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Abstract 
The Broken Wing Butterfly (BWB) has become a popular options strategy for 
traders. Profit is generated primarily by exploiting option value time decay. In 
this paper the selection of the option strikes to be used along with trade entry 
and exit parameters, such as time to expiration and profit and loss targets, are 
optimized using over a decade of historical option data of the S & P 500 ex-
change traded fund (symbol: SPY). The importance of selecting an optimal 
strike mapping method, by which strikes are assigned in any time period, is 
highlighted. Of the three methods considered, the normalized strike mapping 
method was found to be optimal. Optimization was performed using a diffe-
rential evolution (DE) evolutionary algorithm. The objective function used 
for optimization considered final cumulative profit, volatility, and maximum 
equity drawdown while achieving a high trade win rate. A trade example is 
given to illustrate the use of the obtained results. 
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1. Introduction 

Over the last decade, there has been a rapid increase in the trading volume of fi-
nancial products known as derivatives. A derivative is a financial instrument 
whose value derives from another asset, such as a stock, which is commonly re-
ferred to as the underlying. One such derivative instrument is the option contract. 
Options enable market participants to speculate in the stock market as well as to 
hedge existing positions, thus mitigating risk. They are traded either in the over 
the counter (OTC) market, or in standardized contracts in the public markets. The 
largest public option exchange is the Chicago Board of Options Exchange (CBOE). 
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One of the most popular strategies in use is the Broken Wing Butterfly 
(BWB). This strategy can be used as an income generator (Sarkett, 2017) where 
it is entered at regular time intervals and option time decay is the primary me-
chanism by which a profit is achieved. This strategy is seen as an optimal strate-
gy that can be used in a variety of markets (Lord, 2010). A number of different 
option’s educational websites/vendors offer trading variations of this strategy 
under different names. For example, the M3.4u (Locke, 2019), Netzero Options 
(SMB Capital, 2020) and BF70plus (Schwarzkopf, 2019), to name just a few. 
Mention has been made in trade journals as well (Sarkett, 2017). These strategies 
may involve adjustments where option positions are altered in response to the 
underlying market movements. Alternatively, the BWB option position may be 
entered into and subsequently exited when either favorable or adverse condi-
tions appear resulting in either a profit or a loss for the trade. It is this second 
approach that is investigated in this paper. Initial work in this vein was underta-
ken for the BWB in (Wilt, 2016). A number of strategy parameters were identi-
fied and a range of discrete and continuous values were chosen and performance 
was evaluated for all combinations for these parameters. This approach had been 
previously undertaken for other option strategies known as naked short puts and 
put spreads in (Del Chicca, Larcher, & Szoelgenyi, 2013) and (Del Chicca & 
Larcher, 2012). 

There are many parameters which can define a BWB strategy. These parame-
ters are either real number values or encompass a wide range of integer values. 
Thus the search space to find an optimal set of parameters is exponential. Con-
sequently, in this paper, we use the differential evolution (DE) evolutionary al-
gorithm to search the multi-dimensional space. We introduce a fitness function 
to optimize that takes into account maximizing profits while reducing volatility 
and equity drawdown. An optimal set of parameters was found over the time pe-
riod of over a decade we examined and we provide a guide that illustrates how a 
trader can use the optimized strategy parameters. 

An outline of the following paper is as follows. In the next section a brief dis-
cussion of financial options is presented. It is here that the structure of the Bro-
ken Wing Butterfly, a multi-leg option strategy, is first presented along with the 
set of parameters involved in trading it. The following section, Section 3, intro-
duces the basic Differential Evolution evolutionary algorithm. This algorithm 
will be used to optimize the design of the BWB along with the trading parame-
ters. In Section 4, implementation details in the use of the DE are discussed and, 
in particular, the fitness function that will be maximized is stated. Further im-
plementation details are provided in Section 5. Most importantly, three different 
methods by which option strikes are assigned are discussed. Later it will be seen 
that one of these will be found to be optimal in maximizing the fitness function. 
Results obtained from the optimizations are presented in Section 6. Application 
of some of the results is then demonstrated by examining an example trade in 
Section 7. Finally, Section 8 provides the conclusion to the paper where the main 
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results are summarized. 

2. Financial Options Fundamentals 

There are two types of options, calls and puts. The buyer of a call option has the 
right (but not the obligation) to buy the underlying asset, be it a stock or other-
wise, at a specific price (known as the strike price) by a specific date (known as 
the expiration date). In contrast, the call option seller has the right to sell the 
underlying asset under similar conditions. Similarly, a put option buyer has the 
right to sell the asset (basically putting the underlying asset to the counter-party) 
at a specific price by a specific date. Conversely, the put seller has the obligation 
to buy the underlying at the strike price. Each option contract corresponds to 
100 underlying units, for example, 100 shares of the underlying stock (Hull, 
2015). 

There are multiple factors that determine the price of an option. A widely 
used valuation formula is the Black-Scholes-Merton option pricing model (Black 
& Scholes, 1973; Merton, 1973). The variables used in this model are: 
• Current underlying price 
• Strike Price 
• Risk-free interest rate 
• Days to expiration (DTE) 
• Volatility 
• Dividend yield 

An option trader can generally benefit the most by correctly predicting the 
future underlying price and volatility. 

The Black-Scholes-Merton model also defines the rate of change in the option 
prices with respect to various variables. These are referred to as the option 
greeks. The main greeks are defined as: 
• Delta—Represents the rate of change of the option price with respect to the 

underlying price. 
• Theta—Represents the rate of change of the option price with respect to the 

passage of time. 
• Gamma—Represents the rate of change of the option’s delta with respect to 

the underlying price. 
• Vega—Represents the rate of change of the option price with respect to the 

underlying’s volatility. 
The option Greek delta is also used to indicate moneyness, which is defined 

below. As an initiating trade, option contracts can either be bought or sold 
(known as opening a trade), thus there are four cases when opening a trade: 

1) Buying a call to open, also known as going long a call. A premium is de-
bited to enter the trade. 

a) Profit is achieved when the underlying price increases beyond the strike price 
plus the premium paid for the option. Maximum profit is theoretically unlimited. 

b) A loss occurs otherwise. The maximum loss is the premium paid. 
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2) Selling a call to open, also known as going short a call. A premium is cre-
dited on trade entry. 

a) Profit is achieved as long as the underlying price does not increase beyond 
the strike price plus the premium received. The maximum profit is the premium 
received. 

b) A loss occurs otherwise. Maximum loss is theoretically unlimited. 
3) Buying a put to open, also known as going long a put. A premium is de-

bited to enter the trade. 
a) Profit is achieved when the underlying price decreases below the strike 

price minus the premium paid. The maximum profit is achieved if the underly-
ing goes to zero. 

b) A loss occurs otherwise. Maximum loss is the premium paid. 
4) Selling a put to open, also known as going short a put. A premium is cre-

dited when entering the trade. 
a) Profit is achieved as long as the underlying price does not decline below the 

strike price minus the premium received. The maximum profit is the premium 
received. 

b) A loss occurs otherwise. Maximum loss happens if the underlying price 
goes to zero. 

Each of the above four option positions has a different payoff or profit-loss 
(P/L) graph (as shown in Figure 1). To provide added context the P/L graphs for 
long and short stock are shown first. Figure 1(a) shows the P/L of buying (going 
long) stock, whereas, Figure 1(b) shows the P/L of selling (going short) stock. 
Figures 1(c)-(f) correspond to the four option positions described above. For 
Figure 1(a) & Figure 1(b) we assume a stock price of $300, for the option pro-
files the Figures 1(c)-(f) we assume a strike price of $300. As seen in the profile 
of Figure 1(a), for long stock purchased at a price of $300 per share, any subse-
quent stock price higher than this represents a profit and conversely lower values 
represent a loss. In contrast, as seen in the profile of Figure 1(b), the reverse 
situation is represented. Namely, for a short stock position, lower (higher) prices 
than the entry price represent a profit (loss). 

For the option profiles of Figures 1(c)-(f), the strike price defines the point of 
inflection of the change of slope in the graph. An option trade may be entered 
anywhere along the price axis depending on the current price of the underlying. 
Let us consider a current underlying price of $295 and the purchase of a long call 
which has a strike of $300. As seen by the profile of Figure 1(c), this incurs an 
initial debit, where we see a negative P/L at the $295 level. The underlying price 
must go slightly beyond the strike (by the amount of the initial debit) before a 
profit is achieved. The profit to the upside is unlimited. Moreover, the loss to the 
downside is capped and this is seen as a desirable property of long options. In con-
trast, when entering a short call option position (see the P/L profile of Figure 
1(d)), when the underlying is at $295, an initial credit is received and represents 
the maximum profit attainable from this trade. Higher underlying prices beyond  
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Figure 1. Sample P/L payoff diagrams for: (a) long stock, (b) short stock, (c) long call, (d) 
short call, (e) long put and (f) short put. (These plots were adapted from Richards, 2017). 

 
the strike price plus the initial credit represents the region where losses occur. In 
this case the loss potential is unlimited. Alternatively, a long put position, which 
has a P/L profile of Figure 1(e), allows profits to be made when the underlying 
price declines below the strike price minus the initial debit paid (assuming a 
trade entry when the underlying was at or above the strike price). In contrast, as 
seen by the P/L profile of Figure 1(f), a short put option entry, when the under-
lying price is above the strike price, results in the receipt of a credit. This credit 
represents the maximum profit attainable from this strategy. Losses occur when 
the underlying drops below the strike price minus the initial credit received. 

When the underlying price is at the strike price of the option, it is termed to be 
at-the-money (ATM). When the price is on the non-zero slope of the graph it is 
termed to be in-the-money (ITM). Otherwise it is considered out-of-the-money 
(OTM). This is commonly referred as the moneyness of the option. An alterna-
tive way to represent the moneyness is by using the option Greek delta. As men-
tioned previously, delta represents the rate of change of the option price with 
respect to the changes of the underlying price. For call and put options, the 
range of absolute values of delta is [0, 1]. A value of 0.5 defines ATM, an abso-
lute value >0.5 is ITM, and an absolute value <0.5 is OTM. Long calls and short 
puts have positive delta values, whereas, short calls and long puts have negative 
delta values. 

Another way to represent the “moneyness” of an option is by considering a 
normalized strike value. This value is obtained by dividing the strike price by the 
underlying price. For a call option, a value of 1 is ATM, a value >1 is OTM, and 
a value <1 is ITM. For a put option, a value of 1 is ATM, a value <1 is OTM, and 
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a value >1 is ITM (Tymerski & Greenwood, 2018). 

Broken Wing Butterfly Strategy 

In general, any number of option positions can be entered in the market at the 
same time, forming an options strategy. These strategies can consist of a combi-
nation of calls and/or puts, and can achieve profits not only by the increase or 
decrease of the underlying price, but by changes, for example, in volatility or 
even just by the passage of time with no movement of the underlying price. In 
the last case, this occurs for a positive theta option position, such as a short put. 

The broken wing butterfly (BWB) is a multi-leg option strategy that consists 
of 3 options of the same type (call or put). The put BWB has increased in popu-
larity due to its minimal upside risk, flexibility, potential profits, and high win 
rate. The put BWB analyzed here consists of: 
• One long put, close to ATM, either slightly ITM or OTM 
• Two short puts at the same strike, generally further OTM 
• One long put, generally far out-of-the-money (FOTM) 

The spans between each long put and the short puts are referred to as the 
wings. Unlike a regular butterfly strategy (Hull, 2015), the wing widths are not 
equal, thus motivating the name the Broken Wing Butterfly. This option strategy 
is also, less widely known as a skip strike butterfly. The wider (lower) wing may 
be seen as having an embedded short put spread. In essence a short put spread is 
sold to help pay for the butterfly. The sale of the put spread (that is, a short put 
and a long put) together with the purchase of the butterfly results in offsetting 
trades at one of the strikes thus it is seen as skipping a strike, motivating its al-
ternative name. 

The BWB in Figure 2 shows the slow build up of profit with the passage of 
time. For this example, the trade has a DTE (days to expiration) of 68, long 
strikes at $113 and $120, a short strike at $118. At the time of trade initiation the 
underlying price was $119. The T + 0 line shows the strategy P/L at the entry 
date. The T + 40 line shows the strategy P/L when there are 28 days to expira-
tion, noting now how it has a wider range of positive profit prices. The T + 65 
shows the strategy P/L when there are 3 days to expiration. The maximum loss 
this strategy can have is at the expiration of the options if the closing price of the 
underlying is below the lower long put strike. The maximum profit this strategy 
can achieve is at expiration, when the closing price of the underlying asset is ex-
actly at the short strike. 

There are a number of considerations in designing a BWB strategy that can be 
quantified by the following parameters: 
• DTE, days to expiration. 
• Minimum profit to exit a trade. 
• Maximum loss to exit a trade. 
• Exit days before expiration. This limits the number of days in a trade if other 

exit criteria have not been met. 
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Figure 2. Example broken wing butterfly. Expiration and theoretical P/L graphs for a 
strategy with 68 days to expiration. The T + 0, T + 40 and T + 65 lines represent the cur-
rent value of the trade and the 40 and 65 day projections of the value of the trade, respec-
tively. (This plot was adapted from Sarkett, 2017). 

 
• Maximum debit or minimum credit to enter a trade. There is a maximum 

debit one is willing to pay or a minimum credit one is willing to receive on 
trade entry. 

• Which strikes to choose for the three options. 
These parameters have wide ranges to choose from, making the search space 

to find an optimal set of parameters extremely large. To solve this problem, we 
used the differential evolution optimization method. 

3. Differential Evolution 

Differential Evolution is an evolutionary algorithm that optimizes a problem by us-
ing successive iterations to maximize some desired properties while also minimizing 
undesired properties. It is generally used for nonlinear and non-differentiable con-
tinuous space functions. Differential Evolution has been found to have greater 
performance over other optimization techniques (such as genetic algorithms, 
simple evolutionary algorithms, particle swarm optimization) for a variety of 
functions featuring real values variables (Price, Storn, & Lampinen, 2005). 

A differential evolution algorithm starts by creating an initial population of 
solutions to a problem, gP , with size NP. Each individual in the population is 
denoted by the vector ix , of dimension D. Therefore a population at a given 
generation is defined as: 

( ) max, 1, 2, , , 1, 2, ,g iP i NP g g= = = x             (1) 

https://doi.org/10.4236/ti.2020.113003


D. Munoz Constantine et al. 
 

 
DOI: 10.4236/ti.2020.113003 30 Technology and Investment 
 

( ), , 1, 2, ,i j ix j D= = x                     (2) 

where i is the i-th vector member of the population gP , j is the j-th dimension 
of the vector x , and g is the g-th generation of the algorithm. This population 
goes through mutation, crossover, and selection to find more fit individuals in 
the solution space. 

3.1. Initialization 

To initialize a population, upper and lower bounds in the search space need to 
be defined. Usually they are dependent on prior knowledge of the problem, and 
ideally they would be valid solutions to the function. A uniform random number 
generator is used to generate each dimension of a vector. If we define the upper 
bound to be uB  and the lower bound lB  then 

( ) ( ), , , ,0,1j i j j u j l j lx rand B B B= ⋅ − +                 (3) 

Each dimension can have different bounds. It ensures all dimensions are 
bounded. 

3.2. Differential Mutation 

In order to explore the fitness landscape for better solutions, differential evolu-
tion uses a mutation step that mutates and recombines population members to 
create a population of mutation vectors of size NP using: 

( )0 1 2, , , ,i g r g r g r gF= + ⋅ −v x x x                    (4) 

where F is a positive real number that controls the rate of mutation, usually set 
within the range (0, 1). 

0r
x , 

1r
x , and 

2r
x  are randomly chosen vectors out of 

the current population where { }0 1 2, , 1, 2, ,r r r NP∈   and are mutually differ-
ent. 

When performing the mutation one needs to scale down the vectors 
0r

x , 

1r
x , and 

2r
x  to the range [0, 1] by using: 

, ,

, ,
,

, ,
j i g

j i g
scaled j l

j u j l

x
x B

B B
= −

−
                    (5) 

3.3. Crossover 

Differential evolution usually implements uniform crossover to create new pop-
ulation members known as children. The child is symbolized by u where: 

( ), ,
, , ,

, ,

, if 0,1
, otherwise

j i g j rand
i g j i g

j i g

v rand Cr or j j
u

x
≤ == = 


u          (6) 

where Cr is the crossover probability. The second condition = randj j  ensures 
that at least one parameter is changed in the child vector. 

Inevitably, some of the child vector’s dimensions are going to be outside of the 
allowed bounds due to the mutation step. Therefore, an extra step is necessary to 
enforce the boundaries. Instead of just forcing out of bounds limits to their clos-

https://doi.org/10.4236/ti.2020.113003


D. Munoz Constantine et al. 
 

 
DOI: 10.4236/ti.2020.113003 31 Technology and Investment 
 

est limit, we use the original vector to get a new value: 

( ) ( )
( )

, , , ,
, ,

, , , ,

1 0,1 1 , if 1

0,1 , if 0
j j i g j i g

j i g
j j i g j i g

rand x u
u

rand x u

 + ⋅ − >= 
⋅ <

           (7) 

3.4. Selection 

If the new child vector ,i gu  has an equal or greater fitness value than the target 
vector, it replaces the target vector for the next generation. The next generation’s 
population is given by: 

( ) ( ), , ,
, 1

,

, if

, otherwise
i g i g i g

i g
i g

f f
+

 ≥= 


u u x
x

x
                (8) 

where f denotes the fitness function. 

3.5. Convergence & Results 

As generations increase, the population keeps changing and converging to the 
maximum point it can find. The algorithm stops either by a pre-specified num-
ber of generations or after a certain number of generations where the fitness 
does not improve. 

This type of differential evolution is referred as “DE/rand/1/bin” since it ran-
domly selects the base vector for mutation, it only uses one vector difference for 
the mutation, and uses a binomial distribution for selecting the new population. 

4. Implementation 
4.1. Algorithm 

In this paper, we used the “DE/rand/1/bin” differential evolution strategy to find 
each of the BWB optimal parameters. Each parameter is encoded as a real num-
ber value, normalized to the range [0, 1]. All DE operations are performed in 
this range. When calculating the fitness function, these parameters are converted 
to their actual parameter values using (5). 

These parameters define how and when to enter and exit a trade. Trades are 
entered only once per month, starting at the first trading day of each month. If  
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the entry conditions are not met, we skip to the next day, until we find a suitable 
day to enter the trade. This is repeated for a maximum of 10 trading days. If no 
suitable trade is found, we skip to the next month. 

The trade parameters used, along with some sample values, (using a points 
based option’s strike mapping to be discussed further below), are: 

1) Upper long strike, ULS, e.g. ULS = S + 1, that is, 1 point above the under-
lying price, S. 

2) Short strike, SS, e.g. SS = S-4, that is, 4 points below the underlying price, S. 
3) Lower long strike, LLS, e.g. LLS = S-12, that is, 12 points below the under-

lying price, S. 
4) Entry days to expiration, entry DTE = 70, e.g. 70 days to expiration at entry. 
5) Exit days to expiration, exit DTE = 14, e.g. 14 days to expiration to exit. 
6) Maximum cost to enter a trade, e.g. 5% of required margin. 
7) Minimum profit to exit a trade, e.g. 20% of maximum possible profit. 
8) Maximum loss to exit a trade, e.g. 30% of required margin. 
9) Points above upper long strike to prevent exit (Exit Override), e.g. 13 

points. 
With the sample values given above, this translates to a strategy that on the 

first trading day of each month, endeavors to, (by item 1) buy a long put 1 point 
above the underlying price, (by item 2) sell two short puts 4 points below the 
underlying price, and (from item 3) buy a long put 12 points below the underly-
ing price. All put positions are from an option chain which has (by item 4) days 
to expiration closest to 70 days. The total BWB position cost is limited to a 
maximum debit of (by item 6) 5% of the required margin. 

This strategy will monitor the profit/loss of each day post trade initiation, and 
exit the trade whenever one of the following three conditions occur: i) (by item 
7) a profit target of 20% of the maximum possible profit is reached, or ii) (by 
item 8) a maximum loss of 30% of the required margin is reached, or iii) (by 
item 5) there are 14 days left until expiration. However, these three exit condi-
tions are overridden whenever (by item 9) the current closing price is 13 points 
above the upper long strike. If this case holds, the strategy doesn’t exit until the 
options expire. 

The fitness function to maximize was formulated with the consideration of 
obtaining a smooth equity curve, while also optimizing profits and minimizing 
drawdowns. Therefore the fitness function adopted to optimize the parameters is 
a weighted sum of three terms given by: 

( ) ( )
( ) ( )

( )

annualized returns
fitness final cumulative return

annualized volatility

maximum drawdown
3

x
x x

x

x

= +

−

    (9) 

where x represents the vector of trade parameters. The first term is the annual-
ized returns divided by the annualized volatility. This ensures that the returns do 
not have an elevated volatility. The second term adds the final cumulative re-
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turns of the strategy to ensure to optimize the total profits made. The last term 
penalizes the fitness by the level of maximum equity drawdown. In addition to 
maximizing the fitness value the following conditions were required to be met: 
• The fitness must be positive. 
• The number of winning trades must be at least 70% of the total trades en-

tered. 
• The number of trades entered is at least 85% of the total trading months, 

where we aim to put on a trade at the beginning of each month. 
For the initial DE parent population, we used an intelligent initialization me-

thod. Since there are three conditions for the fitness to be valid, we randomly 
generate individuals from a uniform distribution of parameters and evaluate 
their fitness. Only individuals satisfying all pre-conditions were added to the ini-
tial population. This process continued until the population was complete. After 
forming the initial population, the DE operations of mutation and crossover 
were used to generate the child population to explore the fitness landscape. This 
was repeated until there was little variation in the best individual’s fitness. The 
most fit individual out of all the generations was kept. Subsequently, the whole 
process was repeated again for 20 runs, to fully explore the fitness landscape. 

 

 

5. Implementation Details 
5.1. Margin Requirement 

The term margin refers to the capital required in a brokerage account in order to 
be able to initiate a trade. The CBOE provides a “margin manual” (Chicago 
Board Options Exchange, 2000) for well known option strategies that outlines 
how to calculate the margin required for a regular trading margin account. This 
manual defines the margin for the traditional butterfly structure, but it does not 
provide guidance as to how to calculate the margin for a broken wing butterfly. 

For non-conventional strategies, most brokers require a margin equal to the 
maximum theoretical loss the strategy can experience. Since a BWB is risk de-
fined, the margin required can easily be calculated using this criterion. 

We calculated the margin for this strategy by examining the P/L graph at ex-
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piration. The maximum loss at expiration is the margin required for the BWB. 
This is the level of lower expiration line of the BWB P/L plot. 

5.2. Strike Mapping 

Three parameters of the BWB strategy specify the strikes of the long and short 
puts. As the underlying price varies throughout history, a method must be used 
which indirectly assigns strike values. We consider three such methods and eva-
luate their efficacy. The three methods are: 

1) Points Based Mapping 
2) Delta Based Mapping 
3) Normalized Strike Mapping 
We will examine each of these mappings with reference to Table 1. This table 

shows a partial option’s chain for the SPY at EOD (end of day) for the date 
04/04/2005. The expiration date for these options are 06/18/2005 which 
represents DTE = 75 days. The underlying (SPY) EOD closing price was $117.63. 
A number of different strikes are listed with the corresponding bid and ask pric-
es as well as delta values. Note also that the last column contains the values of 
each strike normalized by the closing price. These are referred to as normalized 
values (NV). Therefore, a strike of 118 would be represented by a NV of ap-
proximately 1 (=118/117.63). 

Let us consider, as an example, how the three strikes 123/120/100 can be ob-
tained by the three mapping methods. 

Points based mapping: Using this mapping the strikes are assigned by their 
relative point distance from the underlying EOD closing price. If we denote the 
EOD closing price as S then each of the strikes can be represented by S + 5.37/S 
+ 2.37/S − 17.63. (The nearest strike is chosen when evaluations do not result in  

 
Table 1. SPY option EOD data for date 04/04/2005. The last column represents the strike 
normalized values (NV). 

Date 
Expiration 

Date 
Put Bid Put Ask Put Delta 

Close 
Price 

Strike 
Price 

Norm 
Value 

04/04/2005 06/18/2005 0.15 0.20 −0.0356 117.63 99 0.8416 

04/04/2005 06/18/2005 0.15 0.25 −0.0407 117.63 100 0.8501 

04/04/2005 06/18/2005 0.20 0.25 −0.0461 117.63 101 0.8586 

04/04/2005 06/18/2005 2.80 2.90 −0.4856 117.63 118 1.003 

04/04/2005 06/18/2005 3.30 3.40 −0.5435 117.63 119 1.016 

04/04/2005 06/18/2005 3.80 4.00 −0.6029 117.63 120 1.020 

04/04/2005 06/18/2005 4.40 4.60 −0.6638 117.63 121 1.028 

04/04/2005 06/18/2005 5.10 5.30 −0.7205 117.63 122 1.037 

04/04/2005 06/18/2005 5.80 6.00 −0.7832 117.63 123 1.045 

04/04/2005 06/18/2005 6.60 6.80 −0.8386 117.63 124 1.054 

04/04/2005 06/18/2005 7.50 7.70 −0.8763 117.63 125 1.062 
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exact strike levels). In this way the offsets from the EOD closing price for other 
dates in history can be used to determine the relevant strikes at other dates. This 
method is a widely used by option traders. 

Delta based mapping: This alternative method simply specifies strikes corres-
ponding to the absolute value of the corresponding deltas. So that strikes 
123/120/100 can alternatively be specified as the 0.8/0.6/0.04 delta strikes. (Again, 
choose the strike nearest to the delta value.) 

Normalized Strike Mapping: This last method requires that each strike in the 
option chain is normalized by the EOD closing price. This is shown in the last 
column in Table 1. In this way the strikes 123/120/100 can be referred to via 
their normalized values of 1.045/1.020/0.8501. (Again the closest values are suf-
ficient). This method was introduced in (Tymerski & Greenwood, 2018), where 
it was found to be highly effective in optimizing profits. 

6. Results 
6.1. BWB Parameter Optimization 

The underlying considered in this paper is the S & P 500 exchange traded fund 
(ETF) that has the symbol SPY, which trades on NYSE Arca, which is part of the 
New York Securities Exchange. The option data used for optimization is the end 
of day (EOD) prices obtained from IVolatility.com. The data spans from January 
10, 2005 to July 15, 2016. 

Results were generated using a population size 25NP = , a mutation rate, 
0.3F = , and a crossover rate, 0.5Cr = . The exploration of the fitness land-

scape is stopped once the best fitness has not changed for 75 generations. There 
were a total of 20 runs where after each run the initial population was reset. The 
results for all three option strike mapping methods, i.e. points, delta, and nor-
malized strike mapping, were obtained for the single fitness function used. 

The ranges of values used for each parameter are shown in Table 2. 
 
Table 2. Ranges used for each parameter for each mapping type. The symbol S, denoting the current underlying price, is used in 
determining the strike locations for the points mapping method. The delta values are shown in absolute terms. (In actuality, a long 
position will have a negative value and a short position will have positive deltas). NV represents the normalized values. 

 Points Map Delta Map Normalized Map 

Upper Long Strike, ULS S − 5 to S + 30 (points) strikes with 0.45 to 0.75 (delta) strikes with NV 0.95 to NV 1.12 

Short Strike, SS S − 17 to S + 29 (points) strikes with 0.10 to 0.70 (delta) strikes with NV 0.70 to NV 1.113 

Lower Long Strike, LLS S − 52 to S + 28 (points) strikes with 0 to 0.65 (delta) strikes with NV 0.20 to NV 1.106 

Exit Override ULS + 1 to ULS + 35 (points) strikes with 0.5 to 1.0 (delta) ULS × 1.01 to ULS × 1.35 

Entry DTE (days) 40 to 100 40 to 100 40 to 100 

Exit DTE (days) 1 to 30 1 to 30 1 to 30 

Max Cost (%) −30 to 30 −30 to 30 −30 to 30 

Min Profit (%) 0 to 100 0 to 100 0 to 100 

Max Loss (%) 0 to 95 0 to 95 0 to 95 
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In order to ensure our algorithm produces a BWB structure, we added the 
following requirement:  

lower long strike, LLS < short strike, SS < upper long strike, ULS. 
The exit override parameter for the delta mapping method is different from 

the other methods. When we enter a position, we save the strike which is closest 
to the delta value required for future reference. For example, if we have an exit 
override parameter value of 0.83 delta, from Table 1 we can see that the closest 
strike for this delta value is $124. For the remainder of the trade, a closing value 
above $124 triggers the exit override condition. 

The performance of the BWB using the optimized parameters for each of the 
mappings is shown in Table 3. Of the three mapping methods, the normalized 
strike mapping method achieved the highest fitness value of 2.61. As seen in the 
table, it also achieved the best cumulative return (of 184.3%), the second highest 
Sharpe ratio (of 0.85), and a modest drawdown (of 29.3%). The results of the 
other mapping methods are shown in Table 3 as well as simply holding SPY 
stock. 

The optimized parameters for each mapping method are shown in Table 4. 
We can observe that all methods result in having the upper long strike 
in-the-money, the short strike slightly in-the-money, and the lower long strike  

 
Table 3. Performance comparison from 2005 to 2016. Margin results for the BWB are per tranche (1/2/1 contracts) and per share 
for SPY stock. 

Mapping 
Method 

Fitness 
Total 

Trades 
Cumulative 

Returns 
Annualized 

Returns 
Annualized 
Volatility 

Sharpe 
Ratio 

Max 
Drawdown 

Percent 
Profitable 

Min 
Margin 

Max 
Margin 

Points 2.06 127 118.0% 7.0% 7.8% 0.90 16.3% 75.96% $1,098 $1486 

Delta 2.03 129 129.8% 7.5% 9.7% 0.80 22.9% 81.40% $946 $3703 

Normalized 2.61 126 184.3% 9.5% 11.5% 0.85 29.3% 77.78% $704 $2912 

SPY 1.42 1 122.7% 7.2% 19.8% 0.45 55.2% 100% $54.77 $198.40 

 
Table 4. Optimized parameters for each of the three mapping methods. The symbol S, 
representing the current underlying price, is used in determining the strike locations for 
the points mapping method. NV represents the normalized values of the strikes. 

 Points Map Delta Map Normalized Map 

Upper Long Strike, ULS S + 5.46 strike at 0.671 delta strike at NV 1.0416 

Short Strike, SS S + 0.71 strike at 0.512 delta strike at NV 1.0181 

Lower Long Strike, LLS S - 18.31 strike at 0.043 delta strike at NV 0.8484 

Exit Override ULS + 2.68 strike at 0.779 delta ULS ×1.0173 

Entry DTE (days) 61 61 61 

Exit DTE (days) 6 6 7 

Max Cost (%) −6 −20 6 

Min Profit (%) 62 54 68 

Max Loss (%) 23 25 29 
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invariably appears far out-of-the money. All mapping methods have the opti-
mum entry days to expiration at 61 days, and the exit days to expiration at 6 - 7 
days, indicating a uniformly ideal entry point and exit point. When the BWB 
strategy is close to expiration the build up of the profit hump is more pro-
nounced and easier to achieve. This explains the high cumulative returns this 
strategy is achieving for all mapping methods. Only the normalized mapping 
method requires a credit when entering a trade. All the mapping methods share 
a small range of optimized values for exiting with a profit (of 54% to 68%) as 
well as a small range for optimized maximum stop losses (of 23% to 29%). 

Table 5 shows the percentage of times specific exit conditions were triggered 
for all trades. For all mapping methods we observe that the parameter that in-
fluences the exits the most is the Exit DTE parameter. This indicates that the 
BWB strategy spends most of the time avoiding a maximum loss and obtaining a 
minimum profit. Both the points and normalized mapping methods have a sim-
ilar percentage of trade exits due to maximum loss (of 14% to 17%) and of 
minimum profit (of 8% to 9%). They differ on the percentages of exits due to 
option expiration. This exit implies that the price of the underlying was above 
the upper long strike. A minimal loss and profit is achieved at this point. This 
helps explain why the normalized method has a higher volatility and higher re-
turns. 

For the delta method we observe the most variation of the exit parameters. It 
limits maximum loss stop outs the most, and takes the minimum profit the most 
as well. 

Figure 3 shows the equity curves for each mapping method along with the 
returns of the underlying, SPY. It shows that the normalized mapping method 
achieves the greatest final return, but also the greatest drawdown. The points 
and delta methods achieve similar returns to the SPY. Compared to SPY, all 
methods have a lower drawdown and volatility. Figure 4 shows the beta factor 
each return has with their underlying, the SPY. The beta factor is a measurement 
of how much the returns of the strategy are explained by the underlying. In gen-
eral, a beta factor close to 0 is ideal since the returns are independent of the 
movements in the underlying. The normalized method has the highest mean be-
ta exposure, which explains why this strategy has a great drawdown and volatili-
ty. All mapping methods have a low beta exposure to the SPY. 

Figure 5 show the returns of each strategy, clearly showing the greater volatil-
ity and returns of the normalized mapping method, and the reduced volatility of  

 
Table 5. Percentage of total trades where each trade exit condition was met. 

Exit Case Points Map Delta Map Normalized Map 

Max Loss (%) 16 14 17 

Min Profit (%) 8 23 9 

Exit DTE (%) 64 43 72 

Expired (%) 12 20 2 
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Figure 3. Cumulative returns comparison for all mapping methods and SPY. 

 

 
Figure 4. Beta factor to SPY comparison for all mapping methods. 

 

 
Figure 5. Returns comparison for all mapping methods. 

 
the points mapping method. 
Figure 6 shows the annual returns for each method. All methods have a nega-

tive return during the 2008 great financial crisis. Noticeably, all methods only  
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had a negative yearly return in 2008. 

6.2. BWB Parameter Re-Optimization to Reduce Volatility 

The volatility and drawdown for all the mapping methods shown in Table 3 can 
mostly be attributed to the increased gamma risk which occurs for dates near 
option expiration. Gamma is one of the option Greeks previously discussed. 
Gamma risk refers to the higher sensitivity of option prices due to underlying 
price variations for options nearing expiration. Our optimization resulted in 
finding low exit DTE parameters of just 6 and 7 days. To reduce volatility due to 
gamma risk, the exit DTE parameter range was changed from 1 to 30, as seen in 
Table 2, to a more restricted range of 12 to 30 and a re-optimization for the 
same fitness function was performed for all mapping methods. 

Of the three mapping methods, the normalized strike mapping method again 
achieved the highest fitness value of 2.13, compared to 1.94 and 1.77 for the oth-
er methods. As expected, all fitness values were lower than that previously 
achieved under less constrained optimization. However, all mappings resulted in 
reduced volatility as was desired. As seen in Table 6, the normalized mapping 
method also achieved the best cumulative return (of 120.1%), and now highest 
Sharpe ratio (of 0.95), and lowest drawdown (of 14.8%). Further results comparing  

 

 
Figure 6. Annual returns comparison for all mapping methods. 

 
Table 6. Performance comparison from 2005 to 2016 with the new range of exit DTE of [12, 30]. All other ranges are as they ap-
pear in Table 2. 

Mapping 
Method 

Fitness 
Total 

Trades 
Cumulative 

Returns 
Annualized 

Returns 
Annualized 
Volatility 

Sharpe 
Ratio 

Max 
Drawdown 

Percent 
Profitable 

Min 
Margin 

Max 
Margin 

Points 1.94 129 109.6% 6.6% 7.7% 0.87 16.7% 75.96% $1,059 $1483 

Delta 1.77 129 111.1% 6.7% 9.4% 0.74 25.4% 77.52% $946 $3703 

Normalized 2.13 126 120.1% 7.1% 7.5% 0.95 14.8% 80.16% $648 $2529 

SPY 1.42 1 122.7% 7.2% 19.8% 0.45 55.2% 100% $54.77 $198.40 
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the performance between the mapping methods are shown in this table. 
The re-optimized parameters for each mapping method are shown in Table 7. 

We can observe that, again, all methods result in having the upper long strike 
ITM, the short strike slightly ITM, and the lower long strike invariably appears 
FOTM. All mapping methods have the optimum entry DTE either at or close to 
61 days. We observe this time the delta and normalized methods have their exit 
DTE at 12 - 13 days, but the points method has now increased to 24 days. All 
mapping methods now permit to pay a debit to enter a trade. Notice also that all 
methods share a small range of optimized values for exiting with a profit, of 43% 
to 50%, as well as a small range for ideal maximum stop loss, of 21% to 23%. 

Table 8 shows what percentage of the exit conditions were triggered for all 
trades. For all mapping methods we observe, again, that the parameter that in-
fluences the exits the most is the Exit DTE parameter. The points mapping me-
thods no longer has trades taken to expiration, due to it having a greater Exit 
DTE parameter. The normalized method takes more maximum losses and less 
minimum profits. 

Figure 7 shows the equity curves for each mapping method along with that of 
the underlying, SPY. It shows the normalized mapping method achieves a simi-
lar return to the SPY, but at a lower drawdown and volatility. In Figure 8 we 
observe that the beta factor is reduced significantly for the normalized method. 

 
Table 7. Re-optimized parameters for each of the three mapping method with a new 
range for Exit DTE parameter of [12, 30]. The symbol S used in determining the strike 
locations for the points mapping represents the current underlying price. NV represents 
the normalized value. 

 Points Map Delta Map Normalized Map 

Upper Long Strike, ULS S + 7.46 strike at 0.671 delta strike at NV 1.0327 

Short Strike, SS S + 2.14 strike at 0.512 delta strike at NV 1.0063 

Lower Long Strike, LLS S − 16.65 strike at 0.043 delta strike at NV 0.8563 

Exit Override ULS + 4.18 strike at 0.779 delta ULS × 1.0105 

Entry DTE (days) 64 61 61 

Exit DTE (days) 24 12 13 

Max Cost (%) −6 -18 -14 

Min Profit (%) 43 47 50 

Max Loss (%) 23 21 22 

 
Table 8. Percentage of total trades where a trade exit condition was met with new ranges. 

Exit Case Points Map Delta Map Normalized Map 

Max Loss (%) 18 17 14 

Max Profit (%) 15 15 11 

Exit DTE (%) 67 53 72 

Expired (%) 0 15 3 

https://doi.org/10.4236/ti.2020.113003


D. Munoz Constantine et al. 
 

 
DOI: 10.4236/ti.2020.113003 41 Technology and Investment 
 

 
Figure 7. Cumulative returns comparison for all mapping methods and SPY. 

 

 
Figure 8. Beta factor to SPY comparison for all mapping methods. 

7. Trade Example 

Given the optimized parameters for the normalized mapping method in Table 4, 
we show how a trader would enter a trade on a given day. Our parameters speci-
fy buying the upper long strike with a normalized value closest to 1.0416, selling 
the short strike with a normalized value closest to 1.0181, and buying the lower 
long strike with a normalized value closest to 0.8484. For the entry date of 
4/4/2005 and referencing the option data of Table 1, we find that the closest op-
tions strikes are 123/120/100. 

The strategy P/L curve is shown in Figure 9. This figure highlights the current 
underlying price, the expiration P/L, and the T + 0 P/L lines. The lower expira-
tion line appears at a level of $1541 and the maximum profit is seen to be $458. 

To calculate the cost of this strategy, we use a weighted sum of bid and ask 
values to realistically determine option prices (Del Chicca & Larcher, 2012) to-
gether with the corresponding number of contracts. 

2 1 1 2 1 2cost 3.80 4.00 2 5.80 6.00 0.15 0.25 100
3 3 3 3 3 3

158.33

      = ⋅ + ⋅ ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅            
=
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Figure 9. Entry BWB on 04/04/2005. T + 0 line was modeled using the Black-Scholes-Merton 
formula. 

 
Note that this value of credit received is available on an options trading platform 

(and so does not require any calculation by the trader in practice). For this strategy, 
the minimum credit we are willing to receive is 6% of $1541, which is $94. Since we 
received a credit of $158, we satisfy this parameter. For this strategy the stop loss is 
set at 29% of $1541, which is $447, and the profit taking point is at 68% of $458, 
which is $311. The exit override price is 1.0173 123 1.0173U 125.13LS× = × = . If 
the underlying price goes above this level the strategy is left to expire, in which 
case the profit from the trade is simply the original credit received. 

Figure 10 shows the P/L of the strategy as it progresses towards expiration. 
Figure 10(a) shows a snapshot 10 days after entry. There is a slight loss on the 
day but nowhere near the stop loss value. Figure 10(b) shows the progress after 
22 days. The strategy is still at a loss, but we are starting to see a slight buildup of 
the profit hump. After 39 days has passed in Figure 10(c) we notice the strategy 
is starting to turn around, and after 67 days, see Figure 10(d), the price has re-
covered and the strategy is able to exit above the minimum profit taking point of 
$311. Figure 11 shows the P/L evolution for the strategy, from trade initiation to 
exit. 

8. Conclusions 

In this paper, the BWB option’s strategy has been examined. In particular opti-
mum setup and exit parameters have been chosen. The setup parameters consist 
of the three strike locations, DTE at trade initiation, and acceptable debit or cre-
dit limits. Exit parameters involve minimum profit, maximum loss, minimum 
DTE to exit as well as an exit override parameter which when satisfied permits 
the trade to continue to option expiration. Use of a differential evolution algo-
rithm has been shown to be effective in achieving these aims. Two sets of optim-
al parameters were actually developed. One where profit was optimized and the 
other where a reduced level of trade volatility is achieved, albeit at the expense of 
profit. In the latter case, this is achieved simply by exiting the trade a few days  
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Figure 10. Progress of the strategy after (a) 10 days, (b) 22 days, (c) 39 days, and (d) 67 days. 

 

 
Figure 11. P/L progress of the BWB strategy entered on 04/04/2005. 

 
earlier in the trade cycle. 

The issue of strike mapping, in which an indirect method is used to select 
strikes, was addressed. The normalized strike mapping method was found to be 
the most effective of the three methods considered. This method represents 
strikes as normalized values with respect to the current underlying price. The 
normalized mapping method achieves the best cumulative return out of all map-
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ping methods. As shown in Table 4, an entry DTE of 61 days, and an exit DTE 
of 6 - 7 days were found to be optimal for all mapping methods. Taking profits 
and losses early helps with limiting the drawdown and volatility while still 
achieving high returns (see Table 4 and Table 5). The normalized method also 
has a low beta exposure to the SPY, making it ideal for achieving returns in dif-
ferent market conditions. As mentioned above, when limiting the exit DTE of 
the BWB strategy, namely exiting at a DTE of 13 days, we can limit the volatility 
and drawdown of the strategy (see Table 6 and the equity curves of Figure 7). 

To fully examine the possibilities that the BWB strategy holds, the parameters 
were given a wide range of values from which to optimize. As can be seen from 
the trade example of the last section, this resulted in both the upper long and 
short strikes being ITM. Also the lower wing width was much wider than the 
upper wing width. Effectively the option structure became a loss limited put ra-
tio spread. Traditionally wing spans with a 60%/40% ratio are typically used. 
However, over the decade of time the optimized strategy was tested the ratio 
spread type structure was shown to be optimal. Further work will entail limiting 
the initial delta of the structure to be closer to delta neutral, i.e. having a strategy 
delta of zero. The consequences of this will be to even out the wing spans while 
making the trade even less risky at trade initiation, due to its delta neutrality. 
However, this will be achieved with a lower profit. Future work will indicate the 
merits of adding this constraint on the initial strategy delta. Future work will al-
so consider variations on the fitness function to be optimized. 

In summary, the main contributions of this work can be seen as twofold: 1) an 
optimized structure of a Broken Wing Butterfly option strategy together with 
trading parameters has been provided. This was obtained through the use of a 
differential evolution algorithm set up to operate on a fitness function which 
weighed the conflicting requirements of maximizing profit, achieving equity 
curve linearity and minimizing the maximum drawdown, and 2) the importance 
of using the normalized strike mapping method has been seen to be integral in 
achieving the optimized performance. The results obtained have been for the 
SPY exchange traded fund. The procedure presented here may be applied to op-
timize for use with other assets, such as the SPX (S & P 500 index) and RUT 
(Russell 2000 index) which offer favorable tax treatment (where any gain or loss 
is treated for tax purposes as 40% short-term gain and 60% long-term gain), thus 
broadening trading possibilities. 
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