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Abstract 
At the COVID-19 time, viruses could easily contaminate humans, animals, and 
plants. In charge of several hospitalizations, many deaths, and widespread crop 
destruction, viruses lead to a considerable medical, economical, and biolog-
ical burden. Several applied disinfection techniques are efficient and unfortu-
nately possess inherent disadvantages. As a fresh, performant and green tech-
nology, cold plasma has attracted attention for its efficacy in viruses’ killing. 
This work presents a brief summary of the late developments in the domain of 
applying cold plasma in dealing with viruses. The “plasma” term refers to any 
gas-discharged setup with ions and energetic electrons, where charged particles 
and plasma-generated highly reactive species dictate the physiochemical fea-
tures of the whole system. When the electron gaining sufficient energy to de-
feating the electrostatic potential barrier, the electron will be stripped away to 
produce a free electron and a positively charged ion. Such a phenomenon is 
named ionization. This phenomenon is similar to the coagulation/flocculation 
(C/F) processes that are due to charge neutralization (CN) and sweep floccula-
tion (SF) mechanisms. Colloids may be inorganic (such as clay particles), or-
ganic (like humic particles and macromolecules), or biological (bacteria, vi-
ruses, etc.). The consequence of this smallness in size and mass and largeness 
in surface area is that in colloidal suspensions: gravitational effects are negligi-
ble and surface phenomena predominate. Hence, during C/F process, colloids 
are removed by CN and SF mechanisms which act on the anionic charge of 
the colloid by its neutralization prior to its removal by sedimentation/filtration. 
There is a CN mechanism dictated by the presence of positive ions formed 
through plasma utilization. Further research is requested to understand the 
CN mechanism related to plasma treatment and optimize such a promising 
technology. 
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1. Introduction 

Famous as the fourth basic state of the matter aside from solid, liquid, and gas, 
plasma is an electroneutral mixture carrying several reactive radicals, diverse posi-
tive and negative particles, quanta of electromagnetic radiation, and strong elec-
trical fields [1] [2] [3]. Through elevating energy using on the atoms in solid, ar-
bitrary thermal motion of such atoms augments considerably and ultimately pre-
vail the restrictive interactions among such atoms (such as ionic bonds in solid), 
conducting to the material transition from solid to liquid (Figure 1). Besides, when 
the atoms in liquid gained high-energy to prevail the constricted Van der Waals 
force from surroundings, the gas state could be attained. Certainly, the atoms’ 
kinetic energy in the gas is much greater than that in solid and liquid. When the 
electron acquiring the high enough energy to conquering the electrostatic poten-
tial barrier, the electron will be stripped away to form a free electron and a posi-
tively charged ion, called ionization [1]. 

Following thermal equilibrium of the formed constituents, plasmas are largely 
categorized into two major classes: thermal plasmas (usually obtained at high-
er temperature and gas pressure circumstances) and cold plasmas (Figure 1(b)).  
 

 
Figure 1. Physical description of plasmas. (a) Schematic illustration of the four 
fundamental states of matter. The triangular tails represent the thermal motion 
strength of particles. (b) Schematic illustration of the thermal plasma and the 
cold plasma. Brown balls, violet balls, and iridescent balls represent the neutral 
atoms, the positively charged ions, and electrons, respectively [2]. 
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When a gas is heated to sufficiently elevated temperature (usually about 20,000 K) 
to reach total ionization. This type of plasma could be designated as “thermal plas-
ma”, in which all the constituents comprising ions, electrons, and chemical species 
are in thermodynamic equilibrium. Cold atmospheric-pressure plasmas (CAPs) 
possess electrons the temperature of which is considerably more important than 
that of other active and neutral species [4]. Such plasmas could be produced below 
ambient pressure and temperature employing easy setups comprising corona 
discharges, glow discharges, dielectric-barrier discharges (DBDs), and plasma 
jets [1] [2] [3]. 

Numerous chemical reactions could be hard, if not unfeasible, to realize em-
ploying traditional techniques. Such reactions can be allowed using CAPs [1]. 
With a large success, CAPs have been used in material processing, contaminant 
removal, biomedical implementations, etc. [1]. Thus, CAP is also an encourag-
ing and interesting option to traditional radical originators. 

2. Plasma’s Historical Background 

As aurora borealis and lightning, plasma takes place naturally through the globe. 
In lab-scale, it could be produced employing diverse techniques to study its 
suitable and singular features for different uses, from wound healing, selective 
cancer cell killing, surface decontamination and water sterilization, to sustaina-
ble food and green agriculture (Figure 2) [1]. The premature researches in elec-
tro-discharges were done by Ernst Siemens [5], in the 1850s, who proved the 
occurrence of DBDs. Langmuir, a century ago, proposed that the ions, electrons, 
and neutral particles in an ionized gas media can be viewed as a medium plasma, 
which is identical to the expression proposed and by Jan Purkinje. He partici-
pated in the description of a novel expression clear fluid that stays after remov-
ing all the corpuscular substances carrying in blood. The expression prevailed and 
now “plasma” usually alludes to any gas-discharged setup with ions and energetic 
electrons, where charged particles and plasma-generated highly reactive species 
dictate the physiochemical features of the whole system [1] [4]. 
 

 
Figure 2. Constituents in CAP and their interactions with liquid for bio-
tech utilizations [1]. 
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A century ago, the physics of plasma has expanded as a separate and primal 
branch of study. For the first time, Townsend [1] studied the current flow over a 
gas, employing the concept of self-consistency due to the ionization balance in 
gaseous plasma [1]. Since the 1970s, plasma processing has been largely utilized 
to etch semiconductor or other sensitive materials or for material alterations [1]. 
In the following decades, numerous additional usages of CAP have arisen, most-
ly comprising chemical synthesis, wastewater treatment and water sterilization, 
plasma medicine and food preservation [1] [4]. 

3. Plasma’s Research Background 

To date, numerous reports on different implementations of CAPs show a quick 
expansion and an interesting capacity of such a novel interdisciplinary field. In-
deed, CAPs could efficaciously neutralize a variety of pathogens [6] [7] [8], even 
highly resistant forms like bacterial spores and biofilms. Such performance renders 
CAPs greatly appropriate for sterilizing and disinfecting temperature-sensitive 
surfaces, medical equipment, air, water, and food [1]. Nevertheless, regardless of 
many observed favorable impacts of killing microorganisms [9] [10] [11] via 
CAPs application, their mechanisms with microbes stay not well comprehended. 
Further, numerous troubles stay to be resolved. Indeed, because kinds and levels 
of the constituents produced in CAP are a function of the electrode arrangement 
[12] [13] [14], excited voltages [15] [16] [17], production modes and the sorts of 
feeding gases employed to form plasma, the challenges remain to present novel 
CAP apparatuses that could ameliorate the proved CAPs action such as the levels 
of reactive oxygen species (ROSs) and reactive nitrogen species (RNSs) produced 
through actual CAP setups [1] [4]. 

4. Cold Plasma as a Source of Reactive Species 

Through plasma application, ROSs formed mostly comprise hydrogen peroxide 
(H2O2), hydroxyl radical (●OH), atomic oxygen, singlet-delta oxygen and supe-
roxide (O•− 

2 ); however, RNSs mostly carry nitrite (NO− 
2 ), nitrate (NO− 

3 ), nitric 
oxide (NO), atomic nitrogen (N) and peryoxynitrite (ONOO−) [1]. The set of 
ROSs and RNSs has a crucial contribution to ecological hygiene and healthcare 
utilization in medicine, environment purification, food preservation, and safety 
[4]. 

To enhance the implementation of the plasma-founded setup, it is significant 
to understand the generation mechanisms of reactive chemical species in the 
liquid as well as to measure the level of such species. Such data could furnish a 
valuable insight for improving the CAPs formed impacts and dominating the 
distribution of ROSs and RNSs in water (Figure 3) [1]. From plasma to water, 
transferring reactivity mostly happens at the gas-liquid interface. Such a transfer 
is joined by several physicochemical phenomena involving gaseous particle col-
lisions, mass transfer, sputtering and photolysis formed via UV photons. As a 
rule, the reactive chemical species are originally produced in a gas-phase plasma.  
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Figure 3. Symbolic depiction of the multi-phase transfer of reactive oxygen species (ROSs) 
and reactive nitrogen species (RNSs) towards water [1]. 

 
A portion of such gaseous species is then transported to the plasma–liquid in-
terface, entering the gas-liquid interface and then reacting with the water mole-
cules (Figure 3). Researchers [18] anticipated the distribution of reactive species 
in water stimulated via CAP by employing a neutral mass transport model for 
gaseous plasma-liquid systems [1] [4]. 

4.1. Hydrogen Peroxide (H2O2) 

As one of the main important ROSs, hydrogen peroxide possesses several roles 
in cell redox signaling mechanisms. This is why it had been largely utilized in 
medicine and agriculture [1]. Several scientists worked on H2O2 generated by 
plasma as a fresh technique for demobilizing microbes and treating cancer, likely 
thanks to its stability, long life-time, and its comparatively simple detectability 
between such plasma-generated species. Hydrogen peroxide could be produced 
through numerous routes. Hydrogen peroxide formation mostly implicates the 
integration of ●OH generated from the electronically dissociated water molecules. 
In the system of water vapor stimulated by helium plasma, H2O2 mostly origi-
nated from the recombination of ●OH [1] [4]. 

4.2. Ozone (O3) 

Solubilized in water, ozone is viewed as a powerful antimicrobial oxidant agent 
[10]. In fact, it possesses the highest oxidation redox potential (ORP) between 
usual oxidants (E˚ = 2.07 V), comprising chlorine, chlorine dioxide, hydrogen 
peroxide and permanganate [1]. Following being generated in the gas phase, O3 
could transport through the interface into water. Moreover, it is also probable to 
form O3 directly in water, like in the instance of plasma discharge formed in 
oxygen-containing bubbles [4]. 

4.3. Nitric Oxide (NO) 

As an omnipresent signaling molecule observed in numerous organisms, nitric 
oxide (NO) has lately been presented as an encouraging antimicrobial agent. It 
can be quantified in the stimulated media phase and directly in the gas phase of 
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non-thermal plasma. Such a feature renders it a valuable agent for clinical utili-
zation [1]. Scientists [18] suggested a model showing the case for a plasma jet 
interacting with liquid, in which NO could not be observed in the bulk liquid, 
only at the gas-liquid interface. Such a model specified that long-lived species 
were mainly generated at the interface either via direct solvation or via second-
ary reactions in water, for instance, NO formed from the gas phase plasma [4]. 

4.4. Peroxynitrite 

Peroxynitrite comprises both OONO− and ONOOH species. Peroxynitrite con-
tributes biologically in controlling health and disease in organism. Several inves-
tigations on bioactivity of plasma stimulated water proposed probable genera-
tion mechanisms of peroxynitrite. Researchers proposed that chemical responses 
among nitrite and hydrogen peroxide could conduct to the constant formation 
of peroxynitrite that is directly in charge of killing microbes [1] [4]. 

4.5. Hydroxyl Radical (●OH) and Superoxide (O•− 
2 ) 

Working as a precursor of H2O2 in water, ●OH is a crucial ROS possessing a po-
werful oxidizing potential (E˚ = 2.85 V) in water and at the interface among gas 
and water [19] [20]. Such elevated potential explains the lifetime of ●OH that is 
~200 μs in the gaseous phase and around some ns in water. Therefore, in order 
to let ●OH enter in reactions directly with pathogens, it has to be formed in the 
frontal vicinity of the microbe [1].  

Superoxide (O•− 
2 ) is an additional fundamental radical produced from plas-

ma-liquid interactions [1]. It could be formed via the deprotonation of the hy-
droperoxyl radical ●OOH that could be produced from OH interacting with O3 
or from the responses of O2 with greatly energetic electrons [4]. 

5. Cold Plasma in Water Treatment 

During the last seventy years, there has been a spectacular augmentation in the 
number of organic contaminants (volatile organic compounds [21] [22] [23], 
pharmaceuticals [24] [25] [26], organic dyes [27] [28] [29], etc.) and considera-
bly persistent pathogens existing in ecosystems [30] [31] [32], therefore consti-
tuting a grave worry for the public health [33] [34] [35]. Lately, a huge elevation 
in the economic loss and human deaths of community-onset poisonous chemi-
cal and healthcare-associated contagions (pathogenic microorganisms such as 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) [1] [36] [37]. 

As an encouraging wastewater treatment technology [38] [39] [40], advanced 
oxidation processes (AOPs) run via in situ formations of greatly responsive oxi-
dants like ●OH (E˚ = 2.85 V), H2O2 (E˚ = 1.7 V) and O3 (E˚ = 2.07 V). Numerous 
versions of AOP techniques have been proposed like sonolysis, O3/UV, pho-
to-Fenton, and photo-catalysis [1] [4]. Nevertheless, the capacity of such techniques 
stays restricted due to the insufficiency of the amount of the oxidants [41] [42] [43]. 

Twenty years ago, non-thermal atmospheric pressure plasmas generated at 
near room temperatures have attracted an increasing interest (Figure 4). Electric  
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Figure 4. Electrical discharge plasma could be formed in a 
device via introducing high-electrical voltage [51].  

 
discharge plasmas could be produced following discharge circumstances like gas 
sort, gas flow rate, discharge frequency, power supply, and applied voltage. Such 
plasmas mostly carry electrons, ions, free radicals, UV light [44] [45] [46], and 
electric field [47] [48] [49]. There numerous versions for producing plasma com-
prising dielectric-barrier discharge (DBD), arc discharge, spark discharge, corona 
discharge, and plasma jets. All these techniques have been used in dealing with 
pollutant removal [1] [4] [50]. 

Researchers [52] degraded successfully humic acid [53] [54] [55] employing a 
gas-phase surface discharge plasma apparatus with the plasma treatment during 
40 min at the applied discharge voltage of 23.0 kV. Such outstanding perfor-
mance is mostly affected to ●OH and O3 [1] [4]. 

A deep discussion of the CAPs implementation in the water treatment is sug-
gested by Zhou [1]. 

6. Cold Plasma for Killing Viruses 

Every year, pathogenic viruses generate tens to hundreds of millions of plant, 
animal, and human infections leading to increased crop losses and numerous 
deaths [56] [57] [58]. As a consequence, neutralizing harmful viruses is vital for 
a better quality of life [59] [60] [61]. Viruses could be spread directly from one 
contaminated person to another, or indirectly through polluted intermediates, 
like surfaces, objects, air, food, and water [59] [60] [62]. Diffusion through pol-
luted surfaces and aerosols has been depicted to be of considerable significance 
in the COVID-19 pandemic, provoked by severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2) [4] [63] [64]. Water and wastewater are as well turn-
ing into an essential diffusion pathway for viruses [59] [65] [66]. This has wor-
sen due to global warming, integrated with inefficacious virus elimination via 
conventional water and wastewater treatments, and water reuse for irrigation 
aims [67] [68]. Different killing techniques are employed to stop the viral trans-
mission in ecosystems even if the best technology stays to be determined [69] 
[70] [71]. Therefore, there is an acute necessity for an environmentally-friendly 
technique that forms neither waste nor toxic by-products [72] [73] [74], does 
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not inject poisonous chemicals [66] [75] [76], is simple and secure to run, and is 
as well performant in neutralizing pathogens especially viruses [59] [60] [77]. Cold 
plasma treatments for killing viruses seem to meet all of such characteristics.  

As seen above, plasma is a partially or completely ionized gas in which the atoms 
and/or molecules are stripped of their outer-shell electrons. Among its combined 
compounds, ultraviolet (UV) radiation and ROSs and/or RNSs furnish the most 
significant antimicrobial tools [4] [78] [79]. UV could deteriorate nucleic acids 
and ROSs and RNSs could oxidize nucleic acids, proteins, and lipids, with vary-
ing affinities following the microorganisms’ species present in water [80] [81] [82]. 
Such intrinsic features of cold plasma have attracted large investigations on its 
application for neutralizing microbes [56]. 

In fact, every investigation of cold plasma implementation for neutralizing vi-
ruses is specific. This is attributed to the fact that scientists either utilize a partic-
ular plasma source (like DBD, plasma (micro)jet) with various properties (such 
as power, gas, treatment period), or they remedy distinct water volumes (from 
microliters to several milliliters), matrices (like water, other solutions, surfaces, 
cells), and viruses (surrogates of human viruses, human, animal and plant viruses). 
This large variety complicates the direct juxtaposition of such researches and the 
establishment of mechanistic reasoning [4] [56]. 

Enteric viruses like norovirus, adenovirus, and hepatitis A virus have been killed 
via cold plasma treatments. Dealing with human viruses could generate grave 
health dangers; therefore those tests need hard requirements at the lab-level. For 
such considerations, such viruses are frequently substituted via surrogate virus-
es. Both enteric viruses and their surrogates have been efficiently neutralized in 
water. Killing a selected surrogate virus is found more effective than that of the 
target enteric virus [4] [56]. This is could be related to the impacts of cold plas-
ma on such surrogates that might not easily mirror their influences on the en-
teric virus counterparts, and have to be explained with caution. 

7. Charge Neutralization (CN) as the Main Mechanism of  
Plasma Treatment 

As mentioned previously, the “plasma” term refers to any gas-discharged setup 
with ions and energetic electrons, where charged particles and plasma-generated 
highly reactive species dictate the physiochemical features of the whole system 
[1] [4]. When the electron gaining sufficient energy to defeating the electrostatic 
potential barrier, the electron will be stripped away to produce a free electron 
and a positively charged ion. Such a phenomenon is named ionization [1]. Fur-
ther, as aforesaid, there are two forms of plasma: thermal and cold (Figure 1(b)). 
The difference between such forms is that in the first version there are more elec-
trons and positive ions than in the second one, as shown in Figure 1(b).  

This phenomenon is similar to the coagulation/flocculation (C/F) processes, 
which are mostly due to charge neutralization (CN) and sweep flocculation (SF) 
mechanisms [55]. Colloids are very small particles that have an extremely large 
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surface area. Colloids may be inorganic (such as clay particles), organic (like hum-
ic particles and macromolecules), or biological (bacteria, viruses, etc.). The con-
sequence of this smallness in size and mass and largeness in surface area is that 
in colloidal suspensions: gravitational effects are negligible and surface pheno-
mena predominate [55]. Hence, during C/F process, colloids are removed by CN 
and SF mechanisms which act on the anionic charge of the colloid by its neutra-
lization prior to its removal by sedimentation/filtration [55]. As the same mostly 
negatively charged pollutants are present when plasma treatment is applied, 
there is a CN mechanism dictated by the presence of positive ions formed 
through plasma utilization. Further research is requested to understand CN and 
SF mechanisms related to plasma treatment. 

8. Conclusions 

From this work, the following conclusions can be drawn: 
1) Cold plasma is one of the most performant and environmentally-friendly 

technologies for neutralizing viruses. Implementing such a technique will conduct 
to decreased human contaminations via water [83] [84] [85]. It remains funda-
mental to assess the possible unfavorable genotoxic and cytotoxic impacts of plas-
ma-activated water on humans. Moreover, a practical implementation of cold 
plasma could present a valuable option to viral eruptions (SARS-CoV-2 is present) 
[4] [56]. 

2) The precise mechanisms of the cold plasma functionality in scaled-up de-
vices stay needing more insights. In this context, it is requested to understand 
the flux of reactive species (ROSs and RNSs vs. radiation) on the virus’s surface, 
the possibility for the response of a specific kind of ROSs/RNSs with the virus. 
An additional challenge is a manner by which scaling up cold plasma devices 
without touching the configuration and quantity of ROSs/RNSs attained at a 
lab-scale. Employing numerous small setups, placed in parallel, could elevate the 
quantity of treated water by keeping the water plasma configuration [4] [56] [86]. 

3) Applying cold plasma could the place of the traditional chemical techniques 
since it does not generate large waste and could efficaciously demobilize viruses 
[56]. Implementing cold plasma will possibly assist in dealing with the shortage 
of drinking water and the harmful impacts of pandemics such as COVID-19 [87]. 
Merging cold plasma with additional performant methods, such as electrochem-
ical technology and membrane filtration, can assist in eliminating viruses [4]. 
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