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Abstract 
This paper is a generalization of the results of the previous papers. Using 
these results a class of evolutions of risk assets based on the geometric Brow-
nian motion is constructed. Among these evolutions of risk assets, the im-
portant class of the random processes is the random processes with parame-
ters built on the basis of the discrete geometric Brownian motion. For this 
class of random processes the interval of non-arbitrage prices are found for 
the wide class of contingent liabilities. In particular, for the payoff functions 
of standard options call and put of the European type the fair prices of su-
per-hedge are obtained. Analogous results are obtained for the put and call of 
arithmetical options of Asian type. For the parameters entering in the defini-
tion of random process the description of all statistical estimates is presented. 
Statistical estimate for which the fair price of super-hedge for the payoff func-
tions of standard call and put options of European type is minimal is indi-
cated. From the formulas found it follows that the fair price of super-hedge 
can be less than the price of the underlying asset. In terms of estimates the 
simple formula for the fair price of super-hedge is found. Every estimates can 
be realized in the reality. This depends on the distribution function of the ob-
served dates in the financial market. 
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1. Introduction 

In reality, all financial markets are incomplete and the evolution of risky assets is 
discrete. The question arises, what random process describes the evolution of 
risky assets in the financial markets? This problem is important both from the 
perspective of the risk asset price behavior and from the risk hedging behavior of 
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the risk asset. 
In this work, which is a continuation of the paper [1], we construct the ran-

dom processes based on the discrete geometric Brownian motion which can de-
scribe the evolution of risky assets. A new method of the description of martin-
gale measures for the introduced class of evolutions of risk assets is developed. It 
is proved that every martingale measure can be represented as an integral on 
some measure on the set of extreme points of the set of martingale measures. 
This crucial fact is a base for the estimation of contingent liabilities in the in-
complete financial markets with the evolution of risk assets introduced in [1]. 
The problem of estimation of the range of non arbitrage prices was began in the 
papers [2], [3] for the Levy exponential processes and the diffusion processes 
with jumps describing evolution of risk assets. The upper estimate for the stan-
dard call option payoff function in this paper coincides with the price of under-
lying asset. This fact is unacceptable from the economic point of view. In the 
proposed paper, we generalize the class of evolutions of risk assets proposed in 
[1] and which contains a class of evolutions built on the discrete geometric Brow-
nian motion. For this class of evolutions of risk assets the set of martingale meas-
ures is described and the representation for every martingale measure as integral 
over the set of extreme points is obtained. Having this representation the for-
mulas for the lower and upper bounds of non arbitrage prices are found. It is 
showed that the upper bound for the payoff functions of standard call option of 
European type is less than the price of underlying asset. The statistical estimates 
of parameters entering entering in the introduced evolutions of risk assets are 
obtained. The statistic for which the fair price of super-hedge is minimal is indi-
cated.  

In terms of statistical estimates the simple formulas for the fair price of su-
per-hedge are obtained. Every estimate can be realized in the reality. This de-
pends on distribution function of the observed dates in the financial market. 

Assessment of risk in various systems was begun in papers [4] [5] [6] [7]. 
Construction of non-arbitrage model of evolution of risk assets see in [8] [9] 
[10] [11] [12]. Optional decomposition Theorems see in [13] [14] [15] [16]. 

2. A Wide Class of Non-Arbitrage Evolutions of Risky Assets 

In this section, we generalize the results of the paper [1]. On the probability space 
{ }0 0 0

1 1 1, , PΩ  , let us consider the nonnegative random values ( )1 , 1,i i Nξ ω = , 
satisfying the conditions  

( ){ }( )0 0
1 1 1 10 , 0 1,iP ω η ω< ∈Ω ≤ <  

( ){ }( )0 0
1 1 1 10 , 0 , 1, ,iP i Nω η ω< ∈Ω > =              (1) 

where we introduced the denotation ( ) ( )1 1 1, 1,i i i Nη ω ξ ω= − = . Let { },Ω   be 
a direct product of the measurable spaces { }0 0, , 1,i i i NΩ = , where 0 0

1iΩ =Ω ,  
0 0

1i =  , 0

1

N

i
i=

Ω = Ω∏ , and under the σ-algebra   we understand the minimal 
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σ-algebra, generated by the sets 0

1
,

N

i i i
i

G G
=

∈∏  . On the measurable space { },Ω  , 

under the filtration , 1,n n N= , we understand the minimal σ-algebra gener-

ated by the sets 0

1
,

N

i i i
i

G G
=

∈∏  , where 0
i iG = Ω  for i n> . Further, we consider 

the probability space { }, , PΩ  , where 0 0 0
1

1
, , 1,

N

i i
i

P P P P i N
=

= = =∏ . Denote 

( ) ( ) 1i i i iη ω ξ ω= −  the random value which is given on the probability space 
{ }0 0 0, ,i i iPΩ   and is distributed as ( )1iη ω  on the probability space  
{ }0 0 0

1 1 1, , PΩ  . 
Described in Lemma 5 [1] the set of equivalent measures to the measure 0

iP  
and such that ( ) 0Q

i iE η ω = , we denote by iM . 
On the measurable space { },Ω  , we introduce into consideration the set of  

measures M, where Q belongs to M, if 
1

,
N

i i i
i

Q Q Q M
=

= ∈∏ . On the introduced  

measurable space { }, , PΩ   let us consider the evolution of the risk asset given 
by the law  

 ( ) ( )( )1 1 11 , , , 1, ,n n n n n nS S a n Nω ω η ω− −= + =             (2) 

where the random values ( )1 1, ,i ia ω ω −  are 1i− -measurable, 1,i N= , satisfy 
the conditions ( )1 10 , , 1i ia ω ω −< ≤ . The main aim is to describe the set of 
martingale measures for the evolution of risk asset given by the formula (2). This 
problem we solved in Theorem 8 [1] in the case as the random values  
( ) ( )1 1 1 , 1,i i Nξ ω ξ ω= = . 
Definition 1. Let { }1 1,Ω   be a measurable space. The decomposition  

, , , 1,n kA n k = ∞ , of the space 1Ω  we call exhaustive one if the following condi-
tions are valid: 

1) , 1n kA ∈ , , , ,n k n sA A k s=∅ ≠ , , 1
1

, 1,n k
k

A n
∞

=

= Ω = ∞


; 

2) the ( )1n + -th decomposition is a sub-decomposition of the n-th one, that 
is, for every j, 1, ,n j n kA A+ ⊆  for a certain ( )k k j= ; 

3) the minimal σ-algebra containing all , , , 1,n kA n k = ∞ , coincides with 1 .  
The next Remark 1 is important for the construction of the filtration having 

the exhaustive decomposition.  
Remark 1. Suppose that the measurable spaces { }1 1,Ω   and { }2 2,Ω   have 

the exhaustive decompositions 1
, , , 1,n kA n k = ∞ , and 2

, , , 1,m sA m s = ∞ , respec-
tively, then the measurable space { }1 2 1 2,Ω ×Ω ×   also have the exhaustive 
decomposition , , 1, , , 1,n ksB n k s= ∞ = ∞ , 1 2

, , , , , 1, , 1,n ks n k n sB A A k s n= × = ∞ = ∞ . 
Really,  

1) ( ) ( )1 2 1 2 1 2
, , 1 2 , , , ,, , , ,n k n s n k n s n t n rA A A A A A k s t r× ∈ × × × = ∅ ≠  , 

, 1 2
, 1

, 1,n ks
k s

B n
∞

=

= Ω ×Ω = ∞


; 

2) the ( )1n + -th decomposition is a sub-decomposition of the n-th one, that 
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is, for every ,k s  1, ,n ks n ijB B+ ⊆  for a certain ( ) ( ),i i k j j s= = ; 
3) the minimal σ-algebra containing all ,n ksB , , , 1,n k s = ∞ , coincides with 

1 2×  .  
In the next Lemma we give the sufficient condition of the existence of exhaus-

tive decomposition. This Lemma is very important for the proof of the next 
Theorems [1]. 

Lemma 1. Let { }1 1,Ω   be a measurable space with a complete separable 
metric space 1Ω  and Borel σ-algebra 1  on it. Then { }1 1,Ω   has an exhaus-
tive decomposition.  

Proof. If { }1, , ,nω ω   is a countable dense set in 1Ω , then we denote  

 ( ) ( ){ }1, , , , , 1, ,n m n mB n mω ε ω ρ ω ω ε= ∈Ω < = ∞            (3) 

the countable set of open balls as mε  runs all positive rational numbers, where 
( )1 2 1 2 1, , ,ρ ω ω ω ω ∈Ω  is a metric in 1Ω . Prove that  

( )( )1 , , , 1,n mB n mσ ω ε= = ∞ , where ( )( ), , , 1,n mB n mσ ω ε = ∞  is a minimal 
σ-algebra generated by the sets (3). For this purpose let us prove that for every 
open set 1A∈Ω  the representation  

 ( )
1

1,

,
k s

k s

n m
n N m Q

A B ω ε
+∈ ∈

=


                     (4) 

is true, where 1N  is a subset of positive integers, and 1Q+  is a subset of posi-

tive rational numbers. Let us denote { } { }1 1, , , , , ,A A
n nAω ω ω ω=     . Sup-

pose that 0 Aω ∈ , then ( )0\inf , 0A Ad ω ρ ω ω∈= > , where A  is a closure of the 

set A. Let the point 
0

A
kω  belong to the ball ( )0 1 0, , ,

8 8
d dC ω ω ρ ω ω   = ∈Ω <  

   
 

and let us consider the ball  

( ) ( ) ( )0 0 0 00 1 0, , , , ,
8 8

A A A A
k k k k

d dC ω ρ ω ω ω ρ ω ω ρ ω ω   + = ∈Ω < +  
   

. The point 0ω  

belongs to this ball and for every ( )0 00, ,
8

A A
k k

dCω ω ρ ω ω ∈ + 
 

 the inequality  

 ( ) ( ) ( ) ( )0 0 00 0 0
3, , , 2 ,

8 8
A A A
k k k

d dρ ω ω ρ ω ω ρ ω ω ρ ω ω≤ + < + <       (5) 

is true. Therefore ( )0 00 0
3, , ,

8 8
A A
k k

d dC Cω ρ ω ω ω   + ⊂   
   

. Let the rational num-

ber 
0kε  satisfies the inequalities  

 ( )0 00
32 , ,

8 8
A
k k

d dρ ω ω ε+ < <                     (6) 

then ( )0 0 0, ,
2

A
k k

dC Cω ε ω ⊆  
 

, since for every ( )0 0
,A

k kCω ω ε∈ ,  

( ) ( ) ( )0 0 00 0, , ,
8 2

A A
k k k

d dρ ω ω ρ ω ω ρ ω ω ε≤ + < + < . So, for 0 Aω ∈  we found  

{ }
0 1, , ,A

k nω ω ω∈    and the rational number 
0kε  such that  
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( )0 00 0, ,
2

A
k k

dC C Aω ω ε ω ∈ ⊂ ⊂ 
 

. The last prove the needed statement. To com-

plete the proof of Lemma 1 let us construct the exhaustive decomposition. Let us  
renumber the sets ( ),n mB ω ε  putting by ( )1 1 1,D B ω ε= , ( )2 1 2,D B ω ε= ,  

( )3 2 1,D B ω ε= , and so on. We put that { }1 1k k
A ∞

=
 consists of two sets 1D  and 

1 1 1\D D= Ω . If the set { } 1nk k
A ∞

=
 is constructed, then the set { }1 1n k k

A ∞
+ =

 we con-
struct from the various set of the kind 1 1,nk n nk nA D A D+ +  . By construction 
the minimal σ-algebra { } ( ){ }, , 1, , , , 1,nk n mA n k B n mσ σ ω ε= ∞ = = ∞ . Taking into 
account the previous part of the proof we have { } 1, , 1,nkA n k Fσ = ∞ = . Lemma 1 
is proved.                                                        □ 

Below, we describe completely the regular set of measures, introduced in [1], 

in the case as ( ) ( )0 1 1
1

1 , ,
N

i i i i
i

aξ ω ω η ω−
=

 = + ∏  , N < ∞ , ( )1 10 , , 1i ia ω ω −< ≤ , 

1,i N= , and the random values ( )1iξ ω , 1,i N= , are integrable ones relative to 

the measure 0
1P . For this purpose, we introduce the denotations:  

( ){ }0 , 0i i i i iω η ω−Ω = ∈Ω ≤ , ( ){ }0 , 0i i i i iω η ω+Ω = ∈Ω > , iP−  is a contraction of 

the measure 0
iP  on the σ-algebra i

− , iP+  is a contraction of the measure 0
iP  

on the σ-algebra i
+ , 0

i i i
− −= Ω   , 0

i i i
+ += Ω   . Denote i i iU − += Ω ×Ω  

and introduce the measure i i iP Pµ − += ×  on the σ-algebra i i i
− += ×   . Let us 

introduce the measurable space { }, ,µ  , where 
1

N

i
i

U
=

=∏ , is a direct product 

of the spaces i i iU − += Ω ×Ω , 1,i N= , 
1

N

i
i=

=∏   is a direct product of the σ- 

algebras i , 1,i N= . At last, let 
1

N

i
i

µ µ
=

=∏  be a direct product of the measures 

iµ , 1,i N= , and let 1 2,
1 i i

N

v
i

ω ω
ν ν

=

=∏ , ( ) ( ){ }1 2 1 2
1 1, , , ,N Nv ω ω ω ω=  , be a direct 

product of the measures 1 2,i iω ω
ν , 1,i N= , which is a countable additive function 

on the σ-algebra N  for every v∈ , where  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )1 2

2 1
1 2

1 2 1 2, i ii i

i i i i
i A i A i

i i i i i i i i

A
ω ω

η ω η ω
ν χ ω χ ω

η ω η ω η ω η ω

+ −

− + − +
= +

+ +
    (7) 

for 1
i iω −∈Ω , 2

i iω +∈Ω , 0
i iA ∈ . 

In the next Theorem 1, we assume that the random values ( )i iη ω , 1,i N= , 
are integrable ones.  

Theorem 1. On the measurable space { },Ω   with the filtration N  on it, 
every measure Q of the regular set of measures M for the random value  

( ) ( )0 1 1
1

1 , ,
N

i i i i
i

aξ ω ω η ω−
=

 = + ∏  , N < ∞ , ( )1 10 , , 1i ia ω ω −< ≤ , 1,i N= , has 

the representation  

 ( ) ( ) ( ) ( )d ,vQ A v A vα ν µ= ∫


                     (8) 
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where the random value ( )vα  satisfies the conditions  

 ( ){ }( ) ( ) ( )0 0

1
, 0 ,

N

i i i i
i

v v P Pµ α − +

=

∈ > = Ω Ω∏               (9) 

( )
( ) ( )
( ) ( ) ( )

1 2

1 2
1

d ,
N i i i i

i i i i i

v v
η ω η ω

α µ
η ω η ω

− +

− +
=

< ∞
+

∏∫


              (10) 

( ) ( )d 1.v vα µ =∫


                        (11) 

Proof. To prove Theorem, it needs to prove that the countable additive meas-
ure ( )v Aν  at every fixed v∈  is a measurable map from the measurable space 
{ },   into the measurable space [ ] [ ]( ){ }0,1 , 0,1B  for every fixed NA∈ . For  

1

N

i
i

A A
=

=∏ , 0
i iA ∈ , ( )v Aν  is a measurable map from the measurable space  

{ },   into the measurable space [ ] [ ]( ){ }0,1 , 0,1B . The family of sets of the 

kind i
i I

E
∈


, 
1

N
i

i s
s

E A
=

=∏ , 0i
s sA ∈ , where i jE E =∅ , the set I is an arbitrary 

finite set, forms the algebra of the sets that we denote by 0U . From the counta-

ble additivity of ( )v Aν , ( )v i v i
i Ii I

E Eν ν
∈∈

 
= 

 
∑

 is a measurable map from the  

measurable space { },   into the measurable space [ ] [ ]( ){ }0,1 , 0,1B . Let T be 
a class of the sets from the minimal σ-algebra Σ  generated by 0U  for every 
subset E of that ( )v Eν  is a measurable map from the measurable space { },   
into the measurable space [ ] [ ]( ){ }0,1 , 0,1B . Let us prove that T is a monotonic 
class. Suppose that 1i iE E +⊂ , 1,i = ∞ , iE T∈ . Then, ( ) ( )1v i v iE Eν ν +≤ . From 
this, it follows that ( )lim v ii

Eν
→∞

 is a measurable map from the measurable space 
{ },   into the measurable space [ ] [ ]( ){ }0,1 , 0,1B . But,  
( ) ( ) ( )1 1\v i i v i v iE E E Eν ν ν+ += −  is a measurable map from { },   into  

[ ] [ ]( ){ }0,1 , 0,1B . From this equality, it follows that the set 1 \i iE E+  belongs to 

the class T. Since [ ]1 1
1 1

\i i i
i i

E E E E
∞ ∞

+
= =

= 

 

, we have  

 

( ) ( ) ( )

( ) ( )

[ ]

1 1
1

1 1
1

1 1
1 1

lim lim \

\

\ .

n

v n v v i in n i

v v i i
i

v i i v i
i i

E E E E

E E E

E E E E

ν ν ν

ν ν

ν ν

+→∞ →∞ =

∞

+
=

∞ ∞

+
= =

= +

= +

   
= =   

   

∑

∑



 

         (12) 

The equalities (12) mean that 
1

i
i

E
∞

=


 belongs to T, since 
1

v i
i

Eν
∞

=

 
 
 


 is a mea-

surable map of { },   into [ ] [ ]( ){ }0,1 , 0,1B . Suppose that 1i iE E +⊃ , iE T∈ , 

1,i = ∞ . Then, this case is reduced to the previous one by the note that the se-

quence 0

1
\

N

i i i
i

E E
=

= Ω∏ , 1,i = ∞ , is monotonically increasing. From this, it follows 
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that 
1

i
i

E E T
∞

=

= ∈


. Therefore, 0

11 1
\

N

i i i
ii i

E E T
∞ ∞

== =

= Ω ∈∏ 

. Thus, T is a monotone  

class. But, 0U T⊂ . Hence, T contains the minimal monotone class generated 
by the algebra 0U , that is, ( )0m U = Σ , therefore, TΣ ⊂ . Thus, ( )v Eν  is a 
measurable map of { },   into [ ] [ ]( ){ }0,1 , 0,1B  for A∈Σ . The fact that the 
random value ( )vα  satisfies the conditions (9)-(11) means that Q, given by the 
formula (8), is a countable additive function of sets and 0

QE ξ < ∞ . Moreover,  

0 1QE ξ = . It is evident that { } ( ) ( )0 1 1
1

| 1 , ,
n

Q
n i i i i

i
E aξ ω ω η ω−

=

 = + ∏  , Q M∈ .  

Due to Lemma 4, [1], this proves that the set M is a regular set of measure. 
Theorem 1 is proved.                                              □ 

Remark 2. The representation (8) for the regular set of measures M means 
that M is a convex set of equivalent measures. Since the random value ( )vα  
runs all bounded random values, satisfying the conditions (9 - 11), it is easy to 
show that the set of measures ( )v Aν , v∈ , NA∈ , is the set of extreme 
points for the set M.  

Let us introduce the denotations (see also [1])  

 { }( ) ( ) ( )1 1
1

1 , , ,1 ,
n

n i i i i
i

m a n Nω ω ω η ω−
=

 = + ≤ ≤ < ∞ ∏         (13) 

( )1 10 , , 1, 1, .i ia i Nω ω −< ≤ =  

{ } { } { } { } 0
1 1

1
, , , , , , 1,2, , 1, ,

ni i i
N N n i

i
i n Nω ω ω ω ω ω

=

= = = Ω = Ω =∏   

{ } { } { } { }1 1, , , , , , 1,2,i i i
n nn n

iω ω ω ω ω ω= = =   

0

1
, 1, 1,

N

N n i
i n

n N−
= +

Ω = Ω = −∏  

{ } [ ] { }( ){ } ( ){ }0
1 1, 0 , 0 ,n n n n n n n n nn n

m mω ω ω η ω−
− −Ω = ∈Ω − ≤ = Ω × ∈Ω ≤  

{ } [ ] { }( ){ } ( ){ }0
1 1, 0 , 0 ,n n n n n n n n nn n

m mω ω ω η ω+
− −Ω = ∈Ω − > = Ω × ∈Ω >  

{ } [ ] { }( ){ } ( ){ }0
1 1, 0 , 0 ,n N n n n n n n n N nm mω ω ω η ω−
− − −Ω = ∈Ω − ≤ = Ω × ∈Ω ≤ ×Ω  

{ } [ ] { }( ){ }
( ){ }

1

0
1

, 0

, 0 , 1, ,

n N n n

n n n n n N n

m m

n N

ω ω

ω η ω

+
−

− −

Ω = ∈Ω − >

= Ω × ∈Ω > ×Ω =
        (14) 

Note that the σ-algebra n  is generated by sets of the kind 
1

N

i
i

G G
=

=∏ , where 

0
i iG ∈ , 1,i n= , 0

i iG = Ω , 1,i n N= + . Denote 0

1

n

n i
i

P P
=

=∏  the contraction of 

the measure 0

1

N

N i
i

P P
=

=∏  onto the σ-algebra n . Further we use the denotations  

nP−  and nP+  which are the contractions the measure nP  onto the σ-algebras 

n n
−Ω  and n n

+Ω , correspondingly. If the measure Q belongs to the set of 
martingale measures (8), then { }1 1|Q

n n nE m m− −= , or [ ]1 0Q
n nE m m −− = . 

From this, for the measure Q the representation  
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( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( ) [ ] { }( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( ) [ ] { }( )

1

1

1 1 2 2
1

1 1 2
1 1

2 1 2 1
1

11 2
1 1

;
d

;
d , ,

n n

n n

A n n

N N

n n n n

A n n

N N n

n n n n

m m
Q A P P

m m m m

m m
P P A

m m m m

χ ω α ω ω ω

ω ω

χ ω α ω ω ω

ω ω

− +

− +

+
− − +

− +
Ω ×Ω − −

−
− − +

− +
Ω ×Ω − −

−
 = × 

− + −

−
 + × ∈ 

− + −

∫

∫ 

(15) 

is true if the random value { } { }( )1 2; 0α ω ω >  satisfies the condition  

 { } { }( )1 2; d 1.
n n

N NP Pα ω ω
− +

− +

Ω ×Ω

 × = ∫                     (16) 

Since for the set 1A  the representation 0
1

1

N

i
i n

A A
= +

= × Ω∏ , is true, where  

0

1

n

n i
i

A
=

∈ =∏  , then for the contraction nQ  of the measure Q onto the σ-algebra 

n  the representation  

 

( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( ) [ ] { }( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( ) [ ] { }( )

1 1 2 21
1

1 2
1 1

2 1 2 11
1

1 2
1 1

;
d

;
d , ,

n n

n n

A n n nn n n n
n n n

n n n nn n

A n n nn n n n
n n n

n n n nn n

m m
Q A P P

m m m m

m m
P P A

m m m m

χ ω α ω ω ω

ω ω

χ ω α ω ω ω

ω ω

− +

− +

+
− − +

− +
Ω ×Ω − −

−
− − +

− +
Ω ×Ω − −

−
 = × 

− + −

−
 + × ∈ 

− + −

∫

∫ 

(17) 

is true, where we introduced the denotations nP−  and nP+  which are the con-
tractions of the measure nP  onto the σ-algebras n n

−Ω  and n n
+Ω , cor-

respondingly,  

{ } { }( ) { } { }( ) [ ]1 2 1 21 ; ; d ,
N n N n

n N n N nn n
P Pα ω ω α ω ω

− −

− −
Ω ×Ω

= ×∫  

{ } { }( )1 20 1

1
, ; d 1.

n n

N

N n i n n nn n
i n

P P P Pα ω ω
− +

− +
−

= + Ω ×Ω

 = × = ∏ ∫         (18) 

In the set n n
− +Ω ×Ω  let us introduce the transformation 

{ } { }( ) { }( ) { }( )( )1 2 1 21 2; ; ,n n nn n n n
T T Tω ω ω ω=  

{ }( ) { }{ } { }( ) { }{ }1 2 2 11 1 2 2
1 1
, , , , 1, .n n n nn n n n

T T n Nω ω ω ω ω ω
− −

= = =     (19) 

By the definition we put that for 1n =  the transformation 1T  is identical one. 
Introduce the denotations  

 { } { }( ) [ ] { }( )
{ } { }( )

2
11 21
1 2

; ,
;

n n n
n n n

n n n

m m ω
ν ω ω

ϕ ω ω

+
−−

=              (20) 

{ } { }( ) [ ] { }( )
{ } { }( )

1
11 22
1 2

; .
;

n n n
n n n

n n n

m m ω
ν ω ω

ϕ ω ω

−
−−

=              (21) 

{ } { }( ) [ ] { }( ) [ ] { }( )1 2 1 21
1 1; ,n n n n nn n n n

m m m mϕ ω ω ω ω− +
− −= − + −      (22) 
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{ } { }( ) { } { }( ) { } { }( )( )( )1 2 1 2 1 21 1; ; ; .n n n nn n n n n n
Tϕ ω ω ϕ ω ω ϕ ω ω= +        (23) 

Theorem 2. Let 0
1Ω  be a complete separable metric space and 0

1  be a Bo-
rel σ-algebra on it. If the condition  

 { }( )d
n

nn
f Pω

Ω

< ∞∫                        (24) 

is true for n -measurable nonnegative random value { }( )n
f ω , then the clo-

sure of the set of points { }( )nQ
n

E f ω , n nQ M∈ , in metrics ( ),x y x yρ = −  
on the real line contains the set of points  

 

{ }( ) { } { }( ) { }( ) { } { }( )
{ }( )( ) { } { }( )( )
{ }( )( ) { } { }( )( )

1 1 2 2 1 21 2

1 1 21 1

2 1 22 2

; ;

;

; , 1, .

n nn n n n n n

n n nn n n

n n nn n n

f f

f T T

f T T n N

ω ν ω ω ω ν ω ω

ω ν ω ω

ω ν ω ω

+

+

+ =

        (25) 

Proof. Let us find the conditions for the measurable functions { } { }( )1 21 ;n n n
α ω ω  

under which { }1 1|nQ
n n nE m m− −= . Introduce the denotation  

 { } { }( ) { } { }( )
[ ] { }( ) [ ] { }( )

1 21
1 20

1 2
1 1

;
; .

n n n
n n n

n n n nn n
m m m m

α ω ω
α ω ω

ω ω− +
− −

=
− + −

     (26) 

Let the set B belongs to 1n− , then  

 

{ }( )[ ] { }( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( )

11

1 1 2 10
11

2
1

2 1 2 20
11

1
1

;

d

;

d .

n

n n

n n

Q
B n nn n

B n n nn n n n

n n n nn

B n n nn n n n

n n n nn

E m m

m m

m m P P

m m

m m P P

χ ω ω

χ ω α ω ω ω

ω

χ ω α ω ω ω

ω

− +

− +

−−

−−
Ω ×Ω

+ − +
−

−−
Ω ×Ω

− − +
−

−

= −

 × − × 

+ −

 × − × 

∫

∫

       (27) 

If to take into account the relations  

[ ] { }( ) { }( ) { }( ) ( )1 1 1 1
,n n n n n nn n n

m m m aω ω ω η ω− − − −
− =  

[ ] { }( ) { }( ) { }( ) ( )1 1 1 1
,n n n n n nn n n

m m m aω ω ω η ω+ +
− − − −

− =  

[ ] { }( ) { }( ) { }( ) ( )1 1 1 1
,n n n n n nn n n

m m m aω ω ω η ω− −
− − − −

− =         (28) 

and introduce the denotations  

 
{ } { }( ) { }( ) { }( )

{ }( ) { }( ) { } { }( )

1 2 1 1
1 1 1 1

2 2 1 20
1 1 1

;

; ,

n nn n n n

n n nn n n n

m a

m a

θ ω ω ω ω

ω ω α ω ω

− − −

− − −

=

×
     (29) 

{ } { }( ) { }( ) { }( )
{ }( ) { }( ) { } { }( )

1 2 1 1
2 1 1 1

2 2 1 20
1 1 1

;

; ,

n nn n n n

n n nn n n n

m a

m a

θ ω ω ω ω

ω ω α ω ω

− − −

− − −

=

×
     (30) 
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we obtain  

 

{ }( )[ ] { }( )
{ }( ) { } { }( ) ( ) ( )

{ }( ) { } { }( ) ( ) ( )

( ){ } ( ){ }
( ) ( ) ( ) ( )

{ }( ) { } { }( ) { }

1 2

1 1

11

1 1 2 1 2
11

2 1 2 1 2
21

1 2 1 2
1 1

0 0

1 1 2 2
1 11 1

; d

; d

d

; ,

n

n n

n n

n n n n

n n

Q
B n nn n

B n n n n n nn n n

B n n n n n nn n n

n n n n n n

B nn n n n

E m m

P P

P P

P P
η ω η ω

χ ω ω

χ ω θ ω ω η ω η ω

χ ω θ ω ω η ω η ω

ω ω η ω η ω

χ ω θ ω ω θ ω ω

− +

− +

− −

−−

− + − +
−

Ω ×Ω

− + − +
−

Ω ×Ω

− +

≤ × >

− −
Ω ×Ω

−

 = − × 

 + × 

 = × 

× −

∫

∫

∫

∫ { }( )
{ }( ) { }( )

11 2
1

1 2
1 11 1

; ,

d .

nn

n nn n
P P

ω ω

ω ω

−

− −− −

 
  

 × ×  

  (31) 

It is evident that the expression (31) equals zero for every 1nB −∈  if and on-
ly if as  

 { } { }( ) { } { }( )1 2 2 11 2
1 1 1 1

; , ; , 0.n nn n n n
θ ω ω θ ω ω ω ω

− −
− =             (32) 

The last equality (32) is valid if the equality  

 { } { }( ) { } { }( )1 2 2 10 1 2 0 1 2
1 1 1 1
, ; , , ; ,n n n n n nn n n n

α ω ω ω ω α ω ω ω ω
− − − −

=          (33) 

is true. 
Now if for { } { }( )1 22 ; 0n n n

α ω ω >  satisfying the condition  

 { } { }( )1 22 ; d 1
n n

n n nn n
P Pα ω ω

− +

− +

Ω ×Ω

 × = ∫                   (34) 

to put  

 { } { }( )
{ } { }( ) { } { }( )( )

{ } { }( )
1 2 1 22 2

1 20
1 2

; ;
; ,

;

n n nn n n n
n n n

n n n

Tα ω ω α ω ω
α ω ω

ϕ ω ω

+
=        (35) 

then  

 

( ) { }( ) { } { }( )[ ] { }( )
{ }( ) { } { }( )[ ] { }( )

1 1 2 20
1

2 1 2 10
1

; d

; d
n n

n n

n A n n n n nn n n n

A n n n n nn n n n

Q A m m P P

m m P P

χ ω α ω ω ω

χ ω α ω ω ω

− +

− +

+ − +
−

Ω ×Ω

− − +
−

Ω ×Ω

 = − × 

 + − × 

∫

∫
 (36) 

is a probability measure on the σ-algebra n . 
Taking into account the denotation (26) and the formula (35), we obtain that 

the measure  

( ) { }( ) { } { }( ) [ ] { }( )
{ } { }( )

{ }( ) { } { }( ) [ ] { }( )
{ } { }( )

2
11 1 21
1 21

1
12 1 21
1 21

; d
;

; d
;

n n

n n

n n n
n A n n nn n n

n n n

n n n
A n n nn n n

n n n

m m
Q A P P

m m
P P

ω
χ ω α ω ω

ϕ ω ω

ω
χ ω α ω ω

ϕ ω ω

− +

− +

+
− − +

Ω ×Ω

−
− − +

Ω ×Ω

−
 = × 

−
 + × 

∫

∫

(37) 
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is a probability measure on the σ-algebra n , where 

{ } { }( ) { } { }( ) { } { }( )1 2 1 2 1 21 0 1; ; ;n n nn n n n n nα ω ω α ω ω ϕ ω ω=            (38) 

satisfy the condition  

 { } { }( )1 21 ; d 1,
n n

n n nn n
P Pα ω ω

− +

− +

Ω ×Ω

 × = ∫                  (39) 

due to the condition  

 { } { }( )1 22 ; d 1.
n n

n n nn n
P Pα ω ω

− +

− +

Ω ×Ω

 × = ∫                  (40) 

So, we described the contraction of the martingale measure Q on the σ-algebra 

n  for which { }1 1|nQ
n n nE m m− −= . It has the representation (37) with the strictly 

positive random values { } { }( ) { } { }( )1 2 1 21 2; , ;n nn n n n
α ω ω α ω ω  satisfying conditions 

(39), (40). 
Since 0

1Ω  is a separable metric space, then it has an exhaustive decomposi-
tion. This is true for nΩ  which is also separable metric space for every 2,n N= . 
On the probability space { }, ,n n n n n nP P− + − + − +Ω ×Ω × ×  , for every integrable finite 
valued random value { } { }( )1 2;

n n
f ω ω  the sequence { } { }( ){ }1 2; |n

mn n
E fµ ω ω   

converges to { } { }( )1 2;
n n

f ω ω  with probability one, as ,m →∞  since it is a 
regular martingale. It is evident that for those ,m ksB  for which ( ), 0n m ksBµ ≠ , 

n n nP Pµ − += × ,  

 { } { }( ){ }
{ } { }( )

( ) { } { }( ),

1 2

1 2 1 2
,

,

; d

; | , ; .m ks

nn n
B

m m ksn n n n
n m ks

f

E f B
B

µ

ω ω µ

ω ω ω ω
µ

= ∈
∫

  (41) 

Denote 
( ),

0 ,
, , , 0m ks

m ks
m k s B

D B
µ =

=


. It is evident that ( )0 0n Dµ = . For every  

{ } { }( )1 2
0; \n nn n

Dω ω − +∈Ω ×Ω , the formula (41) is well defined and is finite. Let 

1D  be the subset of the set 0\n n D− +Ω ×Ω , where the limit of the left hand side of 
the formula (41) does not exists. Then, ( )1 0n Dµ = . For every  
{ } { }( ) ( )1 2

0 1; \n nn n
D Dω ω − +∈Ω ×Ω 

, the right hand side of the formula (41) con-
verges to { } { }( )1 2;

n n
f ω ω . For { } { }( ) ( )1 2

0 1; \n nn n
D Dω ω − +∈Ω ×Ω 

, denote  
{ } { }( )1 2;m m n n

A A ω ω=  those set ,m ksB  for which { } { }( )1 2
,; m ksn n

Bω ω ∈  for a cer-
tain ,k s . Then, for every integrable finite valued { } { }( )1 2;

n n
f ω ω   

 
{ } { }( )

( ) { } { }( )
1 2

1 2

; d
lim ; .m

nn n
A

n nm
n m

f
f

A

ω ω µ
ω ω

µ→∞
=

∫
             (42) 

Choose the sequence  

 

{ } { }( )

( )
{ } { }( )
( )

{ } { }( )
( )

1 22,

1 2 1 2

\

;

; ;
1 ,

\

m

m n n m

n n n

A n n n nA
m m

n m n n n mA A

εα ω ω

χ ω ω χ ω ω
ε ε

µ µ

− +Ω ×Ω

− +
= − +

Ω ×Ω

       (43) 

where 0 1mε< < , lim 0mm
ε

→∞
= . Then the sequence { } { }( )1 22, ;m

n n n
εα ω ω  satisfy the 
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condition (40). Let us consider the sequence 

{ } { }( )

{ } { }( ) ( )
{ } { }( )
( )

{ } { }( )
( )

{ } { }( ) ( )
{ } { }( )( )
( )

{ } { }( )( )
( )

1 20,

1 2 1 2

\

1 2

1 2 1 2

\

1 2

;

; ;1 1
\;

; ;1 1 .
\;

m

m n n m

m n n m

n n n

A n n n nA
m m

n m n n n mn n n

A n nn n n nA
m m

n m n n n mn n n

A A

T T

A A

εα ω ω

χ ω ω χ ω ω
ε ε

µ µϕ ω ω

χ ω ω χ ω ω
ε ε

µ µϕ ω ω

− +

− +

Ω ×Ω

− +

Ω ×Ω

− +

 
 = − + Ω ×Ω  

 
 + − + Ω ×Ω  

(44) 

Then the contraction of the sequence of martingale measures mQε  generated 
by sequence (44) on the σ-algebra n  is given by the formula  

( ) { }( ) { } { }( )[ ] { }( )
{ }( ) { } { }( )[ ] { }( )

( )
{ }( ) { } { }( )

( )

( )
{ }( ) { } { }( )

( )

{ }( ) { } { }( )
( )

1 1 2 20,
1

2 1 2 10,
1

1 1 21

2 1 22

1 1 21

\

; d

; d

; d
1

; d
1

; d

\

mn m

n n

m

n n

m

m

n n m

Q
n n n nn n n n

n n n nn n n n

n nn n n
A

m
n m

n nn n n
A

m
n m

n nn n n
A

m
n n n m

E f f m m

f m m

f

A

f

A

f

A

ε ε

ε

ω ω α ω ω ω µ

ω α ω ω ω µ

ω ν ω ω µ
ε

µ

ω ν ω ω µ
ε

µ

ω ν ω ω µ

ε
µ

− +

− +

− +

+
−

Ω Ω

−
−

Ω Ω

Ω ×Ω

− +

= −

+ −

= −

+ −

+
Ω ×Ω

∫ ∫

∫ ∫

∫

∫

∫

 

{ }( ) { } { }( )
( )

( )
{ } { }( )( ) { }( ) { } { }( )

( )

( )
{ } { }( )( ) { }( ) { } { }( )

( )

{ } { }( )( ) { }( ) { } { }( )
( )

2 1 22

\

1 2 1 1 21

1 2 2 1 22

1 2 1 1 21
\

; d

\

; ; d

1

; ; d

1

; ; d

\

n n m

m

n n

m

n n

n n m
n n

n

n nn n n
A

m
n n n m

A n n nn n n n n

m
n m

A n n nn n n n n

m
n m

n n nn n n n nA

m
n n n m

m

f

A

T f

A

T f

A

T f

A

ω ν ω ω µ

ε
µ

χ ω ω ω ν ω ω µ

ε
µ

χ ω ω ω ν ω ω µ

ε
µ

χ ω ω ω ν ω ω µ

ε
µ

ε

− +

− +

− +

− +
− +

Ω ×Ω

− +

Ω ×Ω

Ω ×Ω

Ω ×Ω
Ω ×Ω

− +

Ω

+
Ω ×Ω

+ −

+ −

+
Ω ×Ω

+

∫

∫

∫

∫

{ } { }( )( ) { }( ) { } { }( )
( )

1 2 2 1 22
\

; ; d

.
\

n n m
n

n n nn n n n nA

n n n m

T f

A

χ ω ω ω ν ω ω µ

µ

− +
− +

Ω ×Ω
×Ω

− +Ω ×Ω

∫

 (45) 

Due to the invariance of the measure nµ  relative to the transformation nT  we 
have  
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( )
{ } { }( )( ) { }( ) { } { }( )

( )

( )
{ } { }( )( ) { }( ) { } { }( )

( )

( )
{ }( )( ) { } { }( )( )

( )

( )
{ }( )( ) { } { }( )( )

( )

1 2 1 1 21

1 2 2 1 22

1 1 21 1

2 1 22 2

; ; d

1

; ; d

1

; d
1

; d
1 .

m

n n

m

n n

m

m

A n n nn n n n n

m
n m

A n n nn n n n n

m
n m

n n n nn n n
A

m
n m

n n n nn n n
A

m
n m

T f

A

T f

A

f T T

A

f T T

A

χ ω ω ω ν ω ω µ

ε
µ

χ ω ω ω ν ω ω µ

ε
µ

ω ν ω ω µ
ε

µ

ω ν ω ω µ
ε

µ

− +

− +

Ω ×Ω

Ω ×Ω

−

+ −

= −

+ −

∫

∫

∫

∫

    (46) 

From the equalities (45), (46) it follows that  

 

{ }( )
{ }( ) { } { }( ) { }( ) { } { }( )

{ }( )( ) { } { }( )( )
{ }( )( ) { } { }( )( )

1 1 2 2 1 21 2

1 1 21 1

2 1 22 2

lim

; ;

;

; , 1, .

mnQ
n nm

n nn n n n n n

n n nn n n

n n nn n n

E f

f f

f T T

f T T n N

ε
ω

ω ν ω ω ω ν ω ω

ω ν ω ω

ω ν ω ω

→∞

= +

+

+ =

         (47) 

Theorem 2 is proved.                                              □ 
Theorem 3. On the probability space { }, , PΩ   with the filtration n  on it, 

let 0
1Ω  be a complete separable metric space. Suppose that { }( )n n

f ω  is a non-
negative integrable n -measurable random value, satisfying the condition  

{ }( ) 1
nQ

n n
E f ω ≤ , n

nQ M∈ . Then, there exists a 1n− -measurable random val-
ue nα , depending on { }( )n n

f ω , such that  

 { }( ) { }( )[ ] { }( ) { }11
1 , .n n n n nn n n n

f m mω α ω ω ω−−
≤ + − ∈Ω       (48) 

Proof. First, let us consider the case 1n = . From Theorem 2, we have the in-
equality  

 

( ) [ ] ( )
[ ] ( ) [ ] ( )

( ) [ ] ( )
[ ] ( ) [ ] ( )

1 2
1 1

1 1 1 2

1 1
1 2

1 1 1 2

1

1 1

1
1,

1 1

m
f

m m

m
f

m m

ω
ω

ω ω

ω
ω

ω ω

+

− +

−

− +

−

− + −

−
+ ≤

− + −

             (49) 

( )1 2 1 1, ,ω ω − +∈Ω ×Ω  

where [ ]( ){ }0
1 1 1 1 1, 1 0mω ω−Ω = ∈Ω − ≤ , [ ]( ){ }0

1 2 1 1 2, 1 0mω ω+Ω = ∈Ω − > . 
Let us denote ( ) [ ]( )1 1 1mη ω ω= − . Then, the formula (49) is written in the 

form  

 ( ) ( )
( ) ( )

( )
( ) ( ) ( )1 2 1 1

1 1 1 2 1 1 2 1
1 1 1 2 1 1 1 2

1, , .f f
η ω η ω

ω ω ω ω
η ω η ω η ω η ω

+ −
− +

− + − ++ ≤ ∈Ω ∈Ω
+ +

 (50) 

From the inequalities (50), we obtain the inequalities  
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 ( ) ( )
( ) ( )1 1

1 2 1 2
1 1

1
1 ,

f
f

ω
ω η ω

η ω
+

−

−
≤ +                     (51) 

( ) ( )1 1 1 2 1 1 2 10, 0, , .η ω η ω ω ω− + − +> > ∈Ω ∈Ω              (52) 

Two cases are possible: a) for all 1 nω −∈Ω , ( )1 1 1f ω ≤ ; b) there exists 1 1ω −∈Ω  
such that ( )1 1 1f ω > . First, let us consider the case a). 

Since the inequalities (51) are valid for every value 
( )
( )
1 1

1 1

1 f ω
η ω−

−
, as ( )1 1 0η ω− > , 

and ( )1 1 1f ω ≤ , 1 1ω −∈Ω , then, if to denote  

 
( ){ }

( )
( )1 1 1

1 1
1

, 0 1 1

1
inf ,

f
ω η ω

ω
α

η ω− −
>

−
=                      (53) 

we have 10 α≤ < ∞  and  

 ( ) ( ) ( )1 2 1 1 2 1 2 2 11 , 0, .f ω αη ω η ω ω+ + +≤ + > ∈Ω            (54) 

From the definition of 1α , we obtain the inequalities  

 ( ) ( ) ( )1 1 1 1 1 1 1 1 11 , 0, .f ω αη ω η ω ω− − −≤ − > ∈Ω            (55) 

Now, if ( )1 1 0η ω− =  for some 1 1ω −∈Ω , then in this case ( )1 1 1f ω ≤ . All these 
inequalities give the inequalities  

 ( ) ( )1 1 1 1 11 , .f ω αη ω ω − +≤ + ∈Ω Ω                 (56) 

Consider the case b). From the inequality (51), we obtain the inequalities  

 ( ) ( )
( ) ( )1 1

1 2 1 2
1 1

1
1 ,

f
f

ω
ω η ω

η ω
+

−

−
≤ −

−
                  (57) 

( ) ( )1 1 1 2 1 1 2 10, 0, , .η ω η ω ω ω− + − +> > ∈Ω ∈Ω            (58) 

The inequalities (57) give the inequalities  

 
( )
( ) ( ){ } ( ) ( )

2 1 2

1 1
1 1 1 1

, 01 1 1 2

1 1inf , 0, .
f

ω η ω

ω
η ω ω

η ω η ω+

− −
− +

>

−
≤ < ∞ > ∈Ω

−
     (59) 

Let us define 
( ){ }

( )
( )1 1 1

1 1
1

, 0 1 1

1
sup

f

ω η ω

ω
α

η ω−
−

>

−
= < ∞

−
. Then, from (57) we obtain the in-

equalities  

 ( ) ( ) ( )1 2 1 1 2 1 2 2 11 , 0, .f ω αη ω η ω ω+ + +≤ − > ∈Ω           (60) 

From the definition of 1α , we have the inequalities  

 ( ) ( ) ( )1 1 1 1 1 1 1 1 11 , 0, .f ω αη ω η ω ω− − −≤ + > ∈Ω           (61) 

The inequalities (60), (61) give the inequalities  

 ( ) ( )1 1 1 1 11 , .f ω αη ω ω − +≤ − ∈Ω Ω                (62) 

Theorem 3 in the case 1n =  is proved, since the set 1 1
− +Ω Ω  has the proba-

bility one. 
Now let us consider the case of arbitrary 2 n N≤ ≤ . In this case we have the 

inequality  
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{ }( ) { } { }( ) { }( ) { } { }( )
{ }( )( ) { } { }( )( )
{ }( )( ) { } { }( )( )

1 1 2 2 1 21 2

1 1 21 1

2 1 22 2

; ;

;

; 1.

n nn n n n n n

n n nn n n

n n nn n n

f f

f T T

f T T

ω ν ω ω ω ν ω ω

ω ν ω ω

ω ν ω ω

+

+

+ ≤

           (63) 

Let us put in this inequality { } { } { }1 2

1 1 1n n n
ω ω ω

− − −
= = , then the inequality (63) is 

transformed into the inequality  

 
{ }( ) ( )

( ) ( )
( )

( ) ( ) { }( )

{ }( ) { }( )

2 1
1 2

1 11 2 1 2

1 2
1 1

, , 1,

, , , .

n n n n
n n n nn n

n n n n n n n n

n n n nn n

f f
η ω η ω

ω ω ω ω
η ω η ω η ω η ω

ω ω ω ω

+ −

− −− + − +

− +
− −

+ ≤
+ +

∈Ω ∈Ω

 (64) 

Taking into account the first part of the proof of Theorem 3 from the inequality 
(64) we obtain  

 { }( ) ( )
[ ] { }( )
{ }( ) { }( )

1 1
1

1 1 1

1 1 ,n n n
n n nn

n nn n

m m
f

m a

α ω
ω αη ω

ω ω
−

− − −

−
≤ + = +          (65) 

where the constant 1α  is the same as in the first part of the proof of Theorem 3. 
Theorem 3 is completely proved.                                     □ 

Theorem 4. On the probability space { }, , PΩ   with the filtration n  on it, 
let 0

1Ω  be a complete separable metric space. Then, every nonnegative super- 
martingale { } 0

, N
n n n

f
=

  is a local regular one, that is, the optional decomposition 
for it is valid.  

Proof. Without loss of generality, we assume that 0 0nf d≥ > . From the last 
fact, we obtain  

 
1

1, , 1, .
nQ nn

n
n

fE Q M n
f −

≤ ∈ = ∞                 (66) 

The inequalities (66) and Theorems 3, 4 [1], [17] prove Theorem 4.         □ 
Theorem 5. On the probability space { }, , PΩ   with the filtration n  on it, 

let 0
1Ω  be a complete separable metric space. Then, every bounded from below 

super-martingale { } 0
,n n n

f ∞

=
  is a local regular one.  

Proof. Since the super-martingale { } 0
, N

n n n
f

=
  is bounded from below, then 

there exists a real number 0C  such that 0 0nf C+ > . If to consider the su-
per-martingale { }0 0

,n n n
f C ∞

=
+  , then all conditions of Theorem 4 are true. Theo-

rem 5 is proved.                                                   □ 
Theorem 6. On the probability space { }, , PΩ   with the filtration n  on it, 

let 0
1Ω  be a complete separable metric space. Suppose that the evolution of the 

risk asset is defined by the formula (2) and the non risk asset evolve by the law 
1nB = , 0,n N= . If the nonnegative payoff function Nf  is N  measurable 

integrable random value relative to every martingale measure and satisfying the 
conditions Theorem 16 from [17], then the fair price of super-hedge is given by 
the formula  

 sup d sup d .N N v
Q M v

f Q f ν
∈ ∈Ω Ω

=∫ ∫


                      (67) 
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3. Interval of Non-Arbitrage Prices for a Wide Class of  
Evolutions of Risky Assets 

In the papers [2], [3] the range of non arbitrage prices are established. In the 
paper [2], for the Levy exponential model, the price of super-hedge for call op-
tion coincides with the price of the underlying asset under the assumption that 
the Levy process has unlimited variation, does not contain a Brownian compo-
nent, with negative jumps of arbitrary magnitude. The same result is true ob-
tained in the paper [3] if the process describing the evolution of the underlying 
asset is a diffusion process with the jumps described by Poisson jump process. In 
these papers the evolution is described by continuous processes. Below we con-
sider the discrete evolution of risky assets that is more realistic from the practical 
point of view. 

Theorem 7. On the probability space { }0 0 0
1 1 1, , PΩ  , where 0

1Ω  is a separa-
ble metric space, 0

1  is a Borel σ-algebra on 0
1Ω , 0

1P  is a probability measure 
on 0

1 , let the random values ( ) 0iξ ω ≥ , 1,i N= , satisfies the conditions: 
1) ( )( )0

1 10 0 1 1iP ξ ω< ≤ ≤ < , there exists 1ω  and 2ω  such that ( )1 0iξ ω = , 
( )2 1iξ ω = , 1,i N= ; 
2) for every 1 t< < ∞ , ( )( )0

1 1 0iP tξ ω > > , 1,i N= .  
Suppose that the evolution of risk asset is given by the formula (2) with 1 1a = , 

where ( ) ( ) 1i i i iη ω ξ ω= − , and on the probability space { }0 0 0, ,i i iPΩ  , the ran-
dom value ( )i iξ ω  has the same distribution law as the random value ( )1iξ ω , 

1,i N= , on the probability space { }0 0 0
1 1 1, , PΩ  . If the nonnegative payoff func-

tion ( )f x , [ )0,x∈ ∞ , satisfies the conditions: 

1) ( ) ( ) ( )
0 0, , lim , 0

x

f x
f f x ax a a

x→∞
= ≤ = > , then  

 ( ) 0sup .P
N

P M
E f S aS

∈
=                        (68) 

If, in addition, the nonnegative payoff function ( )f x  is a convex down one, 
then  

 ( ) ( )0inf ,P
NP M

E f S f S
∈

=                      (69) 

where M is the set of equivalent martingale measures for the evolution of risk 
asset , 1,nS n N= . The interval of non-arbitrage prices of contingent liability 
( )Nf S  coincides with the set ( )0 0,f S aS   .  
Proof. Due to Theorem 1 and 6 we have  

 ( ) ( )sup d sup d ,N N v
Q M v

f S Q f S ν
∈ ∈Ω Ω

=∫ ∫


               (70) 

where 

( )

( ) ( )( ) ( )
( ) ( )

11

1

1
2

0 1 1 2 1
1, , 1 1 1

sup d

1
sup 1 , , ,

s

s s

N

N v
v

i
N N s si ii

s s s s
v i i s s s s s s

f S

f S a

ν

ξ ω
ω ω η ω

ξ ω ξ ω
−

∈ Ω

+

−
∈ = = = =

− = +  − 

∫

∑ ∏ ∏








 (71) 

and we used the denotations ( )( ) ( )1 11 1s s s sξ ω ξ ω
−

− = − ,  
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( )( ) ( )2 21 1s s s sξ ω ξ ω
+

− = − , 1
s sω −∈Ω , 2

s sω +∈Ω , 3 1
s sω ω= . From the inequality  

( )N Nf S aS≤  we have  

 ( ) 0sup d .N
Q M

f S Q aS
∈ Ω

≤∫                         (72) 

To prove the inverse inequality we use the inequality  

 

( )

( )( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )
2 1

1 1 1 11 2
0 1 1 0 1 12 1 2 1

1 1 1 1 1 1 1 1

sup d

1 1
.

N
Q M

f S Q

f S f S
ξ ω ξ ω

ξ ω ξ ω
ξ ω ξ ω ξ ω ξ ω

∈ Ω

− −
≥ +

− −

∫
     (73) 

Therefore, putting in the inequality (73) ( )1
1 1 0ξ ω =  we obtain  

 ( )
( )

( )( ) ( )2
1 1

2
0 1 1 02

1 1

1sup d lim .N
Q M

f S Q f S aS
ξ ω

ξ ω
ξ ω→∞∈ Ω

≥ =∫           (74) 

Let us prove the equality (69). Using Jensen inequality [18] we obtain  

 ( ) ( ) ( )0inf P P
N NP M

E f S f E S f S
∈

≥ =                   (75) 

Let us prove the inverse inequality  

 ( )( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )
2 1

1 1 1 11 2
0 1 1 0 1 12 1 2 1

1 1 1 1 1 1 1 1

1 1
inf .P

NP M
f S f S E f S

ξ ω ξ ω
ξ ω ξ ω

ξ ω ξ ω ξ ω ξ ω ∈

− −
+ ≥

− −
(76) 

Putting in this inequality ( )1
1 1 1ξ ω =  we obtain the needed. The last statement 

about the interval of non-arbitrage prices follows from [11] and [12]. Theorem 7 
is proved.                                                        □ 

Theorem 8. On the probability space { }0 0 0
1 1 1, , PΩ  , where 0

1Ω  is a separa-
ble metric space, 0

1  is a Borel σ-algebra on 0
1Ω , 0

1P  is a probability measure 
on 0

1 , let the random values ( )1 0iξ ω ≥ , 1,i N= , satisfies the conditions: 
1) ( )( )0

1 10 0 1 1iP ξ ω< ≤ ≤ < , there exists 1ω  and 2ω  such that ( )1 0iξ ω = ,  
( )2 1iξ ω = , 1,i N= ; 
2) for every 1 t< < ∞ , ( )( )0

1 1 0iP tξ ω > > . 
Suppose that the evolution of risk asset is given by the formula (2) with 1 1a = , 

where ( ) ( ) 1i i i iη ω ξ ω= − , and on the probability space { }0 0 0, ,i i iPΩ  , the ran-
dom value ( )i iξ ω  has the same distribution law as the random value ( )1iξ ω , 

1,i N= , on the probability space { }0 0 0
1 1 1, , PΩ  . If the nonnegative payoff func-

tion ( )f x , [ )0,x∈ ∞ , satisfies the conditions: 
1) ( )0f K= , ( )f x K≤ , then  

 ( )sup .P
N

P M
E f S K

∈ Ω

=∫                        (77) 

If, in addition, the nonnegative payoff function ( )f x  is a convex down one, 
then  

 ( ) ( )0inf ,P
NP M

E f S f S
∈

=                      (78) 

where M is the set of equivalent maqtingale measures for the evolution of risk 
asset , 0,nS n N= . The interval of non-arbitrage prices of contingent liability 
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( )Nf S  coincides with the set ( )0 ,f S K   .  
Proof. It is evident that  

 ( )sup .P
N

P M
E f S K

∈
≤                          (79) 

Since  

 

( )

( ) ( )( ) ( )
( ) ( )

11

1

1
2

0 1 1 2 1
1, , 1 1 1

sup d

1
sup 1 , , ,

s

s s

N

N v
v

i
N N s si ii

s s s s
v i i s s s s s s

f S

f S a

ν

ξ ω
ω ω η ω

ξ ω ξ ω
−

∈ Ω

+

−
∈ = = = =

− = +  − 

∫

∑ ∏ ∏








(80) 

we have  

 

( )

( )( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )
2 1

1 1 1 11 2
0 1 1 0 1 12 1 2 1

1 1 1 1 1 1 1 1

sup d

1 1
.

N
Q M

f S Q

f S f S
ξ ω ξ ω

ξ ω ξ ω
ξ ω ξ ω ξ ω ξ ω

∈ Ω

− −
≥ +

− −

∫
    (81) 

Therefore, putting in the inequality (81) ( )1
1 1 0ξ ω =  we obtain  

 

( )

( )
( )

( )
( ) ( )( ) ( ) ( )

2
1 1

2
1 1 2

0 1 12 2
1 1 1 1

sup d

1 1lim 0 0 .

N
Q M

f S Q

f f S f K
ξ ω

ξ ω
ξ ω

ξ ω ξ ω

∈ Ω

→∞

 −
 ≥ + = =
  

∫
     (82) 

Let us prove the equality (78). Due to convexity of payoff function ( )f x , us-
ing Jensen inequality we obtain  

 ( ) ( ) ( )0inf .P P
N NP M

E f S f E S f S
∈

≥ =                  (83) 

Let us prove the inverse inequality  

 
( )( ) ( )

( ) ( ) ( )( ) ( )
( ) ( )

( )

2 1
1 1 1 11 2

0 1 1 0 1 12 1 2 1
1 1 1 1 1 1 1 1

1 1

inf .P
NP M

f S f S

E f S

ξ ω ξ ω
ξ ω ξ ω

ξ ω ξ ω ξ ω ξ ω

∈

− −
+

− −

≥

      (84) 

Putting in this inequality ( )1
1 1 1ξ ω =  we obtain the needed. Theorem 8 is proved.  

□ 
Remark 3. The results obtained in Theorems 7, 8 are true if for some 1s > , 
( )1 1, , 1s sa ω ω − = .  
Let us give an example of application of the results obtained. Denote  
( ) [ ], 0,w t t T∈  standard Brownian motion on the time interval [ ]0,T  with  
( )0 0w = . Due to the continuity of ( )w t  the Winer measure P is concentrated  

on the Banach space [ ]( )0,C T  with the norm 
[ ]

( )
0,

sup
t T

f f t
∈

= ,  

( ) [ ]( )0,f t C T∈ . The space [ ]( )0,C T  is a complete separable metric space in 
the metric generated by the introduced norm. Suppose that  

0 1 20 Nt t t t T= < < < < = . On the probability space { }0 0 0
1 1 1, , PΩ  , where  

[ ]( )0
1 0,C TΩ = , 0

1  is a Borel σ-algebra on 0
1Ω , 0

1P P=  is a probability meas-
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ure on 0
1 , let us consider the random values ( )1 0iξ ω ≥ , 1,i N= , where  

( )
( ) ( ) ( )( )

2
1 12

1 e
i i i ir t t w t w t

i

σµ σ

ξ ω
− −

 
 − − − + − 
 = , 1,i N= . The random values ( )1iξ ω ,  

1,i N= , are independent between themselves. 
The random values ( )1iξ ω , 1,i N= , generate the evolution of risk asset 

given by the formula ( )
( )

2

2
0 1 0

1
e

n nr t w tn

n i
i

S S S
σµ σ

ξ ω
 
 − − + 
 

=

= =∏ , 1,n N= . Such evo-

lution satisfies the conditions of the Theorems 7, 8. 

4. Models of Evolution of Risky Assets Based on the Discrete  
Geometric Brownian Motion 

Suppose that the set 0 1 20, , , , Nt t t t T= =  belongs to [ )0,∞  with  

1 0i it t t −∆ = − >  not depending on the index i.  
On the probability space { }0 0 0

1 1 1, , PΩ  , considered in the previous example, 
let us consider the sequence of random values  

 ( )
( ) ( )( )

2
12

1 e , 1, ,
i ir t w t w t

i i N
σµ σ

ξ ω
−

 
 − − ∆ + − 
 = =               (85) 

where ( )iw t  is a standard Brownian motion with ( )0 0w = ,  
( ) ( ) { }min ,i j i jEw t w t t t= . With every sequence real numbers 1 2, , , ,na a a  , 

0 1ia≤ ≤ , 1,i = ∞ , let us connect the random process  

 ( )( )0 1 0
1

1 1 , 1, , 0.
n

n i i
i

S S a n N Sξ ω
=

 = + − = > ∏           (86) 

Below we construct the probability space { }, , PΩ   and the random process 

nS , 1,n N= , on it, which is equivalent one in the wide sense to the process (86). 
For this purpose we could do it using the method, presented in section 2. But for 
further applications, it is more convenient to construct the simple probability 
space { }, , PΩ   and the random process on it, which is equivalent in the wide 
sense to the process (86). 

Let 0 1
1 RΩ = , ( )0 1

1 B R= , where 1R  is a real axis, ( )1B R  is a Borel  

σ-algebra on 1R . Let us put 0 0
1iΩ = Ω , 0 0

1i =  , 1,i N= , and let us construct the 

direct product of the measurable spaces { }0 0,i iΩ  , 1,i N= . Denote 0

1

N

i
i=

Ω = Ω∏ . 

Under the σ-algebra   on Ω , we understand the minimal σ-algebra generat-

ed by sets 0

1
,

N

i i i
i

G G
=

∈∏  . On the measurable space { },Ω  , under the filtra-

tion n  we understand the minimal σ-algebra, generated by sets 0

1
,

N

i i i
i

G G
=

∈∏  , 

where 0
i iG = Ω  for i n> . Suppose that the points 0 0t = , 1 2, , , Nt t t T= , be-

longs to 1R+  with 1 0i it t t −∆ = − >  not depending on the index i. Let us con-

sider the probability space { }, , PΩ  , where 0

1

N

i
i

P P
=

=∏ , 0 0
1iP P= , 1,i N= ,  
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 ( )
[ ]

2

0 02
1 11 2

1 e d , .
2

y
t

A

P A y A
t

−
∆= ∈

π∆
∫                   (87) 

On the probability space { }, , PΩ  , let us consider the evolution of risk asset 
given by the law  

 ( )( )0
1

1 , 1, ,
n

n s s
s

S S a y n Nρ
=

= + =∏                    (88) 

where 0 1sa≤ ≤ , 1,s N= , are the same constants, that figure in the formula 

(86), ( ) ( )e 1d yy σρ += − , 

2

2
r t

d

σµ

σ

 
− − ∆ 

 = . 

On the probability space { }, , PΩ  , the random process given by the formula 
(88) is equivalent in the wide sense to the process (86), constructed above. 

Described in Lemma 5 [1] the set of measures Q on the probability space  
{ }0 0 0, ,i i iPΩ  , which are equivalent to the measure 0

iP  and such that  
( ) 0Q

iE yρ = , we denote by , 1,iM i N= . 
On the measurable space { },Ω  , we introduce into consideration the set of 

measures 0
NM , described in Theorem 1 for ( ) ( )i i iy yη ρ= , 1,i N= . 

Theorem 9. On the measurable space { },Ω   with the filtration n , 0,n N= , 
on it, let the risk asset evolution is given by the formula (88). For the nonnegative 
payoff function ( )Nf S , satisfying the condition ( )

0

sup
N

Q
N

Q M
E f S

∈

< ∞ , the fair 
price of super-hedge is given by the formula  

 

( )

( )( )
( )

( ) ( )

0

1 2
1

1

1

2

0
1, , 1, , 1, 1

1

sup

sup 1

e 1
,

e e

N

s

Ni i

iss

i is ss s

Q
N

Q M

N
i

s s
i iy d y d i N s

d y

N

d y d ys

E f S

f S a y

σ

σ σ

ρ

+

+

∈

= =≤− >− = =

+

+ +=

 = + 
 

−
×

−

∑ ∏

∏



         (89) 

where we put 3 1
s sy y= .    

Proof. The proof of Theorem 9 follows directly from Theorem 6.         □ 
Theorem 10. Suppose that the evolution of risk asset is given by the formula 

(88). If the nonnegative payoff function ( )f x , [ )0,x∈ ∞ , satisfies the condi-
tions: 

1) ( ) ( ) ( )
0 0, , lim , 0

x

f x
f f x ax a a

x→∞
= ≤ = > , then  

 ( ) ( ) ( )
0

0 0 0
1 1

1 1 1 sup .
N

N N
P

i i N
i i Q M

f S a aS a E f S aS
= = ∈

   − + − − ≤ ≤   
   
∏ ∏      (90) 

If, in addition, the nonnegative payoff function ( )f x  is a convex down one, 
then  

 ( ) ( )
0

0inf ,
N

P
N

P M
E f S f S

∈
=                    (91) 
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where 0
NM  is the set of equivalent martingale measures for the evolution of risk 

asset , 0,nS n N= .  
Proof. As before, 

( )

( )( )
( )

( ) ( )

( )

( ) ( )

0

1 2
1

1

1

1

1
1 1

1 2

0

2

0
1, , 1 1, , 1,

1

12

1, , 1 1

1

0
, 1

sup d

sup 1

e 1

e e

e 1

e e

lim 1

N

s

Ni i

iss

i is ss s

iss

i is ss sN

N N

N
Q M

N
i

s s
i i sy d y d i N

d y

N

d y d ys

d y

N

d y d yi i s

N

s
y y s

aS f S Q

f S a y

f S a

σ

σ σ

σ

σ σ

ρ

ρ

+

+

+

+
−

∈ Ω

= = =≤− >− =

+

+ +=

+

−

+ += = =

−

→−∞ →∞ =

≥

 = + 
 

−
×

−

−
≥

−

× +

∫

∑ ∏

∏

∑ ∏

∏





( )( ) ( )( )
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( ) ( )

2

2 1
1 e 11

e e

N

s
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d y
i
s N N d y d y

y a y
σ

σ σ
ρ

+

+ +

 −  +    −  

( )( ) ( )( )
( )

( ) ( )

( )

( ) ( )
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1

2 1

1

1
1 1

1 1

1
2

0
1

12

1, , 1 1

1 1

0 0
1 1

12

1, , 1 1

1 e1 1
e e

e 1

e e

1 1 1

e
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s

N N
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i

s s N N d y d ys

d y

N

d y d yi i s

N N
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N

i i s

f S a y a y
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Applying ( )1N −  times the inequality (92) we obtain 
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Let us prove the equality (91). Using Jensen inequality we obtain  

 ( ) ( )
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N

P
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P M
E f S f S
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It is evident the inequality  
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Putting in the inequality (95) 1
sy d= −  we obtain the inverse inequality.     □ 

Theorem 11. Suppose that the evolution of risk asset is given by the formula 
(88). If the nonnegative payoff function ( )f x , [ )0,x∈ ∞ , satisfies the condi-
tions: 

1) ( ) ( )0 ,f K f x K= ≤ , then  
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If, in addition, the nonnegative payoff function ( )f x  is a convex down one, 
then  
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where 0
NM  is the set of equivalent martingale measures for the evolution of risk 

asset , 0,nS n N= .  
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Applying ( )1N −  times the inequality (98) we obtain the needed inequality  
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Let us prove the equality (97). Using Jensen inequality we obtain  
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It is evident the inequality  
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Putting in the inequality (101) 1
sy d= −  we obtain the inverse inequality.    □ 

Theorem 12. On the measurable space { },Ω   with the filtration n ,  
0,n N= , on it, let the discount risk asset evolution is given by the formula (88) 

with 0 1ia≤ ≤ , 1,i N= , For the payoff function ( ) ( )f x x K += − , ( )0,x∈ ∞ , 
0K > , the fair price of super-hedge is given by the formula  
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where we put ( ) ( )1f x K x += − . 
Let us estimate from above the value  
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For this we use the equality 
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which follows from the identity: ( ) ( )1f x f x x K= + − , 0x ≥ . Since  
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we obtain the inequality  
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From the inequality (109) we have 
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Due to the inequality (90) of Theorem 10  
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and the inequality  

 

( )( )
( )

( ) ( ) ( )

1 2
1

1

1

2

0
1, , 1, , 1, 1

0
1

sup 1

e 1
,

e e

s

Ni i

iss

i is ss s

N
i

s s
i iy d y d i N s

d y

N

d y d ys

f S a y

S K

σ

σ σ

ρ

+

+

= =≤− >− = =

+

+

+ +=

 + 
 

−
× ≥ −

−

∑ ∏

∏



          (112) 

https://doi.org/10.4236/apm.2020.105016


N. S. Gonchar 
 

 
DOI: 10.4236/apm.2020.105016 283 Advances in Pure Mathematics 
 

which follows from Jensen inequality, we have  
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This proves Theorem 12.                                           □ 
Theorem 13. On the measurable space { },Ω   with the filtration n ,  

0,n N= , on it, let the discount risk asset evolution is given by the formula (88), 
with 0 1ia≤ ≤ , 1,i N= . For the payoff function ( ) ( )1f x K x += − , ( )0,x∈ ∞ , 

0K > , the fair price of super-hedge is given by the formula  
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The set of non arbitrage prices coincides with the set  
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Proof. The inequality  
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is true. Taking into account the inequality (96) of Theorem 11 we prove Theo-
rem 13.                                                          □ 

Theorem 14. On the measurable space { },Ω   with the filtration n ,  
0,n N= , on it, let the discount risk asset evolution is given by the formula (88) 

with 0 1ia≤ ≤ , 1,i N= . For the payoff function  
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The set of non arbitrage prices coincides with the set  
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Proof. It is evident that  
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Let us prove the inverse inequality. We have  
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Therefore,  
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The inequalities (117), (119) prove Theorem 14.                         □ 
Theorem 15. On the measurable space { },Ω   with the filtration n ,  

0,n N= , on it, let the discount risk asset evolution is given by the formula (88) 
with 0 1ia≤ ≤ , 1,i N= . For the payoff function  
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Proof. We have  
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In the formula (121) we introduced the denotation  
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1

N

i
i

N

S
f S S S K

N

+

=

 
 
 = −

+ 
 
 

∑
                   (122) 

The proof of Theorem 15 follows from the equality (121).                 □ 

5. Characteristic of the Random Processes Built on the  
Discrete Geometric Brownian Motion 

On the probability space { }, , PΩ  , with every sequence real numbers  

1 2, , , , ,n Na a a a  , 0 1ia≤ ≤ , 1,i N= , let us connect the random process  

 ( )( )0 0
1

1 , 1, , 0.
n

n s s
s

S S a y n N Sρ
=

= + = >∏              (123) 

where 0 1sa≤ ≤ , 1,s N= , are constants, ( ) ( )e 1d yy σρ += − ,  
2

2
r t

d

σµ

σ

 
− − ∆ 

 = . 

Theorem 16. The random process (123) is a non homogeneous Markov process 
with the transition probability function for the n-th step  

( ) ( ) ( )1, , , 1, , , d , 0 1, 0, ,n
A

P n x n A p n x n z z a A B− = − < ≤ ∈ ∞∫       (124) 

where  

( )

( )
[ ] ( )( )

( ) ( )
2

1 2 2

1, , ,

1
ln ,

,
exp ,

22 1

n
n

nn

n

p n x n z

z x a
x z d

xax z
tt z x a

ϕ σ
ϕ

σσ

−

   − − −  
     =  

∆π∆ − −  
 
  

 (125) 

( ) ( )( ) ( )1 ,0 1, , ,
nn n x aa x z zϕ χ − ∞< ≤ =  

and  

 ( ) ( ) ( )1, , , d , 0,x A n
A

P n x n A z x aµ χ− = = =∫           (126) 

where ( )x Aµ  is an atomic measure which is concentrated at the point  
( )0,x∈ ∞ .  
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Proof. Let us consider the case as 0 1na< ≤ . The transition probability func-
tion for one step is equal  

 

( ) ( ) ( )( )( )

( )
( )( )( )( )

2

1

2
1 2

1, , , | 1

1 1 e 1 e d .
2

n n n n

y
d y t

A n

P n x n A P S A S x P x a y A

x a y
t

σ

ρ

χ

−

∞ −+ ∆

−∞

− = ∈ = = + ∈

= + −
π∆

∫
   (127) 

After the changing of variable ( )( )( )1 e 1d y
nz x a σ += + −  we obtain  

 ( ) ( )
( )( ) ( )1 ,

1
e ,

n

d y n
x a

n

z a x
z

xa
σ χ+

− ∞

− −
=                (128) 

or  

 ( ) ( )11 ln , .n
n

n

z x a
y x z d

xa
ϕ σ

σ
  − −

= −  
   

             (129) 

For ( )1 nz a x≥ −  we have  

 ( ) de d .d y

n

zy
xa

σ σ+ =                       (130) 

Substituting this into (127) we obtain  

 

( )

[ ]
( )
( )( )

( ) ( )
2

1 2 2

1, , ,

1
ln ,

,1 exp d .
212

n
n

nn

A n

P n x n A

z x a
x z d

xax z
z

tz x at

ϕ σ
ϕ

σσ

−

   − − −  
     =  

∆− −π∆  
 
  

∫
(131) 

If 0na =  then ( ) ( )1, , , AP n x n A xχ− = , or  

 ( ) ( )1, , , 1d .x
A

P n x n A zµ− = ∫                    (132) 

where we introduced the atomic measure ( )x Aµ , ( )0,A B∈ ∞ , concentrated at 
the point x.                                                       □ 

Let us introduce the denotations ( ) ( ), 1, , ,ip x z p i x i z= − . First, suppose that 
all 1 0ia≥ > , 1,i N= , then the joint probability function is given by the formu-
la  

 
( )

( ) ( ) ( )
1

1 1 2 2

1 1 2 1 2 1 1

, , ,

, , , d d .
N

N N

N N N N
A A

P S A S A S A

p x z p z z p z z z z−

∈ ∈ ∈

= ∫ ∫


  

       (133) 

If for some indexes 1, , ki i , 0
si

a = , 1,s k= , then in this case the joint proba-

bility function  

( )
( ) ( ) ( ) ( )

1

1 1 2 2

1 1 2 1 2 1 1

, , ,

, , , d d ,
N

N N

N N N N
A A

P S A S A S A

p x z p z z p z z z zν−

∈ ∈ ∈

= ∫ ∫


  

     (134) 

where the measure ( )1 NA Aν   is a direct product of measures ( )i iAµ ,  
( )0,iA B∈ ∞ , where ( )i iAµ  is a Lebesgue measure for those i for which  
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0 1ia< ≤  and ( )s si iAµ  is an atomic measure which is concentrated at the point 

1si
z − , 1,s k= , under the case 0

si
a = , 1,s k= . Moreover, in the formula (134) 

( ) ( )
[ ] ( )( )

( ) ( )

1
1 1 2

1

2

1
1

1
2

,
,

2 1

1
ln ,

exp ,
2

i i i
i i i

i i i

i i i
i i i

i i

z z
p z z

t z z a

z z a
z z d

z a
t

ϕ

σ

ϕ σ

σ

−
−

−

−
−

−

=
π∆ − −

   − − −  
     ×  

∆ 
 
  

    (135) 

( ) ( )( ) ( )
1

2

1 1 ,0 1, , , ,
2i ii i i i iz aa z z z d r tσϕ χ σ µ

−− − ∞

 
< ≤ = = − − ∆ 

 
 

( )10, , 1, 1, .
s s si i ia p z z s k−= = =                 (136) 

6. Estimation of the Parameters of the Considered Random  
Process 

Suppose that ( ){ } 1

N
i N i

g X
=

 is a mapping from the set [ ]0,1 N  into itself, where 
{ }1, ,N NX x x=  , 0 1ix≤ ≤ , 1,i N= . If 0 1, , , NS S S  is a sample of the process 

(123) let us denote the order statistic ( ) ( ) ( )0 1, , , NS S S  of this sample. Introduce  

also the denotation [ ]( ) ( )

( )

( )

( )

0 1, , N
i iN

N N

S S
g S g

S S
− 

 =
 
 

 , 1,i N= . 

Theorem 17. Suppose that 0 1, , , NS S S  is a sample of the random process 
(123). Then for the parameters 1, , Na a  the estimation  

( ) [ ]( )0
1 0 1 0

0

1 , 0 1,N

S
a g S

S
τ τ= − < ≤  

[ ]( )
[ ]( )1

1 , 2, ,i N
i

i N

g S
a i N

g S−

= − =                 (137) 

is valid, if for [ ]( ) 0N Ng S > , [ ] [ ]0,1 N

NS ∈ , the inequalities  
[ ]( ) [ ]( ) [ ]( )1 2 NN N Ng S g S g S≥ ≥ ≥  are true. If 0 0τ = , then 1ia = , 1,i N= .  

Proof. The estimation of the parameters 1, , Na a  we do using the represen-
tation of random process , 1,nS n N= . The smallest value of the random variable  

nS  is equal ( )0
1

1 , 1,
n

i
i

S a n N
=

− =∏ . Let us determine the parameters ia  from 

the relations 

( ) [ ]( ) ( ) [ ]( )

( ) [ ]( ) ( ) [ ]( )

0 0
1 1

1

0 1 0 1 1
1

1 , , 1 , ,

1 , , 1 ,

N N k

i N i N kN N
i i
N k

i N k N N
i

S a g S S a g S

S a g S S a g S

τ τ

τ τ

−

−
= =

− −

− −
=

− = − =

− = − =

∏ ∏

∏

 



  (138) 

where 0τ > . Taking into account the relations (138) we obtain 

( ) [ ]( )0 1 11 ,NS a g Sτ− =  
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[ ]( )( ) [ ]( )1 1 , 2, .N k N k N kN Ng S a g S k Nτ τ− − − −− = =          (139) 

Solving the relations (139), we have  

 [ ]( ) [ ]( )
[ ]( )1 1

0 1

1 , 1 , 2, .N k N
N kN

N k N

g S
a g S a k N

S g S
τ −

−
− −

= − = − =       (140) 

It is evident that 0, 2,N ka k N− ≥ = . To provide the positiveness of 1a  and the 
inequalities [ ]( )N n N nNg S Sτ − −≤ , 0, 1n N= − , ( )0 0S S≥ , meaning that the ran-
dom process (123) takes all the values from the sample , 0,nS n N= , we must to 
put ( )0 0Sτ τ= , 00 1τ< ≤ . It is evident that if 0 0τ =  then 1, 1,ia i N= =  Theo-
rem 17 is proved.                                                  □ 

Remark 4. It is evident that 

[ ]( )
[ ]( )1

1, , ,1 1, 1 , 2, 1,i N
i i

i N

g S
a i N k N k N a i N k

g S−

= = − < ≤ − = − = − −  

( ) [ ]( )0 0
1 1 0

0

1 , 0 1,N

S
a g S

S

τ
τ= − < ≤                (141) 

is also estimation of the parameters 1, , Na a  if  

[ ]( ) [ ]( ) [ ]( ) [ ] [ ]1 2 10 , 0,1 .N
N k N kN N N Ng S g S g S S− − − −< ≤ ≤ ≤ ∈  

Such estimation is not interesting since  

( )
1

1 0, 0, .
N i

i
i

a i k
−

=

− = =∏  

Remark 5. If  

 ( ) ( )

( )

( )

00

00

0

0

, if 0 ,

1, if 1,

SS x x
S S

g x
S

x
S


≤ ≤

= 


< ≤


               (142) 

[ ]( ) ( )

( )
0, 1, , 1,N i

i N
N

S
g S g i N

S
τ− 

 = = =
 
 

 

then for the parameters 1, , Na a  the estimation 

( )

( )

( )

( )

( )

( )

( ) ( )

( )

( )

( ) ( )

( )

( )

( )

( )

( )

1 0

01

1 0 00

0 00

0

0

1 , if ,

1 , if , , 2, ,

0, if .

N i N i

N i N

N i N i N i
i

N N N

N i

N

S S S

S S S

S S S S SSa i N
S S S S S S

S S

S S

− − +

− +

− − + −

−


 − ≤




= − > ≤ =


 >


  (143) 

( )

( )

( )

( )

( ) ( )

( )

1 1 (0)

0

1
0 1 (0)

0 0

1 , if ,

1 , if

N N

N N

N

N

S S S
S S S

a
S S S
S S S

− −

−


− ≤


= 
 − >


                (144) 
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is true. The following equalities  

( ) ( ) ( )

( )

( )

( )

0 0 0

1 0

1 ,
N

i
i N N

S S S
a g

S S S=

 
 − = =
 
 

∏  

( )

( )

( )

( )

( )

( )

( ) ( )

( )

( )

0

0

1 0 0

0 0

, if ,

1 1, 1,

, if ,

k k

N k N N
i

i k

N

S S S

S S S
a k N

S S S

S S S

−

=


≤


− = = −

 >


∏         (145) 

are valid.  
Remark 6. Suppose that ( ) [ ], 0,1g x x x= ∈ . Let us put  

[ ]( ) ( )

( )

( )

( )

i i
N i N

N N

S S
g S g

S S−

 
 = =
 
 

, 0,i k= , [ ]( ) 1N i Ng S− = , 1, 1i k N= + − . Then 

( )0
1 0 0

0

1 , 0 1, 0, 2, 1,i

S
a a i N k

S
τ τ= − < ≤ = = − −  

[ ]( )
[ ]( )1

1 , , ,i N
i

i N

g S
a i N k N

g S−

= − = −                   (146) 

is an estimation for the parameters 1, , Na a .  
In the next Theorems we put 0 1τ = . This corresponds to the fact that fair 

price of super-hedge is minimal for the considered statistic.  
Theorem 18. On the measurable space { },Ω   with the filtration n ,  

0,n N= , on it, let the discount risk asset evolution is given by the formula (123) 
with parameters ia , 1,i N= , given by the formula (137). For the payoff func-
tion ( ) ( )f x x K += − , ( )0,x∈ ∞ , 0K > , the fair price of super-hedge is given 
by the formula  

 ( )
( ) ( ) [ ]( )

( ) [ ]( )
( ) [ ]( )0

0 0

0
0 0

0

, if ,

sup
1 , if .N

N N

Q
N N N

Q M N N

S K S g S K

E f S S g S
S S g S K

S

+

∈

 − ≥

  = 

 − <
   

   (147) 

If ( ) [ ]( )0 N NS g S K≥ , then the set of non arbitrage prices coincides with the point 
( )0S K +− , in case if ( ) [ ]( )0 N NS g S K<  the set of non arbitrage prices coincides  

with the closed set ( ) ( ) [ ]( )0
0 0

0

, 1 N NS g S
S K S

S
+

  
  − −
  

  
. 

The fair price of super-hedge for the statistic (143), (144) is given by the for-
mula  

 ( )
( ) ( )

( )

( )

( )

( )

( )

0

0
0 0

0 0
0 0

, if ,

sup

1 , if < .
N

N
Q

N
Q M

N N

S
S K S K

S
E f S

S S
S S K

S S

+

∈


− ≥

=     −    

         (148) 
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If ( )

( )

0
0

N

S
S K

S
≥ , then the set of non arbitrage prices coincides with the point 

( )0S K +− , in case if ( )

( )

0
0

N

S
S K

S
<  the set of non arbitrage prices coincides with 

the closed set ( ) ( )

( )

0
0 0, 1

N

S
S K S

S
+

  
  − −

    
. 

The fair price of super-hedge is minimal one for the statistic (137) with  
( ) ( ) 1i N N Ng X g X= = , 1, 1i N= − , and is given by the formula  

 ( )
( ) ( )

( ) ( )0

0 0

0 0 0

, if ,
sup

, if .N

Q
N

Q M

S K S K
E f S

S S S K

+

∈

 − ≥= 
− <

           (149) 

If ( )0S K≥ , then the set of non arbitrage prices coincides with the point  
( )0S K +− , in case if ( )0S K<  the set of non arbitrage prices coincides with the 
closed set ( ) ( )0 0 0,S K S S+ − − 

.  
Theorem 19. On the measurable space { },Ω   with the filtration n ,  

0,n N= , on it, let the discount risk asset evolution is given by the formula (123), 
with the parameters ia , 1,i N= , given by the formula (137). For the payoff 
function ( ) ( )1f x K x += − , ( )0,x∈ ∞ , 0K > , the fair price of super-hedge is 
given by the formula  

 ( ) ( ) [ ]( )( )
0

1 1 0sup .
N

Q
N N N

Q M
E f S f S g S

∈

=                (150) 

The set of non arbitrage prices coincides with the closed interval  

( ) ( ) [ ]( )( )0 1 0, .N NK S f S g S+ −
 

 

The fair price of super-hedge for the statistic (143), (144) is given by the for-
mula  

 ( ) ( )

( )0

0
1 1 0sup .

N

Q
N

Q M N

S
E f S f S

S∈

 
 =
 
 

                (151) 

The set of non arbitrage prices coincides with the closed interval  

( ) ( )

( )

0
0 1 0,

N

S
K S f S

S
+

  
  −

    
. 

The fair price of super-hedge is minimal one for the statistic (137) with  
( ) ( ) 1i N N Ng X g X= = , 1, 1i N= − , and is given by the formula  

 ( ) ( )( )
0

1 1 0sup .
N

Q
N

Q M
E f S f S

∈

=                   (152) 

The set of non arbitrage prices coincides with the closed interval  
( ) ( )( )0 1 0,K S f S+ −
 

.  
Theorem 20. On the measurable space { },Ω   with the filtration n ,  

0,n N= , on it, let the discount risk asset evolution is given by the formula (123), 
with the parameters ia , 1,i N= , given by the formula (137). For the payoff  
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function ( ) 0
1 0 1, , ,

1

N

i
i

N

S
f S S S K

N

+

=

 
 
 = −

+ 
 
 

∑
 , 0K > , the fair price of super-hedge 

is given by the formula  

 ( )
( ) [ ]( )

0

0 0
1

1 0 1sup , , , .
1N

N

i N
Q i

N
Q M

S S g S
E f S S S K

N

+

=

∈

 + 
 = −

+ 
 
 

∑
         (153) 

The set of non arbitrage prices coincides with the closed interval  

( )
( ) [ ]( )0 0

1
0 ,

1

N

i N
i

S S g S
K S K

N

+

+ =

  +  
  − −
 + 
  

   

∑
, if 

( ) [ ]( )0 0
1

1

N

i N
i

S S g S
K

N
=

+
>

+

∑
. 

For 
( ) [ ]( )0 0

1

1

N

i N
i

S S g S
K

N
=

+
≤

+

∑
 the set of non arbitrage prices coincides with the 

point 0.  
The fair price of super-hedge is minimal one for the statistic (137) with  
( ) ( ) 1i N N Ng X g X= = , 1, 1i N= − , and is given by the formula  

 ( ) ( )

0

0 0
1 0 1sup , , , .

1N

Q
N

Q M

S S N
E f S S S K

N

+

∈

+ 
= −  + 

           (154) 

The set of non arbitrage prices coincides with the closed interval  

( ) ( )0 0
0 ,

1

S S N
K S K

N

+
+

 + 
 − −   +  

, if ( )0 0

1

S S N
K

N

+
>

+
. For ( )0 0

1

S S N
K

N

+
≤

+
 the set 

of non arbitrage prices coincides with the point 0.  
Theorem 21. On the measurable space { },Ω   with the filtration n ,  

0,n N= , on it, let the discount risk asset evolution is given by the formula (123), 
with the parameters ia , 1,i N= , given by the formula (137). For the payoff  

function ( ) 0
0 1, , ,

1

N

i
i

N

S
f S S S K

N

+

=

 
 
 = −

+ 
 
 

∑
 , 0K > , the fair price of super-hedge 

is given by the formula  

 

( )

( )
( ) [ ]( )

( ) [ ]( ) ( ) [ ]( )

0

0 1

0 0
1

0

0 00 0
1 1

0

sup , , ,

, if ,
1

, if .
1 1

N

Q
N

Q M

N

i N
i

N N

i iN N
i i

E f S S S

S S g S
S K K

N

S S g S S S g S
S K

N N

∈

+ =

= =

 +
 − ≥

+=   + + 
 − <

+ + 
  

∑

∑ ∑



    (155) 
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If 
( ) [ ]( )0 0

1

1

N

i N
i

S S g S
K

N
=

+
≥

+

∑
, then the set of non arbitrage prices coincides with 

the point ( )0S K +− , in case if 
( ) [ ]( )0 0

1

1

N

i N
i

S S g S
K

N
=

+
<

+

∑
 the set of non arbi-

trage prices coincides with the closed interval  

( )
( ) [ ]( )0 0

1
0 0,

1

N

i N
i

S S g S
S K S

N
+ =

  +  
  − −

+  
    

∑
. 

The fair price of super-hedge is minimal one for the statistic (137) with  
( ) ( ) 1i N N Ng X g X= = , 1, 1i N= − , and is given by the formula  

( )

( ) ( )

( ) ( )

0

0 1

0 0
0

0 00 0
0

sup , , ,

, if ,
1

, if .
( 1) 1

N

Q
N

Q M
E f S S S

S S N
S K K

N
S S N S S N

S K
N N

∈

+ +
− ≥

+=  + +  − <   + + 



             (156) 

If ( )0 0

1

S S N
K

N

+
≥

+
, then the set of non arbitrage prices coincides with the point 

( )0S K +− , in case if ( )0 0

1

S S N
K

N

+
<

+
 the set of non arbitrage prices coincides 

with the closed interval ( ) ( )0 0
0 0,

1

S S N
S K S

N
+ +  

− −   +   
.  

To estimate the parameters ,σ µ , let us define the likelihood function of the 
sample by the formula  

 ( )
( )( )2

1
1

2

,
1, exp

2

N

i i i
i

N

D S S d
L

t
σ µ

σ σ

−
=

 −  = − 
∆ 

  

∑
            (157) 

using the formula (133) for 0 1, 1,ia i N< ≤ = , where  

( ) ( ) ( )1
1 1

1

1
, ln , .i i i

i i i i i i
i i

S S a
D S S S S

S a
ϕ −

− −
−

 − −
=  

 
 

Lemma 2. The maximum likelihood estimates of ,σ µ  are given by the for-
mulas  

( ) ( )
2

2
1 1

1 1

1 1, , ,
N N

i i i i i i
i i

D S S D S S
N t N

σ − −
= =

 = − ∆  
∑ ∑  

( )
2

1
1

1 , .
2

N

i i i
i

r D S S
N t

σµ −
=

= + +
∆ ∑                (158) 

Proof. For obtaining the estimates of ,σ µ , we use the Method of Maximum 
Likelihood. Let us calculate  
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( ) ( ) ( )

( )( )2
1

1
2

,, ,
, .

2

N

i i i
i

D S S dL NL
L

t
σ µ σ µ

σ µ
σ σ σ σ

−
=

 − ∂ ∂
 = − −

∂ ∂ ∆ 
  

∑
    (159) 

( )( )

( )( ) ( )( )

( )( ) ( )( )
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Therefore  
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The maximum likelihood estimates for σ  and µ  we can obtain from the eq-
uations  
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Solving the equations (163), (164) we obtain the statement of Lemma 2.     □ 
Remark 7. If for some sample 0 1, , , NS S S  the estimate of parameters  

1, , Na a  is such that 
1

0, , 0
ki ia a= =  then in the estimates of ,σ µ  it is ne-

cessary to put ( )1, 0
s s si i iD S S− = , 1,s k= . This follows from the structure of ran-

dom process (123), the transition probability function (126), the structure of the 
joint probability function (134) after Theorem 16.  

7. Conclusions 

In the paper, we generalize the results of the paper [1] [17]. In Section 2, we ge-
neralize an evolution of risk asset with memory proposed in the paper [1]. In 
Theorem 1, we describe completely the set of martingale measures for the con-
sidered evolution and prove that every martingale measure of this family is an 
integral over some measure on the set of extreme points of the set of martingale 
measures. In Theorem 3 the bound for every nonnegative n  measurable ran-
dom value the mathematical expectation for which relative to every martingale 
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measure is bounded by 1 is found. In Theorem 4, it is proved that every nonneg-
ative super-martingale relative to the regular set of measures is a local regular 
one. The same statement, as in Theorem 4, it is proved in Theorem 5 in the case, 
as a super-martingale is bounded from below. 

Section 3 contains the application of the results obtained above to calculation 
of the interval of non-arbitrage prices for the wide class of evolutions of risky 
assets and payoff functions. 

In Theorem 7, with the general assumptions about payoff functions and the 
evolution of risky assets, we found the non-arbitrage price interval and set the 
price of super-hedge. This set of payoff functions contains a payoff function of a 
standard European-type call option. Theorem 8 contains sufficient conditions 
regarding the evolution of risky assets (2) for which an interval of non-arbitrage 
prices has been found for a wide class of payoff functions. This class contains the 
payoff function for standard option put of European type. 

Section 4 contains the results about the interval of non-arbitrage prices for the 
class of evolutions of risky assets described by the random process with parame-
ters built on the geometric Brownian motion and payoff functions for call and 
put options of standard type. 

In Theorem 9, a formula for the fair price of super-hedge is found for the evolu-
tion of risky assets given by the formula (89). Theorem 10 contains the estimates 
for the value of a super-hedge for a particular class of payoff functions including 
a payoff function for a standard call option. 

In Theorem 11, the estimates for the value of a super-hedge for a particular 
class of payoff functions are found. This class of payoff functions includes a 
standard put option payoff function. 

Theorem 12 gives the interval for non-arbitrage prices and the price of su-
per-hedge in the case of a standard call options. The peculiarity of this formula is 
that the price of a super-hedge is proportional to the price of the underlying as-
set with a ratio less than one. 

In Theorem 13, the formula for the fair price of super-hedge is found for put 
option of standard type. 

Theorems 14, 15 contains the analogous results as in Theorems 12, 13 for the 
payoff functions of Asian type options. 

Theorems 18, 19, 20, 21 of Section 5 are reformulations of Theorems 12, 13, 
14, 15 with taking into account the estimations of the parameters , 1,ia i N= . 
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