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Abstract 
The two-station positioning system based on time difference and azimuth 
measurement has measurement redundancy. Therefore, not only can a posi-
tioning solution which is completely independent of the baseline length be-
tween two stations be derived, but also the baseline length can be solved as an 
unknown quantity. These findings not only enhance the performance of the 
two-station positioning system, but also provide a design basis for the con-
struction of a self-organizing dynamic intelligent positioning system. 
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1. Introduction 

The direction-finding system for positioning uses multiple detection stations at 
different positions to detect the same radiation source, and determines the posi-
tion of the radiation source through the crossing of the beam [1] [2]. For real 
targets, in general, the change of direction angle is slow and the range is small, 
which is one of the reliable parameters for detecting radiation sources. Especially 
in the modern dense complex signal environment, the direction parameter al-
most becomes a reliable radiation source parameter. In addition, the time un-
iformity between the detection platforms is less required when the orientation 
angle is used. Because of its simple structure, easy implementation and low cost, 
the direction-finding system has been widely used. 

However, the main disadvantage of the direction-finding method lies in the 
large positioning error. As an improvement, a joint location method of azimuth 
and time difference is proposed. The most commonly used method is the joint 
positioning method based on azimuth and time difference measurement for two 
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stations [3] [4] [5]. It realizes single positioning through two stations and com-
bines the advantages of simple equipment of direction finding system and high 
precision of time difference positioning. It avoids the disadvantages of low ac-
curacy of direction finding, large number of time difference positioning plat-
forms and high requirement on time synchronization. 

In terms of the construction mode, the joint positioning method based on the 
measurement of azimuth and time difference is to increase the time difference 
measurement on the basis of the two-station direction-finding method, so it has 
the redundancy of measurement in fact. Based on this redundancy, a two-station 
passive localization solution independent of the baseline length is given in a 
fairly simple mathematical way. At the same time, the formula of calculating the 
baseline length between two stations based on angle and time difference is also 
given. The former result shows that the dual-station positioning system of mixed 
measurement has dynamic expansion, while the latter result means that the dual- 
station positioning system of mixed measurement has self-restraint. 

Dual station passive location without baseline may be a new concept proposed 
by the authors. The positioning solution of the existing multi-station positioning 
system is directly related to the baseline length, which reflects in the physical 
level that the distance between stations must be determined when the stations 
are deployed. The positioning method without baseline can further enhance the 
engineering practicability of the passive positioning of two stations. A position-
ing system can both be independent of the length of the baseline and at the same 
time self-determine the length of the baseline. This characteristic will undoub-
tedly provide a mathematical basis for constructing a dynamic intelligent loca-
tion system that can organize the whole detection process by itself. 

2. Derivation 

Figure 1 shows the two-station positioning system based on the mixed mea-
surement method of azimuth and time difference using mixed coordinates. As-
sume the coordinate positions of the two receiving stations are ( ),a aA x y  and 
( ),b bB x y  respectively, the target radiation source is located at ( ),T x y , and 

the baseline length between the two stations is d.  
 

 
Figure 1. Geometric description of double station positioning system. 
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Among them, the intersection angle 0 1 2180α α α= − −  between the radial 
distance from the target to the two stations is not an independent parameter, but 
only a transitional parameter for mathematical derivation. Note that Figure 1 
does not explicitly specify the origin of the coordinate system. 

2.1. Target Position in Polar Coordinates 

In many cases, direct mathematical analysis using polar coordinate systems will 
yield simpler mathematical expressions. At this point, if the coordinate origin is 
set at site A, i.e.: 0ax = , 0ay = , the derivation result will be more concise. 
According to the sine theorem 

1

2 0sin sin
r d
α α

=                        (1) 

2

1 0sin sin
r d
α α

=                        (2) 

where, ir  is the radial distance; iα  the target azimuth angle of each station 
measured against the interstation baseline ( )1,2i = . 

By organizing, the following can be obtained 
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1
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sin
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Further based on the time difference measurement, there are 

1 2cr v t r r∆ = ∆ = −                       (5) 

where: cv  is the speed of light; t∆  the time difference. 
If Equations (3) and (4) are substituted into Equation (5), we can get 

( )2 1
0

sin sin
sinc

dv t α α
α

∆ = −                   (6) 

Using the results of Equation (1) again, we can get 

( )1
2 1

2

sin sin
sinc

rv t α α
α

∆ = −                   (7) 

From this, a ranging measurement formula is obtained, which is only related 
to the azimuth angle and time difference, but independent of the baseline length 

2
1

2 1

sin
sin sin

cv t
r

α
α α
∆

=
−

.                       (8) 

2.2. The Target Position in Cartesian Coordinates 

According to the traditional mathematical analysis method, the equations are 
usually listed according to the positioning conditions. At this point, without loss 
of generality, let site A is not the origin of coordinates, namely: 0ax ≠ , 0ay ≠ . 
According to the direction-finding method, there are 
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1tg a

a

y y
x x

α
−

=
−

                         (9) 

According to the measurement method of time difference: 

( ) ( ) ( ) ( )2 2 2 2
c a a b bv t x x y y x x y y∆ = − + − − − + −         (10) 

A solution independent of the baseline length can also be obtained by the joint 
solution of the equation. However, the existing analysis results have shown that 
[3], it is difficult to obtain the display solution directly in the Cartesian coordi-
nate system, and on the other hand, there will be the problem of positioning 
ambiguity. 

In fact, if coordinate transformation is carried out on the derivation result of 
polar coordinate system, the linear display solution can be obtained, and the 
general expression is 

1 2
1 1

2 1

cos sin
cos

sin sin
c

a
v t

x x r
α α

α
α α
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− = =

−
              (11) 
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v t
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α α

α
α α

∆
− = =

−
.               (12) 

2.3. Baseline Length between Two Stations 

Another feature of the two-station location based on azimuth and time differ-
ence is that the baseline length between two stations can also be taken as an un-
known quantity and can be solved based only on the measurement of angle and 
time difference. 

Based on the above derivation results, the baseline length between the two sta-
tions can be solved by using Equation (6)  

( )1 2

2 1

sin 180

sin sin
cv t

d
α α

α α

∆ − −
=

−



.                  (13) 

2.4. The Characteristics of Solution 

In fact, the linear display solution derived in this paper is universal and is not a 
particular solution that can only be used for localization without baseline. The 
obtained solution not only shows that the dual-station positioning system can be 
applied without baseline, but also can be used directly in the cases where the 
baseline length has been determined. In addition, compared with the existing 
research results [3] [4] [5], the results obtained in this paper are obviously more 
concise and therefore more applicable. 

If you look at the solution equation listed in terms of the definite solution 
condition in the cartesian coordinate system, you can see that it does not actual-
ly contain the baseline length, which means that the characteristic of no baseline 
has been implied in the process of solving, but people have not paid attention to 
it before. 

Different from the existing two-station positioning model, the mathematical 
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solution derived from the path difference positioning condition based on the 
polar coordinate system in this paper will diverge when the two base angles of 
the positioning triangle are the same. This mathematical property may not be 
useful for engineering applications. It may be a future research task whether we 
can deduce the mathematical expression without divergence. 

3. Simulation Verification 

By specifying the baseline length d and the radial distance 1r  at site A, and con-
sidering the azimuth 1α  at site A as a continuous variation, the remaining edge 
and angle parameters of the positioning triangle can be determined. This in-
cludes the azimuth 2α  and radial distance 2r  at site B. 

On this basis, the path difference between the two stations can be obtained 
from the calculated radial distance 2r  and the specified radial distance 1r , and 
then the calculated path difference can be used to replace the path difference ac-
tually obtained from the time difference measurement. Finally, the calculated 
value of the radial distance is given by the two-station ranging formula 

( )1 2 2
1

2 1

sin
sin sin

c r r
r

α
α α
−

=
−

                      (14) 

where, superscript c represents the calculated value of the radial distance at site 
A. Actually 2r  and 2α  are also calculated, but for the sake of simplicity, it's 
not labeled with superscript c. 

The relative calculation error can be obtained by comparing the calculated 
value with the theoretical value of the initially specified radial distance 

1 1

1

100
c

r

r r

r
ε

−
= ∗                        (15) 

Figure 2 shows the relative calculation error curve when the specified radial 
distance 1r  is 100 km and the baseline length d is 10 km and the azimuth angle 

1α  changes continuously between 0 and 90 degrees. The simulation verification 
results show that the relative calculation error does not change significantly 
when taking different baselines. Therefore, Figure 2 only schematically shows a 
curve. 

The correctness of the calculation formula of the baseline length can also be 
verified in basically the same way. In this case, the theoretical value of the speci-
fied baseline length is compared with the calculated value 

100
c

d

d d

d
ε

−
= ∗                        (16) 

where: 

( ) ( )1 2 1 2

2 1

sin
sin sin

c r r
d

α α
α α

− +
=

−
                   (17) 

It must be noted in the simulation that for short baselines, when the azimuth 
at station A is acute, the azimuth at station B should be obtuse. 
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Figure 2. Relative calculation error curve. 

4. Error Analysis 

The total differential method is used to analyze the relative ranging error caused 
by the measurement error of time difference and angle. When the errors of each 
observation amount are zero mean, independent from each other, and the stan-
dard deviation is tσ∆  and ασ , the relative ranging error formula is 

1 1 1 1

1 1 1 2

d 1
t

r r r r
r r t α ασ σ σ

α α∆

 ∂ ∂ ∂
= + +  ∂∆ ∂ ∂ 

              (18) 

where, tσ∆  and ασ  are respectively the root mean square value of the mea-
surement error of time difference and azimuth angle. 

The partial derivatives of radial distance with respect to each variable are 
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4.1. The Effect of Baseline Length on Positioning Accuracy 

Treat the azimuth 1α  at station A as a continuous change, Figure 3 shows the 
relative ranging error at different baseline lengths. Although the positioning 
formula does not include the baseline length, the positioning accuracy is clearly 
proportional to the baseline length. And the calculation shows that when the 
azimuth approaches zero, that is, when it approaches the direction of the base-
line between the two stations, the singularity will appear. From the mathematical  
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Figure 3. Relative ranging errors of different baseline lengths. 

 
explanation, this is because in order to satisfy the sum of the interior angles of 
the triangle is equal to 180 degrees, when the azimuth of station A approaches 0 
degrees, the azimuth of station B will have to approach 180 degrees. So the de-
nominator of the error formula is going to zero. 

For the same reason, unless the baseline is fairly long, as the azimuth of site A 
approaches 90 degrees, the azimuth of site B will follow as it approaches 90 de-
grees, so that the denominator of the error formula will approach 0, resulting in 
divergence. However, by broadening the detection range, a shorter baseline can 
also meet the 5%R technical requirement. For example, in an area with an azi-
muth of about 20 degrees or more, detection can be performed using a baseline 
of only 3 kilometers. 

The root mean square value of measurement error of each variable used in 
error analysis is: 100 nstσ∆ = , 0.5 180ασ = π  . Specify the radial distance: 

1 300 kmr = . 

4.2. The Influence of Direction Finding Accuracy on Positioning  
Accuracy 

Treat the azimuth 1α  at station A as a continuous change, Figure 4 shows the 
relative ranging error at different direction-finding accuracy. Obviously, the po-
sitioning accuracy is directly proportional to the accuracy of the measurement 
error RMS of direction-finding. 

Divergence occurs at 90 degrees for the same reason as before. The RMS value 
of measurement error used in error analysis is: 100 nstσ∆ = . Specify the radial 
distance: 1 300 kmr = , 30 kmd = . 

4.3. The Influence of Intersection Angle on Positioning Accuracy 

Figure 5 shows the relative ranging error at different intersection angles. Diver-
gence will occur when the base angles of the positioning triangle are the same. 

During the simulation calculation, the azimuth at site B is calculated from the 
azimuth at site A and the specified intersection angle using the relationship of 
the sum of the angles inside the triangle. 
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Figure 4. Relative ranging errors with different direction 
finding accuracy. 

 

 
Figure 5. Influence of intersection angle on relative rang-
ing error. 

 
The RMS value of measurement error of each variable used in error analysis is: 

100 nstσ∆ = , 0.5 180ασ = π  . Specify the radial distance: 1 300 kmr = , 
30 kmd = . 

4.4. The Effective Area That Can Be Co-Located 

The calculation shows that the relative ranging error of the positioning system is 
basically independent of the measurement accuracy of time difference.  

In fact, starting directly from the linear solution, the advantage of using diffe-
rential analysis is that you can directly observe the ranging errors at different 
target arrival angles [1]-[6]. Different from the pure angle dual station detection 
[7], the ranging error of dual-station positioning system based on the hybrid 
measurement of time difference and angle does not increase with the increase of 
target arrival angle, but is just the opposite.  

According to the existing mathematical model, using a long baseline can avoid 
divergence, and it is possible to cover the whole area. In cases where short base-
lines have to be used, detection operation must be avoided at the midperpendi-
cular between stations and at the vertical line at the site location. 
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5. Conclusions 

Based on the physical measurement, the main reason for obtaining the position-
ing solution without baseline is that the positioning conditions of the position-
ing system are actually redundant, which can be described as taking advantage of 
the redundant measurements of time difference or angle to replace the mea-
surement of baseline length. 

The research results of this paper provide a design basis for the dual-station 
passive positioning system in real-time maneuvering operation. In the case that 
the positioning solution is related to the baseline, a detection system that re-
quires a long baseline cannot be operated flexibly without the auxiliary baseline 
measurement system. When the auxiliary measurement system is needed, it is 
often the time when the auxiliary measurement system fails [8]. The methods 
that do not require baseline measurements provide a more advantageous solu-
tion for their own real-time maneuvering detection platforms, such as airborne 
systems. 

In the actual detection process, the detection accuracy of the two-station posi-
tioning system is closely related to the relative position between the detection 
station and the target. For a two-station positioning system, the available detec-
tion area is limited. One way to improve location accuracy is to add probe sites 
and extend probe areas. In fact, another method available is to follow the target 
and adjust the position of the probe station in real time. This introduces a con-
cept of constructing intelligent dynamic positioning system. The research results 
of this paper also provide a design basis for intelligent positioning systems that 
need self-organizing capabilities [9]. Such an intelligent positioning system will 
be able to operate on its own without the technical support of other positioning 
systems, such as satellite positioning systems. In the real-time detection process, 
if the signal of the detected target is relatively stable, the two detection stations 
can simultaneously detect the relative position between the two stations while 
detecting the target position. With the help of a third party radiation source, the 
detection system can realize self-detection of the relative positions between the 
detection sites. 
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