” for the two kinds of separation: simple and R-separation, for 
any axisymmetric system of coordinates, in a general form. We also treated the 
case of the inverse of these systems (lemma 1). Furthermore, we applied the de-
veloped theory (theorems 1 and 2) to the oblate spheroidal coordinate system 
and proved the separability of the irrotational Stokes equation in this system and 
the R-separability of the irrotational Stokes equation in the inverted oblate 
spheroidal coordinate system. 

More specifically, we provide necessary and sufficient conditions for simple 
separation (theorem 1) and R-separation (theorem 2) for the irrotational Stokes 
equation 2 0E ψ =  in any axisymmetric coordinate system of the general form 
( )1 2, ,q q ϕ . The function ψ  may then be obtained as a combination of the solu-
tions of the corresponding Ordinary Differential Equations to which equation 

2 0E ψ =  decomposes. Our results are based on the form that the metric coeffi-
cients 1 2,h h  and the radial cylindrical coordinate ϖ  get in any axisymmetric  

coordinate system. We calculate the quantities 1 2

2 1

,
h h

h hϖ ϖ
 and examine whether  

conditions (9), (10), (17), (18) hold. If (9), (10) are satisfied the method of sepa-
ration of variables may be applied and obtain results. Furthermore if (17), (18) 
hold true, we can calculate the function R and when the requirements for (19) 
are also met, then the irrotational Stokes equation can be solved by employing 
the method of R-separation of variables. Additionally, we developed relations 
connecting the metric coefficients and the radial cylindrical coordinate in any 
axisymmetric coordinate system and its inverted one (lemma 1). Applying theo-
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rems 1, 2 and lemma 1 we reach at the following results: 
• When irrotational Stokes equation separates variables in an axisymmetric sys-

tem of coordinates, then the irrotational Stokes equation R-separates variables 
in the corresponding inverted system of coordinates, with ( )1 2,R q q r= , 
where r  is the Euclidean distance, expressed in the parameters of the par-
ticular coordinate system. 

• When irrotational Stokes equation R-separates variables in an axisymmetric 
system of coordinates, then the irrotational Stokes equation also R-separates 
variables in the corresponding inverted system of coordinates if (19) is also 
true. 

This property, allows for the derivation of an analytical solution of the irrota-
tional Stokes flow in a system, whenever the analytical solution of the corres-
ponding problem in the inverted one is known. As an illustration, we employ the 
inverted oblate spheroidal coordinate system and prove the R-separability of 

2 0E ψ =  through the Lemma using the separable form of the irrotational Stokes 
equation in the oblate coordinates, which agrees with already obtained results 
given in [29]. These theorems may serve as a priori, solvability criteria, prevent-
ing from man or computer waste of effort when seeking for solutions for the 
axisymmetric Stokes flow equations (rotational and irrotational), also carving 
this way, a path for further utilization. 
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