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Abstract 
An algorithm is presented for estimating the expected number of customers 
for a class of Markovian queueing systems. The class is characterized by those 
systems whose transition matrix for the underlying customer arrival and de-
parture process is finite, irreducible, and aperiodic. The algorithm does not 
depend on a closed-form solution for the limiting behavior of the queue. The 
expected number of customers is frequently used as a measure of effective-
ness to describe the behavior of the system or to optimize its design or con-
trol. To calculate such a quantity one must usually obtain a closed-form ex-
pression for the steady-state probabilities. Unfortunately, of the myriad of 
Markovian queueing systems, only a few have known closed-form expressions 
for their steady-state probabilities. The most well-known, using Kendall’s no-
tation, are the M/M/1 and the M/M/c system. The algorithm described below 
estimates the expected number in the system under steady-state without a 
need for closed form steady-state probabilities. All that is needed is the tran-
sition matrix for the underlying Markov chain. 
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1. Preliminaries 

Consider a Markovian queueing system in which the customer arrival and de-
parture process is described by a finite, irreducible, and aperiodic Markov Chain 
{ }: 0,1,nX n = �  whose N N×  transition matrix is given by ( )ijA a= , where  

{ }1ij n na pr X j X i+= = = .  
It is well known that for a finite, irreducible, aperiodic Markov chain, there 
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exists a unique stationary probability vector ( )0 0, ,V v v= �  such that VA V=  [1]. 
Let L = Expected number of customers in the steady state system. The ex-

pected number of customers is frequently used as a measure of effectiveness to 
describe the behavior of the system or to optimize its design or control [2] [3] 
[4], and [5]. Now define the following 

( )0,1, , 1 tF N= −�  

( ) ( )( ) ( )
0 1, ,

tz z zZ
NA F w w W−= =�  

( ) ( ){ }min : 0,1, , 1z z
ii

w w i N= = −�  
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2) Let ( ) ( )( )0 1, ,
tz zz

NA p p −= � , where ( )z
ip  is the ( )1 thi +  row of zA . Since we 

are concerned with finite, irreducible, aperiodic Markov chains, we have 

 ( )lim z
z ip V→∞ =  

For all i. It follows that 

 ( ) ( )lim limz z
n i z iw p F VF L→∞ →∞= = =  

For all i. Let ( )ns  be the sequence formed by combining the N sequences  
( )( ) ( )( )0 1, ,z z

Nw w −�  according to the ascendant order of z. Clearly,  

lim nz
s L

→∞
=  

Since ( )( )zw  and ( )( )zw  are both subsequence of ( )ns , it is clear that  
( ) ( )lim limz z

z z
w w L

→∞ →∞
= =  

It therefore follows that 
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lim lim .
2 2

ˆ
2

z zz z
z z z

z z

w ww w L L LL →∞ →∞

→∞ →∞

++ +
= = = =  

2. Algorithm for Estimating the Expected Number of  
Customers 

The relationship between L̂  and L as stated in Theorem 1 can be used to de-
velop an iterative algorithm for estimating the expected number of customers 
from the system’s transition matrix. 

Definition 1 
The absolute error of an estimation is the absolute value of the difference be-

tween the estimation and the true value. When the true value is unknown, the 
largest absolute error that may occur is called the maximal absolute error. 

Definition 2 
The relative error of an estimation is the ratio of the absolute error of the es-

timation to the true value. When the true value is unknown, the largest relative 
error that may occur is called the maximal relative error.  

The algorithm can now be stated as follows: 
Step 1. Determine the allowable maximal absolute error a. 
Step 2. Set 0z =  and ( ) ( )0 0, , tW N l= −�  . 
Step 3. Compute ( ) ( )1z zW AW+ = . 

Step 4. If 
( ) ( )( )1 1

2

z zw w
a

+ +−
≤ , go to step 5; otherwise, increase z by 1 then go 

to step 3.  

Step 5. The desired accuracy has been reached. Let ( )
( ) ( )( )1 1

1

2
ˆ

z z
z

w
L

w
L

+ +

+
+

= = . 

Terminate 
Theorem 2 Let ( )ˆ nL  be the estimation of the expected number of customers 

obtained from the Algorithm above. Using an allowable maximal absolute error 
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of a, we then have that 
1) The maximal absolute error of ( )ˆ nL  is a, 

2) The maximal relative of ( )ˆ nL  is 
( )( )ˆ n

a
L a−

 

Proof. 1) Step 4 of the algorithm implies 
( ) ( )( )
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≤ . Thus, by Theorem 
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− ≤ ≤ . Hence, the maximal absolute error of ( )nL  is a.  

2) The maximal relative error occurs when ( )ˆ nL aL= − . Thus, the maximal 
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The allowable error associated with the algorithm above is specified in terms 
of the maximal absolute error, and is thus independent of the magnitude of the 
expected number of customers. If one needs to associate the error of the estima-
tion with the magnitude of the expected number of customers, then the algo-
rithm may be modified as follows: 

Step 1. Determine the allowable maximal relative error r.  
Step 2. Set 0z =  and ( ) ( )0 0, , tW N l= −�    
Step 3. Compute ( ) ( )1z zW AW+ =   

Step 4. If 
( ) ( )( ) ( )

( )

1 1 1

2

ˆ

1

z z zw w r
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L
+ + +−

≤
+

, go to step 5; otherwise, increase z by 1 

then go to step 3. 

Step 5. The desired accuracy has been reached. Let ( )
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1

2
ˆ

z z
z

w
L

w
L

+ +

+
+

= = . 

Terminate. 

Theorem 3 let ( )ˆ nL  be the estimation of the expected number of customers 
obtained from the modified algorithm above, using an allowable maximal rela-
tive error of r, then 

1) The maximal absolute error of the ( )ˆ nL  is 
( )

( )1

ˆ nrL
r+

 

2) The maximal relative error of ( )ˆ nL  is r  

Proof. 1) Step 4 of the modified algorithm 2 implies 
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imal relative error 
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Thus, the initial algorithm will have a maximal absolute error of a, and a 

maximal relative error of 
( )( )ˆ n

a
L a−

. The modified algorithm will have a max-

imal absolute error of 
( )

( )1

ˆ nrL
r+

 and a maximal relative error of r. 

3. Numerical Example (Table 1) 

Consider the M/M/c/c queueing system with finite waiting space. Assume that 
customers arrive according to a Poisson process with rate λ, and that service 
times are exponential with mean 1/µ. Although the process that describe the 
number of customers in the system at time is a process that take place in con-
tinues time, several relevant Markov chains may be defined for this system in 
discrete time. For example, consider the Markov chain whose transition is given 
by 
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where λ and μ have been scaled such that A is a legitimate transition matrix, a is 
set at 0.01, and L is computed using the following formulas for the M/M/c/c 
(Erlang B) system [6].  

Let  
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then ( ),q
rL C c r

c r
=

−
 and ( )1q cL L r p= + −  where qL  is the expected num- 

ber in the queue.  
 
Table 1. M/M/c/c system. 

Arrival rate No. of servers Service rate 
Expected number of customers 

L Algorithm 

0.2 3 0.1 2.4678 2.4694 

0.2 4 0.1 1.9834 1.9842 

0.2 5 0.1 1.9664 1.9683 

0.2 3 0.08 5.3058 5.3076 

0.2 4 0.08 2.6583 2.6596 

0.2 5 0.08 2.4560 2.4579 

0.15 2 0.1 2.9630 2.9644 

0.15 3 0.1 1.5353 1.5373 

0.15 4 0.1 1.4728 1.4741 

0.3 4 0.1 3.9100 3.9115 

0.3 5 0.1 3.0241 3.0253 

0.3 6 0.1 2.9427 2.9442 

 
These computations were made on a 64-bit Intel CoreTM m3-6Y30 CPU @ 

0.90 GHZ laptop computer. 
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