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Abstract 
Global climate change, temperature rise and some kinds of extreme meteoro-
logical disaster, such as the drought, threaten the development of the natural 
ecosystem and human society. Forecasting in drought is an important step 
toward developing a disaster mitigation system. In this study, we utilized the 
statistical, autoregressive integrated moving average (ARIMA) model to pre-
dict drought conditions based on the standardized precipitation index (SPI) 
and standardized precipitation evapotranspiration index (SPEI) in a major 
tributary in the lower reaches of Nu River. We employed data from 2001 to 
2010 to fit the model and data from 2011 to 2013 for model validation. The 
results showed that the coefficients of determination (R2) was over 0.85 in 
each index series, and the root-mean-square error and mean absolute error 
were low, implying that the ARIMA model is effective and adequate for this 
region. 
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1. Introduction 

Global climate change, rising temperatures, and various extreme meteorological 
conditions have seriously threatened the natural ecosystem and the development 
of human society and economy (Vicente-Serrano et al., 2012). In different time 
and space scales, the impact of drought on humans is more extensive and 
far-reaching than any other natural disaster. In the past two decades, 
drought-affected regions and areas have increased in all continents worldwide 
(Dai, 2010). 

Drought is a natural phenomenon, which reflects the climate change and 
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moisture in a region for a long time. Insufficient long-term precipitation in me-
teorological factors is usually the main reason for the formation of drought. De-
termining when droughts occur and end is often difficult because the effects of 
droughts can sometimes last for months (Li et al., 2015), and sometimes for 
years. Another challenge and the fundamental aspect of drought research are 
determining its occurrence and severity. To quantify the extent of drought, var-
ious drought indices have been developed. For example, research on meteoro-
logical drought includes relative humidity index, percentage of precipitation 
anomaly, standardized precipitation index (SPI), and Palmer index (PDSI), etc. 
(Dai, 2013; Li & Zhou, 2014). Among them, there are some algorithms for im-
proving and perfecting these drought indexes. Vicente-Serrano et al. (2010) 
proposed a standardized precipitation evapotranspiration index (SPEI) based on 
the SPI index and added consideration of evaporation effects. In addition, the 
indexes that use river runoff as indicators to describe drought include runoff 
drought index (SDI), standard runoff index (SRI), standard hydrological index 
(SHI), etc. (Sharma & Panu, 2014). Tsakiris et al. (2013) proposed a method that 
can systematically assess the interactions between meteorology, runoff drought, 
and economic and environmental impacts on a river basin scale. 

In the past ten years, with the increasing trend of drought on a global scale, 
southwest China and surrounding countries have also been affected (He et al., 
2011). In particular, since the fall of 2009, the effects of successive droughts have 
led to large-scale reductions in crop yields and even crop failure. Many reser-
voirs and small lakes are on the brink of dryness. Living difficulties of moun-
tainous people and agricultural water are further exacerbated, and the ecological 
environment is greatly affected. It is located in the lower reaches of the Nu River 
basin in the mountains of southwestern China, and it is not only an important 
food production base in western Yunnan province, but also a large part of it is a 
hotspot for international ecological protection. The terrain in this area is domi-
nated by river valleys and mountains distributed north-south direction. Due to 
the “channel” of the longitudinal valleys and the “barrier” of the mountains, the 
climate and environment change are complex, and it is an ecologically sensitive 
and fragile area in the plateau and mountains (Becker & Bugmann, 2001). At 
present, the research on Lancang-Mekong River, Red River and other river ba-
sins near the Nu River shows that under the interactive influence of climate 
change and human activities, the hydrological process of the basin has changed, 
causing a series of ecological and hydrological problems, which have attracted 
widespread attention from the international community (Giang et al., 2013; He 
et al., 2014). At present, there are some studies on the characteristics of changes 
in precipitation, runoff and other factors in the Nu River basin (Fan & He, 2012; 
Liu & He, 2013), but few study done on the drought (Xu, 2017), A few related 
studies show that the meteorological drought in the lower reach of the Nu River 
showed an increasing trend from 1966 to 2013, but it reflects multi-scale period-
ic characteristics (Chen el al., 2019). In particular, the meteorological drought at 

https://doi.org/10.4236/ajcc.2020.92007


W. H. Chen et al. 
 

 

DOI: 10.4236/ajcc.2020.92007 89 American Journal of Climate Change 
 

the half-year and seasonal levels has increased significantly since the early 21st 
century. 

In view of the limited long-term monitoring data (precipitation, temperature, 
etc.) on drought in the Nu River Basin, this paper will use ARIMA, seasonal 
ARIMA and other time series model methods to explore the SPI and SPEI indi-
cators of meteorological drought in the lower reaches of the Nu River in Yunnan 
Province. Try to predict future drought conditions. Provide scientific support for 
regional drought monitoring, industrial restructuring, and researches on the 
transboundary water resources changes in international basin. 

2. Study Area and Data 
2.1. Study Area 

The study area, the Minbo River Basin, is located in Yunnan Province, China, 
and is a primary tributary to the lower reaches of the Nu River (Figure 1). The 
basin area is 6646.4 km2, the river length is 193 km, and the total drop is 2280 m 
(ECERLC, 2014). The basin as a whole is a subtropical humid climate with four 
distinct seasons. The average annual temperature of Baoshan in the upper 
reaches of the basin is 15.6˚C, and the average annual temperature of the Jiu-
chang station in the lower reaches is 21.2˚C. The average annual rainfall is 
1160mm, and the flood season is from May to November each year, and its pre-
cipitation accounts for 85% of the annual precipitation. There are many small 
plains distributed between the mountains in the basin, which is an important 
food production base in Yunnan Province. Economic crops such as coffee, tea,  
 

 
Figure 1. Location of the study area. 
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and walnut are also grown on the mountains (Li & Liu, 2004; Jiang, 2006). The 
development of these industries all depends on the basin’s meteorological and 
hydrological conditions. According to the “Yunnan Disaster Reduction Year-
book”, in recent years, there have been major droughts in Baoshan in 2005 and 
continuous droughts from 2009 to 2012. In particular, since autumn 2009 to 
2012, due to the control of westerly airflow, the rainfall in the whole region was 
significantly less during the rainy season, and the range affected by drought was 
wider and the severity was higher. Among them, the Longyang District of Bao-
shan City in the upper reaches of the Nu River Basin had a rainfall of 100mm in 
2012, which was 91 mm less than the same period of previous years. Due to the 
uneven distribution of rainfall areas and rainfall periods, and the cumulative ef-
fect of the effects of less precipitation for three years, the drought situation is 
more severe, reaching the severe drought level. 

2.2. Data 

Three national meteorological stations (Figure 1) involved in the study area 
were obtained from the Yunnan Meteorological Bureau: Baoshan Station, 
Changning Station, Yongde Station, monthly precipitation and monthly average 
temperature data from 1966 to 2013. Hydrological data were obtained by the 
Hydrological and Water Resources Bureau of Yunnan Province from 1966 to 
2013 for the monthly runoff of Kejie station and the Jiucheng station on the 
lower reaches of the Luobo River. According to the data of the global bioclimatic 
zone divided by (Metzger et al., 2012), Baoshan, Changning, and Yongde sta-
tions are located in three types of bioclimatic zones: warm and dry area, dry and 
hot area, and Warm and humid area. The correlation and consistency of preci-
pitation and temperature between the three meteorological stations are high 
(Chen el al., 2019), so the average of the precipitation and temperature series of 
the three stations represents the overall situation of the river basin. 

3. Methods 
3.1. SPI and SPEI 

The SPI is one of the main indicators recommended by the World Meteorologi-
cal Organization for describing drought events. The index can be calculated us-
ing only accumulated precipitation data for different reference periods. Because 
the indicators are standardized, they can be compared in different regions. It 
first calculates the Γ distribution probability of precipitation in a specific refer-
ence period, and then normalizes the cumulative frequency of precipitation 
through the Log-normal function (WMO, 2012). The calculation of the SPEI is 
similar to that of the SPI, the main difference is that the increase of evapotrans-
piration on the effect of drought (Vicente-Serrano et al., 2010). Considering the 
rainfall patterns in the lower reaches of the Nu River, in the short reference pe-
riod, SPI and SPEI only show periodic time oscillations, and it is difficult to eva-
luate long-term drought changes (Patel et al., 2007; Tigkas et al., 2012; Shi el al., 
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2015), in contrast, it is easier to identify drought events with calculated values 
for longer reference periods. Therefore, we chose a 12-month reference period to 
analysis the annual level of drought characteristics in the study area. The levels 
of drought indicators are classified as follows (Table 1), according to the SPI 
level in “Meteorological drought level” (GB/T20481-2006) and related research 
(Soumyashri & Nagraj, 2016). 

3.2. ARIMA and Seasonal ARIMA 

The commonly used forecast tools for the time series is a data-driven methods, 
namely Autoregressive Integrated Moving Average (ARIMA) model (Hao et al., 
2018). For a certain time series (such as drought indicator series), ARIMA em-
phasizing the stochastic properties of the series rather than its constructing sin-
gle. Each variable in the model is represented by the lag of the series and the 
stochastic error. The common ARIMA model consists of a p-order AR (autore-
gressive) model, a q-order MA (moving average) model, and a d-order differ-
ence operator on the time series (Box et al., 2015). This can be expressed as 
ARIMA (p, d, q). 

Box et al. extended the common ARIMA model to deal with the periodicity in 
the time series, with the result form a new ARIMA model, namely Seasonal 
ARIMA (Box et al., 2015). The SARIMA model is constructed by adding season-
al periodic rule to a general ARIMA mode, and it could be denoted as ARIMA 
(p, d, q)(sp, sd, sq)S, where (p, d, q) is the nonseasonal component of the model, 
and (sp, sd, sq)S is the seasonal component. where p is the order of AR model, q 
is the order of the MA model, d is the order of the difference, Correspondingly, 
sp is the order of the seasonal AR, sq is the order of the seasonal MA, sd is the 
order of seasonal difference, and s is the seasonal span. 

ARIMA model has low requirements for input data, few model parameters, 
and fast optimization speed. It is well adapt to non-stationary data (Alam et al., 
2014). Based on these advantages, this model is more suitable for hydrological 
prediction in the area with lacking data. However, because the parameters of the 
model are based on the change rule of historical data, when the climate of the 
study area changes significantly, the prediction accuracy will decrease, also the 
prediction period should not be set too long (Yeh & Hsu, 2019). 

3.3. Model Development 

The time series modeling method is used to fit the SPI and SPEI sequences. The 
basic process includes: model identification, parameter estimation and model 
diagnosis. The indicator series (SPI-12M, SPEI-12M) from 2001 to 2010 were  
 
Table 1. Drought index ranks of SPI and SPEI. 

Index Non-drought Mild-drought Moderate drought Severe drought Extreme drought 

SPI −0.5 < SPI −1.0 < SPI ≤ −0.5 −1.5 < SPI ≤ −1.0 −2.0 < SPI ≤ −1.5 SPI ≤ −2.0 

SPEI −0.5 < SPEI −1.0 < SPEI ≤ −0.5 −1.5 < SPEI ≤ −1.0 −2.0 < SPEI ≤ −1.5 SPEI ≤ −2.0 
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simulated and used for verification from 2011 to 2013. 

3.3.1. Model Recognition and Parameter Estimation 
The construction of ARIMA/SARIMA model requires the time series to be a sta-
tionary process. Therefore, the first step in model identification is to perform a 
stationary test on the original time series. Take the 2001-2013 time series and use 
the ADF test method to check the sequence stability. If the sequence is unstable, 
perform differential processing and repeat the test process until the sequence is 
stable (Table 2). 

In the model recognition stage, ARIMA/SARIMA models were selected as 
candidate models, and the grid search method was used for parameter optimiza-
tion. In the optimization process, AIC (Akaike information criterion) and SBC 
(Schwarz-Bayes information criterion) are used for judgment: models with lower 
AIC and SBC values are considered to have better fitting effects. Calculations for 
AIC and SBC may refer to related literature (Akaike, 1974; Schwarz, 1978). Fi-
nally, after identifying the model, the parameters of the model need to be esti-
mated. In this study, the recommended maximum likelihood method (Box et al., 
2015), which is often used for statistical model parameter estimation, is used to 
estimate model parameters. 

3.3.2. Diagnostic Checking 
After the parameter estimation is completed, a diagnostic check is performed. 
The statistical check of the residuals is mainly performed to verify whether the 
model is suitable for time series. For a well-performing model, the residuals 
must satisfy independence, obey normal distribution, and homogeneity of va-
riance. That is, the residual must be a white noise process. Some statistical tests 
and residual plots are used for diagnostic tests. The residual autocorrelation 
function (RACF) and residual partial autocorrelation function (RPACF) of the 
time series can be used to determine whether the series is independent. If the 
ACF and PACF of the residuals are significant within the confidence interval, it 
indicates that there is no significant correlation between the residuals. 

Another method is to use Ljung-Box-Pierce (LBQ) to test. If the Q statistic is 
less than (α = 0.05 level) critical value, the residual error is white noise. This pa-
per uses Ljung-Box-Pierce (LBQ) to test the independence of residuals. Normal-
ity of residuals is verified by histograms and residual probability plots; the ho-
mogeneity of residuals is verified by scatter plots of residuals and predicted val-
ues. If there is no obvious pattern in the scatter plot and the residuals are ran-
domly distributed around 0. It indicates that the residuals are homogeneous. 
 
Table 2. P value of ADF test for drought index series. 

Index Scale Original series Difference Order Difference series 

SPI M12 0.1093 1 *0.0000 

SPEI M12 0.0642 1 *0.0000 

Note: *represents a significant level of 0.05. 
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4. Results and Discussion 
4.1. Drought Change Characteristics 

According to previous studies, the SPI and SPEI time series have dropped sig-
nificantly after 2000 (Chen el al., 2019). Here, we take the year 2000 as the 
breakpoint, and counted the frequency of occurrence of moderate or higher 
droughts (value < −1) in each month, which are represented by SPI and SPEI in-
dicators, in the study area from 1966 to 2000 and from 2001 to 2013. There are 
some differences in the frequency of drought reflected by different indicators. In 
general, the drought frequency of SPEI is higher than that of SPI. Since the be-
ginning of the 21st century, the frequency of droughts reflected by the two indi-
cators has increased significantly from 1966 to 2000 (Figure 2). During the pe-
riod from 1966 to 2000, the average frequency of moderate and higher droughts 
characterized by SPI and SPEI was 8.6% and 10.9%. However, after 2000, the av-
erage frequency of moderate and above droughts represented by SPI and SPEI 
was 24.8% and 32.4%, especially in the dry season months such as January-April 
and November-December. The frequency of moderate and above droughts even 
reached 29.1% (SPI) and 39.2% (SPEI). 

4.2. Model Recognition 

Figure 3 shows that the ACF curves of the SPI and SPEI index training samples 
are gradually attenuated in the form of a sine wave, indicating that the sequence 
contains periodic information. It is more appropriate to consider fitting with the 
SARIMA model. According to the AIC and BIC quasi-sides, the grid search me-
thod is used to set the search range to 0 - 4. The SARIMA (p, 1, q) (sp, 1, sq)12 
model parameters are automatically optimized to obtain the minimum AIC The 
best model for BIC is shown in Table 3. The one with the fewest parameters is 
selected as the best model. The analysis of model coefficients, related standard 
errors, and standard error probabilities is shown in Table 4. It can be seen from 
the table that the selected SARIMA model performs well in both series. 

4.3. Diagnostic Checking 

The Ljung-Box-Pierce statistic was used to test the independence of the residuals.  
 

 
Figure 2. Frequency % of occurrence in moderate and severe drought from SPI (left) and 
SPEI (right). 
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Figure 3. ACF of drought series for SPI (left) and SPEI (right). 
 
Table 3. AIC and SBC score for candidate ARIMA model. 

Series Model AIC SBC 

SPI 
SARIMA(2,1,2)x(1,0,2)12 26.229 46.403 

SARIMA(0,1,0)x(2,0,0)12 38.248 45.91 

SPEI 
SARIMA(1,1,1)x(2,0,1)12 14.554 29.814 

SARIMA(0,1,0)x(2,0,1)12 15.946 26.162 

 
Table 4. Statistical analysis of model parameters. 

Series Item Coefficient Std error z P > |z| 

SPI 

ar.S.L12 −0.7231 0.0820 −8.7680 0.0000 

ar.S.L24 −0.2554 0.1200 −2.1240 0.0340 

σ2 0.0822 0.0090 9.2060 0.0000 

SPEI 

ar.S.L12 −0.3693 0.1250 −2.9590 0.0030 

ar.S.L24 −0.1478 0.1160 −1.2730 0.2030 

ma.S.L12 −0.5980 0.1370 −4.3550 0.0000 

σ2 0.0602 0.0080 7.9850 0.0000 

 
The Q value is compared with the critical value of a significant level of α = 0.05 
under the corresponding degrees of freedom. In all cases, the test results are not 
significant, indicating that the model’s residuals are white noise (Table 5). 

Figure 4 and Figure 5 depict the histograms (Histogram plus estimated den-
sity of standardized residuals, along with a normal (0,1) density) and normal QQ 
plots of the SPI and SPEI simulation residuals, respectively. The histogram 
shows that the residuals are roughly concentrated around zero and are approx-
imately normally distributed. The normal QQ plot of the residuals shows that 
the residuals are basically located on a diagonal, and also indicates the normal 
distribution of the residuals. 

The residual homogeneity is tested by the residual scatter plot and predicted 
values. The results are shown in Figure 6. There are no specific patterns of scat-
ter, and the residuals are randomly distributed. That is, the residuals are evenly 
distributed around the zero mean, which means that the model fits well. 
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Table 5. Ljung-Box-Pierce statistics for the residuals. 

Series Ljung-Box (Q) Critical value 

SPI 26.3 145.461 

SPEI 42.9 145.461 

 

 
Figure 4. Histogram (left) and Normal QQ plot (right) of residuals for SPI. 
 

 
Figure 5. Histogram (left) and Normal QQ plot (right) of residuals for SPEI. 
 

 
Figure 6. Scatter plot of the residual against predicted value for SPI (left) and SPEI 
(right). 
 

Here, we also compare the observations with the optimal simulation values of 
the series from 2008 to 2010 (intra-sample data). Figure 7 shows the comparison 
between the predictions and observations of SPI and SPEI series. It can be seen 
that the prediction and the observation series have similar characteristics and 
also, the 95% prediction uncertainties (95 ppu) shows a relatively narrower 
band. The performance indicators for the model are shown in Table 6. In gener-
al, the higher R2, the better the performance of the model. The results show that  
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Figure 7. Comparison of predicted SPI (left), SPEI (right) to their observed value be-
tween 2008 and 2013. 
 
Table 6. Performance measures about SARIMA for the observed data and predicted val-
ue. 

Series Model R2 RMSE MAE 

SPI SARIMA(0,1,0)x(2,0,0)12 0.89 0.242 0.187 

SPEI SARIMA(0,1,0)x(2,0,1)12 0.93 0.208 0.164 

 
the R2 of both models are greater than 0.85, and the root mean square error 
(RMSE) and average absolute error (MAE) are relatively lower. 

4.4. Model Validation 

The calculation was performed using the best-fit SARIMA model. The SPI and 
SPEI sequence values from 2011 to 2013 (out-of-sample data) were simulated. 
See Figure 6 and Figure 7 for the comparison between observed and predicted 
series. After test the correlations between observation and prediction value, and 
checked the root mean square error (RMSE) for time span of 12, 24, and 36 
months in advance, it was found that with the extension of the prediction pe-
riod, the accuracy and uncertainty of the model decrease (Table 7) and increase 
(Figure 7) significantly respectively. 

Although the value of the hydrological drought index estimated using the 
SARIMA model is still uncertain, the intensity of the hydrological drought is 
mainly expressed by the index level rather than the absolute value of the index. 
Therefore, the model is useful in the prediction of short-term change and 
long-term trend of drought. Using these SPI or SPEI-based drought indices and 
the established SARIMA model for drought forecasting has certain application 
value for mitigating drought in the study area. 

5. Conclusion 

This paper compares the occurrence frequency of moderate and above-average 
droughts (values < −1) in each month as represented by the SPI and SPEI indi-
cators in the lower reaches of the Nu River. It is found that since the beginning 
of the 21st century, the frequency of droughts reflected by the two indicators has 
increased significantly from 1966 to 2000, and the SPEI drought frequency is  
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Table 7. Performance measures about SARIMA for the out sample data prediction. 

Months 
SPI SPEI 

R2 RMSE R2 RMSE 

12 0.928 0.154 0.773 0.397 

24 0.082 0.528 0.012 0.530 

36 0.001 0.591 0.000 0.929 

 
higher than the SPI drought frequency. This provides further evidence for the 
fact that the increase in meteorological drought in the region was dominated by 
previous studies (Chen el al., 2019). Based on this, this paper uses the time series 
stochastic model (ARIMA) to simulate the drought process in this area, and can 
draw the following conclusions: 

1) The temporal characteristics of meteorological drought in the lower reaches 
of the Nu River indicate that the region may experience drought in almost all 
months of the year (i.e., SPI < 0). 

2) The stochastic model developed to predict drought has achieved good si-
mulation results in predicting medium and short-term drought (within 12 
months). 

3) The linear stochastic model can be used to quickly predict watershed 
droughts with scarce data, analyze the severity of future droughts, and also be 
used by local governments and resource planners to predict drought severity in 
advance. 

The stochastic model predicts the SPI and SPEI time series, which provide a 
convenient tool for forecasting meteorological drought in the lower reaches of the 
Nu River. However, due to many factors, changes in natural phenomena related 
to drought are complex. Stochastic models do not consider physical processes, so 
it is difficult to understand climate change from the physical mechanism behind 
it. In addition, the model assumptions may lead to higher uncertainty when we 
extend the prediction period. However, the model can be used to predict the 
short-term change and the future trends of the drought, and it may also be used 
as a reference for further research on other prediction models. 
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