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tural biology due to the large and exponentially grow-ABSTRACT
ing gap between the number of known protein 
sequences and the number of known structures. Predicted relative solvent accessibility (RSA) 
Despite several decades of extensive research in ter-provides useful information for prediction of 
tiary structure prediction, this task is still a big chal-binding sites and reconstruction of the 3D-
lenge, especially for sequences that do not have a sig-structure based on a protein sequence. 
nificant sequence similarity with known structures Recent years observed development of sev-
[1]. As a result, the predictions of the solvent accessi-eral RSA prediction methods including those 
bi l i ty  [2] and  the secondary  s t ruc ture [3]  a re that generate real values and those that pre-
addressed as an intermediate step towards the predic-dict discrete states (buried vs. exposed). We 
tion of the tertiary structure. The relative solvent propose a novel method for real value predic-
accessibility (RSA) reflects the degree to which a res-tion that aims at minimizing the prediction 
idue interacts with the solvent molecules. Since pro-error when compared with six existing meth-
tein-protein and protein-ligand interactions occur at ods. The proposed method is based on a two-
the protein surface, only the residues that have a stage Support Vector Regression (SVR) pre-
large surface area exposed to the solvent can possibly dictor. The improved prediction quality is a 
bind to the ligands and other proteins. As a result, pre-result of the developed composite sequence 
diction of solvent accessibility provides useful infor-representation, which includes a custom-
mation for prediction of binding sites [4] and is selected subset of features from the PSI-
vitally important for understanding the binding mech-BLAST profi le, secondary structure pre-
anism of proteins [5]. Chan and Dill pointed that the dicted with PSI-PRED, and binary code that 
burial of core residues is the driving force in protein indicates position of a given residue with 
folding, which suggests that knowledge of localiza-respect to sequence termini. Cross valida-
tion of individual residues (surface vs. buried) pro-tion tests on a benchmark dataset show that 
vides useful information to reconstruct the 3D-our method achieves 14.3 mean absolute 
structure of proteins [6-8]. error and 0.68 correlation. We also propose a 

The existing solvent accessibility prediction meth-confidence value that is associated with each 
ods use the protein sequence, which is converted into predicted RSA values. The confidence is com-
a fixed-size feature-based representation, as an input puted based on the difference in predictions 
to predict the RSA for each of the residues. These 

from the two-stage SVR and a second two-
methods can be divided into two main groups:

stage Linear Regression (LR) predictor. The 
Real valued predictors predict RSA value (the 

confidence values can be used to indicate 
definition is given in the Materials section). The rep-

the quality of the output RSA predictions.
resentative existing methods are based on linear 
regression [9], neural network based regression [11], 
neural networks [12], support vector regression [10, 
13, 15], and look up table [14]. In Ahmad's study, 
binary coding of the sequence was taken as the input 
features [12], while all other studies used the evolu-
tionary information in the form of the PSSM profile 1. INTRODUCTION
derived with PSI-BLAST as the input features [9-11, The knowledge of three dimensional protein struc-
13-15].ture plays the key role in understanding protein's 

discrete valued predictors classify each residue function. Computational prediction of the tertiary 
into a predefined set classes. The classes are usually protein structure is one of the central topics in struc-
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defined based on a threshold and include buried, given residue that is accessible to the solvent. RSA 
intermediate, and exposed classes (in most cases the valu e, whic h is norma lize d to [0, 1] int erva l, is 
predictions concern only two classes, i.e., buried vs. defined as the ratio between the solvent accessible 
exposed). The corresponding prediction methods surface area (ASA) of a residue within a three-
apply fuzzy-nearest neighbor [17], neural network dimensional structure and ASA of its extended tri-
[16, 20, 22], support vector machine [19, 21], two peptide (Ala-X-Ala) conformation
stage support vector machine [18], information the-
ory [23], and probability profile [24]. Early studies 
only use sequence to generate features [20, 23], while 
recent studies use the evolutionary information in the 
form of the PSSM profile to generate features [18, 19]. 

The PSI-BLAST profile [25] was recently intro- 2.3. Feature representation
duced as an efficient sequence representation that PSI-BLAST profile. PSI-BLAST is used to compare 
improves classification accuracy [16]. Subsequently, different protein sequences to find similar sequences 
researchers have found that secondary structure pre- and to discover evolutionary relationships [25]. PSI-
dicted using the PSI-PRED method [3] improves the BLAST generates a profile representing a set of simi-
real value RSA predictions [2]. lar protein sequences in the form of a 20 N position-

This paper investigates whether improved sequence specific scoring matrix, where N is the length of the 
representation, which is based on the information har- sequence (window) and where each amino acid in the 
vested from the sequence, the PSI-BLAST profile sequence (window) is described by 20 features. We 
and the predicted secondary structure, could lead to used PSI-BLAST with the default parameters and the 
improving the RSA predictions. We also investigate BLOSUM62 substitution matrix. The profile was 
whether it would be possible to build an index that computed for a 15 residues wide window centered on 
would indicate the quality of the predicted RSA value. a target residue and thus it consists of 300 features. 
The above hypotheses translate into the two follow- The selected size is motivated by previous studies 
ing goals: (1) we aim at proposing a prediction that adopted this window size [18] and obtained good 
method that minimizes the RSA prediction error; (2) secondary structure prediction results [3]. 
the method should provide a confidence value that Secondary structure predicted with PSI-PRED. 
indicates the quality of the predicted RSA values. The quality of secondary structure prediction has sig-

The first goal is achieved by designing a custom- nificantly improved in the last decade and nowadays 
selected set of features, which is based on performing it is successfully used in prediction of tertiary struc-
feature selection, to represent the input sequence. As ture. Recently, secondary structure predicted with the 
suggested in previous studies, the PSI-BLAST pro- PSI-PRED algorithm was shown to improve predic-
file, PSI-PRED predicted secondary structure and t ion of solvent  accessibi l i ty [2] .  We used PSI-
addit ional  features that  indicate termini  of the PRED25 with default parameters to predict second-
sequence  were adopted  to represen t  the inpu t  ary structure from the protein sequences. PSI-PRED 
sequence. In contrast to prior works, we do not use all assigns three probabilities for each residue, which 
features from the PSI-BLAST profile, but instead we correspond to the probability of assuming helix, 
use two feature selection methods to select a subset strand, and coil conformation, respectively. These 
of best-performing features. This results in a simpli- probabilities were taken as features for the proposed 
fied prediction model, reduced computational time, RSA prediction method.
and optimized predictive quality. Binary code. The amino acids that are located at 

To address the second goal, the confidence values the two termini of the sequence have larger probabil-
are computed based on the difference in predictions ity of being exposed to the solvent. This fact is imple-
of RSA by two predictors: a support vector regression mented during RSA prediction by using a binary code 
and a linear regression. These values can be used to that indicates position of a given residue that is 
indicate the quality of the output RSA predictions. located close to either terminus. The following 

binary vector

2. MATERIALS
2.1. Dataset
The dataset used in this paper is referred to as the 

is used to encode the first five positions at the N ter-Manesh da tase t [23]  and cons is t s  of 215 low-
minus (denoted by a )  and the las t f ive posi t ion similarity, i.e., < 25%, proteins. The sequences are i

available online at http://gibk21.bse.kyutech.ac.jp/ a t  the C terminus (denoted by b ) .  For  instance, i
rvp-net/all-data.tar.gz. The Manesh dataset was the third residue in the sequence is encoded as 
widely used by researchers to benchmark prediction (0,0,1,0,0 ,0 ,0 ,0 ,0 ,0) ,  while a  res idue that  is out-
methods [2, 12-15, 20, 24], and this motivated us to s ide of the f i rs t and the las t  f ive residues in the 
use it to design and validate our method. sequence is encoded as (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0) .
2.2. Relative solvet accessibility 
RSA reflects the percentage of the surface area of a 2.4. Feature selection
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PSI-BLAST profile includes 300 features, and thus user. Hence, we tested the performance of different 
feature selection methods were used to reduce the number of selected features using support vector 
dimensionality. We applied the correlation-based fea- regression model with default parameters to predict 
ture selection (CBFS), and another feature selection RSA values for the test set of the Monash dataset. The 
method, namely correlation-based method for rele- mean absolu te error (MAE) stea dily decrea ses to 
vance and redundancy analysis (CBRR), which 15.6% by adding up to 70 features, and i t saturates 
selects a subset of features based on filtering redun- when adding additional features, see . As a 
dancy within the feature set. The CBFS method is result, the 70 features with the highest Pearson corre-
based on Pearson correlation coefficient r computed lation were selected when using CBFS. The selected 
for a pair of variables (X, Y) as features include 65 features from the PSI-BLAST pro-

file, all 3 predicted secondary structure features, and 
2 binary code values that correspond to the first and 
last position in the sequence, see . 

The two feature sets selected by CBRR and CBFS 
and the full feature set (313 features) were compared 
by predicting RSA values for the test set of the 
Manesh dataset using support vector regression with  where x  is the mean of X and y  is the mean of Y. The i i
default parameters. The 15 features selected by value of r is bounded within [-1, 1] interval. Higher 
CBRR obtain 16.7% MAE, while the 70 features absolute value of r corresponds to stronger correla-
selected by CBFS and the full feature set both result tion between X and Y. This method ranks individual 
in 15.6% MAE, see . The features selected features based on the correlation coefficient between 
by CBFS provide lower MAE than the features each feature and the actual RSA values. A subset of 
selected by CBRR, and they cover only 23% of the features with the highest absolute r value is selected.
full feature set. As a result, the 70 features selected The CBRR feature selection method considers 
By CBFS were used to design the proposed predic-both the relevance of the features with respect to the 
tion model. The selected features are summarized in target (RSA values), and the redundancy between the 

features. It involves two steps: (1) selecting a subset 
The feature selection shows that most of the 300 of relevant features, and (2) selecting predominant 

features generated by PSI-BLAST are either redun-features from among the relevant features. The 
dant  and have  l i t t l e o r  no impac t  on the  RSA details can be found in [26].
Predictions.  shows that when predicting RSA The 300 features corresponding to the PSI-BLAST 
for the residue A  that is located in the center of the iprofile, 3 features corresponding to the predicted sec-
window:ondary structure and 10 binary code values were pro-

the features to encode the two leftmost positions cessed with both feature selection methods. The fea-
(A , A ) and the rightmost position (A ) were not ture selection was processed using the training set of i-7 i-6 i+7

Manesh dataset, which includes 30 sequences [14, 20]. selected, i.e., these amino acids have no impact on 
The CBRR method automatically filters the redun- the prediction of the central amino acid. Therefore, a 

dancy among the features and selects the final num- sliding window of size 13 would be sufficient for the 
ber of selected features, which in our case was 15. RSA prediction. The two amino acids that are adja-
The selected features include 13 features from the cent to A , i.e., A  and A , have the most significant i i-1 i+1
PSI-BLAST profile, and 2 predicted secondary struc- impact on the prediction since they correspond to the 
ture features, see . In case of CBFS, the num- largest number of the selected features. Interestingly, 
ber of selected features should be specified by the 

Figure 1

Table 1

Figure 2

Table 2

Table 2

Table 1

.

Figure 1. The MAE values against the number of selected 
features. The MAE is obtained by using support vector 
regression with default parameters to predict test set of the 
Monash dataset.

Figure 2. Bar chart of MAE values (white) and number of 
features (gray) for features selected by CBRR, CBFS, and 
the full feature set.
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and test a confidence value that is associated with 
each predicted RSA value. 

The proposed two-stage prediction model works as 
follows:

STAGE 1. The input sequences is inputted into 
PSIPRED to compute predicted secondary structure 
and into PSI-BLAST to compute the PSI-BLAST pro-
file. Next, the input sequence, the predicted second-
ary structure, and the PSI-BLAST profile are used to 
compute the selected 70 features using a 15 residues 
wide window centered over the being predicted resi-
due, and for each residue in the input sequence. The 

residues at i-2 and i+2 positions have relatively small 70 features are used as an input to the LR model and 
influence on the prediction. SVR model that predict a real value (predicted RSA 

The selected features are almost symmetrically value) for the central residue in a given window. 
distributed around A , e.g., amino acids E, K, Q, R, i STAGE 2.   The aim of the stage two is to refine the 
and D have similar impact on the solvent accessibil- predictions from stage one. Similarly to other two-
ity of the central residue at the third left position (A ) stage designs [13,18], the second stage “smoothes” the i-3

predictions. It takes the three predicted secondary and the third right position  (A ). i+3
s t ruc tu re  f ea tu re s ( compu ted  in s t age  one by  Hydrophilic residues, which include E, K, Q, R, 
PSIPRED) and a 7 residues wide window from the and D, may have impact on the solvent accessibility 
first stage predictions centered over the predicted res-of A  residue which is 3 or 4 positions away from the i idue as the input to provide the refined real value pre-

these residues. This pattern covers 19 of the selected dictions. 
features and we hypothesize that this is related to the Since the prediction quality of SVR is better than 
á-helical structures due to the following two reasons. the quality of LR (results are discussed in the follow-
Firstly, these 5 hydrophilic residues have larger prob- ing), the predictions from SVR are taken as the final 
ability (above 0.5) to form helical structure than prediction outcome.  The LR results serve as a refer-
strand and coil structures [27]. Secondly, á-helix con- ence to evaluate quality of SVR predictions. This 
sists of 3.6 residues per turn, and hence if two resi- means that if predictions from SVR and LR are simi-
dues in a helix are separated by 2 or 3 residues in the lar then SVR predictions are assumed to be of high 
sequence then they are spatially close to each other, quality. On the other hand, if the two predictions are 
which in turn may induce some interactions between different then the SVR prediction is assumed to be of 
them. For instance, the hydrogen bond that maintains lower quality. The corresponding confidence value is 
the helical structure occurs between two residues that defined as
are separated in a sequence by three other residues, 
i.e., A  and A .i i+4

where R  is the predicted RSA from SVR, and T  is the 3. METHODS i i

predicted RSA from LR. A detailed overview of the 3.1. Prediction method
prediction procedure is shown in .L i n e a r  R e g r e s s i o n ( L R )  a n d S u p p o r t  Ve c t o r  

The optimization of the prediction, through adjust-Regression (SVR) were already applied in the RSA 
ment of internal parameters of the predictors and prediction [10,13,15]. In this paper, we propose an 
selection of the window size for the second stage, improved two-stage model, which not only aims at 
was performed by dividing the Manesh dataset into reducing the prediction error, but we also propose 

Figure 3

Table 1. Summary of the feature selection results.

Features set

PSI-BLAST profile 
 Binary code

  
Predicted second. structure

Total

Total # 
features

300

10

3

313

# selected 
features by 

CBFS

65

2

3

70

# selected 
features by 
CBRR

13

0

2

15

Table 2. Summary of feature selection results for the PSI-BLAST profile by correlation-based feature selection method.

15-wide window

Total # of features

# of selected features   

The selected features

Ai-7

20

0

Ai-6

20

0

Ai-5

20

2

I

L

Ai-4

20

4

E

K

Q

R

Ai-3

20

5

E

K

Q

R

D

Ai-2

20

0

Ai-1

20

8

E

K

Q

R

D

N

P

S

Ai

20

19

C D

E F

G H

I K

L M

N P

Q R

S T

V W

Y

Ai+1

20

7

E

K

Q

H

D

N

G

Ai+2

20

1

P

Ai+3

20

6

E

K

Q

R

D

P

Ai+4

20

6

E

K

Q

R

D

P

Ai+5

20

4

I

L

V

F

Ai+6

20

3

I

L

V

Ai+7

20

0

(3)

Table 1. Summary of the feature selection results.

4      K. Chen et al./J. Biomedical Science and Engineering 1 (2008) 1-9

SciRes JBiSE Copyright © 2008                                                                                                                                                 



two subsets, one used to compute the prediction 
model and the other to perform test. Similarly to [14], 
30 sequences were used for training and the remain-
ing 185 as the test set. The linear regression is 
parameterless and thus it does not require optimiza-
tion. For SVR, RBF kernel was used for both stages. 
The parameters for the first stage SVR are ã=0.01 and 
C=1, and for the second stage ã=0.15 and C=1. These 
parameters, which were based on experiments sum-
marized in , provide the lowest MAE. We note 
that the adjustment of C has little impact in the qual-
ity of predictions. The MAE of the final prediction 
for the second stage windows sizes of 5, 7, 9, 11, 15, 
and 21 equal 0.149, 0.148, 0.148, 0.148, 0.148, and 
0.148, respectively. This shows that the window size 
of 7 is the best choice to provide accurate predictions.

3.2. Linear regreesion
A linear regression with p coefficients and n data 
points (number of samples), assuming that n>p, cor-
responds to the construction of the following expres-
sion:

3.3. Support vector regression
Given a training set of n data point pairs (x , y ), i = 1, i i

2,…, n, where x  denotes the vector of p features rep-i
th

resenting i  protein sequence, y  denotes the pre-i

dicted RSA value,  f inding the opt imal  SVR is 
achieved by solving:

where y  is the predicted RSA value, x  = (x , x ,…, i i i1 i2
thx ) is the vector of p features representing i  protein ip

sequence, â (constant) is parameter to be estimated,  i

and å  is the standard error. The above formula can be such thati

written in vector-matrix form as:

The solution to minimize the mean square error ||å || i

is

where w is a vector perpendicular to wx-b=0 hyperplane, 
* C is a user defined complexity constant, î  and î are i i

Table 3

First stage Second stage

MAE

0.150

0.149

0.148

0.148

0.148

0.149

0.148

0.148

0.148

0.148

0.148

0.148

Parameter 

C

1

1

1

1

1

1

0.5

0.8

1

2

3

5

Parameter

 C

1

1

1

1

1

1

0.5

0.8

1

2

3

5

MAE

0.157

0.153

0.151

0.151

0.152

0.155

0.152

0.151

0.151

0.151

0.151

0.152

Parameter

 ã

0.001

0.005

0.01

0.02

0.03

0.05

0.01

0.01

0.01

0.01

0.01

0.01

Parameter 

ã

0.01

0.08

0.15

0.2

0.3

0.4

0.15

0.15

0.15

0.15

0.15

0.15

Table 3. Optimization of parameters for two-stage SVR.

Figure 3

Table 1

. RSA prediction with the proposed system; the RSA 
th value for the i residue is predicted based on the 70 feature 

values (see ) that are computed over a 15 residues 
th

wide window centered on i  residue; the feature values are 
inputted into the first-stage predictor (LR and SVR); next, the 
first-stage predictions are aggregated into 7 residue wide 
windows and inputted, together with the predicted secondary 
structure of the central residue, into the second-stage 
predictor that provides the RSA values. Finally, compare the 
predictions from SVR and LR, and calculate the confidence 
value C.

(5)

(6)

(7)

(8)
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A A … A A A …A A1 2 i-1 i i+1 n-1 n

PSI-PRED Select 15-wide window

A A …A …A Ai-7 i-6 i i+6 i+7
Predicted 
secondary 
structure

ss ss …ss …ss ss1 2 i n-1 n

Compute 70 features

Features values for the 15-wide window

Input feature vectors for 
all residues, i=1,2,…,n

First-stage SVR First-stage LR

r r … r r r …r r1 2 i-1 i i+1 n-1 n t t … t t t …t t1 2 i-1 i i+1 n-1 n

Select 7-wide window

r r … r …r ri-3 i-2 i i+2 i+3 t t … t …t ti-3 i-2 i i+2 i+3

Input feature vectors for 

all residues, i=1,2,…,N

Second-stage SVR Second-stage LR

T T …T …T T1 2 i n-1 n

Compute 
confidence value

R R …R …R R1 2 i n-1 n

C C …C …C C  1 2 i n-1 n



slack variables that measure the degree of prediction posed method equals 14.6 and the corres pondin g 
error of x  for a given hyperplane, and z= (x) where Pearson's correlation coefficient (r) equals 0.67. i

After the second stage, the MAE value is reduced to k(x,x')= (x) (x') is a user defined kernel function.
14.3 and r is improved to 0.68.  compares the The SVR was trained using sequential minimal 
proposed two-stage SVR with recent methods for optimization algorithm [28] that was further opti-
RSA prediction, which include neural network and mized by Shevade and colleagues [29]. The proposed 
support vector regression models [2, 12, 13, 15]. The SVR uses RBF kernel 
proposed method obtains 0.6 to 3.7 lower MAE when 
compared with the abovementioned methods. This 
translates into 4% to 20% error reduction, respec-

for both stages. tively. Since some methods predict discrete valued 
classes (exposed vs. buried), we also examined the 
performance of our method by converting the real 4. RESULTS AND DISCUSSION
value prediction into the two states prediction. We fol-

The SVR and LR predictors were implemented in 
lowed the standard approach, in which the state is 

Weka [30], which is a comprehensive open-source 
defined based on the predicted RSA value and a pre-

library of machine learning methods. The Manesh 
defined threshold. For instance, a 5% threshold 

dataset consists of 50682 instances (individual resi-
means that the residues having an RSA value (%) 

dues). The evaluation was performed using two test 
greater or equal 5 are defined as exposed, and other-

types to allow for a comprehensive comparison with 
wise they are classified as buried. The threshold's 

previous studies. To compare with [2] and [12], 5-
value is usually adjusted between 5% and 50%. We 

folds cross validation was executed. On the other 
note that for all thresholds, our method provides the 

hand, following several other prior studies [14, 20, 
highest accuracy, see . The proposed two-

24], Manesh dataset was divided into two subsets, 30 
stage model provides 0.3%-0.6% higher accuracies 

sequences were used for training and the remaining 
than the prediction coming from the first stage for var-

185 as independent test set. The results of both tests, 
ious thresholds. When compared to the best perform-

i.e., 5 folds cross-validation and independent test, 
ing, existing two-stage SVR method [13], our predic-

were reported in . In total, the pro-
tions are characterized by lower MAE and more accu-

posed method was compared with six real value RSA 
rate two states predictions.

prediction methods [2, 12-15, 24] and one method 
For the independent test, the MAE value for the 

that aims at prediction of discrete states [20].
first stage of the proposed method equals 15.0 and the 

We note that in statistical prediction, the following 
corresponding Pearson's correlation coefficient r 

three cross-validation methods are often used to 
equals 0.66. After the second stage, the MAE value is 

examine a predictor for its effectiveness in practical 
reduced to 14.8 and r is improved to 0.67. Table 5 

application: independent dataset test, sub-sampling 
compares the proposed two-stage SVR with recent 

(such as 5-fold and 7-fold) test, and jackknife test [31]. 
methods for RSA prediction, which include neural 

However, as elucidated by [32] and demonstrated in 
network and look-up table based methods [14, 20, 24]. 

[33], among the three cross-validation methods, the 
The proposed method obtains 1.5 to 4.0 lower MAE 

jackknife test is deemed the most objective that can 
when compared with the above three methods. This 

always yield a unique result for a given benchmark 
translates into 9% to 21% error reduction, respec-

dataset, and hence has been increasingly used by 
tively. Similarly to the 5-folds cross validation test, 

investigators to examine the accuracy of various pre-
we also examined the performance of our method by 

dictors [34-42].
converting the real value prediction into the two 
states prediction. The threshold's value was adjusted 

4.1. Comparison with competing prediction between 5 and 50%. 
methods For all thresholds our method consistently pro-
For the 5 folds cross-validation test, the mean abso- vides the highest accuracy, see . The two-
lute error (MAE) value of the first stage of the pro-

Table 4

Table 4

Tables 4 and 5

Table 5

Table 4. Experimental comparison between the proposed two-stage SVR and other reported methods; the results were 
reported based on 3 or 5-folds cross validation test; the real valued predictions were converted to two state prediction (buried 
vs. exposed) with different threshold (5%~50%); unreported results are denoted by “-“; best results are shown in bold.

Reference

[2]

[11]

[12]

[14]  
 This paper

This paper

Prediction 
method

Neural Network 
Neural Network 

 Two-stage SVR

SVR
 

One-stage SVR 
Two-stage SVR

MAE (%)

15.2

18.0

14.9

16.3

14.6

14.3

Correlation 
coefficient r

0.67

0.50

0.68

0.58

0.67

0.68

5%

74.9%

-

81.1%

-

80.5%

81.1%

20%

77.7%

-

77.6%

-

78.3%

78.8%

10%

77.2%

-

78.5%

-

79.1%

79.7%

30%

77.8%

-

-

-

78.3%

78.6%

40%

78.1%

-

-

-

78.3%

78.8%

50%

80.5%

-

79.5%

-

80.5%

80.8%

Accuracy for two-states (buried vs. exposed) prediction
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stage model provides 0.3%-0.5% higher accuracies between 0 and 0.294. As a result, the confide nce 
than the one-stage model for various thresholds. value C distributed in the interval [0.706, 1] for the 
When compared with the best-performing, compet- Manesh dataset. Higher C values indicate that the pre-
ing method based on neural network [24], our predic- dictions from SVR and LR are more consistent, and 
tions result in higher accuracies over all thresholds, there fore the corre spond ing predi ction s f rom the 
i.e., the differences range between 4% and 5.8%, and two-stage SVR are assumed to be more accurate.
better MAE and correlation coefficient value. Th e C value of 7101 samples , which covers 

The three main observations based on the per- 7101/50682= 14% of the dataset, are greater than 
formed empirical evaluation include: (1) the pro- 0.99, and the corresponding MAE of these samples 
posed two-state predictor obtains favorable (lower) equals 0.122, see . The C value of 12846 sam-
error rates when compared with six competing meth- ple s, whi ch cov ers 128 46/ 506 82= 25. 3% of the 
ods; (2) the improvements are obtained for both real dataset, are greater than 0.98, and the corresponding 
value and two-state predictions; and (3) the introduc- MAE of these samples equals 0.131. The C value of 
tion of the second stage in our design allows for 18174 samples, which covers 18174/50682= 35.9% 
obtaining improved predictions when compared with of the dataset, are greater than 0.97, and the MAE of 
a one stage design. these samples is 0.136. When the threshold for C 

value is set equal or lower than 0.96, the MAE satu-
4.2. Confidence value for RSA prediction rates at 0.143, see , which is equal to the 
As one of the goals of this work, we defined confi- MAE for the entire dataset (without using the confi-
dence values to measure the quality of the predicted dence values). This shows that the confidence values 
RSA. The confidence values are based on the differ- can be used to identify a subset of the predictions 
ence of predictions made by the two-stage SVR and which on average have better quality than the remain-
the two-stage LR. The following discussion is based ing predictions. This way, the user could select a 
on results of five folds cross-validation tests. desired fraction of best performing predictions. 

The MAE for two-stage SVR is 0.143 and for two- Additionally, the user could inspect quality of predic-
stage LR is 0.155. The difference between the predic- tion for specific amino acids or groupings of amino 
tions from SVR and LR for the same residues ranges acids that share certain properties such as hydrop hob ici ty, 

charge, size, etc.

5. CONCLUSIONS
This paper proposes a novel method for the real value 
RSA prediction. The proposed method addresses two 
goals, which include improving the quality of RSA 
prediction, and development of a confidence value 
that allows for selection of better performing RSA 
predictions. 

Empirical tests with the Manesh dataset show that 
the proposed method is characterized by lower pre-
diction error when compared with six competing real 
value RSA prediction methods. We also show that the 
PSI-BLAST profile that is commonly used to repre-
sent sequences can by largely reduced by using fea-
ture selection, which results a simpler, interpretable 
model and in reduction of the computational time 
required to develop the prediction model. Our model 
indicates that window size of 13 is sufficient and only 
about 22% of the PSI-BLAST features are useful for 

Figure 4

Figure 4

Table 5. Experimental comparison between the proposed two-stage SVR and other reported methods; the results were 
reported based on a test on the independent dataset (30 sequences for training and 185 sequences for test); the real valued 
predictions were converted to two state prediction (buried vs. exposed) with different threshold (5%~50%); unreported 
results are denoted by “-“; best results are shown in bold.

Reference

[13]

[19]

[23]

This paper

This paper

Prediction 

method

 Look-up table
 Neural Network
 Neural Network

 One-stage SVR
 Two-stage SVR

MAE (%)

18.8
-

16.3

15.0

14.8

Correlation 

 coefficient r

0.48

-

0.58

0.66

0.67

Accuracy for two-states (buried vs. exposed) prediction

5%

-

74.6%

75.7%

79.8%

80.3%

10%

-

71.2%

73.4%

78.7%

79.2%

20%

-

-

-

77.7%

78.1%

30%

-

-

-

77.7%

78.0%

40%

-

-

-

77.5%

78.0%

50%

-

75.9%

76.2%

79.8%

80.2%

Figure 4. Bar chart of MAE values for the corresponding 
thresholds of confidence value C. The numbers above the 
bar show the corresponding coverage, i.e., number of 
residues for which the predictions had confidence value 
above the threshold. For example, for residues predicted 
with which C > 0.99 the MAE equals 12.2, and these 
residues cover 14% of the dataset.
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has reduced stress concentrations in the ABSTRACT
crown. However, because the torque is trans-
ferred through the abutment screw to the abut-Objectives: The abutment connection with 
ment contact, changing the torque has greater the crown is fundamental to the structural 
effect on this hex system than the masticatory stabil ity of the implant system and to the pre-
force. Overall the masticatory force is more vention of mechanical exertion that can com-
influential on the stress within the crown for promise the success of the implant treatment. 
the external-hex system and the torque is more The aim of this study is to clarify the difference 
influential on the internal-hex system.in the stress distribution patterns between 

implants with internal and external-hex con-
nections with the crown using the Finite Ele-
ment Method (FEM). Material and Methods: The 
internal and external-hex connections of the 
Neoss and 3i implant systems respectively, are 1. INTRODUCTION
considered. The geometrical properties of the Dental implants are a consistently accepted form of 
implant systems are modeled using three- dental treatment. Clinical research in oral implantology 
dimensional (3D) brick elements. Loading con- has led to advancements in the biom echan ical as pects 
ditions include a masticatory force of 200, 500 of implants, implant surface features and implant 
and 1000N applied to the occlusal surface of componen t ry . These  advancements in  implan t 
the crown along with an abutment screw torque componentry include the modification of the exter-
of 110, 320 and 550Nmm. The von Mises stress nal-hex connection between the abutment and crown 
distribution in the crown is examined for all to the currently used internal-hex ( )). 
loading conditions. Assumptions made in the Although both internal and external-hex connected 
modeling include: 1. half of the implant system implant systems are extensively used, distinctly dif-
is modeled and symmetrical boundary condi- ferent performances are on offer in terms of the stress 
tions applied; 2. temperature sensitive ele- characteristics produced within the crown. Observa-
ments are used to replicate the torque within tions by practitioners have aided the identification of 
the abutment screw. Results: The connection implant components which lead to mechanical failure 
type strongly influences the resulting stress of the crown and implant [1-3]. Failure may be 

defined as the point at which the material exceeds the characteristics within the crown. The magni-
fracture stress, as indicated by its stress strain rela-tude of stress produced by the internal-hex 
tionship. There are two major factors which can implant system is generally lower than that of 
cause the crown and implant to fai l .  These are the external-hex system. The internal-hex sys-
described below;tem held an advantage by including the use of 

- typically, over tightening of the abutment screw an abutment between the abutment screw and 
causes failure of the crown for internal and external-the crown. Conclusions: The geometrical 
hex systems.design of the external-hex system tends to 

- failure of the implant may also be a result of over induce stress concentrations in the crown at a 
t ightening of the  abutment screw or excessive distance of 2.89mm from the apex. At this loca-
masticatory loads being transferred from the occlusal tion the torque applied to the abutment screw 
plane of the crown to an area of stress concentration also affects the stresses, so that the compres-
at the interface between the abutment and implant sive stresses on the right hand side of the 
body.crown are increased. The internal-hex system 

Keywords: Component; Biomedical modelling; 
Dental implant; Finite  element  technique
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Using theoretical techniques, such as the FEM, all 
mechanical aspects that could affect the implant suc-
cess can be evaluated. FEM has been used exten-
sively to evaluate the performance of dental implant 
prosthesis [4-15]. Studies by Maeda et al. (2006), 
Merz et al. (2000) and Khraisat et al. (2002) have all 
considered the behavior of the stress within the abut-
ment screw however disregarding the stress within 
the crown. To date no published research appears to 
have investigated the stress characteristics in the 
crown due to an internal or external-hex system. Ulti-
mately, the outcome of this study will facilitate den-
tal practitioners to identify locations within the 
implant system that are susceptible to stress concen-
trations.

2. METHODOLOGY
The modeling and simulation herein are performed 
using the Strand7 Finite Element Analysis (FEA) Sys-
tem (2004). The first step of the modeling is to define 
the geometry of the implant system. This is then fol-
lowed by specifying the material behavior in terms of 
the Young's modulus, Poisson's ratio and density for 
the implant and componentry. After applying the 
appropriate loading and restraint conditions, the 

c) Locations for measuring stress profile and contour 

a) Loading and restraint conditions 
    (with detailed variables) 

Figure 1.   Finite element model of internal and external-hex systems.

internal and external-hex systems can be evaluated 
for their contributions to the stress characteristics 
within the crown.

2.1. Modelling
Data acquisition for the internal and external-hex sys-
tems are obtained from the manufacturer's data. 
Shown in ) are details of the Neoss (2006) 
and 3i (2006) systems. 

Shown in ) are the detailed variables con-
sidered in this study. The implant is conical with 2 
degrees of taperage, a helical thread, diameter of 
4 . 5 m m ,  a n d  l e n g t h o f  1 1 m m . D i f f e r e n t  f i x e d 
restraints are applied to the symmetrical edge of the 
implant system as compared to the outer edge of 
implant thread. The symmetrical edge is restrained 
from rotating around the z-axis and translating 
through the x- and y-axis. The outer edge of the 
implant thread is restrained from deforming in any 
direction. Note that these loading and restraint condi-
tions are the same for both internal and external-hex 
systems.

For the Neoss and 3i finite element models, the 
total numbers of elements are respectively 13464 and 
30420 for the implant, 3564 and 9108 for the abut-
ment, 17424 and 25956 for the abutment screw, 
38484 and 47052 for the crown. The total number of 
nodal points for the entire Neoss and 3i models are 
82547 and 122688  respectively.

2.2. Stress Measuring
As indicated in ) the von Mises stresses 
along the lines NN (NN , NN and NN ) and II 1-2 2-3 3-4

(II , II , II , II , II and II ) for the Neoss  1-2 2-3 3-4 4-5 5-6 6-7

and 3i systems respectively, are measured for all pos-
sible combinations of loading. Note that, for example, 
along the line II the beginning location of the line  1-2

is identified as II  and the end as II . These locations 1 2

are believed by clinicians to be critical for examining 
the stress levels in the crown. Note that both lines NN 
and II are chosen on Section AA because the highest 
stress magnitudes (compressive is prominent over ten-

Figure 1b

Figure 1a

Figure 1c
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sile) occur on this plane due to the masticatory load-
ing characteristics.

2.3. Loading Conditions
Masticatory force, F , is applied to the occlusal sur-M

oface of the crown at 100, 250 or 500N, inclined at 45  
along the x- and y-axis ( ). The preload, F , P

of 100.97, 293.72 or 504.84N is applied to the abut-
ment screw through the use of temperature sensitive 
elements ( )). Note that F  and F  are set to M P

half of the total magnitude because only half of the 
implant system is modelled. Therefore the total F  M

modelled is 200, 500, 1000N and F  is 201.93, 587.44, P

1009.67N. The manner of modelling the masticatory 
forces and the preload applied to the abutment screw 
is described by van Staden et al. (2008). In this study 
both the abutment screw preload, F , and surface area P

between abutment and abutment screw are halved 
when compared with that used by van Staden et al. 
(2008) due to the modelling assumption aforemen-
tioned. Calculations for the abutment screw surface 
pressure, q, confer identical results than that found by 
van Staden et al. (2008).

For the present study a negative temperature (-10 
Kelvin, K) is applied to all the nodal points within the 
abutment screw, causing each element to shrink. A 
trial and error process is applied to determine the tem-
perature coefficient, C, for both the Neoss and 3i sys-
tems (i.e. C  and C ) that can yield an equivalent Neoss 3i

Figure 1a

Figure 1a

Figure 2. Stress characteristics when varying F .M Figure 3. Stress characteristics when varying F .P

a) Stress profile b) Stress contour

c) Stress profile d) Stress contour

a) Stress profile b) Stress contour

c) Stress profile d) Stress contour

q. It is found that when F =201.93, 587.44 and 1009.67N P
-4 -4 -4

then C =-3.51×10 , -9.28×10  and -15.60×10  /K, Neoss
-4 -4 -4

and C =-0.98×10 , -1.80×10  and -2.68×10  /K, respec-3i

tively.

2.4. Material Properties
The material properties used are specified in terms of 
Young's modulus, Poisson's ratio and the density for 
the implant and all associated components ( ). 
All material properties are assumed to be linear, 
homogeneous and elastic in behavior. 

3. RESULTS DISCUSSION
Zirconia typically used as a dielectric material has 
proven adequate for application in dentistry. With its 
typical white appearance and high Young's moduli it 
is ideal to be used in the manufacturing of sub frames 

Table 1

Table 1. Material propertles.

Component

Implantand
abutment  

Abutment
screw  

Crown

Description

Titanium
(grade4)
  Gold(prec-
isionalloy) 

 Zirconia(Y-
TZP)  

Young's  mo-

dulus, E (Gpa)

105.00

93.00

172.00

Poisons 

ratio, v

0.37

0.30

0.33

Density, p

 (g/cm3)

4.51

16.30

6.05
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stresses along the lines NN and II for all values of F  Pfor the construction of dental restorations such as 
are shown in . crowns and bridges, which are then veneered with 

As found for F , when F  increases the stresses conventional feldspathic porcelain. Zirconia has a M P

fracture strength that exceeds that of Titanium there- calculated along the line NN increase, showing two 
fore it may be considered as a high strength material. peaks along the line NN (refer to ) and  3-4
However with cyclic preload and masticatory loads )). Also, as found for F , elevated stress M
the compressive strength of 2.1GPa (Curtis et al. 

peaks are identified at the beginning of the line II  3-42005) can easily be exceeded especially for implant 
( ) and )). Overall, all values of systems with external-hex connections, as confirmed 
F  cause greater stresses along lines NN and II, than Mduring this study. 
do varying values of F .The distribution of von Mises stresses in the crown P

is discussed for both the internal and external-hex sys-
tems for all combinations of masticatory and preload 4. DISCUSSION
forces. Shown in ), are the von Mises FEA has been used extensively to predict the 
stresses measured between locations NN  (0-1-2 biomechanical performance of the jawbone sur-
1.76mm), NN  (1.76-1.87mm) and NN (1.87- rounding a dental implant [21, 22]. Previous research 2-3 3-4

considered the influence of the implant dimensions 3.96mm) for the Neoss system. For the 3i system the 
and the bone-implant bond on the stress in the sur-von Mises stresses are measured between locations 
rounding bone. However, to date no research has II (0-2.38mm), II (2.38-2.78mm), II (2.78-   1-2 2-3 3-4
been conducted to evaluate the stress produced by dif-3.67mm), II (3.67-4.06mm), II (4.06-4.65mm)   4-5 5-6 ferent implant to crown connections (i.e. internal and 

and II (4.65-5.27mm), as shown in ).  6-7 external-hex). The analysis completed in this paper 
uses the FEM to replicate internal and external-hex 
systems when subjected to both F  and F  loading M P3.1. Masticatory Force, F  M
conditions. As shown in , two stress peaks 

The distributions of von Mises stresses along the 
were revealed along the lines NN and II at locations 

lines NN and II for all values of F  are shown inM 3.76 and 2.89mm from the top. The stress values 
 Note that the preload, F , is set at its medium p shown were calculated with the other variables (i.e. 

value, i.e. 587.44N. F  or F ) set to its average. M P
In general, when the applied masticatory force, F , M The mastication force F  is applied on the M

is increased, the von Mises stresses also increase pro- occlusal surface of the crown, evenly distributed 
portionally, because the system being analysed is lin- along 378 nodal locations ( ), and orien-

oear elastic. When F  increases the stress along the M tated at 45  in the x-y plane. This induces compres-
line NN increases showing two peaks along the line sive stresses in the right hand side of the crown and 
NN (refer to )). The larger of these two tensile in the left. Varying F  from 200 to 1000N for  3-4 M
peaks occurs at a distance of ±3.8mm in length from the internal and external-hex systems results in a 
NN . This stress peak (as can be identified in change in von Mises stress of 545.64 (818.47-1

272.82MPa) and 698.09MPa (1047.14-349.05MPa) )) is caused by a sharp corner and sudden change in 
respectively. The geometrical design of the external-section at this point. 
hex system tends to induce stress concentrations, Elevated stress concentrations are identified at the 
located 2.89mm from the apex in this study. For this beginning of the line II  ( ) and )). 3-4
system, a stress concentration at this point is also This stress peak, as can be identified in ), is 
induced by F , increasing the compressive stresses Pcaused by a sharp corner at this point. For the 3i sys-
on the right hand side of the crown. Increasing F  tem, the volume of the crown exceeds that of the P

Neoss system, thereby suggesting that the 3i crown from its minimum to maximum values, for the exter-
may endeavor greater resistance to the applied nal-hex system, increases the stress by 485.46MPa 
masticatory forces. However, even though the Neoss (951.67-466.21MPa). 
crown has a thinner wall thickness along the line The internal-hex system has reduced stress concen-
NN , reduced stresses are still evident due to the 3-4

abutments high Young's modulus. Overall, the design 
differences between the Neoss and 3i systems ulti-
mately results in the 3i system having higher stresses 
when F  is increased. M

3.2. Preload Force, F  P

To investigate the effect of different preload F , F  P M

is kept as a constant and its medium value, i.e. 500N 
is considered herein. The distributions of von Mises 
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Table 2. Von Mises stress (MPa) in crown (location of stress 
recording in brackets).

Variables
                 

Line

NN 
(3.76mm)

    II
(2.89mm)

F (N) F (N)M P                                    

200

272.82

349.05

500

545.64

698.09

1000

818.47

1047.14

201.93

231.55

466.21

587.44

545.64

698.09

1009.67

891.83

951.67
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