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ABSTRACT

Predicted relative solvent accessibility (RSA)
provides useful information for prediction of
binding sites and reconstruction of the 3D-
structure based on a protein sequence.
Recent years observed development of sev-
eral RSA prediction methods including those
that generate real values and those that pre-
dict discrete states (buried vs. exposed). We
propose anovel method for real value predic-
tion that aims at minimizing the prediction
error when compared with six existing meth-
ods. Theproposed method is based on atwo-
stage Support Vector Regression (SVR) pre-
dictor. The improved prediction quality is a
result of the developed composite sequence
representation, which includes a custom-
selected subset of features from the PSI-
BLAST profile, secondary structure pre-
dicted with PSI-PRED, and binary code that
indicates position of a given residue with
respect to sequence termini. Cross valida-
tion tests on abenchmark dataset show that
our method achieves 14.3 mean absolute
error and 0.68 correlation. We also propose a
confidence valuethat isassociated with each
predicted RSAvalues. Theconfidence iscom-
puted based on the difference in predictions
from the two-stage SVR and a second two-
stage Linear Regression (LR) predictor. The
confidence values can be used to indicate
the quality of theoutput RSA predictions.

Keywords: Relative solvent accessibility;
Support vector regression; PSI-BLAST; PSI-
PRED; Secondary protein structure

1. INTRODUCTION

The knowledge of three dimensional protein struc-
ture plays the key role in understanding protein's
function. Computational prediction of the tertiary
protein structureis one of the central topicsin struc-
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tural biology due tothe largeand exponentially grow-
ing gap between the number of known protein
sequences and the number of known structures.
Despite several decadesof extensive researchin ter-
tiary structure prediction, this task isstill a bigchal-
lenge, especially for sequences that donot have asig-
nificant sequence similarity with known structures
[1]. Asaresult,the predictions of the solvent accessi-
bility [2] and the secondary structure [3] are
addressed as anintermediate step towardsthe predic-
tion of the tertiary structure. The relative solvent
accessibility (RSA) reflectsthe degree towhich ares
idue interacts with the solvent molecules. Since pro-
tein-protein and protein-ligand interactions occur at
the protein surface, only the residues that have a
large surfacearea exposed tothe solvent canpossibly
bind tothe ligandsand other proteins. As aresult, pre-
diction of solvent accessibility provides useful infor-
mation for prediction of binding sites [4] and is
vitally important for understanding the bindingmech-
anism of proteins [5]. Chan and Dill pointed that the
burial of coreresidues is thedriving force inprotein
folding, which suggeststhat knowledge of localiza-
tion of individual residues (surface vs. buried) pro-
vides useful information to reconstruct the 3D-
structure of proteins [6-8].

The existing solventaccessibility prediction meth-
ods use theprotein sequence, whichis converted into
a fixed-size feature-based representation, as an input
to predict the RSA for each of the residues. These
methods can be divided into two main groups:

- Real valued predictors predict RSA value (the
definition is givenin the Materialssection). Therep-
resentative existing methods are based on linear
regression [9], neural network based regression [11],
neural networks[12], support vector regression [10,
13, 15], and look up table [14]. In Ahmad's study,
binary coding of the sequence wastaken asthe input
features [12], whileall other studiesused the evolu
tionary information inthe form of the PSSM profile
derived with PSI-BLAST asthe input features [9-11,
13-15].

- discrete valued predictors classify each residue
into a predefined set classes. The classes are usually
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defined based on a threshold and include buried,
intermediate, and exposed classes (inh most cases the
predictions concern only two classes, i.e., buried vs.
exposed). The corresponding prediction methods
apply fuzzy-nearest neighbor [17], neural network
[16, 20, 22], support vector machine [19, 21], two
stage support vector machine [18], information the-
ory [23], and probability profile [24]. Early studies
only use sequenceto generate features[ 20, 23], while
recent studiesuse theevolutionary informationin the

form of the PSSM profile togenerate features[18, 19].

The PSI-BLAST profile [25] was recently intro-
duced as an efficient sequence representation that
improves classification accuracy [16]. Subsequently,
researchers have found that secondary structure pre-
dicted using the PSI-PRED method [3] improves the
real valueRSA predictions[2].

This paper investigateswhether improved sequence
representation, which isbased on theinformation har-
vested from the sequence, the PSI-BLAST profile
and the predicted secondary structure, could lead to
improving the RSA predictions. We also investigate
whether it would be possible to build an index that
would indicate thequality of thepredicted RSA value.
The above hypotheses translate into the two follow-
ing goals: (1) we aim at proposing a prediction
method that minimizes the RSA prediction error; (2)
the method should provide a confidence value that
indicates the quality of the predicted RSA values.

The first goal is achieved by designing a custom-
selected set of features, which isbased on performing
feature selection, torepresent the input sequence. As
suggested in previous studies, the PSI-BLAST pro-
file, PSI-PRED predicted secondary structure and
additional features that indicate termini of the
sequence were adopted to represent the input
sequence. In contrastto prior works,we do notuse all
features from the PSI-BLAST profile, but instead we
use two feature selection methods to select a subset
of best-performing features. This resultsin a simpli-
fied prediction model, reduced computational time,
and optimized predictivequality.

To address the second goal, the confidencevalues
are computed based on the differencein predictions
of RSA by two predictors; asupport vector regression
and a linear regression. These values can be used to
indicate thequality of the output RSA predictions.

2. MATERIALS

2.1. Dataset

The dataset used in this paper is referred to as the
Manesh dataset [23] and consists of 215 low-
similarity, i.e., < 25%, proteins. The sequences are
available online at http://gibk21.bse.kyutech.ac.jp/
rvp-net/all-data.tar.gz. The Manesh dataset was
widely used by researchersto benchmark prediction
methods [2, 12-15, 20, 24], and this motivated usto
useitto designand validate our method.

2.2. Relativesolvet accessibility

RSA reflects the percentage of the surface area of a
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given residue that is accessible to the solvent. RSA
value, which is normalized to [0, 1] interval, is
defined as the ratio between the solvent accessible
surface area (ASA) of aresidue within a three-
dimensional structure and ASA of its extended tri-
peptide (Ala-X-Ala) conformation

(1)

2.3. Featurerepresentation

PSI-BLAST profile. PSI-BLAST is used to compare
different protein sequences to find similar sequences
and to discover evolutionary relationships [25]. PSI-
BLAST generatesa profile representing a set of simi-
lar protein sequences inthe formof a20X N position-
specific scoring matrix, where N is the length of the
sequence (window) and where each amino acid inthe
sequence (window) is described by 20 features. We
used PSI-BLAST with thedefault parametersand the
BLOSUMG62 substitution matrix. The profile was
computed for a 15 residues wide window centered on
a target residue and thusit consists of 300 features.
The selected size is motivated by previous studies
that adopted this window size [18] and obtained good
secondary structureprediction results][3].

Secondary structure predicted with PSI-PRED.
The quality of secondary structure predictionhas sig-
nificantly improved in the last decade and nowadays
it issuccessfully used in prediction of tertiary struc-
ture. Recently, secondary structure predicted with the
PSI-PRED algorithm was shown to improve predic-
tion of solvent accessibility [2]. We used PSI-
PRED25 with default parameters to predict second-
ary structure fromthe protein sequences. PSI-PRED
assigns three probabilities for each residue, which
correspond to the probability of assuming helix,
strand, and coil conformation, respectively. These
probabilities were taken as features for the proposed
RSA prediction method.

Binary code. The amino acids that are located at
the two termini of the sequencehave larger probabil-
ity of beingexposed to thesolvent. Thisfact isimple
mented during RSA prediction by using abinary code
that indicates position of a given residue that is
located close to either terminus. The following
binary vector

is used to encode the first five positions at the N ter-
minus (denoted by a;) and the last five position

at the C terminus (denoted by b;). For instance,

the third residue in the sequence is encoded as
(0,0,1,0,0,0,0,0,0,0), whilearesiduethat is out-
side of the first and the last fiveresidues in the
sequence isencoded as(0,0,0,0,0,0,0,0,0,0).

2.4. Featur eselection

JBISE
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PSI-BLAST profile includes 300 features, and thus
feature sdection methods were used to reduce the
dimensionality. Weapplied thecorrelation-based fea
ture selection (CBFS), and another feature selection
method, namely correlation-based method for rele-
vance and redundancy analysis (CBRR), which
selects a subset of features based on filtering redun
dancy within the feature set. The CBFS method is
based on Pearson correlation coefficient r computed
for apairof variables (X, Y) as

(2)

where; is themean of X and y, is themean of Y. The

value of r is bounded within[-1, 1] interval. Higher
absolute value of r corresponds to stronger correla-
tion between X and Y. This method ranks individual
features based onthe correlation coefficient between
each feature and the actual RSA values. A subset of
features with thehighest absoluter value issel ected.

The CBRR feature selection method considers
both the relevance of the features with respect to the
target (RSA values), and the redundancy between the
features. It involvestwo steps: (1) selecting a subset
of relevant features, and (2) selecting predominant
features from among the relevant features. The
details canbe foundin [26].

The 300 featurescorresponding to thePSI-BLAST
profile, 3 featurescorresponding to thepredicted sec-
ondary structureand 10 binary code values were pro-
cessed with both feature selection methods. The fea
ture selection was processed using thetraining set of

Manesh dataset, which includes 30 sequences[14, 20].

The CBRR method automatically filters theredun-
dancy among the features and selects the final num-
ber of selected features, which in our case was 15.
The selected features include 13 features from the
PSI-BLAST profile, and 2 predicted secondary struc-
ture features, see Table 1. In case of CBFS, the num-
ber of selected features should be specified by the

0.1585
0.158
0.1575
0.157
0.1565
0.156

of features
0.1555

100 110

Figure 1. The MAE values against the number of selected
features. The MAE is obtained by using support vector
regression with default parameters to predict test set of the
Monash dataset.
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user. Hence, we tested the performance of different
number of selected features using support vector
regression model with default parameters to predict
RSA values for the test set of the Monash dataset. The
mean absolute error (MAE) steadily decreases to
15.6% by adding up to 70 feaures, and it saturaes
when adding additional features, see Figure 1. Asa
result, the 70 featureswith the highest Pearson corre-
lation were selected when using CBFS. The selected
featuresinclude 65 featuresfrom the PSI-BLAST pro-
file, all 3 predicted secondary structure features, and
2 binary code valuesthat correspond to the first and
last position inthe sequence, seeT ablel.

The two feature sets selected by CBRR and CBFS
and the full feature set (313features) were compared
by predicting RSA values for the test set of the
Manesh dataset using support vector regression with
default parameters. The 15 features selected by
CBRR obtain 16.7% MAE, while the 70 features
selected by CBFSand the full feature set both result
in 15.6% MAE, see Figure 2. The features selected
by CBFS provide lower MAE than the features
selected by CBRR, and they cover only 23% of the
full feature set. Asa result, the 70 features selected
By CBFS were used to design the proposed predic
tion model. The selected featuresare summarized in
Table2.

The feature selection shows that most of the 300
features generated by PSI-BLAST are either redun-
dant and have little or no impact on the RSA
Predictions. Table2 shows that when predicting RSA
for theresidue A, that is located in the center of the

window:

- the featuresto encode the two leftmost positions
(A7, A,_g) and the rightmost position (A;,,) were not
selected, i.e., these amino acids have no impact on
the prediction of the central aminoacid. Therefore, a
sliding window of size 13 would be sufficient for the
RSA prediction. The two amino acidsthat are adja
centtoA;, i.e, A_;and A, ,, havethe most significant

impact on the prediction since they correspond to the
largest number of the selectedfeatures. Interestingly,

Full feature set

Figure 2. Bar chart of MAE values (white) and number of
features (gray) for features selected by CBRR, CBFS, and
the full feature set.
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Table 1. Summary of thefeature selection results.

# selected # selected

Features set f-le;gxtjlre#s features byfeatures by
CBFS CBRR
PSI-BLAST profile 300 65 13
Binary code 10 2 0
Predicted second. structure 3 3 2
Total 313 70 15

residues ati-2 and i+2 positions haverelatively small
influence onthe prediction.

- The selected featuresare almost symmetrically
distributed around A;, e.g., amino acids E, K, Q, R,

and D have similar impact on the solvent accessibil-
ity of the central residue at the thirdleft position (A, ;)

and thethird right position (A;,3).

- Hydrophilic residues, which includeE, K, Q, R,
and D, may have impact onthe solvent accessibility
of A, residue whichis 3 or 4 positions away from the

these residues. This pattern covers19 of theselected
features and we hypothesizethat thisis related to the
a-helical structuresdue tothe following two reasons.
Firstly, these 5hydrophilic residueshave larger prob-
ability (above 0.5) to form helical structure than
strand and coil structures [27]. Secondly, a-helix con-
sists of 3.6 residues per turn, and hence if two resi-
dues inahelix are separated by 2 or 3 residues inthe
sequence then they are spatially closeto each other,
which in turnmay induce someinteractions between
them. For instance, the hydrogen bond that maintains
the helical structureoccurs between tworesidues that
are separated in a sequence by three other residues,
i.e., Ajand A,

3. METHODS

3.1. Prediction method

Linear Regression (LR) and Support Vector
Regression (SVR) were already applied in the RSA
prediction [10,13,15]. In this paper, we propose an
improved two-stage model, which not only aims at
reducing the prediction error, but we also propose

K. Chenet al./J. Biomedical Science and Engineering 1(2008) 1-9

and test a confidence value that is associated with
each predicted RSAvalue.

The proposed two-stageprediction model worksas
follows:

STAGE 1. The input sequences is inputted into
PSIPRED to compute predicted secondary structure
and into PSI-BLAST tocompute the PSI-BLAST pro-
file. Next, the input sequence, the predicted second
ary structure, andthe PSI-BLAST profile are usedto
compute the selected 70 features using a 15 residues
wide window centered over the being predicted resi-
due, and for each residue in the input sequence. The
70 features are used as an input to the LR model and
SVR model that predict a real value (predicted RSA
value) for the central residue ina givenwindow.

STAGE2. Theaim of the stagetwo isto refinethe
predictions from stage one. Similarly to other two
stage designs[13,18], the second stage “smoothes” the
predictions. It takes the three predicted secondary
structure features (computed in stage one by
PSIPRED) and a7 residues wide window from the
first stage predictionscentered over thepredicted res-
idue asthe input to providethe refined real valuepre-
dictions.

Since the prediction quality of SVRis better than
the quality of LR (results arediscussed inthe follow-
ing), the predictionsfrom SVR aretaken as thefinal
prediction outcome. The LR resultsserve as arefer-
ence to evaluate quality of SVR predictions. This
means that if predictions from SVRand LR aresimi-
lar then SVR predictions are assumed to be of high
quality. On the other hand, if thetwo predictionsare
different thenthe SVR prediction isassumed to be of
lower quality. Thecorresponding confidence valueis
defined as

(3)

whereR; is thepredicted RSA from SVR, and T, is the

predicted RSA from LR. A detailed overview of the
prediction procedure isshown inFigure 3.

The optimization of the prediction, through adjust-
ment of internal parameters of the predictors and
selection of the window size for the second stage,
was performed by dividing the Manesh dataset into

Table 2. Summary of feature selection results forthe PSI-BLAST profile by correlation-basedfeature selection method.

15-wide window As As As As As A, Al A Au An As A As A Ay
Total # of features 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
# of selected features 0 0 2 4 5 0 8 19 7 1 6 6 4 3 0
The selected features | E E E CD E P E E |
L K K K EF K K K L L
Q Q @ GH Q Q Q Vv v
R R R I K H R R F
D O LM D D D
N NP N P P
P QR G
S ST
VW
Y
SciRes Copyright © 2008 JBISE
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Table 3. Optimization of parametersfor two-stage SVR.

First stage Second stage
Parameter Parameter MAE Parameter Parameter MAE
C a C a
1 0.001 0.157 1 0.01 0.150
1 0.005 0.153 1 0.08 0.149
1 0.01 0.151 1 0.15 0.148
1 0.02 0.151 1 0.2 0.148
1 0.03 0.152 1 0.3 0.148
1 0.05 0.155 1 0.4 0.149
0.5 0.01 0.152 0.5 0.15 0.148
0.8 0.01 0.151 0.8 0.15 0.148
1 0.01 0.151 1 0.15 0.148
2 0.01 0.151 2 0.15 0.148
3 0.01 0.151 3 0.15 0.148
5 0.01 0.152 5 0.15 0.148

two subsets, one used to compute the prediction
model andthe other to performtest. Similarly to [14],
30 sequences were used for training and the remain
ing 185 as the test set. The linear regression is
parameterless and thusit does not require optimiza-
tion. For SVR, RBF kernel wasused for both stages.
The parametersfor thefirst stage SVR arey=0.01 and
C=1, andfor the second stage y=0.15 and C=1. These
parameters, which were based on experiments sum-
marized inTable3, provide thelowest MAE. Wenote
that the adjustment of C haslittle impact inthe qual-
ity of predictions. The MAE of the final prediction
for the second stage windows sizes of 5, 7, 9, 11, 15,
and 21 equal 0.149, 0.148, 0.148, 0.148, 0.148, and
0.148, respectively. Thisshows that thewindow size
of 7isthebest choiceto provideaccurate predictions.

3.2. Linear regreesion

A linear regression with p coefficients and n data
points (number of samples), assuming that n>p, cor-
responds to the construction of thefollowing expres-
sion:

(4)

where y; is the predicted RSA value, X; = (Xi1, Xio, .-+
X; p) isthe vector of p features representing i protein
sequence, f; (constant) is parameter to be estimated,
and ¢; is thestandard error. Theabove formulacan be
written in vector-matrix form as:
(5)

The solution to minimize the mean square error |||
is T v-1 vT

p=(X"X)"X"y (6)

— —
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AA,... ALAA,...AA,

PSI-PRED Select 15-wide window
ey AAis A A

structure
SS,SS,...SS,...SS, ,SS,

Compute 70 features
Features values for the 15-wide window

Input feature vectorsfor
all residues, i=1,2,...,n

First-stage SVR First-stage LR

r1r2"' r.i-lriri+1"' r-n-lrn tltZ"' ti-ilti.[i+l"'tr\-ltn

Select 7-wide window
ot o tiotig

Input feature vectorsfor
all residues,i=1,2,...,N

Second-stage SVR Second-stageLR

| FIPYRINN (U (PPN 0N

T,T1,.T..T.,T,

Compute
confidence value

RR,...R,...R..R,
CC,...C...C,.C,
Figure 3. RSAprediction with the proposed system; the RSA

value for the i" residue is predicted based on the 70 feature
values (see Table 1) that are computed over a 15 residues

wide window centered on i residue; the feature values are
inputted into thefirst-stage predictor (LRand SVR); next,the
first-stage predictions are aggregated into 7 residue wide
windows and inputted, together with the predicted secondary
structure of the central residue, into the second-stage
predictor that provides the RSAvalues. Finally, compare the
predictions from SVR and LR, and calculate the confidence
value C.

3.3. Supportvector regression
Given atraining set of n data point pairs (x;, y;), i = 1,
2,..., n, wherex; denotes the vector of p features rep-

. .th .
resenting i protein sequence, y; denotes the pre-

dicted RSA value, finding the optimal SVR is
achieved by solving:

Ly g2 .
min5||wH +C (& +E) 7

such that
(8

wherew s avector perpendicular towx-b=0 hyperplane,
Cis a user defined complexity constant, & and fi* are

JBIiSE
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slack variablesthat measure the degree of prediction
error of x; for agiven hyperplane, and z= ¢ (x) where

k(x,x)=d (x) - & (x") isauser definedkernel function.

The SVR was trained using sequential minimal
optimization algorithm [28] that was further opti-
mized by Shevadeand colleagues [29]. The proposed
SVR uses RBFkernel

©)

for both stages.

4. RESULTS AND DISCUSSION
The SVR and LR predictors were implemented in
Weka [30], which is a comprehensive open-source
library of machine learning methods. The Manesh
dataset consists of 50682 instances (individual resi-
dues). The evaluation was performed using two test
types to allow for a comprehensive comparison with
previous studies. To compare with [2] and [12], 5-
folds cross validation was executed. On the other
hand, following several other prior studies[14, 20,
24], Manesh dataset was divided into two subsets, 30
sequences were used for training and the remaining
185 as independent test set. The results of both tests,
i.e.,, 5 folds cross-validation and independent test,
were reported in Tables4 and 5. In total, the pro-
posed method was compared with six real value RSA
prediction methods [2, 12-15, 24] and one method
that aimsat prediction of discretestates [20].
Wenote that in statistical prediction, thefollowing
three cross-validation methods are often used to
examine a predictor for its effectiveness in practical
application: independent dataset test, sub-sampling

(such as5-fold and 7-fold) test, and jackknifetest [31].

However, aselucidated by [32] and demonstrated in
[33], among the three cross-validation methods, the
jackknife test isdeemed the most objective that can
always yield a unique result for a given benchmark
dataset, and hence has been increasingly used by
investigators to examine the accuracy of various pre-
dictors[34-42].

4.1. Comparison with competing prediction
methods

For the 5 folds cross-validation test, the mean abso-
lute error (MAE) value of thefirst stage of the pro-

posed method equals 14.6 and the corresponding
Pearson's correlation coefficient (r) equals 0.67.
After the second stage, the MAE value is reduced to
14.3 andr isimprovedto 0.68. Table4 compares the
proposed two-stage SVR with recent methods for
RSA prediction, which include neural network and
support vector regression models[2, 12,13, 15]. The
proposed method obtains0.6 to 3.71ower MAE when
compared with the abovementioned methods. This
translates into 4% to 20% error reduction, respec-
tively. Since some methods predict discrete valued
classes (exposed vs. buried), we also examined the
performance of our method by converting the real
value predictioninto thetwo statesprediction. We fol-
lowed the standard approach, in which the state is
defined based onthe predicted RSA value and apre-
defined threshold. For instance, a 5% threshold
means that the residues having an RSA value (%)
greater or equal 5 are defined as exposed, and other-
wise they are classified as buried. The threshold's
value is usually adjusted between 5% and 50%. We
note that for all thresholds, our method provides the
highest accuracy, see Table 4. The proposed two-
stage model provides 0.3%-0.6% higher accuracies
than the predictioncoming from thefirst stage forvar-
ious thresholds. When compared to the best perform-
ing, existing two-stageSVR method [13], our predic-
tions are characterizedby lower MAE and more accu-
rate two states predictions.

For the independent test, the MAE value for the
first stageof theproposed method equals 15.0 and the
corresponding Pearson's correlation coefficient r
equals 0.66. After the secondstage, the MAEvalueis
reduced to 14.8 and r is improved to 0.67. Table 5
compares the proposed two-stage SVR with recent
methods for RSA prediction, which include neural
network andlook-up tablebased methods[14, 20, 24].
The proposed method obtains 1.5 to 4.0 lower MAE
when compared with the above three methods. This
translates into 9% to 21% error reduction, respec-
tively. Similarly to the 5-folds cross validation test,
we also examined the performance of our method by
converting the real value prediction into the two
states prediction. The threshold's value was adjusted
between 5and 50%.

For all thresholds our method consistently pro-
vides the highest accuracy, see Table 5. The two-

Table 4. Experimental comparison between the proposed two-stage SVR and other reported methods; the results were
reported based on3 or 5-foldscross validation test;the real valued predictions were convertedto two state prediction (buried
vs. exposed) withdifferent threshold (5%~50%); unreported resultsare denoted by *“-*; best resultsare shown inbold.

Reference Prediction MAE (%) Correlation  Accuracy fortwo-states (buriedvs. exposed) prediction
method coefficientr — g5o5 1006  20%  30%  40%  50%
(2] Neural Network 15.2 0.67 74.9% T77.2% 77.7% T77.8% 78.1%  80.5%
[11] Neural Network 18.0 0.50 - - - - - -
[12] Two-stageSVR 14.9 0.68 81.1% 78.5% 77.6% - - 79.5%
[14] SVR 16.3 0.58 - - - - - -
Thispaper One-stage SVR 14.6 0.67 80.5% 79.1% 78.3% 78.3% 78.3% 80.5%
Thispaper Two-stageSVR 14.3 0.68 81L.1% 79.7% 78.8% 78.6% 78.8% 80.8%
SciRes Copyright © 2008 JBISE
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Table 5. Experimental comparison between the proposed two-stage SVR and other reported methods; the results were
reported based ona test onthe independent dataset (30 sequences fortraining and 185 sequences for test); the real valued
predictions were converted to two state prediction (buried vs. exposed) with different threshold (5%~50%); unreported

results are denoted by “-“; best results areshown in bold.

Prediction Correlation Accuracy fortwo-states (buriedvs. exposed) prediction
Reference MAE (%) O

method coefficientr 5% 10% 20% 30% 40% 50%
[13] Look-up table 18.8 0.48 ) . . . ) )
[19] Neural Network - - 74.6% 71.2% - - - 75.9%
[23] Neural Network  16.3 0.58 75.7%  73.4% - - - 76.2%
Thispaper  One-stageSVR  15.0 0.66 79.8% 78.7% 77.7% 77.7% 77.5% 79.8%
Thispaper  Two-stageSVR  14.8 0.67 80.3% 79.2% 78.1% 78.0% 78.0% 80.2%

stage model provides 0.3%-0.5% higher accuracies
than the one-stage model for various thresholds.
When compared with the best-performing, compet-
ing method based on neural network [24], our predic-
tions result in higher accuracies over all thresholds,
i.e., the differences range between 4% and 5.8%, and
better MAE andcorrelation coefficientvalue.

The three main observations based on the per-
formed empirical evaluation include: (1) the pro-
posed two-state predictor obtains favorable (lower)
error rates when compared with six competing meth-
ods; (2) the improvements are obtained for both real
value and two-state predictions; and (3) the introduc-
tion of the second stage in our design allows for
obtaining improved predictions when compared with
aonestagedesign.

4.2. Confidencevalue for RSA prediction
As one of the goals of this work, we defined confi-
dence values to measure the quality of the predicted
RSA. The confidence values are based on the differ-
ence of predictions made by the two-stage SVR and
the two-stage LR. The following discussion is based
on results of five folds cross-validationtests.

The MAE for two-stage SVR is 0.143 and for two-
stage LR is0.155. Thedifference between the predic-
tions from SVRand LR for the same residuesranges

Figure 4. Bar chart of MAE values for the corresponding
thresholds of confidence value C. The numbers above the
bar show the corresponding coverage, i.e., number of
residues for which the predictions had confidence value
above the threshold. For example, for residues predicted
with which C > 0.99 the MAE equals 12.2, and these
residues cover 14% of the dataset.

SciRes Copyright © 2008

between 0 and 0.294. As a result, the confidence
value C distributed in the interval [0.706, 1] for the
Manesh dataset. Higher C values indicatethat the pre-
dictions from SVR and LR are more consistent, and
therefore the corresponding predictions from the
two-stage SVR are assumed to be more accurate.

The C value of 7101 samples, which covers
7101/50682= 14% of the dataset, are greater than
0.99, and the corresponding MAE of these samples
equals0.122, seeFigure 4. The C value of 12846 sam-
ples, which covers 12846/50682= 25.3% of the
dataset, are greater than 0.98, and the corresponding
MAE of these samples equals 0.131. The C value of
18174 samples, which covers 18174/50682= 35.9%
of the dataset, are greater than 0.97, and the MAE of
these samples is 0.136. When the threshold for C
value is set equal or lower than 0.96, the MAE satu-
rates at 0.143, see Figure 4, which is equal to the
MAE for the entire dataset (without using the confi-
dence values). This shows that the confidence values
can be used to identify a subset of the predictions
which on averagehave better quality than the remain
ing predictions. This way, the user could select a
desired fraction of best performing predictions.
Additionally, the user couldinspect quality of predic-
tion for specific amino acids or groupings of amino
acidsthat sharecertain properties suchas hydrophobici ty,
charge, size, etc.

5. CONCLUSIONS

This paper proposes anovel methodfor thereal value
RSA prediction. The proposed method addressestwo
goals, which include improving the quality of RSA
prediction, and development of a confidence value
that allows for selection of better performing RSA
predictions.

Empirical tests withthe Manesh dataset show that
the proposed method is characterized by lower pre-
diction error when compared with six competing real
value RSA prediction methods. Weal so show that the
PSI-BLAST profile that is commonly used to repre-
sent sequences can by largely reduced by using fea-
ture selection, which results a simpler, interpretable
model and in reduction of the computational time
required to developthe prediction model. Our model
indicates that window size of 13is sufficientand only
about 22% of the PSI-BLAST features are useful for
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the RSA prediction. The selected features are sym-
metrically distributed around the predicted residue
and include hydrophilic resideswhen considering the
distance of 3or 4 positionsfrom the predictedresidue.
The confidencevalue C allows theuser to select asub-
set of thepredictions which onaverage are character-
ized by better quality than theremaining predictions.

The knowledge of the surface residues, which are
predicted by the proposed method and which are
directly involvedin theinteraction with other biolog-
ical molecules, was used, for instance, for identifying
protein function and stability [43, 44], for prediction
of binding sites[4], understanding thebinding mech-
anism of proteins [5], reconstruction of the 3D-
structure of proteins [6-8], and toaid fold recognition
[45, 46]. Therefore, improved prediction of the sur-
face residues would have impact onimproving qual-
ity of solutions for these associated tasks.
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ABSTRACT

Objectives: The abutment connection with
the crown is fundamental to the structural
stability of theimplant system and to the pre-
vention of mechanical exertion that can com-
promise thesuccess ofthe implanttreatment.
The aimof thisstudyisto clarifythe difference
in the stress distribution patterns between
implants with internal and external-hex con-
nections with the crown using the Finite Ele-
ment Method (FEM). Materialand Methods: The
internal and external-hex connections of the
Neossand3iimplantsystemsrespectively, are
considered. Thegeometrical properties of the
implant systems are modeled using three-
dimensional (3D)brick elements.Loading con-
ditions includea masticatoryforce of 200, 500
and 1000N applied to the occlusal surface of
thecrownalongwithanabutmentscrewtorque
of 110, 320and 550Nmm. The von Mises stress
distribution in the crown is examined for all
loading conditions. Assumptions madein the
modelinginclude: 1. halfoftheimplant system
is modeled and symmetrical boundary condi-
tions applied; 2. temperature sensitive ele-
ments are used to replicate the torque within
the abutment screw. Results: The connection
type strongly influences the resulting stress
characteristics within the crown. The magni-
tude of stress produced by the internal-hex
implant systemis generally lower than that of
the external-hexsystem. Theinternal-hex sys-
tem held an advantageby including the use of
an abutmentbetween theabutment screw and
the crown. Conclusions: The geometrical
design of the external-hex system tends to
induce stressconcentrations inthe crownat a
distance 0f2.89mm fromthe apex. At thisloca-
tion thetorque appliedto theabutment screw
also affectsthe stresses,so thatthe compres-
sive stresses on the right hand side of the
crown areincreased. Theinternal-hex system

Published Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

has reduced stress concentrations in the
crown. However, because the torqueis trans-
ferred throughthe abutmentscrew tothe abut-
ment contact,changing thetorque hasgreater
effect onthis hexsystem thanthe masticatory
force. Overall the masticatory force is more
influential on the stress within the crown for
the external-hexsystem andthetorqueis more
influentialontheinternal-hexsystem.

Keywords: Component; Biomedical modelling;
Dental implant; Finite element technique

1. INTRODUCTION

Dental implants are a consistently accepted form of
dental treatment. Clinical researchin oral implantology
has led to advancementsin the biomechanical aspects
of implants, implant surface features and implant
componentry. These advancements in implant
componentry include the modification of the exter-
nal-hex connection between the abutment and crown
to the currently used internal-hex (Figure 1Db)).
Although both internal and external-hex connected
implant systems are extensively used, distinctly dif-
ferent performances areon offerin terms of the stress
characteristics produced within the crown. Observa
tions by practitioners have aided theidentification of
implant componentswhich lead to mechanical failure
of the crown and implant [1-3]. Failure may be
defined asthe point at which the material exceeds the
fracture stress, asindicated by itsstress strain rela
tionship. There are two major factors which can
cause the crown and implant to fail. These are
described below;

- typically, over tightening of the abutment screw
causes failure of the crown for internal and external-
hex systems.

- failure of the implant may also be aresult of over
tightening of the abutment screw or excessive
masticatory loads beingtransferred from theocclusal
plane of the crown to an area of stress concentration
at the interface between the abutment and implant
body.

JBISE
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Using theoretical techniques, such as the FEM, all
mechanical aspectsthat could affect theimplant suc-
cess can be evaluated. FEM has been used exten
sively to evaluate the performance of dental implant
prosthesis [4-15]. Studies by Maeda et al. (2006),
Merz et al. (2000) and Khraisat et al. (2002) haveall
considered the behavior of the stresswithin the abut-
ment screw however disregarding the stress within
the crown. To date no published research appears to
have investigated the stress characteristics in the
crown due toan internal or external-hex system. Ulti-
mately, the outcome of this study will facilitate den-
tal practitioners to identify locations within the
implant system that are susceptible to stress concen-
trations.

2. METHODOLOGY

The modeling and simulation herein are performed
using the Strand7 Finite Element Analysis (FEA) Sys-
tem (2004). The first step of the modelingis to define
the geometry of theimplant system. This isthen fol-
lowed by specifying the material behavior in terms of
the Young's modulus, Poisson's ratio and density for
the implant and componentry. After applying the
appropriate loading and restraint conditions, the

a) Loading and restraint conditions
(with detailedvariables)

b) Implant systems

internal and external-hex systems can be evaluated
for their contributions to the stress characteristics
within thecrown.

2.1. Modelling

Data acquisitionfor theinternal and external-hex sys
tems are obtained from the manufacturer's data.
Shown in Figure 1b) are details of the Neoss (2006)
and 3i (2006) systems.

Shown inFigure 1la) arethe detailed variables con-
sidered in this study. The implant is conical with 2
degrees of taperage, a helical thread, diameter of
4.5mm, and length of 11mm. Different fixed
restraints are applied to the symmetrical edge of the
implant system as compared to the outer edge of
implant thread. The symmetrical edgeis restrained
from rotating around the z-axis and translating
through the x- and y-axis. The outer edge of the
implant thread is restrained from deforming in any
direction. Notethat theseloading and restraint condi-
tions are the same for both internal and external-hex
systems.

For the Neoss and 3i finite element models, the
total numbersof elementsare respectively 13464 and
30420 for the implant, 3564 and 9108 for the abut-
ment, 17424 and 25956 for the abutment screw,
38484 and 47052 for the crown. The total number of
nodal points for the entire Neoss and 3i models are
82547 and 122688 respectively.

2.2. StressMeasuring

As indicated in Figure 1c) the von Mises stresses
along the lines NN (NN,_,, NN, 5 and NN;_,) and Il

(.5, Ny, Hgy, Hys, Hggand Ilg ;) for the Neoss
and 3i systems respectively, are measured for all pos

sible combinations of loading. Note that,for example,
along theline 11,_, the beginning location of the line
isidentified as |1, and theend asll,. Theselocations
are believed by cliniciansto becritical for examining
the stress levelsin the crown. Note that bothlines NN

and Il arechosen on Section AA because the highest
stress magnitudes (compressiveis prominent overten-

¢) Locationsfor measuring stress profile and contour

Figure 1. Finite element modelof internal and external-hex systems.

SciRes Copyright © 2008
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sile) occur onthis plane dueto the masticatory |oad-
ing characteristics.

2.3. Loading Conditions
Masticatory force, F),, isapplied to the occlusal sur-

face of the crown at 100, 250 or 500N, inclined at 45
along the x- and y-axis (Figure 1a). Thepreload, Fp,
of 100.97, 293.72 or 504.84N is applied to the abut-
ment screw through the use of temperature sensitive
elements (Figure 1a)). Note that F\, and F are set to

half of the total magnitude because only half of the
implant system is modelled. Therefore the total F,

modelled is200, 500, 1000N and F is 201.93, 587.44,

1009.67N. The manner of modelling the masticatory
forces and the preload applied tothe abutment screw
is described by van Staden et al. (2008). In this study
both theabutment screw preload, Fp, and surfacearea

between abutment and abutment screw are halved
when compared with that used by van Staden et al.
(2008) due to the modelling assumption af oremen-
tioned. Calculations for the abutment screw surface
pressure, g, confer identical resultsthan that found by
van Stadenet al. (2008).

For the present study a negative temperature (-10
Kelvin, K)is appliedto all the nodal points withinthe
abutment screw, causing each element to shrink. A
trial and errorprocess is appliedto determine thetem-
perature coefficient, C, for both the Neoss and 3i sys-
tems (i.e. Cyeoss @Nd Cy;) that can yield an equivalent

Von Mises stress(M Pa)

NN; 5 2.33.4(MM)

a) Stress profile b) Stress contour

Von Mises stress(M Pa)

111.22.5,3.4.4.5,5.6.6.7(MM)

c) Stress profile d) Stress contour

Figure 2. Stress characteristics whenvarying F,,.
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Table 1. Material propertles.

Component  Description  Young'smo-  Poisons  Density,p
dulus,E(Gpa) ratiov  (g/em3)
Mgt e 105.00 037 451
St o 9300 030 1630
Crown ZuegnialY- 172,00 033 605

g. Itis found that when F,=201.93, 587.44 and 1009.67N
then Cyepe=-3.51%10", -9.28x10” and -15.60x10" /K,

and C5=-0.98x10"", -1.80x10" and -2.68x10™* /K, respec-
tively.

2.4. Material Properties

The material properties used are specifiedin termsof
Young's modulus, Poisson's ratio and the density for
the implant and all associated components (Table1).
All material properties are assumed to be linear,
homogeneous and elastic inbehavior.

3. RESULTS DISCUSSION

Zirconia typically used as a dielectric material has
proven adequate for application in dentistry. With its
typical white appearanceand high Young'smoduli it
isideal tobe used inthe manufacturing of sub frames

g
=3
g
27}
i
=
§
>
NNy 2.3 3.4(MM)
a) Stress profile b) Stress contour

g
=3
g

7]
8
s

s
>

I11.22.5,3.4.4.5.5.6.6.2(MM)

c) Stress profile d) Stress contour

Figure 3. Stress characteristics whenvarying F..
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for the construction of dental restorations such as
crowns and bridges, which are then veneered with
conventional feldspathic porcelain. Zirconia has a
fracture strength that exceedsthat of Titanium there-
fore it may be considered asa high strength material.
However with cyclic preload and masticatory loads
the compressive strength of 2.1GPa (Curtis et al.
2005) can easily be exceeded especially for implant
systems with external-hex connections, as confirmed
during thisstudy.

The distribution of von Mises stresses inthe crown
is discussed for boththe internal and external -hex sys-
tems for all combinations of masticatory and preload
forces. Shown in Figure 1c), are the von Mises
stresses measured between locations NN, _, (0-

1.76mm), NN, 5 (1.76-1.87mm) and NN, , (1.87-

3.96mm) for the Neoss system. For the 3i system the
von Mises stresses are measured between locations
1,5, (0-2.38mm), 11, 5(2.38-2.78mm), 115, (2.78-
3.67mm), 11,5 (3.67-4.06mm), |15 ¢ (4.06-4.65mm)
and llg_,(4.65-5.27mm), asshown inFigure 1c).

3.1. Masticatory Force, F,,

The distributions of von Mises stresses along the
lines NN and Il for all values of F,, are shown inFig-
ure 2. Note that the preload, For isset atits medium
value, i.e.587.44N.

In general, whenthe applied masticatoryforce, F,,
isincreased, the von Mises stresses also increase pro-
portionally, because the systembeing analysed islin-
ear elastic. When F, increases the stress along the
line NN increases showing two peaks along the line
NN , (refer to Figure 2a)). Thelarger of these two
peaks occurs at adistance of £3.8mm inlength from
NN;. Thisstress peak (ascan be identifiedin Figure
2b)) is caused by a sharpcorner and suddenchange in
section at thispoint.

Elevated stressconcentrations areidentified at the

beginning of thelinell,_, (Figure 2c) and Figure 2d)).

This stress peak, as can beidentified in Figure 2c), is
caused by a sharp corner at this point. For the 3i sys-
tem, the volume of the crown exceeds that of the
Neoss system, thereby suggesting that the 3i crown
may endeavor greater resistance to the applied
masticatory forces. However, eventhough the Neoss
crown has a thinner wall thickness along the line
NN ,, reduced stresses are still evident due to the

abutments high Young's modulus. Overall, thedesign
differences between the Neoss and 3i systems ulti-
mately results inthe 3i systemhaving higher stresses
when F,, isincreased.

3.2. Preload Force, Fp
Toinvestigate the effect of different preload Fp, Fy,

is kept as aconstant and its medium value, i.e. 500N
is considered herein. The distributions of von Mises

SciRes Copyright © 2008

stresses along the linesNN and Il for all values of Fp

are shown inFigure 3.
As found for F),, when F increases the stresses

calculated along theline NN increase, showing two
peaks along the line NN,_, (refer to Figure 3a) and

Figure 3b)). Also, as found for F,, elevated stress
peaks areidentified at the beginning of theline Il ,

(Figure 3c) and Figure 3d)). Overall, all values of
F\ cause greater stressesalong lines NN and I, than

do varyingvalues of Fp.

4. DISCUSSION

FEA has been used extensively to predict the
biomechanical performance of the jawbone sur-
rounding a dental implant [21, 22]. Previous research
considered the influence of the implant dimensions
and the bone-implant bond on the stress in the sur-
rounding bone. However, to date no research has
been conducted toevaluate the stressproduced by dif-
ferent implant to crown connections (i.e. internal and
external-hex). The analysis completed in this paper
uses the FEM to replicate internal and external-hex
systems when subjected to both F\, and F loading

conditions. As shown in Table 2, two stress peaks
were revealed along thelines NN and Il at locations
3.76 and 2.89mm from the top. The stress values
shown were calculated with the other variables (i.e.
Fy or Fp) set toits average.

The mastication force F,, is applied on the

occlusal surface of the crown, evenly distributed
along 378 nodal locations (Figure 1a), and orien
tated at 45 in the x-y plane. Thisinduces compres-
sive stressesin theright hand side of the crown and
tensile inthe left. Varying F,, from 200 to 1000N for

the internal and external-hex systems resultsin a
change in von Mises stress of 545.64 (818.47-
272.82MPa) and 698.09M Pa (1047.14-349.05M Pa)
respectively. The geometrical design of theexternal-
hex system tends to induce stress concentrations,
located 2.89mm fromthe apex inthis study. For this
system, a stress concentration at this point is also
induced by Fp, increasing the compressive stresses

on the right hand side of the crown. Increasing Fp

from its minimumto maximum values, for the exter-
nal-hex system, increases the stress by 485.46MPa
(951.67-466.21MPa).

The internal-hex system has reduced stress concen-

Table 2. Von Misesstress (MPa) incrown (location of stress
recording in brackets).

Fm (N)

500

ariables Fp (N)

200 1000 [201.93|587.44/1009.67

Line
NN
(3.76mm)

I
(2.89mm)

272.82|545.64|818.47 |231.55|545.64/891.83

349.05698.09|1047.14466.21/698.09|951.67
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