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Abstract 
 
A random periodic spectrum sensing scheme is proposed for cognitive radio networks. The sensing period, 
the transmission time for primary users and cognitive radios are extended to general forms as random vari-
ables. A generalized Markov analytical model for sensing period optimization is presented, and the applica-
tions of the proposed analytical model by using examples involving primary user systems with both voice 
and data traffic are illustrated. The analysis and numerical results show that sensing period does affect the 
maximum rewards of the channel, and the analytical model is justified by its flexibility since it uses general 
forms of the sensing period, the transmission time for primary users and cognitive radios. Hence the model 
can be easily adapted for the analysis of many different applications. 
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the Optimal Sensing Period 

 
1. Introduction 
 
Due to energy consumption and hardware implication of 
Cognitive Radios (CRs), it is undesirable and impractical 
to assume the spectrum sensing to be continuous. In a 
practical CR network, such as an IEEE 802.22 network 
[1], a periodic spectrum sensing scheme where the spec-
trum is sensed periodically to determining the pres-
ence/absence of Primary Users (PUs) is preferable. The 
sensing time and sensing period are two key sensing pa-
rameters for periodic sensing scheme. The former is a 
pre-defined amount of time used to achieve the desirable 
level of detection quality and is mainly depended on 
PHY-layer sensing methods, such as energy detection, 
matched filter and feature detection. And the latter de-
fined as the interval between two successive detection 
processes has a significant impact on the sensing effi-
ciency of CRs. In the case of the sensing period is rela-
tively large, both some opportunities may go undiscov-
ered and interference to PUs may occur, whereas blindly 
reducing the sensing period is not desirable either, as it 
increases the sensing overhead. Thus the design of any 

periodic sensing scheme involves balancing the tradeoffs 
among spectrum utilization, interference to PUs, and 
sensing overhead by selecting an appropriate sensing 
period. We usually consider a spectrum consist of several 
channels, and each channel can be a frequency band with 
certain bandwidth, a spreading code in a CDMA network 
or a set of tones in an OFDM system. Here we use the 
term channel broadly.  

In CR networks, the control of quiet period, during 
which all CRs should suspend their transmissions so that 
any CR monitoring the channel may observe the pres-
ence/absence of PU signals without interference, can be 
synchronous or asynchronous [1–2]. Accordingly there 
are two kinds of periodic sensing schemes: One is syn-
chronous sensing period and the other is asynchronous 
sensing period. Most of the existing works focused on 
the synchronous sensing period schemes [3–4]. As a 
simple solution for design and implementation, the syn-
chronous sensing period scheme sets a pre-determined 
fixed sensing period for all channels. While it does not 
need the scheduling of quiet period for each channel 
among CRs, it shows less flexible. Recent researches 
[5–7] showed that the asynchronous sensing period 
scheme is more favorable, in which sensing period can 
be adjusted adaptively according to the channel-usage 
characteristics of each channel by the MAC-layer sens-
ing protocol or through a dedicated control channel [8]. 
Kim [5] proposed an adaptation algorithm in which the 

The material in this paper is based on “Random Periodic Spectrum 
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appeared in the proceedings of 11th IEEE International Conference on
Communications Systems, ICCS 2008, Guangzhou, China, November
2008. 
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optimal sensing period is uniquely determined for each 
channel to maximize the discovery of opportunities as 
well as minimize the delay in locating an idle channel. 
However, this approach clearly did not consider the im-
pact of sensing period selection on interference to PUs. 
In [6], we extended [5] to a Flexible Sensing Period 
(FSP) mechanism that introduces the “period control 
factor” to control each channel’s sensing period adap-
tively to tradeoff undiscovered opportunities and inter-
ference to PUs with sensing overhead effectively, but as 
far as each channel is concerned, the FSP also consider 
that sensing period is still fixed. In order to combat the 
fluctuation of sensing period induced by the varying of 
channel-usage characteristics, in [7] we described a 
Fuzzy Spectrum Sensing Period Optimization (FSSPO) 
algorithm where each channel’s sensing period is adap-
tively adjusted in real time with fuzzy logic and parame-
ters optimization. 

Existing approaches of asynchronous sensing period in 
[5,6] and [7] only considered how to adjust sensing pe-
riod which is usually regarded as a constant once it is 
determined, and they all assumed that the sensing results 
are perfect. In this paper, the random periodic sensing 
scheme we proposed extends the sensing period, the time 
of transmission for primary users and cognitive radios to 
random variables and more practical situation where 
sensing error exists is considered. As the PUs have the 
highest priority, we also introduce a back-off mechanism 
where a random back-off time is generated whenever 
PUs release the channel and CRs have to delay for the 
back-off time before occupying the channel. Here we 
focus on how to model the proposed random periodic 
sensing scheme to a generalized Markov process and 
how to derive the optimal sensing period. To support the 
proposed analytical model for sensing period optimiza-
tion, we also illustrate the applications of the analytical 
model by using examples involving PU systems with 
both voice and data traffic. 

The rest of the paper is organized as follows. Section 2 
introduces the random periodic spectrum sensing scheme. 
A generalized Markov analytical model for sensing pe-
riod optimization is constructed in Section 3. Then in 
Section 4, how to obtain performance measures of chan-
nels is considered. Example applications of the proposed 
analytical model for real networks are illustrated in Sec-
tion 5. Numerical examples are presented and discussed 
in Section 6. Finally, we conclude the paper and suggest 
future directions in Section 7. 

 
2. Random Periodic Spectrum Sensing Scheme 
 
In CR networks, a channel usually could be modeled as 
an ON-OFF source alternating between ON (busy) and 
OFF (idle) periods depending on PUs’ channel-usage 
pattern. The sojourn time of a ON period is used for 

transmission of  PUs themselves and that of a OFF pe-
riod captures the time period in which the channel can be 
utilized by CRs’ transmission without causing any 
harmful interference to PUs. The distribution of the so-
journ time in the ON state can assumed to be general, 
and so is that in the OFF state. Thus the ON-OFF chan-
nel-usage stochastic process describing the behavior of 
the channel occupation can form an alternative renewal 
process. A renewal period models a time period in which 
the PUs and CRs occupy the channel once alternatively. 
Hence there are only busy and idle two possible states in 
a renewal period accordingly.  

Considering that the sensing period of each channel is 
a random variable and sensing errors are possible present 
at any moment as well as a back-off mechanism is intro-
duced, in this paper we further subdivide the channel in a 
renewal period into five kinds of states: normal busy, 
available idle, delay idle, false alarm and miss detection. 
Below we will describe each state in detail. 

Normal busy and available idle are two kinds of nor-
mal available states. The former denotes that PUs are 
being served normally and the latter stands for the chan-
nel are being utilized for the transmission of CRs. When 
the channel is in normal available, it is sensed once every 
random time interval T, i.e. sensing period, to make sure 
whether it is in normal busy or available idle.  

As soon as the service of PUs completes, a random 
back-off time interval T0 is generated to prevent CRs 
from occupying the channel at once, within which the 
channel is in delay idle state. The back-off mechanism 
can help decrease both the connection cost generated by 
switching channel state frequently and the short-term 
interference probability induced by non-negligible delay 
for relinquishing bands by CRs. 

Corresponding to the binary hypotheses test of spec-
trum sensing: B0 (null hypothesis indicating that the 
sensed channel is available for CRs) vs. B1 (alternative), 
there are two kinds of sensing errors: false alarm (the 
overlook of an available channel) due to mistaking B0 for 
B1 and miss detection (the mistake of identifying an un-
available channel as an opportunity) due to mistaking B1 
for B0. When false alarm or miss detection is present, the 
channel will transfer to false alarm or miss detection 
state. The presence of sensing errors also has significant 
effects on the performance of sensing schemes. 

Common to most of the periodic spectrum sensing 
schemes, the sensing period selection of random periodic 
spectrum sensing scheme has strong impact on the sens-
ing efficiency. In order to analyze the optimal sensing 
period effectively, an analytical model for sensing period 
optimization is constructed in next section. 

 
3. Analytical Model  
 
Owing to the multiplicity of conditionality and correla-
tion that exists among the various random variable in-
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volved in the random periodic sensing scheme, the 
analysis and performance evaluation, especially the de-
termination of optimal sensing period is usually difficult. 
Therefore, a set of simplifying assumptions is to be made 
for analytical model to be tractable. We assume the fol-
lowing 
 The sojourn time of normal busy and available idle 

are continuous random variables and drawn from general 
cumulative distribution functions (c.d.f.) represented by 
F1(t) and F2(t) respectively. Suppose the probability den-
sity functions (p.d.f.) for Fi(t) (i=1,2) are fi(t), means are 
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 The sensing period T is also a continuous random 
variable and follows an arbitrary distribution with c.d.f., 
p.d.f. and mean are 1( )G t , 1( )g y  and 1

1  , respectively, 
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 Delay idle state can transfer to normal busy or 
available idle. It is assumed that if a PU reappears during 
T0 he can claim the channel and the delay idle will trans-
fer to normal busy with a constant rate γ. Otherwise, if 
the back-off timer expires and no one claims the channel, 
delay idle transfers to available idle instead. In this case, 
T0 follows an arbitrary distribution, and its c.d.f., p.d.f. 
and mean are 2 ( )G t , 2 ( )g y  and 1

2  , respectively, and 

2 2 2
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 We assume that α and β denote false alarm and miss 
detection probabilities respectively, and the sojourn 
times of false alarm and miss detection are arbitrarily 
distributed with c.d.f.s ( ), 1,2i . Let ( )ih t  and iH t i     
be their p.d.f.s and means, and 

0 0 0
( ) ( ) 1 [ ( ) ( )

t t

i i i i iH t h z dz exp z dz tdH t 
        

  When miss detection occurs the channel transfers to 
delay idle, whereas when false alarm occurs, in order to 
render mathematical tractability, we also assume that the 
channel skips normal occupy and transfers to delay idle 
too, for the normal occupy time included is small enough 
compared to total time of the long-run channel and can 
be neglected. 

 We assume that the sensing time is small relative to 
distribution parameters 1 2 0, , , ( ), ( )E T E T   and ( 1,2)i i   , 
and can be negligible. It is also assumed that channel is 
in delay idle initially, and all random variables are mutu-
ally independent. 

Consider the stochastic process  ( ), 0S t t   , where 

S(t) denotes the state of the channel at time t, as following 

 0 stands for the channel is in delay idle, and the 
channel is occupied neither by PUs nor by CRs. 
 ( , )i k  means that the channel is in normal available 

states, where i =0/1 represents that the channel is in 
available idle/normal busy and k stands for the times of 
the channel has been sensed, k =0,1,2, ··· . 
 (2, j) denotes that the sensing error is present, where 

j =1/2 means that the system is in false alarm/miss detec-
tion. 

It is easy to see that, {S(t), t≥0} is a non-Markovian 
stochastic process. In order to make the process Mark-
ovian, we need to incorporate the missing information by 
adding “supplementary variables” to the state description. 
Hence at time t, let Xi (t) (i =1/2) be the remaining nor-
mal busy/available idle time, Yi (t) (i =1/2) the remaining 
sensing/delay time, and Zi (t) (i =1/2) the remaining false 
alarm /miss detection time. Formally, the evolution of 
the stochastic process describing the dynamic behavior 
of the channel can be fully characterized by a generalized 
Markov process  ( ), ( ), ( ), ( ) | 0i i iS t X t Y t Z t t  , and the 

following state probabilities are defined 
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The possible states of channels and the transitions 
among them are shown in Figure 1. 

 

Figure 1. The state transition model of the generalized 
Markov process. 
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According to Figure 1, a few new performance meas-
ures could be defined. The probability of the channel in 
available idle state, normal busy state and delay idle state 
are Available Idle Probability, Normal Busy Probability 
and Delay Idle Probability, respectively. Sensing Fre-
quency is defined the frequency of the occurrence of 
channel sensing when the channel is in state ( , ), 0,1i k i  . 
False alarm occurs if and only if the channel transfers 
from state (0 to state (2,1); while miss de-
tection occurs if and only if the channel transfers from 
state  to state (2,2). So False Alarm 
Frequency and Miss Detection Frequency are defined 
accordingly. Also define , ,

, )( 0,1,2 )k k  

)( 0,1,2 )k k  

1

(1,

( )R t 2 ( )R t 0 9( )L t , 1( )L t 2 ( ), L t  
and 3( )L t are the Instantaneous Probability of Available 
Idle, Normal Busy, Delay Idle, Instantaneous Frequency 
of Sensing, False Alarm and Miss Detection at an arbi-
trary time t, respectively. Then define R1, R2, L0, L1, L2 
and L3 are the steady state forms of 1( )R t 2 ( ), R t , 

0 ( )L t , 1( )L t 2 ( ), L t  and 3( )L t , respectively, e.g., 

1 1( )lim
t

R R t


  . 

In CR networks, each channel will go through one or 
all kinds of states in which available idle and normal 
busy generate rewards by the using for the transmission 
of CRs and PUs, respectively, delay idle and false alarm 
waste opportunities, miss detection induces interference 
to PUs, and sensing has overhead. It is assumed that the 
expected rewards per unit time generated by the channel 
are e1 or e2 when the channel is in available idle or nor-
mal busy, respectively. And the expected losses per unit 
time induced by the delay of channel is c0, the expected 
cost of each sensing is c1, the expected false alarm and 
miss detection expenses every time are c2 and c3, respec-
tively. We also assumed that expected total rewards gen-
erated by the channel during (0,t] are R, then  

32
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       (1) 

where  and c3 are weighting factors (  
). Taking Laplace transform on 

both sides of (1), we have 
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And the expected rewards per unit time in the steady 
state is 

2

0
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       (3) 

where performance measures Ri (i = 1, 2), L0 and Lj (j = 1, 
2, 3) could be expressed as functions of the mean sensing 
period E(T) (denoted by x ) and all of them will be il-
lustrated how to obtain in Section 4. Then taking suitable 

value for x  to make R maximum can bring out the op-
timal sensing period x . That is  

32

0 0

1 1

arg max )i i j j
x i j

x e R c L c L
 

            (4) 

4. Derivation of Performance Measures  
 
In order to derive performance measures for searching 
the optimal sensing period, the steady state probabilities 
with exact solutions in closed form should be calculated. 
How to calculate them using probability analysis and 
supplementary variables method is discussed below. 

According to Figure 1, we have the following differ-
ential difference equations 

2 1 0( ) ( ) ( , , ) 0 0,1,2kx v y p t x y k
t x

          
 (5) 

1 1 10 0

0

( ) ( ) ( , , ) ( , , )k

k

x v y p t x y p t x y
t x

 




        
 (6)

1 1 1( ) ( ) ( , , ) 0 1,2kx v y p t x y k
t x

          
  (7) 

2 0( ) ( , ) 0v y p t y
t y


  

      
         (8) 

1 21( ) ( , ) 0z p t z
t z

      
           (9) 

2 22( ) ( , ) 0z p t z
t z

      


1

         (10) 

The above equations are to be solved under the bound-
ary conditions  
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And the initial conditions 
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Taking Laplace transform on both sides of Equations 
(26), (27) and using Equations (19)–(25), we get 
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With the same derivation of R1 and R2, we can get  
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According to Figure 1, as the channel is in 
state ( , ), 0,1i k i  , it is being sensed. Using state transfer 

frequency formula shown in [9], we get where, D(s) is given by Equation (25). By applying the 
limiting theorem of Laplace transform and L’Hospital’s 
rule, we get 1 0 1
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Similarly, we can derive  
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Substituting , L0 and  by (30), 

(31), (33), (36), (37) and (38) into (4), respectively, the 
optimal sensing period 

( 1,2)iR i  ( 1,2,3jL j 

x  is determined by , i.e., 
the distributions of sojourn time of normal busy and 
available idle. For the sojourn time of normal busy is 
used for transmission of PUs themselves and that of 
available idle can be utilized by CRs’ transmission when 
PUs have no data to transmit,  are usually deter-
mined by the traffic generated by PUs services in practi-
cal networks.  

( )iF t

( )iF t

 
5. The Applications of Sensing Period     

Optimization  
 
This section illustrates the applications of the analytical 
model developed here by using examples involving PU 
systems with both voice and data traffic. 
 
5.1. Optimization for PUs with Voice Traffic  
 
A typical phone conversation is marked by periods of 
active talking/talk spurts (or ON periods) interleaved by 
silence/ listening periods (or OFF periods). The duration 
of each period is exponentially distributed, i.e., the so-
journ time of normal busy and available idle follow ex-
ponential distributions with probability density functions 

( ) i t
i if t e   , and means 1

i  are constants. 
It is a special case for analytical model mentioned 

above in which 1
i s  can be substitute by . The tran-

sient rate of available idle to normal busy and that of 
normal busy to delay idle are thus reduced to con-
stants

1
i z 

i .  
 

5.2. Optimization for PUs with Data Traffic  
 
In the past, exponential distributions are also frequently 
employed to model interarrival times of data calls for its 
simplicity, but exponential distributions may not be ap-
propriate in modeling data traffic. Taking Email, an im-
portant application that constitutes a high percentage of 
internet traffic, as an example, its traffic can also be 
characterized by ON/OFF states. During the ON-state an 

email could be transmitted or received, and during the 
OFF-state a client is writing or reading an email. Ac-
cording to traffic models included in the UMTS Forum 
3G traffic and ITU RM.2072, the Pareto distribution, 
which is one of popular heavy-tailed distributions, can be 
used to close capture the nature of Email traffic for both 
ON and OFF state, i.e., the sojourn time of normal busy 
and available idle follow Pareto distributions with prob-

ability density functions 
1

( ) ,
i

i

i i
i if t t

t





    , and means 

/ ( 1)i i i    , where 0i  is called the shape parameter 
and 0i  is called the scale parameter. 

In order to derive performance measures to search the 

optimal sensing period, 
1

i

i

i i

t





 
  and means / ( 1)i i i     

should substitute ( )if t and 1
i  in Equations (5)–(18). 

 
6. Numerical Results and Discussions 
 
Through numerical experiments, we examine the impact 
of sensing period selection on maximum expected re-
wards of the channel for different traffic types under 
various channel parameters in this section.  
 
6.1. Performance Analysis  
 
According to the characteristics of channels, we first set 
the channel parameters as the following 0.02,   

1 0.033, 

1 0.2,c  3c
2 0.1, 0.2, 0.1    
0.5

, 1 2 0.1,e e  0 2 0.05,c c 
 , and let us assume that T0 follows the 

uniform distribution with parameters 1y   and 10y  , 
written 0T ~ (U y 1 , 10 )y    , and 10y  . 

Two traffic types of PUs are considered, i.e., Type I: 
voice traffic and Type II: data traffic. In the case of voice 
traffic, the sojourn time of normal busy and available 
idle follow exponential distributions with 1 0.04,   

2 0.01  ; for data traffic, the sojourn time of normal 
busy and available idle follow Pareto distributions with 

1 0.8, 1 5   and 2 22.5, 60   , i.e., means are 

1 0.04  and 2 0.01  , respectively. Here 1 1   and 
2 2   are selected for easy comparison. 
To validate the feasibility of the proposed analytical 

model for sensing period optimization, numerical exam-
ples are carried out for the following three sensing 
schemes, i.e.,  

1) Scheme 1: T x , that is, it is exactly a fixed period 
sensing scheme that sensing is performed at once where 
T x . 

2) Scheme 2: T follows the uniform distribution with 
parameters x  and 1x  , written ~ ( , 1T U x x   ) . 

3) Scheme 3: T follows the exponential distribution 
with parameter x , written ~ (T EP x ) . 
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With MATLAB, from (4) we can obtain the optimal 
sensing periods x  and the maximum expected rewards 
R of the channel per unit time in the steady state for each 
sensing scheme. Figure 2 and Figure 3 illustrate the ex-
pected rewards of the channel for various values of x  
under Type I and Type II traffic types respectively.  

For Type I voice traffic, Figure 2 shows that the 
maximum expected rewards of the channel is varied ac-
cording to the distribution of sensing period T. The op-
timal sensing periods for each scheme are {6.5,x   

 and the maximum expected rewards 
are . So the optimal sensing scheme 
is sensing randomly with sensing period T following the 
exponential distribution when 

13.2,7.8}

{1R  09.8,106.1,114.9}

7.8x   under the 
above-mentioned channel parameters, for the scheme 
obtained  is maximum compared to other two 
schemes.  

114.9R 

For Type II data traffic, Figure 3 shows that the opti-
mal sensing periods for each scheme are 

{10.7,17.9,11.3}x  and the maximum expected rewards 
are . From Figure 3, it can easily 
find that the optimal sensing scheme is sensing randomly 
with sensing period T following the uniform distribution. 
One point that deserves mention is that, compared to the 
voice traffic, there are significant differences in maxi-
mum expected rewards among the three schemes in the 
case of data traffic. 

{77.7,113.7,90.2}R 

 
6.2. Analysis of Channel Parameters 
 
In practical, the optimal sensing scheme is different with 
different sets of channel parameters. Next, we study ef-
fects of the setting of various channel parameters on the 
optimal sensing scheme.  

1) Effects of Distribution Parameters: in both voice  
 

 
Figure 2. expected rewards vs. expected sensing period for 
voice traffic.  

 

Figure 3. expected rewards vs. expected sensing period for 
data traffic.  

Table 1. The Optimal Rewards R Vs. Optimal Mean Sens-
ing Period x  for Various Distribution Parameters under 

1 2 0.1,e e   , 0 2 0.05c c  1 3, 0.2, 0.5c c  0.2, 0.1   , 

0T ~ ( 1 , 10)U y y     and 10y  . 

Type Ⅰ Type Ⅱ 
1 1 2 2

1 2

{ / , /

, , }

   
   T x  R  x  R  

T x 7.8 108.1 6.5 121.3
~ ( , 1)T U x x    10.2 106.3 9.2 86.5 

(0.01,0.04
,0.02,0.03
3,0.1) ~ ( )T EP x 11.8 105.5 7.4 94.6 

T x 9.4 110.5 10.7 79.8 
~ ( , 1)T U x x    11.9 109.8 8.8 99.6 

(0.04,0.01
,0.05,0.03
3,0.1) ~ ( )T EP x 10.2 112.3 5.9 128.9

T x 10.5 97.5 15.1 108.2

~ ( , 1)T U x x    9.3 99.3 17.5 132.4
(0.04,0.01
,0.02,0.1,0
.033) 

~ ( )T EP x 8.9 101.6 3.9 86.7

 
traffic and data traffic, the distribution parameters 

1 2 1 2, , , ,      and 1 2 1 2, , , ,    

2 0.1

 directly reflect 
the sojourn time of normal busy, available idle, delay 
idle, false alarm and miss detection state, respectively. 
The distribution parameters 1 1/ 0.04   , 2 2/ 0.01    

0( 10.02, .033,     ) show that the sojourn time of 
available idle is longest, which means low or moderate 
PU traffics are chosen. Other three distribution parame-
ters are chosen for 3 sensing schemes, and the optimal 
rewards R vs. the optimal mean sensing period x  are 
shown in Table 1, respectivel  a) ( 1 1 2 2 1 2/ , / , , ,y.        ) 
is (0.01, 0.04, 0 he sojourn time of 
normal busy is relatively long and less opportunities can 
be used by transmission of CRs; b) ( 1 1 2 2 1 2/ , / , , ,

.02, 0.033, 0.1). T

       ) 
is (0.04, 0.01, he sojourn time of de-
lay idle is reduced so that more opportunities can be used 
by CRs than 1); and c) ( 1 1 2 2 1 2/ , / , , ,

0.05, 0.033, 0.1). T

       ) is (0.04, 
0.01  The sojourn time of miss detec-, 0.02, 0.1, 0.033).
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 Factors: Weighting factors e1, 
e2

tion is longer than that of false alarm. From Table 1, we 
clearly see that the optimal sensing scheme is different 
with regard to different distribution parameters. 

2) Effects of Weighting

for voice traffic: 1) fix d e  (=0. d io15) an  var us 2 1 ; 
and 2) fixed 1  (= 0.2) and v ious 2ar  , and two differe t 
situations fo data traffic: 1) fixe 2

n
r d   (=0.15 ) and 

various 1 ; and 2) fixed 1  (=0.2) and rious 2va  . 
As shown in Figure 4(  and Figure 4(b), va ying , c0, c1, c2 and c3 can be treated as indexes regarding the 

importance of 1 2 0 1, , ,R R L L  and L2. Generally speaking, 
the PU applicati  GPS, can only endure minor 
interference for acceptable Quality of Service (QOS). 
For such applications, the cost of interference induced by 
miss detection is more important and c3 is obviously 
bigger than all other factors as shown in above-chosen 
setting 1 2 0.1,e e  0 2 0.05,c c  1 0.2,c   ( 3 0.5c

ons, such as

 ). 
Table 2 show ptima n 
sensing period 

s optimal rewards R and the o l mea
x  for two different network applica-

tions : a) In the case where the PU is not sensitive to in-
terference, the weighting factors c0 and c2 are both larger 
than other factors in order to maximize the utilization of 
existing opportunities. Here (e1, e2, c0, c1, c2, c3) is set to 
(0.1, 0.1, 0.35, 0.05, 0.35, 0.05). b) For energy-constrained 
CR networks such as sensors and mobile ad hoc applica-
tions, frequent sensing is undesirable for high energy 
overhead, so the weighting factor c1 should be set rela-
tively large and (0.1, 0.1, 0.05,0.5,0.05,0.1) is chosen. 
This table demonstrates that the optimal sensing scheme 
is also different with regard to different weighting factors 
and from the Table 2 one can easily find which scheme 
performs best. 

 

a) r 1  
( 2 ) among 0.1 and 1, we observed that the performance 
o oice traffic is not sensitive to which sensing scheme 
is preferred. However, for data traffic, with the variation 
of 1

f v

  and 2 , the optimal sensing scheme is changing 
amo g three sensing schemes and the maximum ex-
pected rewards have big different, as shown in Figure 4(c)
and Figure 4(d). The possible reason is that the optimal 
sensing period for voice traffic is depending only on a 
constant mean value of the transmission time for primary 
users and cognitive radios whereas performance of data 
traffic are affected by not only mean value but also the 
distributions of the time of transmission for primary us-
ers and cognitive radios.  

From the above discussions, we suggest that: 1) for 
vo

n
 

his paper dealt with the random sensing period 

 

ice traffic, the maximum expected rewards of three 
sensing scheme is close to each other. In real system, a 
fixed period sensing scheme is preferred for simplicity; 
and 2) however, the situation changes dramatically for 
data traffic, the maximum expected rewards of three 
sensing scheme are far different. The analytical model 
proposed can be used to search the optimal sensing 
scheme, and the analysis can be easily extended to that of 
any other distribution of sensing period T. 

 
7. Conclusions and Future Work 

6.3. Performance Comparison for Different  

 
ccording to the proposed analytical model for sensing 

Traffic Types  
 

A T
period optimization, a sensing scheme with a bigger ex-
pected reward performs better. Figure 2, Figure 3, Table 
1 and Table 2 show that the optimal sensing scheme is 
different for different traffic types. In Figure 4, we show 
the expected rewards for different schemes under 

0.02,  1 0 .033,  2 0 .1,  1 20.1, 0.1,e e   

0 2c c  1 30.05, 0.2,c c 0.5 , and two different situations  

scheme in CR networks. An efficient generalized 
Markov analytical model for sensing period optimiza-
tion was proposed and studied. How our proposed ana-
lytical model can be applied to PU systems with both 
voice and data traffic was also discussed. Both numeri-
cal results and analysis for various channel parameters 
and traffic types of PUs were obtained and compared. 
We found that sensing period does affect the maximum 
expected rewards of the channel, and the proposed 
analytical model is valid for the analysis of the case 
where the sensing period, the transmission time for 
primary users and cognitive radios are all following 
arbitrary distributions.  

In this work, we assume that the sensing period for 
ea

 
Table 2. The optimal rewards vs. optimal mean sensing  R  
period x  for various weighting factors under 0 .04,   

0.01,  1 20 .02, 0 .033, 0 .1,       0.   2, 0.1 
0T ~ ( 1 , 10)U y y    , and 10y  . 

 
(e e2, 1, Type I Type II 

c0, c1, c2, 
c3) 

T  
x  R  x R  

T x  

ch channel is different, i.e. the sensing period is asyn-
chronous for all channels. The proposed scheme is suit-
able for the scenario where each CR only sense the 
channel for its operating. If each CR is responsible for 
sensing more than one channel, the intelligence schedule 
algorithm of sensing period should be used to negotiate 
among CRs because the quiet period of each channel is 
also asynchronous. In future, we would like to develop 
practical schedule mechanisms or protocols, which deal 

10.4 107.6 9.7 73.9
~ ( , x 1)T U x     

(0.1,0.1,
11.3 111.4 14.5 98.20.35,0.0

5,0.35,0.
05) ~ ( )T EP x  8.9 105.3 10.3 114.6

T x  7.5 98.8 11.8 89.2

~ ( ,x 1)T U x     15.2 95.6 6.2 125.5
(0.1,0.1,
0.05,0.5,
0.05,0.1) ~ ( )T EP x  12.6 101.2 4.9 75.4
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(a)                                                 (b)       

      

(c)                                                 (d) 

Figure 4. Performance comp

       

arison of different traffic types under 0.02,   1 0.033,   2 0.1,   0.2,   0.1  , 

1 2 0.1,e e  0 2 1 30.05, 0.2, 0.5c c c c     with (a) 2 =0.15, (b) 1  = 0.2, (c) 2 = 0.15, and (d) 1 = 0.2. 
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