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Abstract 
In this paper, we use Port-Hamiltonian framework to stabilize the Lagrange 
points in the Sun-Earth three-dimensional Circular Restricted Three-Body 
Problem (CRTBP). Through rewriting the CRTBP into Port-Hamiltonian 
framework, we are allowed to design the feedback controller through ener-
gy-shaping and dissipation injection. The closed-loop Hamiltonian is a can-
didate of the Lyapunov function to establish nonlinear stability of the de-
signed equilibrium, which enlarges the application region of feedback con-
troller compared with that based on linearized dynamics. Results show that 
the Port-Hamiltonian approach allows us to successfully stabilize the Lagrange 
points, where the Linear Quadratic Regulator (LQR) may fail. The feedback 
system based on Port-Hamiltonian approach is also robust against white 
noise in the inputs. 
 

Keywords 
Port-Hamiltonian, Lagrange Points, Circular Restricted Three-Body Problem 
(CRTBP), Linear Quadratic Regulator (LQR) 

 

1. Introduction 

The Circular Restricted Three Body Problem (CRTBP) [1] has been widely stu-
died by physicists, astronomers, and astrodynamics. This problem is focused on 
overcoming the difficulties in finding a suitable orbit for satellites. In the system 
of the CRTBP, there exist five equilibrium positions, which are known as La-
grange points. These Lagrange points are of scientific and engineering interest; 
e.g., artificial spacecrafts have been placed at the L1 and L2 Lagrange points with 
respect to the Sun and the Earth [2] [3] [4] [5] and Lagrange points with respect 
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to the Earth and the Moon [6] [7]. 
However, that is also of the most demanding challenge; i.e., among the five 

Lagrange points, three of them are unstable [1] [8]. Fortunately, around these 
unstable points (L1, L2, L3), there exist stable halo orbits, which allow artificial 
satellite to reside. In order to design an orbit around Lagrange points, the most 
broadly used methods are based on linearization around a halo orbit or Lagrange 
point [9] [10] [11] [12] [13]. 

However, stabilization of a linear system is only able to guarantee the stability 
of the system against an infinitely small perturbation, but is unable to guarantee 
the stability against a finite disturbance. Disturbances for the Earth-Moon La-
grange points mission under CRTBP model include the eccentricity of the Earth- 
Moon orbit, the gravity from the other bodies [14] and the solar radiation pres-
sure. For the Sun-Earth Lagrange points mission, the perturbation from the Moon 
is critical. Lyapunov [15], in the year of 1895, proposed the Lyapunov method to 
establish the stability of nonlinear system. The difficulties of Lyapunov’s method 
is finding a Lyapunov function to establish the stability. For Hamiltonian sys-
tem, the conserved quantity Hamiltonian is a candidate of Lyapunov function to 
establish the stability of the system. The Jacobian integral [16], which is the con-
served quantity for the CRTBP in a rotating coordinate, allows us to formulate the 
CRTBP as the Hamiltonian system. 

Port-Hamiltonian system [17] [18] generalizes the Hamiltonian system and 
allows us to take input and dissipation into consideration, which are described as 
“port”. This framework has the potential to model, analyze and especially, control 
complex physical systems and their interconnections [17]. The Port-Hamiltonian 
framework also provides a physics-based control strategy [19]-[24], which fo-
cuses on shaping the closed-loop Hamiltonian as the candidate of Lyapunov func-
tion. 

In this research, we use the Port-Hamiltonian system to reformulate the Sun- 
Earth three-dimensional CRTBP, which retains the original nonlinear dynamics 
in contrast to the linear approximation. Then, we designed the feedback control 
law to stabilize the unstable Lagrange points by taking input and dissipation as 
two other actors into consideration. The closed-loop Hamiltonian serves as the 
candidate of Lyapunov’s function, which helps to establish the nonlinear stability 
of the open-loop unstable Lagrange points. This research provides further possi-
bility in Lagrange point launching mission. 

2. The Circular Restricted Three Body Problem 
2.1. Governing Equations 

In Circular Restricted Three Body Problem (CRTBP), it requires the largest two 
objects of the three have a significantly larger mass compared to the third one; 
i.e., 1 3M M  and 2 3M M . The largest two objects are in circular orbits 
centered at their center of mass. We consider the third object, 3M , moving in 
three-dimensional (3D) space; i.e., 3D-CRTBP. In order to solve this problem, 
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we need to use mathematical method to approximate this situation. We set the 
center of mass of the system as the origin and we set the position of 1M  at 
( ),0µ− , position of 2M  at ( )1 ,0µ− , where we define 2M Mµ =  and 

1 2M M M= + . Then, the dynamics of the third body can be described as [1]: 

( )
2

2 3 3
1 2

d d 12 1
dd

x y x xx
tt r r

µ µµ µ+ − +
− = − − −               (1) 

( )
2

2 3 3
1 2

d d2 1
dd

y x y yy
tt r r

µ µ+ = − − −                  (2) 

2

2 3 3
1 2

d 1
d

z z
t r r

µ µ −
= − − 

 
                      (3) 

where 

( )2 2 2
1r x y zµ= + + +                      (4) 

( )2 2 2
2 1r x y zµ= − + + +                     (5) 

We set 63.003490055444426 10µ −= × , which is the mass ratio in the Sun-Earth 
CRTBP system (see Table 1). 

2.2. The Lagrange Points and the Jacobian Integral 

Lagrange points are points in systems on which the third object could reach 
equilibrium state. According to [1], there exists five Lagrange points in the 
CRTBP. Three of the five points, L1, L2, and L3 can be computed using algebraic 
equations: 

( ) 3 3
1 2

11 0x xx
r r
µ µµ µ+ − +

− − − =                  (6) 

0y =                             (7) 

In CRTBP, Jacobian integral is the only conserved variable, which is widely 
used to derive solutions in special cases, and is expressed as what follows in the 
(x, y)-coordinate system: 

( ) ( )2 2 2 2 2

1 2

12C x y x y z
r r
µ µ −

= + + + − + + 
 

            (8) 

Conservation of energy (kinetic energy and potential energy) is shown by Ja-
cobian integral in CRTBP under synodic coordinates description, in which the 
dissipation caused by the air drag is not included in the model. 

 
Table 1. Lagrange points for the Sun-Earth CRTBP with 63.003490055444426 10µ −= × . 

 L1 L2 L3 L4 L5 

x 0.990026583427689 1.010034125978081 1.000001251454178 0.499996996509945 0.499996996209945 

y 0 0 0 0.866025403784439 0.866025403784439 
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3. Port-Hamiltonian System 
3.1. Reformulation of CRTBP 

If we use the Hamiltonian proportional to the Jacobian integral: 

( ) ( )2 2 2 2 2

1 2

1 1 12
2 2 2
CH x y z x y

r r
µ µ  −

= − = + + − + + +  
   

          (9) 

We can reformulate the CRTBP into Port-Hamiltonian system description: 

[ ] ( )d
d x H

t
= − ∇ +x J R x Bu                   (10) 

where [ ]T     x y z x y z=x     are state variables and 
T

x y zu u u=   u  are inputs 
representing thrust force on x, y and z directions. In order to map inputs to state  

variables, we define 

T0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 
 =  
  

B . J is a skew-symmetric matrix,  

which represents the energy conserving part, while matrix R is a symmetric pos-
itive semi-definite matrix, which represents the energy dissipation: 

T

6 6

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, 0
1 0 0 0 2 0

0 1 0 2 0 0
0 0 1 0 0 0

×

 
 
 
 

= = 
− 
 − −
 

−  

J R              (11) 

Since CRTBP does not consider energy dissipation such as air drag, R is a zero 
matrix. This causes the conservation of energy (Hamiltonian or Jacobian integral 
used here), which is the fact reflected in the following equation: 

( ) ( ) ( ) [ ] ( )

( ) [ ] ( )

d d
d d

0

x x x

x x

H xH H H
t t

H H

= ∇ ⋅ = ∇ ⋅ − ∇

= ∇ ⋅ − ∇ =

x
x x J R x

x R x
         (12) 

3.2. Energy Shaping 

Instead of controlling the Hamiltonian, we are focused on reshaping the Hamil-
tonian in CRTBP, where the equilibrium points 

T* * * * 0 0 0x y z =  x  are sta-
ble. Thus, we designed a closed-loop Hamiltonian ( )dH x : 

( ) ( ) ( ) ( )2 2 22 2 2 * * *1
2dH x y z x x y y z z= + + + − + − + 
  

−x          (13) 

with the minimal position: 

( ){ }* arg min dH=x x                      (14) 

assuming that the closed loop system is also a Port-Hamilton system 

[ ]d
d x d
x H
t
= − ∇J R                       (15) 
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Then, we design the feedback control law as B is full column rank but not full 
row rank: 

( ) ( ) [ ] ( )
1T T

ES x aH
−

= − ∇u x B B B J R x               (16) 

( ) ( ) ( )a dH H H= −x x x                     (17) 

where the difference between close-loop system and open-loop system is shown 
by 

[ ] ( )x aH⊥ − ∇ =B J R x 0                     (18) 

Under this control law, it can be shown that the closed-loop Hamiltonian is a 
Lyapunov function satisfying: 

( ) *0,dH = =x x x                       (19) 

( ) *0,dH > ∀ ≠x x x                      (20) 

( ) ( ) [ ] ( ) *d
0,

d
d

x d x d

H
H H

t
= ∇ ⋅ − ∇ = ∀ ≠

x
x R x x x           (21) 

According to Lyapunov stability theorem, the equilibrium x of the closed-loop 
system is stable. 

3.3. Dissipation Injection 

Previous energy shaping process utilizes a state feedback control law to shape the 
closed-loop Hamiltonian (energy) with a stable equilibrium at *x . However, 
the closed-loop Hamiltonian also remains a constant; i.e.,  

( ) ( ) [ ] ( )
d

0
d
d

x d x d

H
H H

t
= ∇ ⋅ − ∇ =

x
x R x . We may also design the equilibrium  

point as asymptotically stable. This can be achieved through dissipation injec-
tion, which modifies the R matrix in the closed-loop system. Aside from the ener-
gy shaping control law, we also implement a state feedback control representing 
dissipation injection: 

( ) ( )T
DI d x dH= − ∇u x K B x                    (22) 

where dK  is positive definite. With ( ) ( ) ( )ES DI= +u x u x u x , we have the 
closed-loop system as: 

( )d
d d x d
x H
t

= −  ∇J R x                     (23) 

with a closed-loop dissipation matrix: ( ) ( ) ( ) T
d d= +R x R x B x K B . 

Thus, the closed-loop Hamiltonian evolves like: 

( ) ( ) [ ] ( ) *d
0,

d
d

x d d x d

H
H H

t
= ∇ ⋅ − ∇ ≤ ∀ ≠

x
x R x x x          (24) 

The closed-loop Hamiltonian ( )dH x  also satisfies ( ) 0dH =x , *=x x  and 
( ) 0dH >x , *∀ =x x . 
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As the union of complete trajectories contained entirely in the set has no tra-
jectory except the trivial one ( )t =x 0  for *t ≥ x , we obtain the asymptotic sta-
bility of the closed-loop system according to LaSalle’s invariance principle [25]. 
The above framework of energy shaping and dissipation injection are summa-
rized as Figure 1. 

4. Results and Discussion 

Figures 2-4 shows the orbit of the third body without background noise on x-y, 
x-z, and y-z plane, respectively. The blue dashed lines in these figures indicated 
the controlled orbits using (a) Linear Quadratic Regulator (LQR) controller com-
pared with (b) Port-Hamiltonian controller. The results show that the Port- 
Hamiltonian controller allows us to drive the third body to the target equili-
brium position, while the LQR controller fail. The LQR controller is designed 
[11] [26] [27] according to the CRTBP linearized around the L1 Lagrange point:  
d
d
x
t
= +Ax Bu  where A is the Jacobian of ( ) ( )H− ∇J R x  evaluated at the  

equilibrium point *x ; i.e. the first Lagrange point L1 in this case. Using the 
Linear Quadratic Regulator (LQR) controller, we obtain the control law as 

( )*
LQR = − −u K x x , where K  minimizes the cost function  

T T
LQR 0

sJ
∞

= +x Qx u Ru  with 6 6×=Q I  and 3 3×=R I . 
Figures 5-7 shows the orbit of the third body with background noise on x-y, 

x-z, and y-z plane, respectively. This background noise is used to model the dis-
turbance including eccentricity of the orbit, the gravity from the other bodies 
[14]. Especially, for the Sun-Earth Lagrange points mission, the perturbation 
from the Moon is critical. The results show that, under the background noise, 
the Linear Quadratic Regulator is not able to drive the third body to the target 
position; i.e., L1 Lagrange point in the Sun-Earth CRTBP. However, the approach 
based on the Port-Hamiltonian successfully drive the third body to the targeting 
position. 

Figure 8 & Figure 9 show the time history of the controller inputs xu , yu  
and zu  without background noise and with background noise, respectively. 
Results indicate that the controller input for Port-Hamiltonian controller is 
asymptoting to zero as the third body is approaching the target location, in con-
sistent with the observation of previous results. These results indicate that when 
the third body is approaching the target position or the disturbance is small, the 
required control input is also small. 

 

 
Figure 1. The flow chart of energy shaping and dissipation injection. Where ( )H x  is a 

Hamiltonian, ( )dH x  is a closed-loop Hamiltonian, matrix R is a symmetric positive 

semi-definite matrix which represents the energy dissipation and ( ) T
d d= +R R B x K B .
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Figure 2. The orbit of the third body on x-y plane without background noise. The black 
solid line represents the uncontrolled orbit, and the red cross represents L1 Lagrange 
point. The blue dashed line represents the controlled orbit with (a) LQR controller and 
(b) port-Hamiltonian controller. 

 

 
Figure 3. The orbit of the third body on x-z plane without background noise. The black 
solid line represents the uncontrolled orbit, and the red cross represents L1 Lagrange 
point. The blue dashed line represents the controlled orbit with (a) LQR controller and 
(b) port-Hamiltonian controller. 

 

 
Figure 4. The orbit of the third body on y-z plane without background noise. The black 
solid line represents the uncontrolled orbit, and the red cross represents L1 Lagrange 
point. The blue dashed line represents the controlled orbit with (a) LQR controller and 
(b) port-Hamiltonina controller. 

 

 
Figure 5. The orbit of the third body on x-y plane with background noise, and the red 
cross represents L1 Lagrange point. The black solid line represents the uncontrolled orbit; 
the blue dashed line represents the controlled orbit with (a) LQR controller compared 
with (b) port-Hamiltonian controller. 
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Figure 6. The orbit of the third body on x-z plane with background noise. The black solid 
line represents the uncontrolled orbit, and the red cross represents L1 Lagrange point. The 
blue dashed line represents the controlled orbit with (a) LQR controller and (b) 
port-Hamiltonian controller.  

 

 
Figure 7. The orbit of the third body on y-z plane with background noise. The black solid 
line represents the uncontrolled orbit, and the red cross represents L1 Lagrange point. The 
blue dashed line represents the controlled orbit with (a) LQR controller and (b) 
port-Hamiltonian controller. 

 

 
Figure 8. The control input according to the (a) LQR controller and (b) port-Hamiltonian 
controller without background noise. 

 

 
Figure 9. The control input according to the (a) LQR controller and (b) port-Hamiltonian 
controller with background noise. 

5. Conclusion 

In this paper, we use Port-Hamiltonian framework to stabilize the Lagrange points 
in the Circular Restricted Three-Body Problem (CRTBP). Through exploring the 
energy (Jacobi integral) conserving property in CRTBP, this problem is rewritten 
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into Port-Hamiltonian framework, where we use the Jacobi integral as the Ha-
miltonian. Then, we design the feedback controller through energy-shaping and 
dissipation injection to stabilize the L1 Lagrange point of the Sun-Earth CRTBP. 
The closed-loop Hamiltonian is designed as the candidate of the Lyapunov func-
tion to establish nonlinear stability of the designed equilibrium, which enlarges 
the application region of feedback controller compared with that based on linea-
rized dynamics. Results show that the Port-Hamiltonian approach allows us to 
successfully stabilize the Lagrange points, where the Linear Quadratic Regulator 
(LQR) may fail. Adding the white noise into the inputs, the designed feedback 
controller based on Port-Hamiltonian approach also allows us to stabilize the 
Lagrange points, which demonstrates the robustness against the background 
noise of the designed feedback control. 

Acknowledgements 

Special thanks to Prof who offer us tremendous support and offer the idea of 
project. Special thanks to offering all the material, labor, technology, and all the 
equipment that our team needs to finish the project. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Musielak, Z.E. and Quarles, B. (2014) The Three-Body Problem. Reports on Progress 

in Physics, 77, Article ID: 065901. 
https://doi.org/10.1088/0034-4885/77/6/065901 

[2] Pilbratt, G.L., Riedinger, J.R., Passvogel, T., Crone, G., Doyle, D., Gageur, U., Heras, 
A.M., Jewell, C., Metcalfe, L., Ott, S., et al. (2010) Herschel Space Observatory. An 
ESA Facility for Far-Infrared and Submillimetre Astronomy. Astronomy & Astro-
physics, 518, Article No. L1. https://doi.org/10.1051/0004-6361/201014759 

[3] Gardner, J.P., Mather, J.C., Clampin, M., Doyon, R., Greenhouse, M.A., Hammel, 
H.B., Hutchings, J.B., Jakobsen, P., Lilly, S.J., Long, K.S., et al. (2006) The James 
Webb Space Telescope. Space Science Reviews, 123, 485-606. 
https://doi.org/10.1007/s11214-006-8315-7 

[4] Farquhar, R. (1998) The Flight of ISEE-3/ICE-Origins, Mission History, and a Leg-
acy. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston, 10-12 
August 1998, 4464. https://doi.org/10.2514/6.1998-4464 

[5] Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, 
J.F. and Snow, F. (1998) The Advanced Composition Explorer. Space Science Re-
views, 86, 1-22. https://doi.org/10.1023/A:1005082526237 

[6] Sweetser, T.H., Broschart, S.B., Angelopoulos, V., Whiffen, G.J., Folta, D.C., Chung, 
M.K., Hatch, S.J. and Woodard, M.A. (2012) ARTEMIS Mission Design. In: Russell, 
C. and Angelopoulos, V., Eds., The ARTEMIS Mission, Springer, New York, 61-91. 
https://doi.org/10.1007/978-1-4614-9554-3_4 

[7] Shirobokov, M., Trofimov, S. and Ovchinnikov, M. (2017) Survey of Station-Keeping 
Techniques for Libration Point Orbits. Journal of Guidance, Control, and Dynamics, 

https://doi.org/10.4236/mme.2020.103005
https://doi.org/10.1088/0034-4885/77/6/065901
https://doi.org/10.1051/0004-6361/201014759
https://doi.org/10.1007/s11214-006-8315-7
https://doi.org/10.2514/6.1998-4464
https://doi.org/10.1023/A:1005082526237
https://doi.org/10.1007/978-1-4614-9554-3_4


H. T. Yan 
 

 

DOI: 10.4236/mme.2020.103005 48 Modern Mechanical Engineering 
 

40, 1085-1105. https://doi.org/10.2514/1.G001850 

[8] Meyer, K.R. and Schmidt, D.S. (1986) The Stability of the Lagrange Triangular 
Point and a Theorem of Arnold. Journal of Differential Equations, 62, 222-236. 
https://doi.org/10.1016/0022-0396(86)90098-7 

[9] Gómez, G., Jorba, A., Masdemont, J. and Simó, C. (1993) Study of the Transfer 
from the Earth to a Halo Orbit around the Equilibrium pointL1. Celestial Mechanics 
and Dynamical Astronomy, 56, 541-562. https://doi.org/10.1007/BF00696185 

[10] Richardson, D.L. (1980) Halo Orbit Formulation for the ISEE-3 Mission. Journal of 
Guidance, Control, and Dynamics, 3, 543-548. https://doi.org/10.2514/3.56033 

[11] Cielaszyk, D. and Wie, B. (1996) New Approach to Halo Orbit Determination and 
Control. Journal of Guidance, Control, and Dynamics, 19, 266-273. 
https://doi.org/10.2514/3.21614 

[12] Ardaens, J.S. and D’Amico, S. (2008) Control of Formation Flying Spacecraft at a 
Lagrange Point. No. 00-08. 

[13] Xu, M. and Xu, S.J. (2008) Trajectory and Correction Maneuver during the Transfer 
from Earth to Halo Orbit. Chinese Journal of Aeronautics, 21, 200-206. 
https://doi.org/10.1016/S1000-9361(08)60026-6 

[14] Yamato, H. and Spencer, D. (2004) Transit-Orbit Search for Planar Restricted 
Three-Body Problems with Perturbations. Journal of Guidance, Control, and Dy-
namics, 27, 1035-1045. https://doi.org/10.2514/1.4524 

[15] Lyapunov, A.M. (1992) The General Problem of the Stability of Motion. Interna-
tional Journal of Control, 55, 531-534. https://doi.org/10.1080/00207179208934253 

[16] Jacobi, C.G.J. (1836) Sur le mouvement d’un point et sur un cas particulier du 
probleme destrois corps. Comptes Rendus Chimie, 3, 59-61. 

[17] Van Der Schaft, A.J. and Schumacher, J.M. (2000) An Introduction to Hybrid Dy-
namical Systems. Springer, London, 251. https://doi.org/10.1007/BFb0109998 

[18] Van Der Schaft, A.J., Jeltsema, D. et al. (2014) Port-Hamiltonian Systems Theory: 
An Introductory Overview. Foundations and Trends in Systems and Control, 1, 
173-378. https://doi.org/10.1561/2600000002 

[19] Ortega, R., Van Der Schaft, A.J., Mareels, I. and Maschke, B. (2001) Putting Energy 
Back in Control. IEEE Control Systems Magazine, 21, 18-33. 
https://doi.org/10.1109/37.915398 

[20] Ortega, R., Van Der Schaft, A.J., Maschke, B. and Escobar, G. (2002) Interconnec-
tion and Damping Assignment Passivity-Based Control of Port-Controlled Hamil-
tonian Systems. Automatica, 38, 585-596. 
https://doi.org/10.1016/S0005-1098(01)00278-3 

[21] Ortega, R., Van Der Schaft, A.J., Castanos, F. and Astolfi, A. (2008) Control by In-
terconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. 
IEEE Transactions on Automatic Control, 53, 2527-2542. 
https://doi.org/10.1109/TAC.2008.2006930 

[22] Liu, C. (2019) Teaching Control Theory in Physics: The Port-Hamiltonian Frame-
work. College Physics, 38, 1-7. 

[23] Liu, C. and Dong, L. (2019) Physics-Based Control Education: Energy, Dissipation, 
and Structure Assignments. European Journal of Physics, 40, Article ID: 035006. 
https://doi.org/10.1088/1361-6404/ab03e8 

[24] Liu, C. and Dong, L. (2019) Stabilization of Lagrange Points in Circular Restricted 
Three-Body Problem: A Port-Hamiltonian Approach. Physics Letters A, 383, 
1907-1914. https://doi.org/10.1016/j.physleta.2019.03.033 

https://doi.org/10.4236/mme.2020.103005
https://doi.org/10.2514/1.G001850
https://doi.org/10.1016/0022-0396(86)90098-7
https://doi.org/10.1007/BF00696185
https://doi.org/10.2514/3.56033
https://doi.org/10.2514/3.21614
https://doi.org/10.1016/S1000-9361(08)60026-6
https://doi.org/10.2514/1.4524
https://doi.org/10.1080/00207179208934253
https://doi.org/10.1007/BFb0109998
https://doi.org/10.1561/2600000002
https://doi.org/10.1109/37.915398
https://doi.org/10.1016/S0005-1098(01)00278-3
https://doi.org/10.1109/TAC.2008.2006930
https://doi.org/10.1088/1361-6404/ab03e8
https://doi.org/10.1016/j.physleta.2019.03.033


H. T. Yan 
 

 

DOI: 10.4236/mme.2020.103005 49 Modern Mechanical Engineering 
 

[25] LaSalle, J. (1960) Some Extensions of Liapunov’s Second Method. IRE Transactions 
on Circuit Theory, 7, 520-527. https://doi.org/10.1109/TCT.1960.1086720 

[26] Kwakernaak, H. and Sivan, R. (1972) Linear Optimal Control Systems. Wiley-Inter- 
science, New York. 

[27] Zhou, K., Doyle, J.C., Glover, K., et al. (1996) Robust and Optimal Control. Prentice 
Hall, Upper Saddle River. 

 
 

https://doi.org/10.4236/mme.2020.103005
https://doi.org/10.1109/TCT.1960.1086720

	Port-Hamiltonian Based Control of the Sun-Earth 3D Circular Restricted Three-Body Problem: Stabilization of the L1 Lagrange Point
	Abstract
	Keywords
	1. Introduction
	2. The Circular Restricted Three Body Problem
	2.1. Governing Equations
	2.2. The Lagrange Points and the Jacobian Integral

	3. Port-Hamiltonian System
	3.1. Reformulation of CRTBP
	3.2. Energy Shaping
	3.3. Dissipation Injection

	4. Results and Discussion
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

