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Abstract 
With the support of numerous arguments, it has been shown that Melia’s 
claim that his cosmological Rh = ct model is flat and infinite is erroneous. In 
contrast, the model is positively curved, closed and, therefore, finite. With 
respect to results of Melia’s model, it is identical to our Subluminal Model. 
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1. Introduction 

In numerous papers1, Melia has proposed a cosmological model that is flat and 
infinite and thus contains an infinite amount of matter. Matter, space, time, and 
infinity were created with the Big Bang. Melia called his model the Rh = ct model, 
where Rh represents the non-comoving radial coordinate at the cosmic horizon 
of the expanding model and t the cosmic time, i.e., the time in the system that 
comoves with the expansion. Evidently, the name of Melia’s model comprises 
two variables belonging to two different coordinate systems. 

Melia has an extensive set of astrophysical data and has demonstrated in a se-
ries of articles that this data can be best adapted to the Rh = ct model as com-
pared to other Friedman-Robertson-Walker (FRW) models. Moreover, his 
model provides an exact solution to Einstein’s field equations while most FRW 
models do not. Therefore, Melia’s model is significantly different from the stan-
dard FRW model, where pressure is applied by hand. As Einstein’s field equations 
cannot fully determine the FRW models, it is necessary to introduce numerous 
parameters, namely, the Ωs and the deceleration parameter. These quantities 
must be determined using astrophysical data. However, for Melia’s model, only 
one parameter needs to be determined. This feature explains why Melia’s model 

 

 

1Most papers by Melia and colleagues are listed in [1]. 
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is favored over other models. 
We proposed our Subluminal Model [1], which is positively curved and closed. 

The main aim of this paper is to prevent the assumption that galaxies in the un-
iverse have superluminal velocities. Surprisingly, Melia’s Rh = ct model and our 
Subluminal Model yielded the same final results. One obtains the same Fried-
man equation, the same EOS, i.e., 0 3 0pµ + = , and a uniform expansion of the 
universe. 

In the second section, we oppose the two models and show that both models, 
although derived in different ways, are identical. We collect the results from our 
earlier papers and comment on them. We believe that Melia’s universe is also 
positively curved and closed. Thus, Melia’s observational results are valid for our 
model as well. Nevertheless, we assert that Melia’s geometrical interpretation of 
his model is erroneous. 

2. The Question of Curvature 

In the following section, we will demonstrate step by step that Melia’s Rh = ct 
model is not flat at all. We have referred to our earlier papers [2] [3] where we 
treated the same aspect of the problem. Here, we have summarized the results. 

i) We favor the view that infinite universes, be they open, flat, or negatively curved, 
are ruled out as a way of describing Nature. This is because infinities are hard to im-
agine and because we want to avoid conclusions from Hubble’s law that lead to 
acausality and contradictions to the special theory of relativity. This is one of the 
reasons we have rejected the geometrical interpretation of Melia’s infinite model.  

ii) An infinite universe has to expand to avoid Olbers’ paradox. An infinite 
number of stars emit an infinite amount of light. Although the intensity of light 
decreases with 21 r , the night sky will be as bright as our sun. In the case of ex-
pansion of the universe, distant stars run away and influence the 21 r  law, 
thereby avoiding Olbers’ paradox. 

iii) According to Hubble’s law, v Hr= , where H, as the Hubble parameter, 
associates the recession velocity v of the galaxies with the distance r of an ob-
server. This law emerges from astrophysical observations. Evidently, in an infi-
nite universe, the distance r can be chosen to be arbitrarily large, and the reces-
sion velocity may reach or exceed the velocity of light. Thus, the formation of 
galactic islands could be possible. However, no information can be exchanged 
between such galaxies. The laws of special relativity are inevitably violated in an 
infinite universe. 

iv) The boundary where the recession velocity becomes superluminal is 
known as the cosmic horizon. Melia introduced such a horizon rather artificially. 
He, building on a flat universe, created an event horizon by comparing it with 
the Schwarzschild theory. He referred to Weyl’s cosmological principle and 
Birkhoff’s theorem. An enclosed mass ( )hM M r=  of a certain volume in the 
universe determines the Hubble radius2 22hr GM c= , leading to the relation 

 

 

2Melia’s variables ,R t  correspond to our variables , ' r t , which we have used in our earlier papers. 
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( )'h hr ct R ct= = . The Hubble radius is defined as the distance light has traveled 
since the Big Bang;   't  represents the age of the universe and hr  the location at 
which the rate of expansion reaches the speed of light. 

It should be mentioned that to define a cosmic horizon, the mass content of 
the universe is not mandatory. This shows the original version of the dS cosmos, 
which is empty and has a horizon. 

v) In contrast, our Subluminal Model has a natural horizon. This model is based 
on the dS model, which can be geometrically represented by a 4-dimensional 
pseudo-hypersphere with a constant radius R  embedded into a 5-dimensional 
flat space. Expunging the condition .const=R , one can obtain our Subluminal 
Model. 

The pseudo-hypersphere of the dS cosmos is usually described with pseu-
do-spherical coordinates 4, , ,r x it iϑ ϕ ψ= = R . Here, 

sinr η= R                          (2.1) 

is the radial coordinate and η  the polar angle of the pseudo-hypersphere. 
Choosing an arbitrary point on the pseudo-hypersphere as a pole, i.e., the loca-
tion of an observer, the associated equator surface ( sin 1η = ) has 

hr = R ,                          (2.2) 

the maximal extension of r. This is the natural geometrical definition of the 
cosmological horizon and is equally valid for the Subluminal Model. It is the ba-
sic relation that connects the two models under consideration. Thus, the reces-
sion velocity is also limited via Hubble’s law. As we have already shown in our 
paper [4], the geometric horizon can be reached by drifting galaxies only after 
infinite time, as experienced by the chosen observer. As observers can be fixed at 
any arbitrary point on the pseudo-hypersphere, each observer has an individual 
horizon. 

vi) To examine the relationship between the two models in greater depth, let 
us revisit the abovementioned definition of Melia’s cosmic horizon. Melia de-
termined the Hubble radius with 

( )
2

2 h
h

GM r
r

c
= . 

Here, 

( )
3

02
4
3

h
h

rM r
c

µπ
=  

is the mass enclosed by the sphere with radius hr  and 0µ  as the assigned mass 
density. Thus, with the aid of (2.2), we get 

4

0 0

3 3
8h

cr
Gµ κµ

= = =
π

R .                  (2.3) 

This immediately results in 

0 2
3κµ =

R
,                         (2.4) 
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an expression derived in our Subluminal Model with geometrical methods. 
The mass density decreases as the universe increases with the radius R . This 

and similar relations can also be found in Einstein’s universe, Friedman’s un-
iverse, and in the models of the dS family. However, this relation is missing in 
Melia’s papers. As Melia’s model is assumed to be flat, a familiar relation (2.4) 
cannot be derived within the framework of his model. 

vii) Both models the Rh = ct model and the Subluminal Model describe the re-
lation between the non-comoving radial coordinate r and the comoving coordi-
nate 'r  with 

( )' 'r t r=K ,                        (2.5) 

where K  is the time-dependent scale factor. We still need to demonstrate that 
the Rh = ct model is compatible with the features of the curvature of the pseu-
do-hypersphere. With 

0 0 0sin , ' sin , , .r r constη η= = = =R R R KR R ,      (2.6) 

we can write the Hubble parameter with both the scale factor and the pseu-
do-hypersphere’s radius of curvature as 

H = =
 R K

R K
,                       (2.7) 

where 0R  is the radius of the curvature of the pseudo-hypersphere if it is cal-
culated with the aid of comoving, i.e., expanding rods, and thus appears to be a 
constant quantity for the comoving observer. 

In addition, by solving the field equations of the Subluminal Model, we can 
obtain the mass density, the pressure, and the EOS as follows: 

0 2 2
3 1, , 3 0op pκµ κ µ= = − + =

R R
.            (2.8) 

Both pressure and mass density are functions of the time-dependent radius of 
the universe.  

viii) In the Subluminal Model, the recession velocity is geometrically defined by 

sin rv η= =
R

.                        (2.9) 

Respecting (2.2), the recession velocity at the horizon is 

1hv = , 

the velocity of light in the natural measuring system. In addition, solving Fried-
man’s equation, we can arrive at the following simple relation: 

1=R .                         (2.10) 

With (2.7) one has 1H = R , and using Hubble’s law, we can confirm (2.9). 
The dot in Equation (2.10) denotes the derivation with respect to cosmic time. 
Thus, we can now recover Melia’s fundamental relation Rh = ct using the physi-
cal measuring system. 

ix) The essential difference concerning the interpretation of the models is the 
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question of curvature, i.e., the interpretation of the curvature parameter k. The 
line elements of both models in comoving coordinates are the same, and we can 
see from them that   0k = . 

In our Subluminal Model with the static dS metric as the seed metric has 
  1k = . The geometry of the dS cosmos is interpreted as the pseudo-hypersphere 
and thus as a positively curved, finite universe. It should be noted that a coordi-
nate transformation to the comoving system cannot change the curvature of the 
space. Due to this, we insist that the curvature of both models is positive and the 
universe is finite. 

It is well known to gravitational physicists that a transition to a freely falling 
coordinate system does not change the geometrical structure of a model. Le-
maître found such a transformation for the Schwarzschild model. Observers in a 
freely falling elevator tend to hover, implying that they are not exposed to gravi-
tational forces. When writing the line element of the static Schwarzschild model 
in canonical form, the curvature parameter is 1k = ; however, in a freely falling 
system is 0k = . This shows that k is not a reliable criterion for the curvature of 
space. In contrast, 0k =  denotes that an observer is in free fall. Thus, it would 
be more convenient to call k a form parameter for a metric. In our paper [3], we 
have discussed this problem in detail and extended Einstein’s elevator principle 
to cosmology. We conclude 0k =  in Melia’s model does not necessarily indi-
cate the model is flat but rather indicates that the universe is in free fall. 

x) In an extensively quoted paper [5], Florides discussed the relations between 
comoving and non-comoving coordinate systems for several cosmological mod-
els. In our papers [6] [7], we complemented the coordinate transformations of 
Florides with Lorentz transformations. From all these papers, it can be seen how 
the parameter k changes under coordinate transformations. In a table, we have 
provided an overview of cosmological and gravitational models in [8] and shown 
that k assumes rather individual values depending on the choice of coordinates 
for the line element. Therefore, the statement of numerous authors at the begin-
ning of their articles that ( )  1,0, 1k = −  denotes positively curved, flat, or nega-
tively curved spaces is definitely wrong. Florides states that the only physical ac-
ceptable member of the dS family is the de Sitter cosmos, i.e., the universe with a 
metric that transforms 1k =  into 0k = . This is the very metric we have used 
as the seed metric for our Subluminal Model. 

xi) To determine the structure of the universe, we cannot rely on the parame-
ter k. Instead, Einstein’s field equations need to be solved and the geometrical 
properties of the given quantities studied. Unfortunately, several cosmologists 
tend to manipulate Friedman’s equation without considering the remaining 
components of Einstein’s field equations. This way, they propose new models, 
trying to explain dark matter or dark energy and other possible effects in cos-
mology. It can be said that such solutions are not exact solutions to Einstein’s 
field equations. 

A complete treatment of the field equation can disclose the geometrical struc-
ture of the model and determine the curvatures of space. We will demonstrate 
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this in a somewhat pedagogical manner. Starting with a simple 2-sphere embed-
ded into a 3-dimensional flat space, the line element on this sphere can be ex-
pressed as follows: 

2 2 2 2 2 2d d sin ds r rϑ ϑ ϕ= + .                    (2.11) 

Here, r represents the radii of the greater circles and sinr ϑ  the radii of the 
parallels. From the line element, we can read the tetrads and calculate the Ric-
ci-rotation coefficients3 

{ } { }
, ,

0,1,0 , 0,0,1 , 1,2,3

s s s s s s s s s
mn mn mn mn m n m n mn m n m n

m m

A B C B b B b b b B C c C c c c C
b c m

= + = − = −

= = =
 

Herein, the curvatures are defined by 

1 1 1,0,0 , sin , cos ,0 .
sin sinm mB C

r r r
ϑ ϑ

ϑ ϑ
   = =   
   

        (2.12) 

We see that the Ricci-rotation coefficients contain the curvatures of the sphere 
1 1,

sinr r ϑ
. It is easy to extend this method to higher-dimensional spaces. 

xi) The dS model is based on the metric 
2 2 2 2 2 2 2 2 2 2 2 2 2d d sin d sin sin d cos ds iη η ϑ η ϑ ϕ η ψ= + + +R R R R .   (2.13) 

It is the metric of a 4-dimensional pseudo-hypersphere 
' ' 2 , ' 0 ',1', ,4 'a ax x a= = R  

with a constant radius R  embedded into a 5-dimensional flat space, parame-
trized by 

3'

2 '

1'

4 '

0 '

sin sin sin

sin sin cos

sin cos

cos sin

cos cos

x
x
x
x i
x i

η ϑ ϕ

η ϑ ϕ

η ϑ

η ψ

η ψ

=

=

=

=

=

R

R

R

R

R

. 

Here, 'a  denotes the Cartesian coordinate system of the embedding space, 
where 4' cosx i shη ψ= R  is related to an imaginary dimension of space, the 
“Cartesian time.” To understand the curvature problem, we can restrict ourselves 
to the greater circles of the spherical piece of the pseudo-hypersphere, i.e., the sur-
face ' ' 2 , ' 1',2 ',3'x x rα α α= = , sinr η= R . In the local 5-dimensional pseu-
do-spherical system, the curvature quantity of these circles can be obtained as4 

1 1, cot ,0,0,0 , 0,1, ,4aB aη = = 
 



R R
            (2.14) 

or with sinr η= R , the more familiar form 

1 1sin , cos ,0,0,0aB
r r

η η =  
 

.               (2.15) 

 

 

3The Christoffel symbols are not appropriate for this purpose. 
4One can find a detailed calculation in [9]. 
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The 0-dimension is the local extra dimension. Comparing the 4-dimensional 

part 1 cos ,0,0,0
r

η 
 
 

 of this equation with (2.12), we find that the  

4-dimensional space cannot be flat. Squaring (2.15), we get 21a
aB B r= , r 

being the curvature radius of the greater circles of the spherical part of the 
model. 

Performing a Lorentz transformation in the local [1,4]-slice, we get for (2.15) 

1 1 1sin , cos cos ,0,0, cos sinaB i i
r r r

η η χ η χ =  
 

         (2.16) 

where iχ  is the Lorentz angle. In the case of transformation to a comoving 
system in a universe expanding in free fall, the relative motion of a comoving 
observer is geometrically defined and the relation 

cos cos 1iη χ =                        (2.17) 

is satisfied. It should be noted that the geometrical quantity cosη  and the ki-
nematical quantity cos iχ , the Lorentz factor of the motion, are closely related. 
Using this, we can easily derive 

sin tani iχ η= . 

Respecting these two relations, we can obtain from (2.16) 

1 1 1sin , ,0,0, sinaB i
r r r

η η =  
 

.                (2.18) 

Here, 1 ,0,0
r

 
 
 

 is the spatial part of quantity B, which seems to be flat accord-

ing to (2.12). Evidently, this is a consequence of Einstein’s elevator principle that 
we have discussed in detail in paper [3]. However, all five components of (2.18) 
need to be considered. Again, the square of B is 21 r , with r as the radii of the 
greater circles. As expected, the curvature of space turns out to be an invariant 
property. The same holds for quantity C mentioned in (2.12). 

In addition, further slices of the pseudo-hypersphere are open pseudo circles 
2 20' 4 ' 2 2cosx x η+ = R  

with radii cosηR  and curvatures 1 cosηR , recalling 4'x  as an imaginary 
coordinate. This curvature is the cause of the force of acceleration in the dS 
cosmos. The latter is a component of the Ricci-rotation coefficients. It should be 
noted that for the transition of this quantity into a comoving system, the inho-
mogeneous transformation law of the Ricci-rotation coefficients is required. We 
have discussed this problem in the quoted papers. 

Omitting the calculation of all the components of the Einstein tensor, we 
can circumvent the question of the curvature of the model. We could not find 
any controls in Melia’s papers concerning the first three components of the 
Einstein tensor. They would exhibit the curvature radii of the normal and ob-
lique slices of the pseudo-hypersphere, representing the positively curved un-
iverse. 
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xiii) As already mentioned in the earlier parts of this section, a transition from 
the dS model to the Subluminal Model is rather simple: the restriction .const=R  
needs to be expunged. Then R , the radius of the pseudo-hypersphere, i.e., the ra-
dius of our universe, behaves as a function of time. The evolution of our universe 
can be described by a series of self-similar dS universes. Evidently, the metric of 
the dS universe does not contain any information regarding how the universe 
can develop or how to calculate the change in R . A second set of differential 
equations needs to be consulted. These are the contracted Bianchi identities 

[ || ] 0s
m n r sR ⋅ ⋅ =  that provide possible changes of the Riemann curvature tensor. To 

define a genuine expanding cosmological model, the following two differential 
equation systems are needed: 

mn mn mn

n
m ||n ||m

1(I) R g R κT
2

1(II) R R 0
2

− = −

− =
.                  (2.19) 

System (II) leads to the conservation law || 0n
m nT = . This equation is often 

used in the literature to establish an outstanding relation with variables. Solving 
these two systems of equations, the Subluminal Model can be obtained with 
properties mentioned in items vii and viii. 

3. Conclusion 

We have demonstrated step by step that our positively curved and finite Sublu-
minal Model is identical to Melia’s Rh = ct model and have extensively discussed 
the question of curvature. We conclude that Melia’s claim that his model is flat is 
erroneous. 
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