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Abstract

This paper is a generalization of the results of the previous papers. Using
these results a class of evolutions of risk assets based on the geometric Brow-
nian motion is constructed. Among these evolutions of risk assets, the im-
portant class of the random processes is the random processes with parame-
ters built on the basis of the discrete geometric Brownian motion. For this
class of random processes the interval of non-arbitrage prices are found for
the wide class of contingent liabilities. In particular, for the payoff functions
of standard options call and put of the European type the fair prices of su-
per-hedge are obtained. Analogous results are obtained for the put and call of
arithmetical options of Asian type. For the parameters entering in the defini-
tion of random process the description of all statistical estimates is presented.
Statistical estimate for which the fair price of super-hedge for the payoff func-
tions of standard call and put options of European type is minimal is indi-
cated. From the formulas found it follows that the fair price of super-hedge
can be less than the price of the underlying asset. In terms of estimates the
simple formula for the fair price of super-hedge is found. Every estimates can
be realized in the reality. This depends on the distribution function of the ob-
served dates in the financial market.

Keywords

Random Process, Regular Set of Measures, Optional Doob Decomposition,
Local Regular Super-Martingale, Martingale, Assessment of Derivatives

1. Introduction

In reality, all financial markets are incomplete and the evolution of risky assets is
discrete. The question arises, what random process describes the evolution of
risky assets in the financial markets? This problem is important both from the
perspective of the risk asset price behavior and from the risk hedging behavior of
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the risk asset.

In this work, which is a continuation of the paper [1], we construct the ran-
dom processes based on the discrete geometric Brownian motion which can de-
scribe the evolution of risky assets. A new method of the description of martin-
gale measures for the introduced class of evolutions of risk assets is developed. It
is proved that every martingale measure can be represented as an integral on
some measure on the set of extreme points of the set of martingale measures.
This crucial fact is a base for the estimation of contingent liabilities in the in-
complete financial markets with the evolution of risk assets introduced in [1].
The problem of estimation of the range of non arbitrage prices was began in the
papers [2], [3] for the Levy exponential processes and the diffusion processes
with jumps describing evolution of risk assets. The upper estimate for the stan-
dard call option payoff function in this paper coincides with the price of under-
lying asset. This fact is unacceptable from the economic point of view. In the
proposed paper, we generalize the class of evolutions of risk assets proposed in
[1] and which contains a class of evolutions built on the discrete geometric Brow-
nian motion. For this class of evolutions of risk assets the set of martingale meas-
ures is described and the representation for every martingale measure as integral
over the set of extreme points is obtained. Having this representation the for-
mulas for the lower and upper bounds of non arbitrage prices are found. It is
showed that the upper bound for the payoff functions of standard call option of
European type is less than the price of underlying asset. The statistical estimates
of parameters entering entering in the introduced evolutions of risk assets are
obtained. The statistic for which the fair price of super-hedge is minimal is indi-
cated.

In terms of statistical estimates the simple formulas for the fair price of su-
per-hedge are obtained. Every estimate can be realized in the reality. This de-
pends on distribution function of the observed dates in the financial market.

Assessment of risk in various systems was begun in papers [4] [5] [6] [7].
Construction of non-arbitrage model of evolution of risk assets see in [8] [9]
[10] [11] [12]. Optional decomposition Theorems see in [13] [14] [15] [16].

2. A Wide Class of Non-Arbitrage Evolutions of Risky Assets

In this section, we generalize the results of the paper [1]. On the probability space
{Qf,]-"lo, Plo}, let us consider the nonnegative random values ¢ (a)l), i=1,N,
satisfying the conditions

0< I:’lo({a)1 le,?]i(a)l)SO})<l,

0<R({@ e (a)>0}), i=LN, 1)
where we introduced the denotation 7;(@;)=¢& (0,)-Li=LN . Let {Q,F} be
a direct product of the measurable spaces {Q?,fio},i =L N, where Q)=Q’,

N
F’=7", Q=[]Q, and under the c-algebra F we understand the minimal

i=1
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N

c-algebra, generated by the sets [ [G,,G; € %° . On the measurable space {Q, F},
i-1

under the filtration F ,n =1,_N , we understand the minimal o-algebra gener-

N
ated by the sets [ [G,, G, € F 0, where G, =Q for i>n.Further, we consider
i-1

N R
the probability space {Q,F,P}, where P=[]R’ R°=PR’,i=1N. Denote
i=1

1 (@)=&(w)-1 the random value which is given on the probability space
Q° F°, P,Oi and is distributed as 7; (@) on the probability space
AR
Described in Lemma 5 [1] the set of equivalent measures to the measure P°
and such that E®, (@,)=0, we denote by M.

On the measurable space {Q,]-' } , we introduce into consideration the set of

N
measures M, where Q belongs to A4 if Q =HQi, Q, € M, . On the introduced

i=1
measurable space {Q, F, P} let us consider the evolution of the risk asset given
by the law

S, =S,a(1+a, (o, 0, 1)7, (@,)), N=1LN, )

where the random values & (e, -,_;) are F_-measurable, i =1,N, satisfy
the conditions 0<a (@, -+, @_)<1. The main aim is to describe the set of
martingale measures for the evolution of risk asset given by the formula (2). This
problem we solved in Theorem 8 [1] in the case as the random values
&(o)=&(w),i=LN.

Definition 1. Let {Q,,F;} be a measurable space. The decomposition
ANk =1,, of the space € we call exhaustive one if the following condi-

tions are valid.
D AyeZ, AGNA =B k=s, [JA, =, n=10;
k=1

2) the (n+1)-th decomposition is a sub-decomposition of the n-th one, that
is, for every j, A ;< A, foracertain k=k(j);

3) the minimal o-algebra containing all A, ,, N,k =1,00, coincides with 7.

The next Remark 1 is important for the construction of the filtration having
the exhaustive decomposition.

Remark 1. Suppose that the measurable spaces {Q, %} and {Q,,F,} have
the exhaustive decompositions Aﬁ,k’ nk=1,00, and Ai,s’ m,s=1,00, respec-
tively, then the measurable space {Q xQ,,F,xF,} also have the exhaustive

decomposition B ,,n=10k,s=1o , ank3=Aka><Ais,k,s=1,_oo,n=1,_oo.

Really,
D Ax AL € Fx Ty A ALNAL AL =D, (ks) = (L),
OBn,ks ZQlXQZI nzm;

k,s=1

n,ks?

2) the (n+1)-th decomposition is a sub-decomposition of the n-th one, that
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fora certain i=i(k),j=j(s);

is, for every k,s B cB

n+l ks = “n,ij
3) the minimal o-algebra containing all B .., n,k,s=10, coincides with
FixF.

In the next Lemma we give the sufficient condition of the existence of exhaus-

n,ks

tive decomposition. This Lemma is very important for the proof of the next
Theorems [1].

Lemma 1. Let {Q,F} be a measurable space with a complete separable
metric space Q, and Borel o-algebra F, on it. Then {Q,,F} has an exhaus-
tive decomposition.

Proof If {@,--,@,, -} isa countable dense setin €, then we denote
B(a)n,gm):{a)te,p(a),a)n)<gm}, n,m=1,c0, (3)
the countable set of open balls as &,, runs all positive rational numbers, where
pla,@,), ,0,eQ; isametricin Q. Prove that
F= O'(B(a)n,gm),n, m :l,oo) , where G(B(a)n,gm), n,m :1?00) is a minimal

o-algebra generated by the sets (3). For this purpose let us prove that for every

openset Ae() the representation

A= |J B(a)nk,gms) (4)

ng eNg,mg eQi

is true, where N, is a subset of positive integers, and Q' is a subset of posi-
tive rational numbers. Let us denote {a)lA,---,a):,---} = Aﬂ{a)l,---,a)n,---}. Sup-

pose that @, €A, then d=inf_j, p(@,,®)>0, where A isa closure of the
set A. Let the point @ belong to the ball C(a)o,%J = {a) eQ, p(w,0)< %}
and let us consider the ball

C(w@,%er(a)o,wk’z)j={wte,p(a)k’Z,a))<%+p<a)0,wk’2)}. The point @,

belongs to this ball and for every weC (a)kA d + p(a)o ; a)klz )j the inequality

o’g

p(wO,w)gp(a)o,a)kAo)+p(kao,a))<%+2p(a)o,a)Q)<% (5)

is true. Therefore C(ka ,9+p(a)0,a)kA )JCC(%'E) Let the rational num-
°'8 0 8

ber & satisfies the inequalities
d 3d
5 +2P(@of)<a, < (6)
then C(ay cf @y L), since f C(af,z,)
en (a)ko,gko)g @, |, since for every weCla &, ),

p(a)o,a))Sp(a)o,a)k':)+p(a)lf;,a))<%+8ko <%.So,for @, € A we found

o €{®, -+, @, -} and the rational number &, such that
0 0
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w,eClm e )cCl o ,9 < A. The last prove the needed statement. To com-
b ko ko 0%

plete the proof of Lemma 1 let us construct the exhaustive decomposition. Let us
renumber the sets B(a,,¢,) puttingby D, =B(w,&), D,=B(a,¢,),

D, =B(®,,4), and so on. We put that {A,},  consists of two sets D, and
D, =0, \D,. If the set {A, }::1 is constructed, then the set {A .}

struct from the various set of the kind A, ND,.,,A,ND,,-
the minimal o-algebra G{A]k ,n,k :1,_00} = G{B(a)n Em ), n,m =1,00} . Taking into

o0
(. Wecon-

By construction

account the previous part of the proof we have G{Aqk N,k :l,oo} =F .Lemmal

is proved. U
Below, we describe completely the regular set of measures, introduced in [1],

N
in the case as & =[[[1+a (@, o )n(@)], N<wo, 0<a (@, - a4)<l,

i=1

i=1,N, and the random values & (@), i= 1N, are integrable ones relative to
the measure P’ . For this purpose, we introduce the denotations:

Q; ={a)i eQ?,ni(a),)SO}, Qf ={a), e, (a)i)>0}, P~ is a contraction of

the measure P° on the o-algebra -, P* isa contraction of the measure P°

on the c-algebra F*, £ =Q; NFE’, F =Q/NF". Denote U, =Q; xQf

and introduce the measure £ =P~ xP" on the o-algebra G =F xF". Let us

N
introduce the measurable space {V,L,u}, where V=] [U,, is a direct product
i1

. N
of the spaces U; =Q; xQ, i=1,N, L=]]G is a direct product of the o

i
i=1

. N
algebras G, i=1,N.Atlast,let =[]z bea direct product of the measures

i=1

N
i _ (12N (2 .
4, i=1,N, and let v, _gvlql,qz’ V—{(a)l,a)l), ,(a)N,a)N )}, be a direct
product of the measures v, ,, i=1 N, which is a countable additive function
@y o

on the o-algebra F forevery veV, where

7 () n (o)

Vo (A) =230 ) —— ) @
ohof A‘( I)77i (wil)"‘ﬂi (a)iz) A( | )77i (w.l)"'m (@2)
for o eQ;, 0feQ, AeF’.
In the next Theorem 1, we assume that the random values 7, (@), i=1,N,

are integrable ones.
Theorem 1. On the measurable space {Q,F| with the filtration F on it,

every measure Q of the regular set of measures M for the random value
N —

& =H[1+ a (@, @)n (a)i)], N<oo, 0<a(a, - e, )<l, i=LN, has
i-1

the representation

Q(A) = [ex(v), (A)du(v), ®

v
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where the random value a(v) satisfies the conditions

y({VGv,a(v)>o}):ﬁe°(Qi)PiO(Q;), 9)
a(W)T o) (ef) V)<

{ ( )HU.(@l)JFUf(C().Z)dﬂ( )<, (10)

Ia(v)dy(v):l. (11)

Proof. To prove Theorem, it needs to prove that the countable additive meas-
ure v, (A) atevery fixed ve) isa measurable map from the measurable space
{V,L} into the measurable space {[O,l], B([O,l])} for every fixed Ae . For

N
A=]TA. AeF°, v,(A) isameasurable map from the measurable space
i=1

{V,L} into the measurable space {[0,1], B([O,l])}. The family of sets of the

N . .
kind | JE;, E =][]A, A €F’, where E, NE; =3, the set /is an arbitrary

iel s=1
finite set, forms the algebra of the sets that we denote by U,. From the counta-

ble additivity of v, (A), v, [U Eij: >'v,(E;) is a measurable map from the
iel iel

measurable space {V,L} into the measurable space {[0,1], B([O,l])}. Let T'be
a class of the sets from the minimal o-algebra ¥ generated by U, for every
subset £ of that v, (E) isa measurable map from the measurable space {V,L}
into the measurable space {[0,1], B([O,l])}. Let us prove that 7'is a monotonic
class. Suppose that E, cE,,;, i=Lo, E €T . Then, v,(E)<v,(E
this, it follows that limy, (Ei) is a measurable map from the measurable space
{V,L£} into the meals_{lwrable space {[0,1], B([O,l])} . But,

v, (EixVE)=v,(E,1) -V, (E) isameasurable map from {V,L} into

{[O,l], B([O,l])}. From this equality, it follows that the set E

i+l) . From

\E, belongs to

i+1

the class 7. Since 0 E =EU O[Em \E;], we have
i=1 i=1

n—o n—o0 °—

limv, (E,)=v, (E,)+ lim>v, (E.; \E,)

0

=v,(E)+ 2 v (B \E) (12)

=1

=VV(E1UiU1[EM\Ei]j:vv[OEij.

i=1

8

The equalities (12) mean that | JE; belongs to 7; since VV[U Eij is a mea-

i=1 i=1
surable map of {V,L} into {[0,1], B([O,l])}. Suppose that E, oE,,, E €T,

i =1,00. Then, this case is reduced to the previous one by the note that the se-

N —
quence E; = HQ? \E;, i=10, is monotonically increasing. From this, it follows
i-1
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_ o 0 N o
that E=|JE eT. Therefore, [E = HQ? \(JE; €T . Thus, 7'is a monotone
i-1

i=1 i=1 i=1
class. But, U, T . Hence, T contains the minimal monotone class generated
by the algebra Uy, that is, m(U,)=X, therefore, Z<T. Thus, v,(E) is a
measurable map of {V,£} into {[0,1], B([O,l])} for AeX. The fact that the
random value a(v) satisfies the conditions (9)-(11) means that Q, given by the
formula (8), is a countable additive function of sets and EQ§0 <oo. Moreover,

n

E%4 =1.1tis evident that E{& | 7} =[][1+4 (o, 0 )n(a)], QeM.

i=1
Due to Lemma 4, [1], this proves that the set M is a regular set of measure.
Theorem 1 is proved. O
Remark 2. The representation (8) for the regular set of measures M means
that M is a convex set of equivalent measures. Since the random value a(V)
runs all bounded random values, satistying the conditions (9 - 11), it is easy to
show that the set of measures v,(A), veV, AeF, is the set of extreme
points for the set M.
Let us introduce the denotations (see also [1])

n

m, ({w}):H[1+ a (@, o) (o )},IS nN<N <oo, (13)

i=1

(14)

:Qn_lx{a)n e, 7, (, >0}><QN_n, n=1N,

N
Note that the c-algebra F, is generated by sets of the kind G =][G,, where

n
i=1

G eF°, i=1n, G, =QF, i=n+LN. Denote P, =]]P° the contraction of
i-1
N
the measure P, =] ]R° onto the c-algebra F, . Further we use the denotations
i=1
P, and P, which are the contractions the measure P, onto the o-algebras
F,NQ, and F,NQ;, correspondingly. If the measure Q belongs to the set of
martingale measures (8), then E° {mn |‘7:n—l} =m,,, or E° [mn _mn—l]=0 .

From this, for the measure Q the representation
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2o ({0} )a({o} {0} |[m, = m, ] ({e)?)

d[PyxPy ]
(15)

]
. zﬁ({wf)a({w}l:{wr)[mn—mnfl]*({w}l)
aor [my=my ] ({0} )+[m, -m, T ({e))
is true if the random value a( a)} {a)} )>O satisfies the condition

{
[ a({o} o) )d[RixRi]-1. (16)

Qi

d[P xR ] AcZ,

N
Since for the set A the representation A =Ax [] Q?, is true, where

i=n+l

AeF, =]]F°, then for the contraction Q, of the measure Q onto the o-algebra

i-1
F, the representation

({a) l)a ( l )[m —mnj]*({i)}:)d[ﬁxﬁJrJ
e [m-m.] ({w} J+lm-m ] (fo)

;(A({w}:)ai ({w}i ;{w}n)[m” B m”’l]i ({w}?‘) o)
+ I - 1 + 2 d[
s [my=my ] ({o], )+ [m, —m,.] ({a})

is true, where we introduced the denotations P, and P’ which are the con-
tractions of the measure P, onto the c-algebras F, Q) and F NQ!, cor-

n

Q. (A)=

respondingly,
ai({a’}ln?{a’}i)zﬂ IQ a({a)}l;{a}}z)d[Panxprn],
_ N 0 1 1, 2 55l
_iHlP' ' Qngggan({w}”'{w}n)d[a xP’ =1 (18)

In the set Q xQ, let us introduce the transformation
T, ({e) o) =Ttk T2 (o)),
T (o)) ={lel et} T (lol)={tef etf n=IN. o a9)

By the definition we put that for n=1 the transformation T, is identical one.
Introduce the denotations

oy M- nlr({w}i)
:(lof ol )= (i)
)

o sto)) = (m” J (i

(20)

i) (21)
o)

ot (ol ) =[m —m ] (o} ) +[m -m.] (o)), @2
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o.({ohiloh) =i (loh ol J+ i (T (({oh tell)]) @

Theorem 2. Let Q) be a complete separable metric space and F," be a Bo-

rel o-algebra on it. If the condition

Jf({a)}n)dPn <o (24)

is true for F, -measurable nonnegative random value f ({a)}n), then the clo-
sure of the set of points E* f ({a)}n), Q, €M, , in metrics p(x,y):|x— y|
on the real line contains the set of points

({h) e ({oh, o))+ f ({0} )ve (el o))
1T ({ofy )i (Ta () el ) (25)

(T2 ({hs))v2 (T (i ol )) n=LN.

Proof. Let us find the conditions for the measurable functions o ({w}i {w}:)
under which E® {mn | ]?n_l} =m,_, . Introduce the denotation

a (e}, {o)r)
[m, —m, ] (@}, )+ [m,—m,. ] ({e}])
Let the set Bbelongs to F, ,, then
E® 2o ({0}, ,)[m, - m..]({o),)
= [ (o) )al (o} ok )im -me)f{ef)
x[m, ~m,.]"({@}2)a[ Py <Py ] (27)
1L;$m;pmwMme~m«mm
<[m, —m,,]"({o}, )d[B <P ]
If to take into account the relations
[m, =m,]({e), ) =my (fe),)a ({0}, )m (a),
[m, =m, ] ({e), )= (o), o (e}, ) (@),
[m, =, T ({0}, ) =M (o}, )a ({@}, ) (@), 28)
and introduce the denotations
6,({o}, e} ) =m,, (e}, , o ({).)
<m, . ({o]1, )a ({0} )as (e}, (o))
0,({e},:{o}) = ({eh., )a (o))
xmy({ol, a (e}, ar (e}, o)),

(26)

a)({e}, o} )=

(29)

(30)

DOI: 10.4236/apm.2020.105016 267 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2020.105016

N.S. Gonchar

we obtain
E% 26 ({0}, )[m, —m,.]({e},)
:_,_I]B (o}, )a({e (o} i (e (@2 )d[ B xRy ]
+ W_LZB ({w}i,l)ﬁz ({a)}i ;{a)}i)nn’ (a)}])n; (a)f)d[ﬁ; “ F_)n+:|
- I d[Pl(a)i)x Pl(a)f)}n;(a)ﬁ)n;(a)f)
{ﬂn(aJ%)SO}X{nn(mﬁ)>o}
< ltf)[a(ehie))-a () oo, o)

<d Pa({oh, ) <Pl )|

It is evident that the expression (31) equals zero for every Be 7, , if and on-

(31)

ly if as
6({o},:{e}:)-a({e), @hile}, , o) =0. (32)
The last equality (32) is valid if the equality
(o}, ohifo)l 0t )=ad ({0}l ali{o} o) (33
is true.
Nowif for a?({w},;{w};]>0 satisfying the condition
[ a({h:{e) )d[P <P ]=1 (34)
to put
aumwmmzﬁwﬁﬁﬁkf“@@“@m, -
o ({o},:{o}r)
then
Q)= [ za(le],)ar(oh o) Jim, ~mo.] (o )[R <]

Q<O

o [ na(tof)ad (fof o} )im, - m,.T (1of: o[ <R ]

is a probability measure on the o-algebra F, .
Taking into account the denotation (26) and the formula (35), we obtain that

the measure

[mn - mn—l]+ ({a)}i)

e e o KR
o (37)

o 1 ottt LU

foRer, ¢;({w}n;{w}n)
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is a probability measure on the o-algebra F, , where
o ({oh {ol) = ar ({, el (), {e};) (38)

satisfy the condition

a ({o} (o} )[R xR ] =1, (39)
foi¥iors
due to the condition
a?({o}, {o)))d B xR =1 (40)
Q<O

So, we described the contraction of the martingale measure Q on the c-algebra
F. forwhich E® {m | F. } 1 - It has the representation (37) with the strictly
positive random values o ({a)}n {w}n) a; ({ }n {a)}:) satisfying conditions
(39), (40).

Since Q) is a separable metric space, then it has an exhaustive decomposi-
tion. This is true for Q. which is also separable metric space for every n=2,N .
On the probability space {(_2; xQ F-x F P x |5n+} , for every integrable finite
valued random value f ({w}t {w}i) the sequence E™ { f ({a)}:1 ;{a)}i)lfm}
converges to f({w}:1 {a)}i) with probability one, as m— oo, since it is a
regular martingale. It is evident that for those B, for which z, (Bm,ks) =0,
i, =P xPr,

m,ks

[ f({e},:{o})dg,

Eﬁ{f({w}ln:{w}i)lfm}:Bm,ks o] , ({a)}i;{a)}i)eBm'ks, (41)

Denote Dy= ) B,.Itisevidentthat z,(D,)=0. For every
m,k.s, (B ks )=0

({a)}:1 ;{w}:)eﬁ; x Q' \D,, the formula (41) is well defined and is finite. Let
D, be the subset of the set Q xQ; \ D;, where the limit of the left hand side of
the formula (41) does not exists. Then, , (D;)=0. For every

(o) {0} ) eQ, xQ; \(D,UD,), the right hand side of the formula (41) con-
vergesto f ({a)}l {a)}i) . For ({a)}:1 A }2)6 Q, xO\ (D U D ) denote

A, =A, ({a)} Hol! ) those set B, for which ( ) . fora cer-
tain K,s. Then, for every 1ntegrab1e finite valued f ({a)} ; a)}n)

[ellofitojon,
lim 2 ) = f({o},:{a}: ) (42)

Choose the sequence
o (o}, (o))

zo(l0hifol) e (lohilel) @
7 (A) " (0, xO\A)

:(1_8m)

where 0<¢, <1, limeg, =0. Then the sequence o> ({a)}i{w}:) satisfy the

m—oo
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condition (40). Let us consider the sequence

oo (lehitol)  Zaan (tehitel)
i (Ay) T (G <O \A,)
2o (Tl idoh))  Zaa (T((@hi{el)
7 (A,) "E(GxA,) |

(44)

+—(1-¢,
2 ({w}i:{w}:){( )

Then the contraction of the sequence of martingale measures Q™ generated
by sequence (44) on the o-algebra F, is given by the formula

E 1 ()= [ [ 1 ({0} o (o) (o) )Im,~m, ] ({o}; )d
] ({0} )alen (1o} 1o} )m, ~m, o] (1o} )da,

(45)

Due to the invariance of the measure z, relative to the transformation T, we
have
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| zn (T({eh; b)) £ ({oh i (fe), o) )0

(1-g, )2 T
] (T )2 ({02 (o (o) o,
+(1-g, )2 _
(A) »
1 (12 (1ol tol o)) o
) (A
J1 (2 (1)) (. ({1} o
+(1—.€m)Am _ .
H (A)

From the equalities (45), (46) it follows that
lim E%" £, ({0}, )

m—oo

=t ({o}, i (o) e} )+ £ ({o}: )vi (o}, o))

(47)

Theorem 2 is proved. O
Theorem 3. On the probability space {Q,}' , P} with the filtration F, on it,

let QO be a complete separable metric space. Suppose that f, ({a)}n) is a non-

negative integrable F, -measurable random value, satistying the condition

EY f, ({a)}n ) <1, Q"eM,. Then, there exists a F, ,-measurable random val-

ue @, depending on f, ({a)}n ), such that
f ({a)}n)sl+ a, ({a)}nil)[mn - mnfl]({a)}n), (o} €Q,. (48)

Proof First, let us consider the case n=1. From Theorem 2, we have the in-

equality

f. () ,[ml_lr(%) -
[my 1] () +[m, 1] ()
M)
[ml—l]f(a)l)+[m1—1]+(a)2)

(%’WZ)EQIXQII

(49)

+f,(@,)

where Q; ={a; € Q). [m ~1)(@)<0}, O ={w,€Q},[m -1](a,)>0}.
Let us denote 7, (@)=[m, —1](®). Then, the formula (49) is written in the

form

() ) (@,) + m (o)

- 2 - - f(w,)<1, 0 €Q;, w,eQ. (50)
ui (0)1)"'771 (wz) Y (a)1)+771 (wz) 1( 2) o '

From the inequalities (50), we obtain the inequalities
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1_ fl(a)l) +
fi(a,)<l+———n (o,), (51)
(o)<t )
m(@)>0, n/(@,)>0, &eQ, @,eQ. (52)

Two cases are possible: a) for all @ €Q, f (@ )<1;Db) there exists @ e

such that f,(@,)>1. First, let us consider the case a).
1-f (o)

(@)

Since the inequalities (51) are valid for every value ,as 7y (@)>0,

and fj(@)<1, @ €Qy, then,if to denote

1- fl(wl)

a, = inf - , (53)
Y a0, (@)
we have 0<¢@, <o and
fi(@)<l+am (@), n (0,)>0 o,eQ. (54)

From the definition of ¢, we obtain the inequalities
fi(@)<l-am (@), n(@)>0, ey (55)

Now, if 7, (@)=0 for some @, €€y, then in this case f, (e )<1. All these
inequalities give the inequalities

f(0)<l+am (o), 0 UQ. (56)
Consider the case b). From the inequality (51), we obtain the inequalities
1-fi(a)
f(o)<1-—220 (w,), (57)
l( 2) _771 (601) l( 2)
m(@)>0, n(0,)>0, weQ;, w,eQ. (58)
The inequalities (57) give the inequalities
1-f
&S inf - <o, 771_(501)>O, w Q. (59)
= (@) e (w20} 1 (0,
_ 1- (@) i i
Let us define o= Sup ————=<o. Then, from (57) we obtain the in-
{ml,rh’((q)>0} /i (601)
equalities
fi(w,)<l-am (@,), 0 (@,)>0, Q. (60)
From the definition of ¢, we have the inequalities
fi(@)<l+am (&), m(@)>0, & Q. (61)
The inequalities (60), (61) give the inequalities
f(0)<l-am(0), 0 UQ;. (62)

Theorem 3 in the case n=1 is proved, since the set Q; JQ has the proba-
bility one.
Now let us consider the case of arbitrary 2<n<N . In this case we have the

inequality
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+ (Tnl({a)}ln))vﬁ (Tn ({o: ;{w}j)) (63)

Let us put in this inequality {a)}ifl = {a)}ifl = {a)}nfl, then the inequality (63) is
transformed into the inequality
() m (a})

2 1

fn wnfl'a)rl\ - 1 + - + 2
(o) o () (el o (@
({a)}n_l,a)ﬁ)eQ;, ({a)}n_l,a)ﬁ)eQ;.

Taking into account the first part of the proof of Theorem 3 from the inequality
(64) we obtain

" (64)

) f. ({a)}H Nos ) <1

(2] [mn - mnfl]({w}n )
m, ({w}n—l)an ({w}nfl)

where the constant ¢, is the same as in the first part of the proof of Theorem 3.

f, ({a)}n ) <+, (@,)=1+

, (65)

Theorem 3 is completely proved. U
Theorem 4. On the probability space {Q,]: , P} with the filtration F, on it,
let Q° be a complete separable metric space. Then, every nonnegative super-
martingale { .7 }:‘:0 is a local regular one, that is, the optional decomposition
for it is valid.
Proof. Without loss of generality, we assume that f >d, >0. From the last

fact, we obtain

EQ”LSL Q"eM,, n=Lw. (66)
fn—l
The inequalities (66) and Theorems 3, 4 [1], [17] prove Theorem 4. U

Theorem 5. On the probability space {Q,F,P} with the filtration F, on it
let QY be a complete separable metric space. Then, every bounded from below
super-martingale { f.. 7 }:: o isalocal regular one.

Proof. Since the super-martingale {fn,fn}:: is bounded from below, then

there exists a real number C, such that f, J(r)Co >0. If to consider the su-
per-martingale { f,+Cy F, }::o , then all conditions of Theorem 4 are true. Theo-
rem 5 is proved. U
Theorem 6. On the probability space {Q,F,P} with the filtration F, on it,
let Q° be a complete separable metric space. Suppose that the evolution of the
risk asset is defined by the formula (2) and the non risk asset evolve by the law
B, =1, n=0,N. If the nonnegative payoff function f, is F, measurable
integrable random value relative to every martingale measure and satistying the
conditions Theorem 16 from [17], then the fair price of super-hedge is given by

the formula
sup [f\dQ =sup [ dv,. (67)

QeM ¢ veV o
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3. Interval of Non-Arbitrage Prices for a Wide Class of
Evolutions of Risky Assets

In the papers [2], [3] the range of non arbitrage prices are established. In the
paper [2], for the Levy exponential model, the price of super-hedge for call op-
tion coincides with the price of the underlying asset under the assumption that
the Levy process has unlimited variation, does not contain a Brownian compo-
nent, with negative jumps of arbitrary magnitude. The same result is true ob-
tained in the paper [3] if the process describing the evolution of the underlying
asset is a diffusion process with the jumps described by Poisson jump process. In
these papers the evolution is described by continuous processes. Below we con-
sider the discrete evolution of risky assets that is more realistic from the practical
point of view.

Theorem 7. On the probability space {Qf VL, Plo}, where QY is a separa-
ble metric space, F' is a Borel o-algebraon Q, P° is a probability measure
on F°, let the random values & ()>0, i =1,N, satisfies the conditions:

1) 0<P’(0<&(@)<1)<1, thereexists @ and @, suchthat & (a)=0,
&(w,)=1, i=1,N;

2) for every 1<t<ow, P’(&(w)>t)>0, i=LN.

Suppose that the evolution of risk asset is given by the formula (2) with a, =1,
where 7, (@, )=¢ ()1, and on the probability space {Q-O F, P—O} the ran-

dom value & (@) has the same distribution law as the random value & (@),

i=1,N, on the probability space {Ql VL, Plo} . If the nonnegative payoff func-
tion f(x), xe[0,%0), satisfies the conditions:

f
D £(0)=0, f(x)<ax,lim E(X):a,a>0,then

SUpE" f (S, )=aS,. (68)

PeM

If, in addition, the nonnegative payoff function f(x) is a convex down one,
then

inf E” f(Sy)="f(S) (69)

PeM

where M is the set of equivalent martingale measures for the evolution of risk
asset S,,n=1,N. The interval of non-arbitrage prices of contingent liability
f(Sy) coincides with theset | f(S,),aS, |
Proof. Due to Theorem 1 and 6 we have

supjf )dQ = supjf » (70)
vey Q
where
sup [ (Sy )dv,
veV o

2 N ) NG ;SA ! =
an 8 el

veV =1,y =1 s=1

and we used the denotations (e:s (a)l) —l)_ =1-¢&, (a)sl) )
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(f a)sz ) ( )1, @, eQ;, o!eQ!, o =w,.From theinequality
f(Sy)<aS, wehave
supjf (Sy)dQ<as,. (72)
QeM

To prove the inverse inequality we use the inequality

sup jf )dQ

51(5012)_1 1_‘51(6011) (73)

>f(S ) —————+ (S 2))——————.

(el ety 4 ga)-aa

Therefore, putting in the inequality (73) & (0)11 ) =0 we obtain
)1
supf(5,)eQz im (S0 (o ))W—aso- (74)
Let us prove the equality (69). Using Jensen inequality [18] we obtain

inf E"f (S, )2 f(E"S,)=f(S,) (75)

Let us prove the inverse inequality

51 wlz -1 1- 51 a)11 .
f (Soei(ai))#;(@l)+ f (sogl(wf))w_(é()ql)z inf E°f(Sy). (76)
Putting in this inequality fl(a)ll ) =1 we obtain the needed. The last statement
about the interval of non-arbitrage prices follows from [11] and [12]. Theorem 7
is proved. U

Theorem 8. On the probability space {Qf L, Plo} , where Q) is a separa-
ble metric space, F isa Borel o-algebraon Q), P’ is a probability measure
on F°, let the random values ¢, ()20, i =1,N, satisfies the conditions.

1) 0<P’(0<&(@)<1)<1,thereexists @ and , suchthat &(w)=0,
&(w,)=1, i=1N;

2) for every 1<t<oo, P°(&(ey)>t)>0.

Suppose that the evolution of risk asset is given by the formula (2) with a, =1,
where 7;,(@,)=¢ ()1, and on the probability space {Q-O F, P—O} the ran-
dom value ¢ (o,
i=1,N, on the probability space {Ql VL, Plo} . If the nonnegative payoff func-
tion f(x), xe[0,%0), satisfies the conditions:

1) f(O):K, f(x)s K, then

supIE f(Sy)=K. (77)

PeM

() has the same distribution law as the random value & (@),

If, in addition, the nonnegative payoff function f(x) is a convex down one,
then

inf E? f(Sy)="1(So) (78)

PeM

where M is the set of equivalent maqtingale measures for the evolution of risk
asset S,,n=0,N. The interval of non-arbitrage prices of contingent liability
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f(Sy) coincides with the set [f (So). K} )
Proof 1t is evident that

supEF f(Sy)<K. (79)

PeM

Since

el
| N | PGy
=sup f(SOH(HaS(w{l,...a)'Sl) ( ))jn(a)()—g‘(w‘l)

veV =1,y =1 :1 A

we have
sup if (Sy)dQ
&(o?)-1 1-& (81)
S BN e
Therefore, putting in the inequality (81) & (@})=0 we obtain
supff )dQ
(82)

. 51(5012)_1 1
> lim | f(0) L+ f(So& (@) ——= | = f (0)=K.
) 51((012) ( ’ 1( ))é:l(a)lz) )
Let us prove the equality (78). Due to convexity of payoff function f(x), us-

ing Jensen inequality we obtain
inf E"f(S,) f(E"S, )= f(S,)- (83)

Let us prove the inverse inequality

(s ey 5 e

g a)l)_él @, é:l(a’lz)_é:l(a’ll) (84)
>inf EP f(S,).

PeM

Putting in this inequality & (a)l1 ) =1 we obtain the needed. Theorem 8 is proved.
O
Remark 3. The results obtained in Theorems 7, 8 are true if for some s>1,
a (o, 0,,)=1.
Let us give an example of application of the results obtained. Denote
W(t), te [O,T] standard Brownian motion on the time interval [O,T] with
w(0)=0. Due to the continuity of w(t) the Winer measure Pis concentrated
on the Banach space C([0,T]) with the norm | f||= sup |f (1) |

te[0,T]
f(t)eC([0,T]). The space C([0,T]) is a complete separable metric space in
the metric generated by the introduced norm. Suppose that
0=t, <t <t, <--- <ty =T . On the probability space {Qf,]-"o PO} where
=C([0,T]), A’ isa Borel o-algebra on €, B’=P is a probability meas-
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ureon £, let us consider the random values & ()=0, i=1,N, where

[ﬂ*%zfr](ti ~ti_q)+o(w(t)-w(ti_1)) o
&(ay)=¢e , =1 N.The random values & (),

i=1,N, are independent between themselves.

The random values & (@), i=1,N, generate the evolution of risk asset

2
—%—r}n +ow(ty)

n u
given by the formula S, =S;[]& ()=S.e , n=1,N . Such evo-
i1

lution satisfies the conditions of the Theorems 7, 8.

4. Models of Evolution of Risky Assets Based on the Discrete
Geometric Brownian Motion

Suppose that the set t)=0,t,,t,,---,ty =T belongsto [0,0) with
At=t -t >0 not depending on the index .

On the probability space {Qf B, Plo} , considered in the previous example,
let us consider the sequence of random values

( ”7%2—r]m+o-(w(ti »-w(ti1)) J—

&(o)=¢ ,i=1N, (85)

where W(t;) isa standard Brownian motion with w(0)=0,

EW(ti)W(tj)=min{ti,tj}. With every sequence real numbers a,,8,,---,8,, ",

0<a <1, i=1, let us connect the random process
Sn=Soll[[1+ai(é(w1)—1)], n=LN, S,>0. (86)
i=1

Below we construct the probability space {Q,]: ,P} and the random process
Sy, N =1,N , on it, which is equivalent one in the wide sense to the process (86).
For this purpose we could do it using the method, presented in section 2. But for
further applications, it is more convenient to construct the simple probability
space {Q,]: ,P} and the random process on it, which is equivalent in the wide

sense to the process (86).
Let Q'=R!, F'= B(Rl) ,where R! is a real axis, B(Rl) is a Borel
c-algebraon R'.Letusput Q° =Q°, £°=FE°, i=1N,and let us construct the
. N
direct product of the measurable spaces {Q?,]:io}, i=1N. Denote Q= HQ? .

i=1
Under the o-algebra F on Q, we understand the minimal o-algebra generat-

N
ed by sets []G;,G, € %°. On the measurable space {Q,F}, under the filtra-

i=1

n

N
tion 7, we understand the minimal o-algebra, generated by sets [ [G,, G, € F °,
i=1

where G, =Q for i>n. Suppose that the points t,=0, t,t,,---,t, =T, be-

longs to R’ with At=t,—t,_; >0 not depending on the index i Let us con-

N —
sider the probability space {Q,F,P},where P=]]R°, R°=R’, i=LN,

i=1
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2
1 .
P°(A)=————|e 2dy, AeZF’. (87)
H(A) [27At]"? JA '
On the probability space {Q, F, P} , let us consider the evolution of risk asset
given by the law

Sn:SOﬁ(l+asp(ys)),n:1,N, (88)

where 0<a <1, s=1,N, are the same constants, that figure in the formula
( U= O-—z - rJAt
86), p(y)=e""" -1, d= 2
o

On the probability space {Q, F, P} , the random process given by the formula
(88) is equivalent in the wide sense to the process (86), constructed above.

Described in Lemma 5 [1] the set of measures Q on the probability space
{Qio,]-"i ’, P,O} , which are equivalent to the measure P° and such that
E%p(Y;)=0, we denote by M;,i =LN.

On the measurable space {Q,}" } , we introduce into consideration the set of
measures M, described in Theorem 1 for 7,(Yy;)=p(y;), i=LN.

Theorem 9. On the measurable space {Q,F| with the filtration F,, n= ON,
on it, let the risk asset evolution is given by the formula (88). For the nonnegative
payoff function f(S\), satisfying the condition sup E°f (S, )<, the fair

QeMmy

price of super-hedge is given by the formula
sup E9f(Sy)
QeMy!
2

= sup > f (Solj(u ap(yk ))j (89)

yi<—d, y?>—d,i=L N ij=1,-- iy =1

o*(d+yi5+1)
N € T -
<[]
s=1

: ea(d+y§$*1) a(d+yi55)

where we put Y =y:.
Proof The proof of Theorem 9 follows directly from Theorem 6. d
Theorem 10. Suppose that the evolution of risk asset is given by the formula
(88). If the nonnegative payoff function f(x), xe&[0,0), satisfies the condi-
tions:

f
1) f(0)=0, f(x)<ax, li_TO(TX):a,a>0,then

N N
f (SO (1—ai))+a80[1—1_[(1—ai )JS sup EF f(Sy)<aS,. (90)
i=1 i=1 QeMY
If, in addition, the nonnegative payoff function f(x) is a convex down one,
then
inf EPf(Sy)="f(S,), (1)

PeM{
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where M, is the set of equivalent martingale measures for the evolution of risk
asset S, n =0,_N.
Proof. As before,
aS, > sup [f(S,)dQ

QM

= sup 22: f[solﬂ[(“asp(y;s))]

yi<—d, y?>—d, i=L N ij=1,---,iy =1 s=1

ey

eo-(d +yé5+l) ea(d +yls )

X
s=1

o(d+yi55+l)

2 N-1

> 3

=1, iy g=1s=1

ea(d +y;5+1) ea(d +yls )

eo(d +yﬁ ) 1

g o (smst et 5 2L

YN -0, YN D©

N-1 ) _ "(d”%“)
+f (S°H<l+ asp(yf ))(1+ aNp(yﬁ‘ ))j ea(dlwﬁe) _ea(dwlw) ]
eo-(d+yi55+1) —J.‘

ea(d+yis+1) a(d+yé5)

2 N-1

il:l-““iN—lzl s=1

x{ f (SOE(H asp(y;s ))(1— ay )j +a, asolj(l+ asp( ye ))} (92)
e |

ea(d+y'5+1) o'(d+yé5)

2 N-1

>

b=l iyg=1s=1

N-1

x ( o(1-2ay)

Applying (N —1) times the inequality (92) we obtain

@-a))easal10-2)

(1+ ap(ye ))j+ a,as,.

s=1

supjf dQ>f(0

z z
-

QeM{' o i=1 s;i+1 (93)
=f (SOH(l— a )j +as, (l—H(l— a )j
i=1 i=1
Let us prove the equality (91). Using Jensen inequality we obtain
inf EPf(Sy)=f(Sy). (94)
PeM{

It is evident the inequality
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a(d+y52) 1
) -
f (So (1+ asp(ys))) a(d+y2) U(d+y1)
gV g (95)
, 1— ea(d+y§)
+1(So(Lran(y )))m > Inf E"F(Sy)
Putting in the inequality (95) Y. =-d we obtain the inverse inequality. |

Theorem 11. Suppose that the evolution of risk asset is given by the formula
(88). If the nonnegative payoff function f(x), xe[0,00), satisfies the condi-
tions:

1) f(O): K, f(X)S K, then

f(Solﬁ[(l—ai)]S sup EP f(Sy)<K. (96)
i=1

PeM{)

If, in addition, the nonnegative payoff function f(x) is a convex down one,
then

inf E7f(Sy)=f(S,), (97)

PEMO

where M|’ is the set of equivalent martingale measures for the evolution of risk
asset S,,n=0,N.
Proof Let us obtain the estimate from below. Really,
K> sup [f(sy)dQ

QeMy'
2

= sup Y f(solﬂ[(l+asp(y;5))j

yi<—d, y2>—d, s=LN i =L,-iy =1 s=1

et 1‘

d+yIs *1 ea(d+y;5 )

Aot

X1_[

s=1

2 N-1

= > I

ip=1iy_q1=1s=1 e (d*'yésﬂ) _eO'(d+yé5)
2
] N-1 . ) e“(d’fYN) -1
< tm (il et s aetn))
1
N-1 ) ) 1— e"(d”")
sl antst o aunlst)) |7~
o(d+yis*t
2 N-1 e ( )_J"
= : : (98)
i1:1,-%,1:1 -1 ea(dw'ss”) _ eo(dwés)
N-1 )
<t ssa-atfran(s))
s=1
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Applying (N —1) times the inequality (98) we obtain the needed inequality
N
sup jf(sN)szf(SOH(l—ai)j. (99)
QeM{' i-1

Let us prove the equality (97). Using Jensen inequality we obtain
; P
leg“ EPF(Sy)=f(Sy)-

(100)
It is evident the inequality
a(d+y52)
1 e -1
f (So (1+ asp( Ys ))) ec'(d'"ng) ea(dﬂ%)
) (101)
, 1— ea(d+y5) - ;
e —-e
Putting in the inequality (101) y: =—d we obtain the inverse inequality. |

Theorem 12. On the measurable space {Q,F} with the filtration F,,
n=0,N, on it, let the discount risk asset evolution is given by the formula (88)
with 0<a <1, i=1,N, For the payoff function f (x)=(x-K)", xe(0,»),

K >0, the fair price of super-hedge is given by the formula
N

(Sy-K)", if S,[J(1-a)=K,

sup E?f (S, )= =

o 30(1_ﬂ(1_ai)j, i Soﬁl(l—ai)< K.

i=1

(102)

N
If S,JJ(1-a)>K, then the set of non arbitrage prices coincides with the point

i=1

N
(S, —K),in case if S, (1—H(1—ai)

]< K the set of non arbitrage prices coin-
i=1

N
cides with the interval {(S0 -K )+ ,S, (1— [1(1-4 )H )

i1
eg(d+yiss ") _J_‘

Proof- Let us introduce the denotations

N

= 3 o[sl1an()]l

- —, (103)
=1 iy =1 s=1 -1 e“(d’fyésﬂ)_ f’(‘“y'ss)
od+yls+t
. 2 N ) N € (d ’ )_J"
N flS l1+ap(ys : —, (104)
SR O ) ey
o 2 N )
i- e $ ifsfleartt)
yi<—d, y2>—d,s=L,N iy=1,---iy =1 s=1
) ea(d+yiss+1) _l‘ (105)
<[]

s=1

ea(d+y;5+l) ea(d+y;5) '
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where we put f,(x)=(K -x)".
Let us estimate from above the value

5 (d+yus+1) _J_‘
. (106)

ea(d+yi55 *1) 3 eo—(d+yi§ )

eww#

d+y'S+1 B eo(d+yi55 )

I, = z [OH(l+a (y;))j]ﬁ!

h=1-iy=1 5=

For this we use the equality

2

>of [S"ﬁ!(H ap(ye ))j]ﬂ[

i =1, iy =1 s=1

(d+y'5+1) —J.‘
—+S,-K  (107)

d+y's+1 B ea(d +ye )

_ fl(solﬂ[(“ ap(ye )))lﬂ!

=1y =1 s=1

=1y +S, - K,
which follows from the identity: f(x)=f,(x)+x—-K, x>0. Since

N :
fl(SOH(l-’_asp(yés ))js ( oH(l a )j (108)
s=1
we obtain the inequality

I, <8, — K+ fl(soﬁ(l_as)} (109)

s=1

From the inequality (109) we have

Iy <S, —K+ f{s{,]ﬂ[(l—as)j
s=1
(S, -K)", if Soﬁ(l—ai)z K, (110)

So(l—]iﬂ!(l—ai)j, if soﬁ(l_ai)«

Due to the inequality (90) of Theorem 10
. (d+y.5+1) _]_‘

sup ﬁ f[solu[(u a,po(y: )))]ﬂ!

yi<=d, y2>=d,isL N g =Ly =1 s=1 d+yls+1 —ea(d+yiss) (111)
N N
> f[SOH(l—ai )j+S0 (1—H(1—ai )j
i=1 i=1
and the inequality
2 N :
sup f[S 1+a,p(ys ]
ﬁﬁ—d,yf>—d,i:mi1:l,sz:1 Og( ,0( ))
) eo‘(d+yés+1) _J_‘ (112)
x : —>(S,-K)",
e o7
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which follows from Jensen inequality, we have

If,Zmax{(S KY, (OH(l a)j (1_ﬁ(1_ai))}

i=1

(S, -K)", if SOH(l—ai)z K, (113)
i=1

so[l_ﬁ(l_ai)j, if soﬁ(l_ai)«

=1

This proves Theorem 12. |
Theorem 13. On the measurable space {Q,F} with the filtration F,,
n=0,N , on it, let the discount risk asset evolution is given by the formula (88),
with 0<a <1, i=1,N. For the payoff function f,(x)=(K-x)", xe(0,0),
K >0, the fair price of super-hedge is given by the formula
sup E%f,(Sy)= fl(solﬁ[(l—ai)j. (114)
QeM{! i-1

The set of non arbitrage prices coincides with the set

{(K -S,), fl(Solij(l—ai )ﬂ

Proof. The inequality

o (d+yi5 +1)

i fl(soﬂ(1+ a,p(y! )))]ﬂ[

i +1 i
=1,y =1 s=1 s=1 d+yS ec(d+y55)

2 N N (d*ys) -1
< s,TT(1- _e 1 (115)
5 tfsMe-a) i1 T

=1 iy =1 ) s-1 e"’ d+yd

_ fl(soﬁ(l—ai )j

i=1
is true. Taking into account the inequality (96) of Theorem 11 we prove Theo-
rem 13. Il
Theorem 14. On the measurable space {Q,F} with the filtration F,,
n=0,N , on it, let the discount risk asset evolution is given by the formula (88)
with 0<a, <1, i=1,N. For the payoff function

>

+

f.(Sg. S, Sy ) = K_il\:lo 1l K >0, the fair price of super-hedge is given
+
by the formula
N i +
Q .3 10-a)
sup E?f,(S;,S,, Sy )= K——=22 || 116
QEM% l( 0+ N) N +1 ( )

The set of non arbitrage prices coincides with the set
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. + .

N I N |
|osdle-a) s, [](1-a,)
(K=Sy) | K——==t— | |if K>—=0L __ For
N+1 N+1

5,3 [1(-2)

K< ':0;\];1 the set of non arbitrage prices coincides with the point 0.
+

Proof 1t is evident that
2

sup 3 fl(so,s0 (L+ao( v )),~--,Soﬁ(1+ a,p(ye )))

yi<—d, y2>—d,i=LN i =1,iy =1 s=1

N
) ea(d+yi55 +1) a(d+y;5)

y§—>—oo,y52 —00,5=1,N s=1

> lim fl(SO,SO(1+alp(yi)),---,Solﬂ[(l+asp(yi))j (117)
. N eo(d+y§)_1
s 7l00) _ golens)

N Sogf{(l_‘%) +
= fl[so,s0 (1—a1),-~~,5013(1—as)j: K TN+

Let us prove the inverse inequality. We have
| 122; 1fl[so, S, (1+ ap(yh )),---,Solﬁ!(“ ap(yk ))j
i=1iN = 5=

a(d +yls *1)

X

ea(d+y;5+1) o—(d+yi55)

2 N N ‘T(d”g) 1 (118)
e —
SﬁJ;N_lfl(SO’SO (1_ai)""'Solsl(l_as)jlsleg(myg) 3 a(d+y§)
N N +
N S 2 [](1-a)
1S a-a) s [T | kR —

Therefore,
2 ) N )
y,l<d,izlipd,i_l,Nil—l,-»z,‘?N—lfl[SO’SU(l—i_alp(yll))'.”'Sog(l-’—asp(y:))j
- +|s+1 N i +
S [ s 3Tema) 1)
<| K= i=0 s=1 .
N +1

N
X
s=1

eU(der_l,S*l) cr(d+yi55)
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The inequalities (117), (119) prove Theorem 14. Ul

Theorem 15. On the measurable space {Q,F} with the filtration F,,
n=0,N, on it, let the discount risk asset evolution is given by the formula (88)
with 0<a, <1, i=1,N. For the payoff function

N
25
i=0

+

f(So. S+, Sy ) = NIl K|, K>0, the fair price of super-hedge is given
by the formula

sup E°f(Sy, S, Sy)

Qemy!

N i
SOZH(l—ai)
(Sy—K)", if =0t >,
N +1 (120)
_ N i N i
2I1(-a) 2I1(1-a)
So| 1-0sl | g0l K
N+1 N+1
N i
SOZH(l—ai)
If ':0:\];12 K, then the set of non arbitrage prices coincides with the
+
N i
+ ST1a-a)
point (S, —-K)', in case if S, ':OS:T <K the set of non arbitrage prices
+

N i
[ $rjeea)
coincides with the interval |(S,-K) ,S;| 1-+= S:[ij N
+

Proof We have

2

sup St (so,s0 (1rap(y? )),---,Soﬁ(1+ ap(ye ))j

yh<—d, y?>—d, i=L N ij=L,-,iy =1 s=1

ool _l‘

eo(d+yi55+1) a(d +y£5)

X

2

- sup 3 fl[so,s0 (2+am(y)) - Sl T (2 +asm(ve ))j

yi<—d, y?>—d, i=L N ij=1,---,iy =1

ool _4
+5,-K

ecr(d +yi5+1) eg(d +yls )

X
s=1
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N i
S [(1-4)
S, —K)", if =0l >,
(S0-K) N +1
— N N i (121)
Z (1_a5) ZH(l_aS)
Sp| -t — | if 5, ==L — <K.
N+1 N+1
In the formula (121) we introduced the denotation
N +
S
(S, S Sy ) =| K—2— | . 122
l( 0'%1 N) N +l ( )
The proof of Theorem 15 follows from the equality (121). U
5. Characteristic of the Random Processes Built on the
Discrete Geometric Brownian Motion
On the probability space {Q,F, P}, with every sequence real numbers
a,a,,,a,,a, 0<a <1, i=1,N,let us connect the random process
S, =S, [ [(1+a.p(y.)).n=LN, §,>0. (123)
s=1

where 0<a <1, s =1 N, are constants, p(y)= e’ _q,

2
(,u—oé—rjAt
d=———"—+-—.

o
Theorem 16. The random process (123) is a non homogeneous Markov process

with the transition probability function for the n-th step

P(n—l,x,n,A)zj p(n-1x,n,z)dz, 0<a, <1, AeB(0,), (124)
where
p(n-1,%x,n,2)
2
|:|n[¢n()(,z)z_x(l_a”)j_o-d}
¢ (x.2) exp xa, (125)

et o (z-x(1-a,)) 207t

0<an Sl, gon(xyz):l(x(lfan),oo)(z)'
and

P(n-1xn,A)=[du,(z)=x,(x), a,=0, (126)

where 4, (A) is an atomic measure which is concentrated at the point
xe(0,0).
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Proof. Let us consider the case as 0<a, <1. The transition probability func-

tion for one step is equal

P(n-1%n,A)=P(S, e AlS, ; =x)=P(x(1+a,n(¥,)) € A)

v (127)
—(2 T j;{A( (1+ a, (e"(d 4 —1)))e 2y,
After the changing of variable z = x(1+ a, (e”([”y) —l)) we obtain
o(d+y) _ z _(1_an)x
e = ) (2), (128)

n

Or y=é{ln[¢n(x,2)ﬂj—ad}. (129)

For z>(1-a,)x wehave

ody =—-. (130)

Substituting this into (127) we obtain
P(n-1,x,n,A)

" [2nat]”

If a,=0 then P(n—l,x,n,A):;(A(X),or
P(n-1,x,n,A)=[1du,(z). (132)
A

where we introduced the atomic measure 1, (A), AeB(0,%0), concentrated at
the point x. O

Let us introduce the denotations p;(X,z)= p(i—1,x,i,z). First, suppose that
all 1>a >0, i=1N, then the joint probability function is given by the formu-

la
P(S eA.S,eA,- SNEAN)
:J. Ipl X Z1 P, 21122) Py (ZN_l,ZN)le...dZN
A

Ay

(133)

If for some indexes i,-i, a =0, s =1,k , then in this case the joint proba-
bility function

P(S eA,S,eA,- SNeAN)

134
:_[ _[pl X Zl pz 4,1 ) YN (ZN—l’ZN)V(le“'dZN)’ (134)
A Ay
where the measure v(A---A) isa direct product of measures (A),
A €B(0,x), where £ (A) isa Lebesgue measure for those 7 for which
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0<a <1 and 4 (AS) is an atomic measure which is concentrated at the point
Z, 4, S= 1,k , under the case a, = 0, s=1k.Moreover, in the formula (134)

_ b; (Zi—l’ Zi)
[ZTl:At]l/2 G(Zi —Ziy (l_ 8 ))

W()a)}d} (139

Zi,4&

Pi (Zi—l' Zi)

x exp

202 At

O_Z
0<a <L¢,(7.4,2)= Xz 1(1-a)) (z), od= (/1 B rjAL
a =0, p(z.,.7 )=1 s=1k (136)

6. Estimation of the Parameters of the Considered Random
Process

Suppose that {gi (Xy )}:11 is a mapping from the set [O,l]N into itself, where
Xy ={X, %y }» 0<x <1, i=LN.If S,,S,,--,S, isa sample of the process
(123) let us denote the order statistic Sy, S, Sy, of this sample. Introduce
also the denotation g ([S]N ) =g, [SS(_O)’W’¥]’ i=1,N.
(N) (N)
Theorem 17. Suppose that S,,S,,---,S, Is a sample of the random process
(123). Then for the parameters a,,---,d,, the estimation

S
31:1_705(_0)91([S]N>v 0<r, <],
0

9 ([S]N) o

a =1 i=2,N, (137)

I gi—l ([S]N )
is valid, if for g, ([S]N ) >0, [S], € [0,1]N , the inequalities
91([S]N )2 gz([S]N )2 > gy ([S]N ) are true. If 7,=0,then & =1, i=1N.
Proof. The estimation of the parameters a,,---,8, we do using the represen-
tation of random process S, n :l,_N . The smallest value of the random variable

n

S, is equal S;J[(1-a),n=1N. Let us determine the parameters & from
i=1

the relations

N N -k
S T(2-2a)=7gy ([S]y)>+Ss [T(1-a) =79y ([S]y )+

(138)
So I1 (1_ai)zng—k—1([S]N )""'So (1_31)2791([8]N )

i-1

where 7>0. Taking into account the relations (138) we obtain
So(l-a)= Tgl([s]N )
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0y ([S]y )(1-ay ) =79y 4 ([S]y ). k=2.N. (139)
Solving the relations (139), we have

B ngk([S]N) —

————2 k=2,N. (140)
gN—k—l([S]N )

It is evident that a,_, >0,k =2,N. To provide the positiveness of a, and the
inequalities 7g,_, ([S]N ) <Sy.4> N=0,N-1, S;2S, meaning that the ran-

a, :1—81091([8]N ) ay =1

dom process (123) takes all the values from the sample S,,n=0,N , we must to

put 7= rOS(O), 0<7,<1.1Itis evident that if 7,=0 then a =1,i =1,_N Theo-

rem 17 is proved. U
Remark 4. It is evident that

a=1i=N—kN,1<k<N-1a =1- i=2N—k-1,
g|—1([S]N)
7,5
a =1- Os(O) 0,([s],). 0<z<1 (141)
0

is also estimation of the parameters a,,---,a, if

0< gy is([S]y )< naa([S], ) <+ <0 ([S]y ). [S], €[0]".

Such estimation is not interesting since
N—i

[I1(1-a)=0, i=0,k.
i=1
Remark 5. If
S
0y, ifOsxsﬂ,
9(9=1"" 7 (142)
1, |fﬂ<xs1,
S

then for the parameters a,,---,8, the estimation

1- S(N—i) , i S(N—i+1) Ssi,
(N-i+1) S(N) So
) S\ . S, Sy S _
a ={1-—9 So g 2t PO 2w 20 G5 (143
) S0 Sy S Sy S
0 it S, S
Sy So
S
10 T o
a - S(”) " S° (144)
120 2 S
So (N) So
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is true. The following equalities

ﬁ(l_a)zﬁg So :E
=t 0 (N) (N)
N—k
[1@a-a)=4 " M k=N (145)
SO T ]
S’ Su S
are valid.
Remark 6. Suppose that §(X)=X, x€[0,1]. Let us put
_ S(i) _S(i) .= R T NI
gy ([S]y)=9 s |75 =0k du.i([S]y)=1, i=k+LN-1. Then
(N) (N)
S

aizl—ros(—o), O<z,<1, a=0, i=2,N-k-1,

9i ([S]N )

a =1-—> N/ j_N_K,N, (146)

T gi—l([S]N )

is an estimation for the parameters a,,---,a,.

In the next Theorems we put 7, =1. This corresponds to the fact that fair
price of super-hedge is minimal for the considered statistic.

Theorem 18. On the measurable space {Q,F} with the filtration F,,
n=0,N , on it, let the discount risk asset evolution is given by the formula (123)
with parameters @, i=1,N, given by the formula (137). For the payoff func-
tion f(x)=(x-K)", xe(0,), K >0, the fair price of super-hedge is given
by the formula

(SO_K)+’ if S(O)gN([S]N)ZK’

sup EQf(SN): 50[1— S(o)gN ([S]N)], if S(O)QN([S] )<K. (147)

QeMé\‘
0
If S(O)gN ([S]N ) > K, then the set of non arbitrage prices coincides with the point
(S, —K)', in case if So)9n ([S]N ) <K' the set of non arbitrage prices coincides

S S
with the closed set | (S, —K)",S, {1_MJ _
0

The fair price of super-hedge for the statistic (143), (144) is given by the for-

mula

S
(So-K)", if S,—L>K,

(N)

sup E°f(Sy)= (148)
O K.

MY S S
o 50[1— “”}, if S,
S) Stv)
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S
If SOS(—O)Z K, then the set of non arbitrage prices coincides with the point
(N)

S
(S, —K)', in caseif S, © <K the set of non arbitrage prices coincides with
(N)

. S(0)
the closed set | (S, —K) ,S,| 1- )
Stv

The fair price of super-hedge is minimal one for the statistic (137) with
g (Xy)=0yx(Xy)=1, i=1N -1, and is given by the formula

(So—K)", if S 2K,
So=Spy if g <K.

(149)

Qem{!

sup EQf(SN):{

If S(O) > K, then the set of non arbitrage prices coincides with the point
(S, —K)', in case if S(o) <K the set of non arbitrage prices coincides with the
closed set [(SO -K)",S, - S(OJ .

Theorem 19. On the measurable space {Q,F} with the filtration F,,
n=0,N , on it, let the discount risk asset evolution is given by the formula (123),
with the parameters 8, i=1,N, given by the formula (137). For the payoff
function f,(x)=(K-x)", xe(0,), K>0, the fair price of super-hedge is
given by the formula
sup E%f,(Sy) = fi(S9 ([S], ) (150)

QeM{!

The set of non arbitrage prices coincides with the closed interval
[(K ~55)" 1, (S0 ([], ))}

The fair price of super-hedge for the statistic (143), (144) is given by the for-

mula
S0
sup E°f (Sy)=f,[ S,— | (151)
QeM{ Sy

The set of non arbitrage prices coincides with the closed interval

ey So ||
[(K ) lf{so S(N)ﬂ

The fair price of super-hedge is minimal one for the statistic (137) with
g (Xy)=0yx(Xy)=1, i=1,N -1, and is given by the formula

sup Ef,(Sy )= fl(S(O)). (152)

QeM

The set of non arbitrage prices coincides with the closed interval

[(K=S0)" (S|

Theorem 20. On the measurable space {Q,F} with the filtration F,,
n=0,N , on it, let the discount risk asset evolution is given by the formula (123),

with the parameters a., i=1,N, given by the formula (137). For the payoff
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function ,(S;,S,,-+,Sy)=| K- , K >0, the fair price of super-hedge

N +1

is given by the formula

+

N
Se + 5162 0 ([s]y)
sup E9f,(S;.S,,,Sy ) =| K- i

153
Qemy N +1 ( )

The set of non arbitrage prices coincides with the closed interval

N N
S +S(0)Zgi([S]N) S +S(O)Zgi ([S]N)
i=1 , lf K> i=1 .
N+1 N+1

+

(K-S,)" | K-

N

So+ S 2. 9 ([S]N)

For K< L1 the set of non arbitrage prices coincides with the

point 0.

The fair price of super-hedge is minimal one for the statistic (137) with
9 (Xy)=0yx(Xy)=1, i=1,N -1, and is given by the formula
~So+ SN ]

154
N +1 (154)

sup EQfl(SO,Sl,-~~,SN)=[K

QeMy
The set of non arbitrage prices coincides with the closed interval

Sy + SN Y S, +S,N S, +S,N
(K=S) | K-——2— | |,if K>——% For K<——_ the set
N +1 N +1 N +1

of non arbitrage prices coincides with the point 0.
Theorem 21. On the measurable space {Q,F} with the filtration F,,
n=0,N , on it, let the discount risk asset evolution is given by the formula (123),

with the parameters a., i=1,N, given by the formula (137). For the payoff

N
25
—| i=0

N +1

+

function f(S;,S,,-+,Sy) -K |, K>0, the fair price of super-hedge

is given by the formula

sup E%f(Sy, S+, Sy )

QeMmy!

>K,
N +1 (155)
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So + S 2. 9y ([s1y)

If I\il:1 1 > K, then the set of non arbitrage prices coincides with
+
N
S, + 5(0); a:([S]y)

<K the set of non arbi-

the point (S, —K)", in case if
P (S0=K) N +1

trage prices coincides with the closed interval

S + S(o)ﬁigi ([S]N )

N +1

(So—K)"\| So -

The fair price of super-hedge is minimal one for the statistic (137) with
g (Xy)=0y(Xy)=1, i=1,N -1, and is given by the formula
sup E?f(S,,S,,-+,Sy)

QeMm{
So + 5, N
+ . (0)
(So—K), it — =K (156)
S _so+s(0)N " Sy +SpN K
0 N+1) | N +1
(N+1)
S +SgN

If > K, then the set of non arbitrage prices coincides with the point

N+1
. So +SgN
(Sy—K)', in case if —————<K the set of non arbitrage prices coincides
. So+SN
with the closed interval | (S, —K) .| S, srvealIf

To estimate the parameters o, i, let us define the likelihood function of the

sample by the formula
N
Z(Di (SH, S ) -d )Z

1 4
L(o, u)=——expd—= 157
( ﬂ) oV P 202 At (157)

using the formula (133) for 0<a, <1,i=1 N, where

D (Sil,Si):m[(pi (S“’Si)%}

Lemma 2. The maximum likelihood estimates of o,u are given by the for-

mulas
, 1 1 ?
=— D (S._,,S)-—)> D(S_,,S )|,
o NAti_l( |( i-1 |) N; |( i-1 |)j
o’ 1
= — _— A . . 1
n== +r+ NAtiZ:;’D'(S"l'S') (158)

Proof. For obtaining the estimates of o, zz, we use the Method of Maximum
Likelihood. Let us calculate
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=— —L(a,y)—o_ = . (159)

- > (Di(5.4,8)-d)

i=1

oo 202 At
= 3At§1:( (S0 Si) - d) _azlAtﬁll(Di(Si-vSi)_d)% (160)
- SAtil( (Si0,S) - d)%%g(q(sil,si)—d).
Therefore
6L(0,,u)__NL(U,,u)_ o R (e ey_dV
v N - ’#){ Far O (Sw8) =) (161)
+§§(Di(8i_l,5i)—d)},
oL(o,p) _ L(G’ﬂ)i(Di (Si—lisi)_d)' (162)

ou o O

The maximum likelihood estimates for & and g we can obtain from the eq-

uations
NL(o, 1 1 & 2
. (G )_L(G,ﬂ){_amz(o,(s, .8)-d)
L = (163)
> (Db;(S.,,S)-d)|=0,
+O'|Z:1:( |( i-1 I) ):|
L(J’“)i(o(s 5,)-d)=0 (164)
o o] i i-11 ¥ '
Solving the equations (163), (164) we obtain the statement of Lemma 2. ]

Remark 7. If for some sample S,,S,, -,
a8y Issuch that a =0,
cessary to put Dy (Sisfl, S, ) =0, s=1k . This follows from the structure of ran-

S\ the estimate of parameters

a, = 0 then in the estimates of o,y it is ne-

dom process (123), the transition probability function (126), the structure of the
Jjoint probability function (134) after Theorem 16.

7. Conclusions

In the paper, we generalize the results of the paper [1] [17]. In Section 2, we ge-
neralize an evolution of risk asset with memory proposed in the paper [1]. In
Theorem 1, we describe completely the set of martingale measures for the con-
sidered evolution and prove that every martingale measure of this family is an
integral over some measure on the set of extreme points of the set of martingale
measures. In Theorem 3 the bound for every nonnegative F, measurable ran-

dom value the mathematical expectation for which relative to every martingale
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measure is bounded by 1 is found. In Theorem 4, it is proved that every nonneg-
ative super-martingale relative to the regular set of measures is a local regular
one. The same statement, as in Theorem 4, it is proved in Theorem 5 in the case,
as a super-martingale is bounded from below.

Section 3 contains the application of the results obtained above to calculation
of the interval of non-arbitrage prices for the wide class of evolutions of risky
assets and payoff functions.

In Theorem 7, with the general assumptions about payoff functions and the
evolution of risky assets, we found the non-arbitrage price interval and set the
price of super-hedge. This set of payoff functions contains a payoff function of a
standard European-type call option. Theorem 8 contains sufficient conditions
regarding the evolution of risky assets (2) for which an interval of non-arbitrage
prices has been found for a wide class of payoff functions. This class contains the
payoff function for standard option put of European type.

Section 4 contains the results about the interval of non-arbitrage prices for the
class of evolutions of risky assets described by the random process with parame-
ters built on the geometric Brownian motion and payoff functions for call and
put options of standard type.

In Theorem 9, a formula for the fair price of super-hedge is found for the evolu-
tion of risky assets given by the formula (89). Theorem 10 contains the estimates
for the value of a super-hedge for a particular class of payoff functions including
a payoff function for a standard call option.

In Theorem 11, the estimates for the value of a super-hedge for a particular
class of payoff functions are found. This class of payoff functions includes a
standard put option payoff function.

Theorem 12 gives the interval for non-arbitrage prices and the price of su-
per-hedge in the case of a standard call options. The peculiarity of this formula is
that the price of a super-hedge is proportional to the price of the underlying as-
set with a ratio less than one.

In Theorem 13, the formula for the fair price of super-hedge is found for put
option of standard type.

Theorems 14, 15 contains the analogous results as in Theorems 12, 13 for the
payoff functions of Asian type options.

Theorems 18, 19, 20, 21 of Section 5 are reformulations of Theorems 12, 13,

14, 15 with taking into account the estimations of the parameters a,,i= LN.
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