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Abstract 
The monochromatic absorption coefficient of silicon, inducing the light pe-
netration depth into the base of the solar cell, is used to determine the opti-
mum thickness necessary for the production of a large photocurrent. The ab-
sorption-generation-diffusion and recombination (bulk and surface) pheno-
mena are taken into account in the excess minority carrier continuity equa-
tion. The solution of this equation gives the photocurrent according to ab-
sorption and electronic parameters. Then from the obtained short circuit pho-
tocurrent expression, excess minority carrier back surface recombination ve-
locity is determined, function of the monochromatic absorption coefficient at 
a given wavelength. This latter plotted versus base thickness yields the opti-
mum thickness of an n+-p-p+ solar cell, for each wavelength, which is in the 
range close to the energy band gap of the silicon material. This study provides 
a tool for improvement solar cell manufacture processes, through the ma-
thematical relationship obtained from the thickness limit according to the 
absorption coefficient that allows base width optimization. 
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1. Introduction 

The solar cell (n+-p-p+) or (p+-p-n+) has been widely studied [1] [2] [3] [4] for 
the determination of the phenomenological parameters of minority charge car-
riers in the base [5] which are: lifetime, diffusion length and surface recombina-
tion velocity. The illumination of the solar cell is monochromatic [6] [7] or com-
posite [8] [9] [10], arriving perpendicularly on the front or rear face (bifacial), or 
laterally for the series vertical multi junctions [11]. 

The operating modes of the solar cell are: 
1) The static regime, through the study of the short-circuit photocurrent (quan- 

tum efficiency or incident flux) as a function of the reciprocal absorption coeffi-
cient [3] [12] [13] [14] [15] [16]. 

2) The dynamic frequency regime, by studying the impedance (amplitude and 
phase) [17], or the phenomenological parameters of recombination (Sb, L, D) in 
their complex expressions [18] [19] [20] [21] [22] depending on the modulation 
frequency, leading to Bode and Nyquist representations. 

3) The transient dynamic regime which is obtained for photocurrent, photo-
voltage and diffusion capacitance, as time dependent. The measured time con-
stant is related to life time (τ) and eigen value, which is related to diffusion coef-
ficient, base thickness (H), and surface recombination velocities (at junction and 
back surfaces in the 1D model, and also grain size and grain boundaries recom-
bination in the 3D model) [23]-[30]. 

The analysis of the response of the solar cell whatever the regime poses the 
problem of the contribution of each of its constituent parts (emitter, space charge 
region, base), and as well as the recombination phenomena which occur there 
(bulk and surfaces). Thus certain techniques for determining the recombination 
parameters [31] impose conditions in: 
• Comparing the diffusion length with the thickness of the base of the solar 

cell, and define fields of application [32] (theory of thick or thin base); 
• By putting hypotheses on the back surface recombination velocity (Sb = 0 for 

an ideal Back Surface Field and infinite for an ohmic contact) [28]. 
The choice of the wavelength ranges to be used is also applied [33] to activate 

the different zones. Thus the depth of light penetration [34] imposed by the mo-
nochromatic absorption coefficient, yield to identify the response in static [35] 
or frequency dynamic [36] [37] [38], or transient dynamics [39] associated with 
each of the regions of the solar cell (surface or deep absorption theory). 

In this work, the diffusion equation relative to the density of charge carriers 
photo generated by the monochromatic illumination of a solar cell (n+-p-p+), is 
provided with the conditions imposed on the geometric limits of the base of the 
solar cell. They are surface (x = H), characterized at the junction (Space Charge 
Region at x = 0) and on the back by, respectively, the recombination velocity 
(Sf) and (Sb). The incident illumination on the solar cell with long monochro-
matic wavelengths generates excess minority carriers in the base. It is then plot-
ted as function of base depth of the solar cell maintained in short circuit (large 
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Sf) condition. This representation of the density of photo generated carriers 
clearly shows the extension of SCR [40] [41] [42] [43], and yields to explain the 
short-circuit photocurrent obtained, by the displacement of the maximum den-
sity peak deeply in the base, when the absorption coefficient decreases [43], i.e. 
at long wavelengths [44]. From the expression of the short-circuit photocur-
rent, two expressions of back surface recombination velocity (Sb) of the charge 
carriers are obtained [34] [45]. One is the intrinsic component and the second, 
is monochromatic absorption coefficient dependent traducing the coupling be-
tween (p) and (p+) regions. Using the model of parallel vertical multi-junctions 
[46], leading to an optimum photocurrent, these two expressions of recombina-
tion velocity are compared through a representation as a function of the thick-
ness (H) of the base, and the intercept abscissa leads to the optimum thickness 
(Hopt) [47] [48] [49] [50] [51], for each monochromatic absorption coeffi-
cient. This optimum thickness (Hopt) is represented as a function of the ab-
sorption coefficient and modeled (best fit) and yields to account for the choice 
of the necessary thickness of a solar cell according to the wavelength of the il-
lumination and reduce the use of excess material in the development of the so-
lar cell. 

2. Theory 

The study concerns an n+-p-p+ silicon solar cell illuminated by the front face 
with a monochromatic light, represented by Figure 1 below [52]. 

The solar cell under study consists of: 
• A strongly doped n+ type emitter with phosphorus atoms (1017 to 1019 atom∙cm−3). 

Its thickness varies from 0.5 to 1 µm. The emitter represents the front face 
where the incident light arrives through metal grids which collect the photo 
generated electrical charges. 

• A p-type base lightly doped than the emitter with Boron acceptor atoms (1015 
to 1017 atom∙cm−3). Its thickness varies from 200 to 400 µm where minority car-
riers (electrons) are widely generated, and contribute to improve the phocur-
rent production, and thus justifies the choice of this study 

• A Space Charge Region (SCR) which is located between the emitter and the 
base where there is an intense electric field, built on Helmotz principle, allows 
to separate the photogenereted electron-hole pairs which arrive at the junction. 

 

 
Figure 1. n+-p-p+ type solar cell. 
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• An overdoped (p+) type rear zone with acceptor atoms (1017 to 1019 atom∙cm−3). 
There is an electric field, called Back Surface Field (BSF), resulting from the 
p/p+ junction. It is used to return the photocreated carriers near the rear face, 
towards the emitter-base junction (SCR) and thus increases the collected 
photocurrent. 

Taking into account the phenomena of generation, recombination and diffu-
sion within the illuminated solar cell by the front face by a monochromatic light, 
the excess minority continuity equation in the base under steady state is given by 
the following expression: 

( ) ( ) ( )
2

2

, ,
, 0

x x
D G x

x
λ λ

λ

δ α δ α
α

τ
∂

× − + =
∂

              (1) 

where: 
( ),x λδ α  is the excess minority carrier’s density generated in the base, 
( ),G x λα  is the electron-hole pairs generation rate at depth x in the base un-

der monochromatic illumination. Its expression is given by: 

( ) ( ) ( ), 1 exp .G x R xλ λ λ λ λα α ϕ α= × × − × −              (2) 

λα  is monochromatic absorption coefficient of the silicon material for a wa-
velength λ [53] [54]. 

Rλ  is monochromatic reflection coefficient. 

λϕ  is incident flow of monochromatic light. 
x is absorption depth in the base of the solar cell. 
The electrons diffusion coefficient (D) and diffusion Length (L) in the base are 

related to the lifetime (τ) by Einstein’s relation as: 
2L

D
τ =                             (3) 

The resolution of Equation (1) gives the expression of minority carrier’s den-
sity in the following form: 
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The constants A and B are determined from the boundary conditions. 
1) At the junction emitter-base (x = 0) 

( ) ( )
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∂
= ×
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                  (6) 

fS  represents the charge carrier’s recombination velocity at the junction 
imposed by both the external and internal (shunt resistance) charge and thus 
characterizes the operating point of the solar cell, varying from the open circuit 
to the short circuit condition [27] [54]. 
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2) At the rear face (x = H) 
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bS  represents the minority carrier’s recombination velocity at the back sur-
face. It is the consequence of the electric field created by the p/p+ junction and 
characterizes the high-low junction surface [28] [45] [55] [56]. 

The expression of the photocurrent density is defined by the following rela-
tion: 

( ) ( ) ( )
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The photocurrent density is constant for the large values recombination ve-
locity of excess minority carriers at the junction [10] [29] [45]. 

( )
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The resolution of this equation leads to two solutions of the minority carrier’s 
recombination velocity at the back surface i.e. intrinsic (or electronic) Sb1 and 
Sb2 which depends on the absorption coefficient of monochromatic light for a 
wavelength λ [34] [45] [57]. 
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3. Results and Discussions 
3.1. Minority Carrier’s Density in the Base 

Figure 2 materializes the excess minority carrier’s density profiles as function of 
the depth in the base for different low values of the absorption coefficient. 

The Figure 3 represents the relative density profiles of minority charges car-
riers as a function of the depth in the base for different low values of the absorp-
tion coefficient. 

Figure 2 shows that the low absorption coefficients penetrate deep into the 
base, creating charge carriers far from the junction. These week absorption coef-
ficients give low recombination velocity on the rear face corresponding to a high 
density of charge carriers on the rear face and therefore leading to thick opti-
mum thicknesses to produce a low photocurrent. 

3.2. Photocurrent Density 

Figure 4 illustrates the profiles of the photocurrent density as a function of the  
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Figure 2. Minority carriers charges versus the depth in the base for different absorption 
coefficient low values with Sf = 6 × 106 cm/s, Sb2. 

 

 
Figure 3. Relative density of minority charges carriers versus the depth in the base for 
different absorption coefficients low values with Sf = 6 × 106 cm/s, Sb2. 

 
recombination velocity at the junction for different low values of the absorption 
coefficient. 

We note on Figure 4: 
• Sf less than 2 × 102 cm/s, the photocurrent density is practically zero (open 

circuit situation). 
• Sf between 2 × 102 cm/s and 4 × 104 cm/s, the photocurrent density is in-

creasing. 
• Sf greater than 4 × 104 cm/s, the amplitude of the photocurrent density is 

maximum and constant (short-circuit situation). 
This amplitude increases with increasing absorption coefficient light. 
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3.3. Influence of Diffusion Coefficient (D) on  
Sb2 Recombination Velocity 

Excess minority carrier back surface recombination was studied with diffusion 
coefficient variation [43] [47] [48] [50] [51] [58], while solar cell remained in 
certain external conditions. 

Figure 5, below we represent the profiles of the excess minority carrier recombi-
nation velocity at the rear face (Sb2) as a function of the thickness of the base for 
different values of the diffusion coefficient for a given absorption coefficient (α). 

3.4. Base Depth Optimization 

Figure 6 illustrates the profiles of relative recombination velocities at the rear  
 

 
Figure 4. Photocurrent density versus the recombination velocity at the junction for dif-
ferent absorption coefficients low values with Sb2. 

 

 
Figure 5. Sb2 versus depth in the base for different diffusion coefficient values with α = 
64 cm−1. 
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face as function of the thickness of the base for different absorption coefficient 
values. 

Table 1 below presents the optimum values of the thickness of the base ob-
tained for various low values of the absorption coefficient and plotted on Figure 7. 

The relationship obtained is given as follow: 

( ) 2cmoptH F G Mα α= × + × +                  (12) 

With: 7 22 10 cmF α− −= × ⋅ ; 5 13 10 cmG α− −= × ⋅ ; 0.0241 cmM =  
 

 
Figure 6. Back surface recombination velocity versus base thickness for different low 
values of absorption coefficient (L = 0.01 cm and D = 35 cm2/s). 

 
Table 1. Values of the optimum thickness (Hopt) as a function of the absorption coefficient. 

α (cm−1) 64 39.9 22.6 11.1 6.2 3.5 2 

Hopt (cm) 0.022669 0.023094 0.023458 0.023761 0.023903 0.024004 0.024085 

 

 
Figure 7. Optimum thickness versus absorption coefficient. 
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It is then seen, that long wavelength illumination needs large base depth and 
generates more excess minority charge carriers to be collected. 

Some previous studies, using the same technique for solar cells (horizontal 
junction and vertical junction [51]) placed under different conditions, have 
produced very important results. These results have linked the optimum thick-
ness to the diffusion coefficient that depends on: 

1) the doping rate of the base according to the manufacturing process [30] 
[47] [52]. 

2) applied magnetic field [49]. 
3) temperature and magnetic field [49] [50] for given resonance values 
4) the intensity and flow of irradiation of charged particles [48] 
In the monochromatic illumination conditions of the solar cell [32] [35] the 

recombination velocity in the back surface is dependent on the absorption coef-
ficient which varies greatly (from 2 cm−1 to 105 cm−1). The optimum thickness 
has been correlated with the large absorption coefficient values corresponding to 
short wavelengths, which are poorly absorbed, close to the space charge region 
(SCR) [57]. 

The interest of our study with the large wavelengths generally used to extract 
diffusion length [3] [6] [7] [12] [14] [33] [34], allows a generation of minority 
carriers deeply in the base [24] and therefore justifies determining this thickness 
in these spectral conditions, for optimum efficiency. 

Thus the results obtained in this study giving the optimum thickness, justify 
the choice of long wavelengths (close to energy band gap), for the optimization 
of silicon material in the development of the solar cell. 

4. Conclusions 

This study has shown, the influence of low absorption coefficient values on: 
• The minority charge carriers density function base depth. 
• Photocurrent as a function of the minority carriers recombination velocity at 

the junction, which allowed the establishment of expressions recombination 
velocity on the rear face. 

• Recombination velocity on the rear face, and has led to the determination of 
the optimum base thickness. 

• Optimum base thickness that decreases with wavelength. 
Thus the base optimization technique presented here, taking into account the 

penetration depth, would yield to reduce the amount of material (Si) necessary 
for the manufacture of crystalline solar cells dedicated to a specific lighting ap-
plication and would also reduce the cost of manufacturing and resale price. 

This work, based on mathematical results of determining the minority carri-
er’s recombination velocity at the back surface, will extend to other types of solar 
cells, the possibility of back surface illumination or simultaneous double-face il-
lumination. The external operating conditions of the solar cell, involving tem-
perature variation, will be studied in future works, in modelling and under expe-
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riments. The combination of two to two or three is also envisaged, in particular 
taking into account the frequency modulated illumination that affects minority 
carrier’s diffusion coefficient. 
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