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Abstract 
A new example of 2 2× -matrix quasi-exactly solvable (QES) Hamiltonian 
which is associated to a Jacobi elliptic potential is constructed. We compute 
algebraically three necessary and sufficient conditions with the QES analytic 
method for the Jacobi Hamiltonian to have a finite dimensional invariant 
vector space. The matrix Jacobi Hamiltonian is called quasi-exactly solvable. 
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1. Introduction 

In quantum mechanics, the goal consists in computing the eigenvalues of linear 
Hamiltonian. In most cases, the spectrum of the Hamiltonian cannot be calcu-
lated algebraically. However, in few cases, some of which have the eigenvalues 
found explicitly. This type of Hamiltonian is called exactly solvable. 

In the last few years, a new class of Hamiltonians which is intermediate to ex-
actly solvable and non-solvable Hamiltonians has been discovered: the qua-
si-exactly solvable operators, for which a finite part of the eigenvalues can be 
computed algebraically. Many examples of QES Hamiltonians are studied in 
[1]-[13]. 

In the Refs. [10] [11] [12] [13], the QES analytic method is applied in order to 
establish a set of three necessary and sufficient conditions for Hamiltonians to 
have finite dimensional invariant vector spaces. 

In this paper, we apply the same QES analytic method established in the Refs. 
[10] [11] [12] [13] in order to construct a 2 2× -matrix QES Hamiltonian which 
is associated to a Jacobi elliptic potential. 

This paper is organized as follows: in Section 2, based on [10] [11] [12] [13], 
we briefly recall the QES analytic method used to investigate the quasi-exact 
solvability of 2 2× -matrix operators. In Section 3, along the same lines as in the 
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[10] [11] [12] [13], we apply the QES analytic method in order to construct a 
new 2 2× -matrix QES Hamiltonian depending on Jacobi elliptic potential. We 
will consider two values of the constant δ : the case 1δ =  and the case 2δ = . 
The interest results will be computed. 

2. QES Analytic Method 

Taking account to the same lines as in [10] [11] [12] [13], we recall a general 
method to check whether a 2 2× -matrix differential operator H (in a variable x) 
preserves a vector space whose components are polynomials.  

Consider the 2 2× -matrix Hamiltonian of the following form [10] [11] [12] 
[13]: 

( )

( )

2

112

2

222

d
d

d
d

V x x
xH

x V x
x

δ

δ ′

 
− + 
 =
 

− + 
 

                 (1) 

where  

( ) ( )
( )

11

22

V x x
V x

x V x

δ

δ ′

 
=   
 

, 0,1,2δ = , 1δ δ′ = − , ( )12V x xδ= , ( )21V x xδ ′=  

( )V x  is the potential associated to the Hamiltonian H given by this above 
relation (1). 

A gauge transformation and a change of variable on the Hamiltonian H lead 
to the following Hamiltonian called the gauge one 

1H Hφ φ−=                            (2) 

which can be written in his components as follows 

1 0 1H H H H−= + +    .                       (3) 

More precisely, the diagonal components of 1H  are differential operators 
and the off-diagonal components ( )1 12

H  and ( )1 21
H  are respectively propor-

tional to xδ  and xδ ′ . The operators 0H  and 1H−
  have lower degrees in all 

their components than the corresponding components in 1H . 
Note that the invariant vector space of the Hamiltonian H  has the following 

form [10] [11] [12] [13]: 

n

n

p
W

q
   =   
   

, 1m n δ= − +  and ,n m∈Ν .             (4) 

In order to obtain the QES conditions for H , the generic vector of the above 
vector space is of the form 

1
0 1

1
0 1

n n

n n

x x
x xδ δ

α α
ϕ

β β

−

− + −

 +
=  

+ 
,                     (5) 

where ( ), 0,1i i iα β =  are complex parameters. As a consequence the 2 2×
-matrices 1 1 0, ,M M M  are defined by 
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( ) 01 20
1 11

00

n
n n

n

x
H diag x x M

x
δ

δ

αα
ββ

+ − +
− +

   
=   

  
 , 

( )
1

111
1 1

11

n
n n

n

x
H diag x x M

x
δ

δ

αα
ββ

−
− +

−

   
=   

  
  , 

( ) 010
0 01

00

n
n n

n

x
H diag x x M

x
δ

δ

αα
ββ

− +
− +

   
=   

  
 .             (6) 

The three necessary and sufficient QES conditions for H  to have an inva-
riant vector space are  

1) 0
1

0

0
0

M
α
β
   

=   
  

, 

2) 0
1

0

0
0

tM
β
α
−   

=   
  

 , 

3) 0 0 0

0 0

1 1
M β β

α α

   
   = Λ   
   
   

.                                          (7) 

In the next step, we will apply in a same lines of this QES analytic method in 
order to prove the quasi-exact solvability of the 2 2× -matrix QES Hamiltonian 
associated to Jacobi Elliptic Potential. 

3. QES Jacobi Hamiltonian 
3.1. Case δ = 1 

In this section, we apply the QES analytic method established in previous section 
to check whether the 2 × 2-matrix operator is quasi-exactly solvable. We consid-
er the 2 2× -matrix Hamiltonian depending on the Jacobi elliptic potential of 
the form [10] [11] [12] [13]: 

( )
2

22

d 1
d D IH z V V

z
= − + +                      (8) 

with 

( ) ( )2
1 2 1 2, ,DV sn diag a a diag b b= + , 

2
1

2
2

0
0D

sn a b
V

sn a b
 +

=  
− 

                   (9) 

where 21  is the matrix identity, 1 2 1 2, , , ,a a b b θ  denote real constants and IV  
is symmetric off-diagonal matrix of the form  

( )
0

0I

cndn
V z

cndn
θ

θ
 

=  
 

                   (10) 

Note that the sum D IV V+  is the Jacobi elliptic potential associated to the 
previous Hamiltonian H(z).  

Using the following the gauge transformation, the gauge Hamiltonian is writ-
ten as follows 
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( ) ( )1H z g H z g−= , 

( ) 11 12

21 22

H H
H z

H H
 

=  
 

 



 

                     (11) 

where 
2

21 1
11 12

1 1

d d2
dd

g gH a sn b
g z gz
′ ′′

= − − − + + , 

2
12H dnθ= , 

2
21H cnθ= , 

2
22 2

22 22
2 2

d d2
dd

g gH a sn b
g z gz
′ ′′

= − − − + −               (12) 

and 

1

2

0
0
g

g
g

 
=  
 

, 

0
0
cn

g
dn

 
=  
 

                        (13) 

The relevant change of variable consists in posing ( )2 ,t sn z k= . Taking ac-

count to the reference [9] [11], the differential symbol 
2

2

d
dz

 has the following 

form 

( )( ) ( )( )
2 2

2 2 2 2
2 2

d d d4 1 1 2 3 2 1 1
dd d

t t k t k t k t
tz t

= − − + − + +        (14) 

We recall that for generic values of k, the Jacobi functions obey the following 
relations [9] [11]: 

2 2 2 2 2

2

2

1, 1
d d, 2
d d
d d,
d d

cn sn dn k sn

sn cndn sn sncndn
z z

cn sndn dn k sncn
z z

+ = + =

= =

= − = −

               (15) 

The following identities are used to establish the gauge Hamiltonian (11) in 
the variable ( )2 ,t sn z k=  [9] [11]: 

g  g
g
′′

 ( )g sncndn
g
′

 

1 0 0 

sn  ( )2 22 1k t k− +  ( )2 2 21 1k t k t− + +  

cn  22 1k t −  2 2k t t−  

dn  2 22k t k−  2 2 2k t k t−  

cndn  ( )2 26 1k t k− +  ( )2 2 22 1k t k t− +  
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sndn  ( )2 26 1 4k t k− +  ( )2 2 22 1 2 1k t k t− + +  

sncn  ( )2 26 4k t k− +  ( )2 2 22 2 1k t k t− + +  

sncndn  ( )2 212 4 1k t k− +  ( )2 2 23 2 1 1k t k t− + +           (16) 

Referring to the above relations (16), for 1g cn= , the second term and the 
third term of the operator 11H  of the Equation (12) are written as follows:  

( )1 1

1 1

d2 2
d

g g dsncndn
g z g dt
′ ′

− = − , 

2 21

1

d d2 4
d d

g k t t
g z t
′

 − = − −  ,                   (17) 

21

1

2 1
g k t
g
′′

− = − + .                       (18) 

Referring to the same identities given by the Equation (16), for 2g dn= , the 
second term and the third term of the operator 22H  of the Equation (12) are of 
the following form:  

( )2 2

2 2

d d2 2 2
d d

g g sncndn
g z g t
′ ′

− = − , 

( )2 2 22

2

d d2 4
d d

g k t k t
g z t
′

− = − ,                  (19) 

2 22

2

2
g k t k
g
′′

− = − + .                      (20) 

Considering the change of variable ( )2 ,t sn z k= , the fourth and fifth terms of 
the components 11H  and 22H  of the gauge Hamiltonian H  are respectively 
rewritten as follows: 

2
11

2
22

00
00

a t ba sn b
a t ba sn b

+ +  
=   −−   

            (21) 

Taking account of the change of variable ( )2 ,t sn z k=  the identities 
2 2 1cn sn+ =  and 2 2 2 1dn k sn+ =  lead respectively to new form of the two 

off-diagonal components of the gauge Hamiltonian given by the Equation (12):  
2

12H dnθ= , 
2

12H k tθ θ= −                         (22) 
2

21H cnθ= , 

21H tθ θ= −                          (23) 

Replacing the terms of the components of the Hamiltonian H  given by the 
Equation (12) by the expressions (14) and (17)-(23), one can easily write (in va-
riable t) the gauge Hamiltonian as follows  

( )( ) ( )
2

2 2 2 2
11 2

2
1

d d4 1 1 2 5 2 2 1
dd

2 1

H t t k t k t k t
tt

a t k t b

 = − − − − − + + 

+ − + +



, 
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( )2
12 1H k tθ= − , 

( )21 1H tθ= − , 

( )( ) ( )
2

2 2 2 2
22 2

2 2
2

d d4 1 1 2 5 2 1 2 1
dd

2

H t t k t k t k t
tz

a t k t k b

 = − − − − − + + 

+ − + −



.     (24) 

The next step is to establish the QES conditions of the gauge Hamiltonian. In 
other words, we put out the expressions of the real parameters 1,a b  and θ . 

Let us express the gauge Hamiltonian H  given by the above relations (24) in 
its components according to  

1 0 1H H H H−= + +                         (25) 

where  

( )

( )

2
2 3 2 2 2 2

12

1 2
2 3 2 2 2

22

d d4 10 2
dd

d d4 10 2
dd

k t k t a k t k t
ttH

t k t k t a k t
tt

θ

θ

 
− − + − − 
 =
 

− − − + − 
 

 , 

( ) ( )

( ) ( )

2
2 2 2

2

0 2
2 2 2 2

2

d d4 4 4 2 1
dd

d d4 4 4 1 2
dd

k t k t b
ttH

k t k t k b
tt

θ

θ

 
+ + + + + 

 =
 

+ + + + − 
 

 , 

2

2

1 2

2

d d4 2 0
dd

d d0 4 2
dd

t
ttH

t
tt

−

 
− − 
 =
 

− − 
 

 .              (26) 

As 1δ = , the generic wave function ψ  of the gauge Hamiltonian given by 
the Equation (11) is written as follows 

1
0 1

1
0 1

n n

n n

t t
t t

α α
ψ

β β

−

−

 + +
=  

+ + 





                    (27) 

Note that the action of these above three gauge components of H  given by 
the relations (26) on the wave function ψ  given by the relation (27) leads to 
the following expressions:  

1

1 1

n n

n n

t t
H

t t

+

+

   
≅   

   
 , 

0

n n

n n

t t
H

t t
   

≅   
   

 , 

1

1 1

n n

n n

t t
H

t t

−

− −

   
≅   

   
 .                       (28) 

After some algebraic manipulations, one can easily obtain the 2 2× -matrices 

1 1 0, ,M M M  respectively as follows [9] [10] [11] [12]: 
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( ) 01 10
1 1

00

,
n

n n
n

t
H diag t t M

t
αα
ββ

+ +   
=   

  
 , 

( )
1

11
1 11

11

,
n

n n
n

t
H diag t t M

t
αα
ββ

−

−

   
=   

  
  , 

( ) 00
0 0

00

,
n

n n
n

t
H diag t t M

t
αα
ββ

   
=   

  
 .                (29) 

Taking account to these above expressions given by the Equation (29), one 
can easily find the following matrices: 

( )
( )

2 2 2 2
1

1 2 2 2
2

4 1 10 2
4 1 10 2

k n n nk a k k
M

k n n nk a k
θ

θ
 − − − + − −

=   − − − − + − 
, 

( )( ) ( )
( )( ) ( )

2 2 2 2
1

1 2 2 2
2

4 1 2 10 1 2
4 1 2 10 1 2

k n n n k n a k k
M

k n n n k n a k
θ

θ
 − − − − − + − −

=   − − − − − − + − 
  

( )( ) ( )
( )( ) ( )

2 2

0 2 2 2

1 4 4 4 2 1

1 4 4 4 1 2

n n k k n b
M

n n k k n k b

θ

θ

 − + + + + +
 =
 − + + + + − 

. (30) 

The three necessary QES conditions for the operator H  to have a finite di-
mensional invariant vector space are successively obtained [10] [11] [12] [13]: 

1) The first QES condition is  

0
1

0

0
0

M
α
β
   

=   
  

, 

1det 0M = , 

( )( )2 2 4 2 3 2 2 2 4 2 1 2
1 2 216 48 52 24 4 4 6 2

a ak n k n k n k n k n n a a
k

θ = + + + + + − − − + + (31) 

2) The second QES condition is as follows  

0
1

0

1

0
,

0

det 0,

tM

M

β
α
−   

=   
  

=





 

( )( ) ( )
( )( ) ( )

2 2 2
1 1

2 2 2 2 2
2

det 4 1 2 10 1 2

4 1 2 10 1 2

M k n n n k n a k

k n n n k n a k kθ

 = − − − − − + − 
 × − − − − − + − − 



 

In this above equation replacing 2θ  by its value (31) and after some alge-
braic manipulations, the second QES condition is obtained 

4 3 4 2 4 4 2 2
2 2

1 2 2

64 48 24 4 8 2
8 2

k n k n k n k k na k aa
k n k

− + + + − −
=

+
        (32) 

3) The final and the third QES condition is computed as follows 

0 0 0

0 0

1 1
M β β

α α

   
   = Λ   
   
   

,                      (33) 
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where Λ  is a constant and  
2 2 2 2

0 1
2

0

4 6 2k n k n a k
k

β
α θ

− − + −
=                   (34) 

Referring to the expression of the matrix 0M  given by the Equation (30) and 
the relation (34), the relation (33) leads to the following third QES condition: 

Nb
D

=                             (35) 

where  
2 4 2 3 2 2 4 3 4 2 2 4

2
2 2 2 2 4 2 21

1 1 1 1 1 2

16 32 24 16 28 10 14

8 8 4 3 2 2

N k n k n k n k n k n k n k n
aa n a n a k n a a k k k k
k

θ

= − − − − − − −

+ + + + + − − − +
 

2 2 2 2
18 12 2 4D k n k n a k= − + −                   (36) 

Taking account to the QES conditions given by the Equations (31), (32) and 
(35), we can conclude that the operator H  (therefore H) is quasi-exactly solv-
able [10] [11] [12] [13]. In other words, a finite part of the spectrum of the oper-
ator H  can be computed algebraically. 

3.2. Case δ = 2 

Along the same lines applied for the previous case (i.e. for the case δ = 1), we 
perform a gauge transformation according to  

( ) ( )1H z f H z f−= , 

( ) 11 12

21 22

H H
H z

H H
 

=  
 

 



 

                      (37) 

with 

1

2

0
0
f

f
f

 
=  
 

, 1f sn= , 2f sncndn= , 

0
0
sn

f
sncndn

 
=  
 

, 1

1 0

10

snf

sncndn

−

 
 
 =
 
 
 

, 

After some algebraic manipulations, the components of the above Hamilto-
nian H  are written as follows  

2
21 1

11 12
1 1

d d2
dd

f fH a sn b
f z fz
′ ′′

= − − − + + , 

2 2
12H cn dnθ= , 

21H θ= , 
2

22 2
22 22

2 2

d d2
dd

f fH a sn b
f z fz
′ ′′

= − − − + −               (38) 

and the operator ( )H z  is given by the Equation (8). 
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Referring to the table of identities given by the Equation (16), the second term 
and the third term of the component operator 11H  (38) are of the following 
form 

- ( )1 1

1 1

d d2 4
d d

f f sncndn
f z f t
′ ′

= − , 

( )2 2 21

1

d d2 4 1 1
d d

f k t k t
f z t
′  − = − − + +  ,              (39) 

2 21

1

2 1
f k t k
f
′′

− = − + +                      (40) 

with  

1f sn= .  

For 2f sncndn= , taking account to the same identities (16), the following 
second and the third terms of the component operator 22H  (38): 

( )2 2

2 2

d d2 4
d d

f f sncndn
f z f t
′ ′

− = − , 

( )2 2 21

1

d d2 12 8 1 4
d d

f k t k t
f z t
′  − = − − + +  ,             (41) 

( )2 22

2

12 4 1
f k t k
f
′′

− = − + + .                   (42) 

Referring to the change of variable ( )2 ,t sn z k= , the fourth and fifth terms of 
the components 11H  and 22H  of the gauge Hamiltonian H  given by the re-
lation (38) have the following form: 

2
11

2
22

00
00

a t ba sn b
a t ba sn b

+ +  
=   −−   

              (43) 

Taking account to the change of the variable ( )2 ,t sn z k=  and the relations 
2 2 1cn sn+ = , 2 2 2 1dn k sn+ = , the off-diagonal component 12H  of the gauge 

Hamiltonian H  given by the relation (38) is written as the follows  
2 2

12H cn dnθ= , 

( )( )2
12 1 1H t k tθ= − −                     (44) 

Note that the off-diagonal component 21H  of the gauge Hamiltonian H  
given by the relation (38) keeps the same expression  

21H θ=                           (45) 

Replacing the four components of the gauge Hamiltonian ( )H t  given by the 
Equation (38) by their expressions (14) and (39)-(45), one can easily found their 
final form in variable t: 

( ) ( )

( ) ( )

2 2 2
2 2 2 3 2 2 2

11 2 2 2

2 2 2
1

d d d d d4 4 1 4 6 4 4
d dd d d

d2 4 2 1
d

H t k t k t k t k t
t tt t t

k a k t k b
t

= − + + − − + −

+ + + − + + +
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( )2 2 2
12 1H k t k tθ θ θ= − + + , 

21H θ= , 

( )

( ) ( )

2 2 2
2 2 2 3 2 2

22 2 2 2

2 2 2
2

d d d d4 4 1 4 18
dd d d

d d12 12 6 12 4 4
d d

H t k t k t k t
tt t t

k t a k t k b
t t

= − + + − −

+ + − + − + + −



       (46) 

Note that the generic element of the invariant vector space V under the action 
of the gauge operator ( )H t  is given by the Equation (5) as in the QES analytic 
method: 

1
0 1

1
0 1

n n

n n

t t
t tδ δ

α α
ψ

β β

−

− + −

 +
=  

+ 
, 

1
0 1

1 2
0 1

n n

n n

t t
t t

α α
ψ

β β

−

− −

 +
=  

+ 
.                     (47) 

with 2δ = . 
Note that the action of the gauge components of H  given by the relations 

(46) on the generic function ψ  given by the relation (47) leads to the following 
expressions: 

1

1 1

n n

n n

t t
H

t t

+

−

   
≅   

   
 , 

0 1 1

n n

n n

t tH
t t− −

   
≅   

   
 , 

1

1 1 2

n n

n n

t t
H

t t

−

− − −

   
≅   

   
 .                      (48) 

Referring to the expressions (48), the three components of the gauge operator 
H  are deduced  

( )

( )

2
2 3 2 2 2 2 2

12

1 2
2 3 2 2 2

22

d d4 6 2
dd

d d4 18 12
dd

k t k t a k t k t
ttH

k t k t a k t
tt

θ

θ

 
− − + − 
 =
 

− − + − 
 

 , 

( ) ( ) ( )

( ) ( )

2
2 2 2 2 2

2

0 2
2 2 2 2

2

d d4 1 4 4 1 1
dd

d d0 4 1 12 1 4 4
dd

k t k t b k k t
ttH

k t k t k b
tt

θ
 

+ + − + + + + − + 
 =
 

+ + + + + − 
 

  

( )
2

2
2

1 2

2

d d4 2 4
dd

d d0 4 6
dd

t k
ttH

t
tt

θ
−

 
− + + 
 =
 

− − 
 

           (49) 

As it is shown by the relation (48), the above operators 1 0,H H   and 1H−
  are 

respectively the matrix operators which increases, preserves and reduces the de-
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gree of the generic element ψ  given by the Equation (47). As a consequence 
the vector Hψ  can be decomposed as follows 

( ) ( ) ( )0 011 1 1
1 1 0

0 01

n n n n n nH diag t t M diag t t M diag t t M
α αα

ψ
β ββ

+ − −    
= + +    

    
  (50) 

where the constant 2 2× -matrices 1 1,M M  and 0M can be computed explicitly 
after a some calculations 

( ) 010
1 11

00

n
n n

n

t
H diag t t M

t
αα
ββ

+
−

   
=   

  
 , 

where  

( )
( )( ) ( )

2 2 2 2
1

1 2 2 2
2

4 1 6 2
4 1 2 18 1 12

k n n k n a k k
M

k n n k n a k
θ

θ
 − − − + −

=   − − − − − + − 
 

One can easily deduce the matrix 1M  from the following expression 

( )
1

111
1 12

11

n
n n

n

t
H diag t t M

t
αα
ββ

−
−

−

   
=   

  
  , 

where  

( )( ) ( )
( )( ) ( )

2 2 2 2
1

1 2 2 2
2

4 1 2 6 1 2
4 2 3 18 2 12

k n n k n a k k
M

k n n k n a k
θ

θ
 − − − − − + −

=   − − − − − + − 
  

finally the third matrix 0M  is easily found as follows 

( ) 010
0 01

00

n
n n

n

t
H diag t t M

t
αα
ββ

−
−

   
=   

  
 , 

where  

( ) ( ) ( ) ( )
( )( )( ) ( )( )

2 2 2 2

0 2 2 2

4 4 1 4 4 1 1

0 4 4 1 2 12 12 1 4 4

k n n k n b k k
M

k n n k n k b

θ + − + − + + + − +
 =
 + − − + + − + + − 

 

Referring to the three QES conditions given by the relations (7) and to the ex-
pressions of the previous three 2 2× -matrices 1 1,M M  and 0M , one can easily 
compute algebraically the three necessary and sufficient conditions for the gauge 
Hamiltonian H  given by the expressions (46) to be quasi-exactly solvable as 
follows: 

1) the first QES condition is as follows 

1det 0M = , 

( ) ( )
( )

2 4 3 2 2 2
1

2 1 2
2 2

16 32 28 16 4 2 2 3 1

2 2 1

n n n n k a n n

a aa n n
k

θ = + + + + − + +

− + + +
      (51) 

2) the second QES condition is easily checked 

1det 0M =  

( )2 3 2 2 2 2
2

1
2

64 16 48 12 8 2
8 2

k n k n k n k n a
a

a n
+ − + + −

=
− +

         (52) 
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3) finally, the third QES condition is found 
2 2

2 2 1 1
2

17 2
22

a k a kb k n n n
k
+ +

= + + − +                (53) 

4. Conclusion 

In this paper, we have applied the QES analytic method in order to construct a 
2 2× -matrix QES Hamiltonian which is associated to a Jacobi elliptic potential. 
For both two cases considered, 1δ =  and 2δ = , more precisely, we have 
computed the three necessary and sufficient algebraic QES conditions for the 
Jacobi elliptic Hamiltonian to have an invariant vector space. 
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