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Abstract 
The Maxwell-Boltzmann (MB) distribution for velocities in ideal gases is 
usually defined between zero and infinity. A double truncated MB distri-
bution is here introduced and the probability density function, the distri-
bution function, the average value, the rth moment about the origin, the 
root-mean-square speed and the variance are evaluated. Two applications are 
presented: 1) a numerical relationship between root-mean-square speed and 
temperature, and 2) a modification of the formula for the Jeans escape flux of 
molecules from an atmosphere. 
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1. Introduction 

The Maxwell-Boltzmann (MB) distribution, see [1] [2], is a powerful tool to ex-
plain the kinetic theory of gases. The range in velocity of this distribution spans 
the interval [ ]0,∞ , which produces several problems:  

1) The maximum velocity of a gas cannot be greater than the velocity of light, 
c.  

2) The kinetic theory is developed in a classical environment, which means 
that the involved velocities should be smaller than ≈1/10c.  

These items point toward the hypothesis of an upper bound in velocity for the 
MB. We will now report some approaches, including an upper bound in velocity: 
the ion velocities parallel to the magnetic field in a low density surface of a io-
nized plasma [3]; propagation of longitudinal electron waves in a collisionless, 
homogeneous, isotropic plasma, whose velocity distribution function is a trun-
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cated MB [4]; fast ion production in laser plasma [5]; the release of a dust par-
ticle from a plasma-facing wall [6]; an explanation of an anomaly in the Dark 
Matter (DAMA) experiment [7]; a distorted MB distribution of epithermal ions 
observed associated with the collapse of energetic ions [8]; and deviations to MB 
distribution that could have observable effects which can be measured trough 
the vapor spectroscopy at an interface [9]. However, these approaches do not 
clearly cover the effect of introducing a lower and an upper boundary in the MB 
distribution, which is the subject that will be analyzed in this paper. 

This paper is structured as follows. Section 2 reviews the basic statistics of the 
MB distribution and it derives a new approximate expression for the median. 
Section 3 introduces the double truncated MB and it derives the connected sta-
tistics. Section 4 derives the relationship for root-mean-square speed versus 
temperature in the double truncated MB. Finally, Section 5.2 derives a new for-
mula for Jeans flux in the exosphere. 

2. The Maxwell-Boltzmann Distribution 

Let V be a random variable defined in [ ]0,∞ ; the MB probability density func-
tion (PDF), ( );f v a , is  

( )
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π
=                        (1) 

where a is a parameter and v denotes the velocity, see [1] [2]. Conversion to the 
physics is done by introducing the variable a, which is defined as  

,kTa
m

=                            (2) 

where m is the mass of the gas molecules, k is the Boltzmann constant and T is 
the thermodynamic temperature. With this change of variable, the MB PDF is  
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where the index p stands for physics. The distribution function (DF), ( );F x a , 
is  
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The average value or mean, µ , is  

( ) 22 ,aaµ =
π

                      (6) 

( ) 2, , 2 ,p

kTm k T
m

µ =
π

                 (7) 

the variance, 2σ , is  
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π
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The rth moment about the origin for the MB distribution is, rµ′ , is  
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where  

( ) 1
0

e d ,t zz t t
∞ − −=Γ ∫                      (12) 

is the gamma function, see [10]. The root-mean-square speed , rmsv , can be ob-
tained from this formula by inserting 2r =   

( ) 3rmsv a a=                        (13) 

( ), , 3 ,rms p

kTv m k T
m

=                  (14) 

see Equations (7-10-16) in [11]. This equation allows us to derive the tempera-
ture once the root-mean-square speed is measured  

21 .
3

rmsv m
T

k
=                        (15) 

The coefficient of variation (CV) is  
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σ
µ

= = −π                    (16) 

which is constant. The first three rth moments about the mean for the MB dis-
tribution, ( )r aµ , are  
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The mode is at  

( ) 2v a a=                        (20) 

( ), , 2 .p

kTv m k T
m

=                     (21) 

An approximate expression for the median can be obtained by a Taylor series 
of the DF around the mode. The approximation formula is  
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which has a percent error, δ , of 0.04%δ ≈  in respect to the numerical value. 
The entropy is  
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where γ  is the Euler-Mascheroni constant, which is defined as  
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see [10] for more details. The coefficient of skewness is  
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and the coefficient of kurtosis is  
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≈
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According to [12], a random number generation can be obtained via inverse 
transform sampling when the distribution function or cumulative distribution 
function, ( )F x , is known: 1) a pseudo number generator gives a random num-
ber R between zero and one; 2) the inverse function ( )1x F R−=  is evaluated; 
and 3) the procedure is repeated for different values of R. In our case, the inverse 
function should be evaluated in a numerical way by solving for v the following 
nonlinear equation  

( ); 0,F v a R− =                       (29) 

( ); , , 0,pF v m k T R− =                    (30) 

where ( )F v  and ( )pF v  are the two DF represented by Equations (4) and (5). 
As a practical example, by inserting in Equation (29) 1a =  and 0.5R = , we 
obtain in a numerical way 1.538v = . 
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3. The Double Truncated Maxwell-Boltzmann Distribution 

Let V be a random variable that is defined in [ ],l uv v ; the double truncated ver-
sion of the Maxwell-Boltzmann PDF, ( ); , ,t l uf v a v v , is  
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and ( )erf x  is the error function, which is defined as  
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π
= ∫                    (34) 

see [10]. The physical meaning of a is still represented by Equation (2); however, 
due to the tendency to obtain complicated expressions, we will omit the double 
notation. The DF, ( ); , ,t l uF v a v v , is  
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The average value ( ), ,t l ua v vµ , is  
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The rth moment about the origin for the double truncated MB distribution is, 
( ), , ,r t l ua v vµ′ ,  
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where ( ),M zµ ν  is the Whittaker M function, see [10]. The root-mean-square 
speed, ( ), , ,rms t l uv a v v , can be obtained from this formula by inserting 2r = , 
and is  
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The variance ( )2 , ,t l ua v vσ  is defined as  
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and has the following explicit form  
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Although the coefficients of skewness and kurtosis for the truncated MB exist, 
they have a complicated expression. 

4. A Laboratory Application 

The temperature as a function of root-mean-square speed for the MB is given by 
Equation (15). In the truncated MB distribution, the temperature can be found 
by solving the following nonlinear equation  

( ), ,, , , , ,rms t l u rms mv k m T v v v=                   (43) 

where ,rms mv  is not a theoretical variable but is the root-mean-square speed 
measured in the laboratory and ,rms tv  is given by Equation (39). The laboratory 
measures of ,rms mv  started with [13], where a , 388 m srms mv =  at 400˚C was 
found for a metallic vapor. In the truncated MB distribution, there are three pa-
rameters that can be measured in the laboratory from a kinematical point of 
view, as follows: the lowest velocity, lv ; the highest velocity, uv ; and the 
root-mean-square speed, ,rms mv . Setting for simplicity 0lv = , we will now ex-
plore the effect of the variation of uv  on the root-mean-square speed; see Fig-
ure 1. The first example of the influence of the upper limit in velocity on the 
temperature is given by potassium gas [14] [15], in which molecular mass is 
6.492429890 × 10−26 kg. In Figure 2, we evaluate in a numerical way the temper-
ature when 0lv =  and uv  is variable in the case of a measured value of ,rms mv .  

The second example is given by diatomic nitrogen, N2, in which molecular 
mass is 4.651737684 × 10−26 kg. In Figure 3, we evaluate the temperature when 

0lv =  and uv  is a variable in the case of a measured value of ,rms mv .  

5. The Jeans Escape 

The standard formula for the escape of molecules from the exosphere is re-
viewed in the framework of the MB distribution. A new formula for the Jeans 
escape is derived in the framework of the truncated MB. 

5.1. The Standard Case 

In the exosphere, a molecule of mass m and velocity ev  is free to escape when  

21 0,
2 e

ex

Mmmv G
R

− =                      (44) 

where G is the Newtonian gravitational constant, M is the mass of the Earth, 

exR R H= +  is the radius of the exosphere, R is the radius of the Earth and H is 
the altitude of the exosphere. The flux of the molecules that are living in the ex-
osphere jΦ  is  

1 ,
4j ex eN µΦ =                        (45) 

where exN  is the number of molecules per unit volume and eµ  is the average 
velocity of escape. In the presence of a given number of molecules per unit vo-
lume, the standard MB distribution in velocities in a unit volume, mf , is  
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Figure 1. The theoretical root-mean-square speed as a function of the 
upper limit in velocity (continuous line) and standard value of the tem-
perature (dotted line) when 340a =  and 0lv = .  

 

 

Figure 2. Temperature as a function of the upper limit in velocity for 
Potassium (continuous line) and standard value of the temperature (dot-
ted line) when 0lv =  and , 589.111511 m srms mv = . 

 

 

Figure 3. Temperature as a function of the upper limit in velocity for di-
atomic nitrogen, N2, (continuous line) and standard value of the temper-
ature (dotted line) when 0lv =  and , 695.9756308 m srms mv = . 
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The average value of escape is defined as  
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In this integral, the following changes are made to the variables  
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2
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where 0v  is the mode as represented by Equation (21). The flux is now  

( ) 01 e
.

2

e
ex e

j

N vλλ −

Φ =
π

+
                  (51) 

For more details see [16] [17] [18] [19]. On adopting the parameters of Table 
1 the Jeans escape flux for hydrogen is  

11 2 13.98 10 molecules m s ,j
− −Φ = × ⋅ ⋅               (52) 

and  
7.78.eλ =                         (53) 

The Jeans escape flux for Earth at 900 KT =  varies between 
11 2 12.7 10 molecules m sj

− −Φ ≈ × ⋅ ⋅ ; see [20] or Figure 1 in [21]. and  
11 2 14 10 molecules m sj

− −Φ ≈ × ⋅ ⋅ , see [22]. Therefore, our choice of parameters is 
compatible with the suggested interval in flux. 

5.2. The Truncated Case 

The average value of escape for a truncated MB distribution, ,e tµ , is  

( )

( )
,
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; , , , , , d
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; , , , , , d
e

t ex l uv
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∫
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             (54) 

This integral can be solved by introducing the change of variable as given by 
Equation (48)  

( ) ( )( )
( ) ( ),

1 e e 1 2
2 ,

2 e 2 e erf erf

u e

l u

u e
e t

l u l u

kT
m

λ λ

λ λ

λ λ
µ

λ λ λ λ

− −

− −

+ − +
= −

− − +π π
   (55) 

where lλ  is the lower value of λ  and uλ  is the upper value of λ . The flux 
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of the molecules that are living the exosphere in the truncated MB, ,j tΦ , is  

( ) ( )( )
( ) ( ),

1 e e 1 2
.

4 e 2 erf 2 erf 4 e

u e

u l

ex u e
j t

u l u l

N kT
m

λ λ

λ λ

λ λ

λ λ λ λ

− −

− −

+ − +
Φ =

+ −π − π
    (56) 

The increasing flux of molecules is outlined when one parameter, lλ , is varia-
ble; see Figure 4. In other words, an increase in lλ  produces an increase in the 
flux of the molecules. The dependence of the flux when two parameters are va-
riable, lλ  and uλ , is reported in Figure 5.  

 
Table 1. Adopted physical parameters for the exosphere. 

Parameter Value  

Rex 6900 km 

T 900 K 

Nex 1011 m−3 

 

 

Figure 4. The flux of molecules as a function of lλ  with 
parameters as in Table 1, 7.78eλ =  and 1000u eλ λ= .  

 

 

Figure 5. The flux of molecules as a function of lλ  

and uλ  with parameters as in Table 1.  
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These Jeans escape fluxes for Earth are compatible with the observed values 
that were reported in Section 5.1. 

6. Conclusion 

This paper derived analytical formulae for the following quantities for a double 
truncated MB distribution: the PDF, the DF, the average value, the rth moment 
about the origin, the root-mean-square speed and the variance. The traditional 
correspondence between root-mean-square speed and temperature is replaced 
by the nonlinear Equation (43). The new formula (56) for the Jeans escape flux 
of molecules from an atmosphere is now a function of the lower and upper 
boundary in velocity. 
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