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Abstract 
This research work considers the inequalities: (Ieq). The researchers attempt 
to find an answer as to what are the best possible parameters ,α β  that (Ieq) 
can be hold? The main tool is the optimization of some suitable functions 
that we seek to find out. 
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1. Introduction 

In this paper we consider the following inequalities: 

( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 , , , 1 ,pA a b H a b J a b A a b H a bα α β β+ − ≤ ≤ + −  (Inq) (1) 
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Our motivation of this study is to find out such inequality that arises in the 
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search for determination of a point of reference about which some function of 
variants would be minimum or maximum. Since very early times, people have 
been interested in the problem of choosing the best single quantity, which could 
summarize the whole information contained in a number of observations (mea-
surements). Moreover, the theory of means has its roots in the work of the Py-
thagorean who introduced the harmonic, geometric, and arithmetic means. Pe-
ter et al. [1] introduced seven other means and gave the well-known elegant 
geometric proof of the celebrated inequalities among the harmonic, geometric, 
and arithmetic means. The strong relations and introduction of the theory of 
means with the theories of inequalities, function equations, probability and sta-
tistics add greatly to its importance. This single element is usually called a means 
or averages. The term “means” or “average” (middle value) has for a long time 
been used in all branches of human activity. The main objective of this research 
work is to present optimization of inequality in the one-parameter, arithmetic 
and harmonic means. 

The basic function of mean value is to represent a given set of many values by 
some single value. In [2], the author was the first time introduced power means 
defined the meaning of the term “representation” as determination of appoint of 
reference about which some function of variants would be minimum. More re-
cently the means were the subject of research and study whereas essential areas 
in several applications such as: physics, economics, electrostatics, heat conduc-
tion, medicine and even in meteorology. It can be observed that the power mean 

( ),pM a b  of order p can be rewritten as (see as [3])  
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If we denote by 

( ) ( ) ( ) ( )1 2, , , and , ,
2
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the arithmetic means, geometric means and harmonic means of two positive 
numbers a and b, respectively. In addition, the logarithmic and identric means 
of two positive real numbers a and b defined by [4]  

( ) log log,
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Several authors investigated and developed a relationship of optimal inequali-
ties between the various means.  

The well-known inequality that:  
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and all inequalities are strict for a b≠ . 
In [4], researchers studied what are the best possible parameters 1 2 1, ,α α β  

and 2β  by two theorems: 
Theorem (1) the double inequality: - 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, 1 , ( , ) , 1 ,A a b H a b L a b A a b H a bα α β β+ − ≤ ≤ + −  

holds for all , 0a b >  if and only if 1 0α ≤  and 1
2
3

β ≥  when proved that the 

parameters 1 0α ≤  and 1
2
3

β ≥  cannot be improved.  

Theorem (2) the double inequality: - 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2, 1 , ( , ) , 1 ,A a b H a b L a b A a b H a bα α β β+ − ≤ ≤ + −  

holds for all , 0a b >  if and only if 2
2
e

α ≤  and 2
5
6

β ≥  when proved that the 

parameters 2
2
e

α ≤  and 2
5
6

β ≥  cannot be improved.  

Interestingly in [1] B. Long et al., proved that the following results: ( )0 ,M a b  
and ( )3 ,tlM a b  are the best possible lower and upper power bounds for the ge-
neralized logarithmic mean ( ),tL a b  for any fixed 0t >  the double inequali-
ties 

( ) ( ) ( )0 3, , ,t tlM a b L a b M a b< <  

holds for all , 0a b >  with a b≠ , and they found ( )2 ,L a b  the optimal lower 
generalized logarithmic means bound for the identric means ( ),I a b  for in-
equalities ( ) ( )2 , ,L a b I a b<  holds for all a, b are positive numbers with a b≠ . 
Pursuing another line of investigation, in [5] the authors showed the sharp up-
per and lower bounds for the Neuman-sandor ( ),NS a b  [6] in terms of the 
liner convex combination of the logarithmic means ( ),L a b  and second seiffert 
means ( ),T a b  [7] of two positive numbers a and b, respectively for the double 
inequalities 

( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 , , , 1 ,L a b T a b NS a b L a b T a bα α β β+ − ≤ ≤ + −  

holds for all , 0a b >  with a b≠  is true if and only if 1
4

α ≥  and 

( )1 4log 1 2lβ  ≤ − +π  . 

In [8] have improvements and refinements by H.Z. Xu et al., for they found 
several sharp upper and lower bounds for the Sandor-yang means ( ),QAR a b  
and ( ),AQR a b  [9] [10] in terms of combinations of the arithmetic means 
( ),A a b  and the contra-harmonic mean ( ),C a b  [11] [12]. 
The authors have to proven our main results several lemmas find the best 

possible parameters ( ), 1, 2,3, 4i i iα β ∈ =  such that the double inequalities 
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holds for all , 0a b >  with a b≠ . 

2. Main Results 

Our main results are set in the following theorem: 
Theorem 1  

1) Assume 0, 0a b> >  with 1a
b
>  then, 

a) if ( )11,p p∈ −  where 1
9 73 0

2
p − +
= < . There exist α∗  and α∗  reals 

such that, if α α α β∗
∗ < < <  then the double inequality (Inq) holds. 

b) if 0p = . If 0α <  and 3 2
2

β< <  then the double inequality (Inq) 

holds. 

c) if 1p = − . If 0α <  and 
1
3

β >  then the double inequality (Inq) holds. 

2) If a b=  then then the double inequality (Inq) holds for all α  and β  
reals.  

Proof. 1) Assuming 0, 0a b> >  with 1a
b
>  

First case a): we have  
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We start by showing that  
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Because 1p > − , we have ( )( )( )2 1 1 1 0pt p t+ + − >  therefore the study 
amounts to proving that 

( ) ( )( ) ( ) ( )( )
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Let  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

2

1
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We have to prove that the function f is negative under certain conditions on 
the parameters ,α β  and p, a.e: ( ) 0f t ≤ . So  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

2
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Because ( )1 0f = , it will suffice to show that f is decreasing for all 1t > . 
Which amounts to studying the sign of the derivative f ′  of f. We have: 

( ) ( )( ) ( )
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Because ( )1 0f ′ = , it will suffice to show that f ′  is decreasing for all 1t > . 
Which amounts to studying the sign of the derivative 

''
f of f ′ . We have: 
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Likewise we find that ( )1 0f ′′ =  so it will suffice to show that f ′′  is de-
creasing for all 1t > . Which amounts to studying the sign of the derivative f ′′′  
of f ′′ . We have: 

( ) ( ) ( ) ( )( )
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and we get 
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( ) ( ) ( )[ ]1 6 1 2 1 2 .f bp p pb p pα′′′ = + − + +  

Since ( )11,p p∈ −  where 1
9 73 0

2
p − +
= <  so, we will have the following 

equivalence 

( ) ( )[ ]
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Now, we can put 

( ) ( ) ( ) ( )3 2 3
1 ,p pf t t At Bt C f t t f t− −′′′ ′′′= + + ⇔ =  

with  

( ) ( ) ( )( )2 21 2 2 2 1A bp p p bp p pα= + + − + +  

( ) ( ) ( ) ( ) ( ) ( )( )2 2 22 1 1 4 1 1 1 2 1 1B bp p p bp p p bp p pα α= + − + − + − − − +  

then, we obtain 

( )1 02 0 0
2

Bf t At B t
A

−′ = + = ⇔ = >  

We must have 

( )( )
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2 12
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11 2

bp p p pA p p
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α α
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and  

( )3 1
20, for , with 1,
1

pB p p
p

α α+
> < = ∈ −

+
 

such that 

( )0 4 1
21 , for , with 1, ,

2 3
B pt t p p
A

α α− +
= < < > = ∈ −  

so that 1f  is decreasing for 1t >  and therefore, we obtain that ( ) 0f t′′′ <  
because ( )1 0f ′′′ ≤ . By the same process we find that ( )f t′′  then that ( )f t′  
and ( )f t . 

Finally in this part for ( )11,p p∈ − , we obtain that there exists 
( )1 2 4max , ,α α α α∗ =  and 3α  such that for all ( )3,α α α∗∈  we have: 

( )
( )

( )( )
1 1

21 .
2 1

p p

p p

p a ba b ab
a b p a b

α α
+ +−+   + − ≤   + + −   

 

To show the second inequality in this first case, we proceed by similar calcula-
tions. This is done by considering the function g defined by 

( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

2 1

2

1 2 2 1 4 1 1 2

1 1

2 1 4 1 1 2 1 2

p P

p

g t b p bp t b p b p bp t
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b p b p bp t b p bp

β β β

β β

β β β

+ += + − + + + − + −      
+ + + − +      
+ − + − − + + + − + +      

 

So, after all the calculations, we get that for ( )11,p p∈ − , there exists 
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( )1 2 3 4 3 3
2max , , ,
1

p
p

α β β β β β α∗ +
= = = =

+
 such that ( ) 0g t ≥ , for all β α∗> . 

a.e: 

( )
( )( ) ( )

1 1
21

21

p p

p p

p a b a b ab
a bp a b

β β
+ +− +   ≤ + −   ++ −    

 

Second case b):  
With similar calculations and by the same idea we obtain that for all 0α <  

and 3 ,2
2

β  ∈ 
 

 then,  

( ) ( )2 21 1 .
2 ln ln 2

a b ab a b a b ab
a b a b a b

α α β β+ − +       + − ≤ ≤ + −       + − +       
 

Third case c):  
By the method above and similar calculations, we also find that for all 0α <  

and 
1
3

β >  then, 

( ) ( ) ( )
ln ln2 21 1 .

2 2
ab a ba b ab a b ab

a b a b a b
α α β β

−+ +       + − ≤ ≤ + −       + − +       
 

2) Assuming a b= . 
We easily get: 

( ) ( ) ( ) ( ), 1 , ,pA a b H a b a J a bα α+ − = =  

( ) ( ) ( ) ( ), 1 , , ,pA a b H a b a J a bβ β+ − = =  

which shows that the double inequality holds for all of the parameters the α  
and β .  

3. Conclusions 

In our work, we studied the following double inequality 

( ) ( ) ( ) ( ) ( ) ( ), 1 , ( , ) , 1 ,pA a b H a b J a b A a b H a bα α β β+ − ≤ ≤ + −  

by searching the best possible parameters such that (Inq) can be held. 
Firstly, we have inserted 

( ) ( ) ( ) ( ) ( ), 1 , ,pf t A a b H a b J a bα α= + − −  

Without loss of generality, we have assumed that a b>  and let 1at
b

= >  to 

determine the condition for α  and β  to become ( ) 0f t ≤ . 

Secondly, have inserted 

( ) ( ) ( ) ( ) ( ), 1 , ,pg t A a b H a b J a bβ β= + − −  

Without loss of generality, we assume that a b>  and let 1at
b

= >  to de-
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termine the condition for α  and β  to become ( ) 0g t ≥ .  
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