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Abstract 
Pomoxis nigromaculatus, more commonly referred to as black crappie is in-
digenous to fresh water streams and lakes in the eastern United States and 
supports an important recreational fishery. We examined the genetic popula-
tion structure of black crappie inhabiting three Georgian Lakes, Lake Sidney 
Lanier, Lake Seminole and Hartwell Lake. DNA sequencing of 229 fish sam-
ples, utilizing the DNA barcode marker cytochrome oxidase subunit I (COI) 
revealed 27 polymorphic sites which defined nine haplotypes. Only haplotype 
2 was shared between all sample sites with six other haplotypes being unique 
for individual lakes, for an overall haplotype diversity of 0.734. Tajima’s D and 
Fu’s tests were implemented to assess departures from neutral expectations.  
Fst pairwise comparisons were statistically significant among all populations 
of black crappie evaluated in this study. 
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1. Introduction 

Pomoxis nigromaculatus, more commonly referred to as black crappie, calico 
bass, grass bass, moonfish or speckled bass is a freshwater species in the sunfish 
family, Centrarchidae, and is native to the eastern United States [1]. It is indi-
genous to freshwater lakes and streams from the Great Lakes south to the Gulf of 
Mexico, as far north to North Dakota and eastern Montana, and east to the Ap-
palachians [2] [3]. Black crappie has a silver-gray to white laterally compressed 
body with uneven black speckles along their sides. Black crappie has 7 - 8 dorsal 
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spines along with dorsal and anal fins that are similar in size and shape [4]. Both 
male and female black crappie reaches sexual maturity by the age of two and 
may live an average of seven years. 

Although black crappie does not support a commercial fishery, the species is 
an important recreational fishery. According to the 2011 US Census Report, 
black crappie is the fourth most popular sporting fish sought out by [5]. Due to 
its popularity, the range of black crappie has been expanded through stocking 
and can now be found throughout the United States [6]. With the geographical 
expansion of black crappie by humans, it is important to genetically assess natu-
rally established populations to assist in the management of species. 

Visual identification of this species can be problematic because of similar 
morphological characteristics shared with white crappie, Pomoxis annularis. In 
previous studies, molecular markers such as isozymes and microsatellites have 
been utilized to help distinguish black crappie from white crappie and have been 
applicable to detect hybridization between the two species of crappie [7] [8] [9]. 
Molecular genetics techniques have also supported fisheries management by re-
vealing reproductively isolated populations which require the formation of 
management units that assist in the generation of conservation strategies [10]. 
Another beneficial and reliable molecular tool for species identification and 
population delineation is DNA barcoding. 

In 2003, Herbert et al. introduced DNA barcoding as a more rapid and reliable 
method for species identification. DNA barcoding uses short (~650 bp) nucleo-
tide sequences to serve as unique species identifiers. These unique identifiers 
arise due to the possibility of four choices at each nucleotide position, which 
could lead to the creation of billions of unique identifiers when analyzing se-
quences that are hundreds of bp in length [11]. DNA’s ability to substitute at the 
third base nucleotide adds to its characteristics for producing unique identifiers. 
The mutational rate of mitochondrial DNA (mtDNA) which is higher than that 
of nuclear DNA, may contribute to increased genetic variation between species. 
Also, mtDNA does not contain introns, is inherited maternally and tends not to 
exhibit the effects of recombination if only one lineage is present [12] [13]. 

Cytochrome oxidase subunit 1 (CO1) gene is the most commonly applied 
universal barcode, which codes for a mitochondrial protein involved in the Elec-
tron Transport Chain [14]. The CO1 mtDNA sequence is often used in forensic 
analysis, wildlife management, and species identification [15]. Furthermore, re-
search indicates that CO1 is relatively conserved and therefore, an ideal gene for 
comparison of phylogenetic relationships [16]. The CO1 gene reveals a sequence 
longer than 650 bp long [15] [17]. Longer DNA lengths will provide more effi-
cient identification labels [13]. Researchers have demonstrated that genetic bar-
coding has been beneficial in population genetic studies on invertebrates [18] 
[19] [20] and vertebrates [21] [22], such as fish [23] [24] [25]. Barcoding has the 
ability to detect both interspecies and intraspecies variation [26], [27] whether 
genetic samples are obtained from larval, juvenile or adult life stages [26] [28] 
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[29]. The aim of the present study is to identify CO1 haplotypes among black 
crappie residing in three Georgian lakes (Lake Sidney Lanier, Lake Seminole, 
and Hartwell Lake) and examine the population structure among species inha-
biting the aforementioned water systems utilizing universal barcode COI. 

Lake Lanier and Lake Seminole are reservoirs formed from the waters of the 
Chattahoochee River, which is part of the Chattahoochee River Basin [30]. The 
Chattahoochee River is the longest river in Georgia, and has been fragmented by 
13 mainstream impoundments [30]. With the construction of the Buford dam in 
1956, Lake Sidney Lanier was created for flood control, hydroelectric power 
generation, and recreational usage (Georgia Department of Natural Resources). 
Lake Lanier is a 15,378 ha. reservoir that provides water to the Atlanta, Georgia 
metropolitan area and is located approximately 560 km northeast of Lake Semi-
nole (Georgia Department of Natural Resources). Lake Seminole is a 14,973 ha. 
reservoir was constructed in 1957 [31]. The lake borders the southwestern part 
of Georgia and the Floridian panhandle (Georgia Department of Natural Re-
sources). It forms at the junction of the Flint and Chattahoochee Rivers and is 
dammed by the Jim Woodruff Lock and Dam before flowing into the Apalachi-
cola River (Georgia Department of Natural Resources). Hartwell Lake is a 22,649 
ha. reservoir at the border of Georgia and South Carolina. It was created from 
the construction of the Hartwell Dam in 1955 [32]. The Hartwell dam is one of 
the dams located along the Savannah River and is approximately 11 km down-
stream the Seneca and Tugaloo River [32]. There is no detectable hydrological 
connectivity between the two lakes formed by the Chattahoochee River and 
Hartwell Lake located on the Savannah River, but all three water systems contain 
natural occurring populations of black crappie. 

2. Materials and Methods 

Promoxis nigromaculatus, balck crappie specimens were collected by fisheries 
biologists of the Georgia Department of Natural Resources and researchers at 
Georgia Gwinnett College. Collection permits were issued by the Georgia De-
partment of Natural Resources and Wildlife Resources Division. Fin clips were 
removed by nonlethal means from fish inhabiting three lakes in Georgia: Hart-
well Lake (n = 29), Lake Sidney Lanier (n = 116), Lake Seminole (=81) and pre-
served in 90% ethanol for genetic analysis (Figure 1).  

To obtain mitochondrial DNA sequence data, mitochondrial DNA was iso-
lated utilizing Chelex-100 resin based on the protocol of Walsh et al. [33]. The 
COI gene was amplified with the following primer sequences CO1_VF2_t1-5’ 
TGT AAA ACG ACG GCC AGT CAA CCA ACC ACA AAG ACA TTG GCA C 
3’ and CO1_FISHR2_T1-5’ CAG GAA ACA GCT ATG ACA CTT CAG GGT 
GAC CGA AGA ATC AGA A ‘3 [34]. PCR reactions were carried out in a 25µl 
volume consisting of 12.5 μl of GoTaq® Green Master Mix (Promega™); 1 μl of 
each forward and reverse primer; 1 μl of DNA template; and 9.5 μl of nuc-
lease-free water. Thermal cycling profile consisted of an initial denaturation step  
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Figure 1. Map of sampling locations for Black crappie: Hartwell Lake (HL) (n = 29), Lake Sidney Lanier 
(LL) (n = 116), Lake Seminole (LS) (n = 81). 

 
of 94˚C for 2 minutes followed by 35 cycles of 94˚C for 30 seconds, 52˚C for 45 
seconds, and 72˚C for 1 minute, with a final extension at 72˚C for 10 minutes. 
All PCR products were run on 1% agarose gel with SYBR green and Tris-Bo- 
rate-EDTA (TBE) buffer and visualized with UV translumninator. Positively 
amplified PCR product were then purified utilizing ExoSAP-IT (Affymetrics), 2 
μl of ExoSAP-IT per 5 μl of PCR product. The mixture was incubated at 37˚C for 
15 minutes, and incubated at 80˚C for 15 minutes to inactivate reagent. The 
cleansed PCR product was sent to University of Georgia Genomics Facility in 
Athens, Georgia for sequencing on a Applied Biosystems 3730xl 96-capillary 
DNA Analyzer. Chromatograms were verified and trimmed in Finch TV version 
1.4.0. Sequences were then exported to Clustal X2.1 for alignment [35]. The 

https://doi.org/10.4236/ojgen.2017.73009


M. A. Erwin, B. George 
 

 

DOI: 10.4236/ojgen.2017.73009 109 Open Journal of Genetics 
 

aligned sequences were uploaded to DnaSP 5.10 to determine haplotype diversi-
ty (h) and nucleotide diversity (π) [36]. Partitioning of variance within and 
among populations was calculated utilizing Arlequin 3.5.1.2 by an analysis of 
molecular variance (AMOVA) [37]. A minimum spanning tree was created in 
Hapstar to reveal the most likely connections among haplotypes and lakes [38]. 

3. Results 

Nine haplotypes (Hap 1 - Hap 9) were recovered from sequencing partial CO1 
gene for 226 individuals. Hap 2 was identified in all three locations and was the 
most abundant haplotype representing thirty-eight percent of the population. Of 
the nine haplotypes defined, only Hap 8 was unique to one individual calculated 
to be 0.4% of the total sample size. Lake Lanier had five haplotypes represented 
in 116 individuals (haplotypes 1, 2, 3, 4 and 5). LS revealed six haplotypes for 81 
individuals (haplotypes 1, 2, 3, 7, 8 and 9) and HL’s 29 samples contained two 
haplotypes, Hap 2 and Hap 6. Haplotype 6 was unique to HL, while Hap 5 and 
Hap 4 were only identified within LL and Hap 7, 8, and 9 were only observed in 
LS (Table 1). 
 
Table 1. Sample size, number of haplotypes and haplotype frequencies for each sample 
site. 

Location Haplotypes n Haplotype Fequency 

LL Hap 1 24 0.21 

 
Hap 2 77 0.66 

n = 116 Hap 3 4 0.03 

 
Hap 4 4 0.03 

 
Hap 5 7 0.06 

LS Hap 1 47 0.58 

 
Hap 2 8 0.10 

n = 81 Hap 3 17 0.21 

 
Hap 7 5 0.06 

 
Hap 8 1 0.01 

 
Hap 9 3 0.04 

HL Hap 2 1 0.03 

n = 29 Hap 6 28 0.97 

All Locations Haplotypes n Haplotype Frequency 

 
Hap 1 71 0.31 

 
Hap 2 86 0.38 

 
Hap 3 21 0.09 

n = 226 Hap 4 4 0.02 

 
Hap 5 7 0.03 

 
Hap 6 28 0.12 

 
Hap 7 5 0.02 

 
Hap 8 1 0.00 

 
Hap 9 3 0.01 
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Haplotype diversity, h was low for HL (h = 0.069) and moderate for LL (h = 
0.515) and LS (h = 0.612) (Table 2). Nucleotide diversity, π ranged from 0.0001 
for HL to 0.0052 for LS. While haplotype and nucleotide diversity were similar 
among samples from LL and LS. HL samples had the lowest nucleotide diversity 
value 0.0001 which is representative of two alleles with one polymorphic site 
(Table 2).  

Results from AMOVA indicated an overall genetic variation within popula-
tions (65.76%) which was much larger than the variation among populations 
(34.24%). Pairwise FST values among populations were all significant. The most 
significant differentiation in pairwise comparisons was determined to be be-
tween LL and HL (FST = 0.606), both located within two different river basins 
(Table 3). The lowest pairwise FST value was observed between LL and LS (FST = 
0.216) which reside within the same river basin. Tajima’s D values were negative 
for all population except LL. Tajima’s D values were negative for LS and HL in-
dicating an excess of low frequency polymorphisms, but positive for LL signify-
ing low levels of both low and high frequency polymorphisms. Fu’s F statistic 
were positive for LL and LS, but negative for HL. Neither neutrality statistic were 
significant. 

The minimum-spanning tree depicts mutational relationship between mt- 
DNA haplotypes among all lakes for CO1 (Figure 2). The shaded areas within 
the circles are proportional to the frequency of each haplotype. The prevalent 
haplotype was Hap 2, which was separated by one to two mutations for the ma-
jority of haplotypes and 21 nucleotide substitutions between Hap 7. Haplotype 
network can be divided into three groups that over lap at Hap 2, which corres-
ponds with the location of the three sample sites. 
 
Table 2. Sample size, number of haplotypes, number of polymorphic sites, haplotype di-
versity and nucleotide diversity of different lakes.  

Location n nh s h π D Fs 

LL 116 5 3 0.515 0.001 0.833 0.058 

LS 81 6 25 0.612 0.005 -0.970 4.698 

HL 29 2 1 0.069 0.0001 -1.149 -1.183 

Sample size = n; number of haplotypes = nh; number of polymorphic sites = s; haplotype diversity = h; nuc-
leotide diversity = π; Tajimas D = D and Fu’s Fs = Fs. 

 
Table 3. AMOVA FST results (lower diagonal) and their significance level (upper diagon-
al). 

Location LL LS HL 

LL - * * 

LS 0.21597 - * 

HL 0.60576 0.43807 - 

Denotes significant difference < 0.050. 
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Figure 2. Minimum spanning tree of P. nigromaculatus hap-
lotypes. Small black circles are mutational steps, branches in-
dicate single mutations and numbers represent individual 
haplotypes. Large circle denotes most common haplotype, 
Hap 2. 

4. Discussion 

In this study we examined genetic variability utilizing mitochondrial COI se-
quences to detect genetic structuring in three Georgian Lakes. Mitochondrial 
analysis through pairwise comparison Fst values indicated significant genetic 
variation among three Georgian Lake populations of black crappie. We believe 
there are several factors that may attribute to the statistical significance revealed 
through AMOVA, such as migratory behavior, distance, hydrological barriers 
and historical river drainage connectivity.  

Migratory behavior of black crappie may be an obstacle to gene flow among 
interconnected lakes. This species exhibits diel and seasonal variation in depth 
and distance from shore. Black crappie oscillation between offshore and littoral 
habitat maybe triggered by food availability, predation or the need to locate op-
timal spawning habitat [39]. Preliminary data has suggested that black crappie 
could possess home ranges, but have the potential to migrate considerable dis-
tances with no preference for upstream or downstream movement [40] and [41]. 
Guy et al. [42] has reported a median home range of 15.8 ha. for a related spe-
cies, white crappie in a South Dakota lake. Black crappie have been observed to 
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have cove fidelity during spawning seasons at a rate of 80%.  
It should be noted that migratory studies discussed were performed on small-

er lakes ranging from 11 ha. to 1151 ha. compared to the lakes reported in this 
study, that ranged in size from 14,973 ha. to 22,662 ha. Georgian lakes sampled 
in this study contained greater depths, thermoclines and lack of suitable habitat 
proximal to dams which may affect migratory behavior downstream. Migratory 
behavior has the potential to affect gene flow between Lake Lanier and Lake Se-
minole which could be relevant for management of the species in the categoriza-
tion of black crappie species on the Chattahoochee River into isolated sub popu-
lation. Hartwell Lake’s black crappie migratory behavior would not support sig-
nificantly different Fst values due to the lack of hydrological connectivity to Lake 
Lanier and Lake Seminole. We can assume that Fst values are a product of re-
productive isolation, drift and mutation. 

The length and hydrological barriers of the Chattahoochee River support the 
observed significant Fst values. The river is estimated to be 698 km. and contains 
13 dams and three lock-and-dam facilities. Lake Lanier and Lake Seminole are 
approximately 552 km. apart and separated by 14 dams including three locks. 
Man-made barriers were implemented in the 1800’s when timber dams were 
constructed to grind corn mealand later in the twentieth century hydro electrical 
dams were erected. With numerous impediments and hundreds of kilometers to 
traverse, genetic fragmentation has been maintained and reinforced through ge-
netic drift and mutation. These populations have only been separated physically 
for an estimated 189 years, but maintain shared alleles (Hap 1, Hap 2, Hap 3). 
Gene flow in riverine systems are more inclined to move downstream instead of 
upstream [43]. However, even this connectivity may be filtered by barriers and 
distance. In essence fish population structure can be altered by hydroelectric and 
low-head dams and has been observed in several species [43] [44] [45].  

Common haplotypes observed between river systems may be explained 
through historical connectivity between southern Atlantic Slope Rivers and three 
Gulf Slope Rivers during the Oligocene Epoch [46]. The intraspecific genetic 
variation detected in black crappie sample sites on the Chattahoochee River 
(Lake Lanier and Lake Seminole) and Hartwell Lake located on the Savannah 
River maybe attributed to repeated periods of isolation and recolonization 
among riverine systems. Maurakis and Lipscomb [47], researched 19 river drai-
nages on the Atlantic Slope detecting the presence of 124 shared native species of 
cyprinid fishes indicating connectivity among the rivers of the Atlantic slope 
river drainage and the Gulf slope. Specifically four species of Nortropis were 
shared between the southern Atlantic slope and the Apalachicola drainage. It has 
been hypothesized that the Savannah River, a member of the southern Atlantic 
Slope and the Chattahoochee River belonging to the present day Gulf Drainage 
once both drained into the southern Atlantic drainage. The constant fluctuations 
in sea levels during the Oligocene, Miocene, Pliocene, and Pleistocene epoch 
could have allowed for genetic isolation and intermittent gene flow, which may 
have led to a decrease in genetic variation [48].  
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5. Conclusion 

In summary, the research presented in this study represents a baseline under-
standing of black crappie genetic structure through COI barcoding and possible 
conditions for genetic fragmentation within water systems. The populations of 
black crappie in this study have low to moderate haplotype diversity and low 
nucleotide diversity, which may affect their ability to respond to a rapidly 
changing environment, especially when coupled with increased fishing pressure. 
This species is not a highly migratory and increased gene flow through the re-
moval of man-made barriers and efficient fish passage may allow for the accu-
mulation genetic variation. While mtDNA haplotype analysis revealed signifi-
cant differentiation among the three lakes, future research should include an in-
crease in sample sites on the Chattahoochee River Basin to allow for an analysis 
of isolation by distance and the detection of shared and unique haplotypes more 
proximal to Lake Lanier and Lake Seminole. Additionally, researchers should 
increase the sample size for Hartwell Lake to better represent a 22,649 ha. lake, 
which may resolve Tijima’s D value and Fu’s Fs statistic. Continued sampling 
and genetic analysis could provide wildlife management with a powerful mole-
cular tool to ensure sustainable usage of our freshwater resources. 
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