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tural biology due to the large and exponentially grow-ABSTRACT
ing gap between the number of known protein 
sequences and the number of known structures. Predicted relative solvent accessibility (RSA) 
Despite several decades of extensive research in ter-provides useful information for prediction of 
tiary structure prediction, this task is still a big chal-binding sites and reconstruction of the 3D-
lenge, especially for sequences that do not have a sig-structure based on a protein sequence. 
nificant sequence similarity with known structures Recent years observed development of sev-
[1]. As a result, the predictions of the solvent accessi-eral RSA prediction methods including those 
bi l i ty  [2] and  the secondary  s t ruc ture [3]  a re that generate real values and those that pre-
addressed as an intermediate step towards the predic-dict discrete states (buried vs. exposed). We 
tion of the tertiary structure. The relative solvent propose a novel method for real value predic-
accessibility (RSA) reflects the degree to which a res-tion that aims at minimizing the prediction 
idue interacts with the solvent molecules. Since pro-error when compared with six existing meth-
tein-protein and protein-ligand interactions occur at ods. The proposed method is based on a two-
the protein surface, only the residues that have a stage Support Vector Regression (SVR) pre-
large surface area exposed to the solvent can possibly dictor. The improved prediction quality is a 
bind to the ligands and other proteins. As a result, pre-result of the developed composite sequence 
diction of solvent accessibility provides useful infor-representation, which includes a custom-
mation for prediction of binding sites [4] and is selected subset of features from the PSI-
vitally important for understanding the binding mech-BLAST profi le, secondary structure pre-
anism of proteins [5]. Chan and Dill pointed that the dicted with PSI-PRED, and binary code that 
burial of core residues is the driving force in protein indicates position of a given residue with 
folding, which suggests that knowledge of localiza-respect to sequence termini. Cross valida-
tion of individual residues (surface vs. buried) pro-tion tests on a benchmark dataset show that 
vides useful information to reconstruct the 3D-our method achieves 14.3 mean absolute 
structure of proteins [6-8]. error and 0.68 correlation. We also propose a 

The existing solvent accessibility prediction meth-confidence value that is associated with each 
ods use the protein sequence, which is converted into predicted RSA values. The confidence is com-
a fixed-size feature-based representation, as an input puted based on the difference in predictions 
to predict the RSA for each of the residues. These 

from the two-stage SVR and a second two-
methods can be divided into two main groups:

stage Linear Regression (LR) predictor. The 
Real valued predictors predict RSA value (the 

confidence values can be used to indicate 
definition is given in the Materials section). The rep-

the quality of the output RSA predictions.
resentative existing methods are based on linear 
regression [9], neural network based regression [11], 
neural networks [12], support vector regression [10, 
13, 15], and look up table [14]. In Ahmad's study, 
binary coding of the sequence was taken as the input 
features [12], while all other studies used the evolu-
tionary information in the form of the PSSM profile 1. INTRODUCTION
derived with PSI-BLAST as the input features [9-11, The knowledge of three dimensional protein struc-
13-15].ture plays the key role in understanding protein's 

discrete valued predictors classify each residue function. Computational prediction of the tertiary 
into a predefined set classes. The classes are usually protein structure is one of the central topics in struc-

Keywords: Relative solvent accessibility; 
Support vector regression; PSI-BLAST; PSI-
PRED; Secondary protein structure

1 1 1Ke Chen , Michal Kurgan  & Lukasz Kurgan*

J. Biomedical Science and Engineering, 2008, 1, 1-9
Scientific
Research
Publishing

JBiSEPublished Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

S
c

iR
e

s
 C

o
p

y
ri

g
h

t 
©

 2
0

0
8



defined based on a threshold and include buried, given residue that is accessible to the solvent. RSA 
intermediate, and exposed classes (in most cases the valu e, whic h is norma lize d to [0, 1] int erva l, is 
predictions concern only two classes, i.e., buried vs. defined as the ratio between the solvent accessible 
exposed). The corresponding prediction methods surface area (ASA) of a residue within a three-
apply fuzzy-nearest neighbor [17], neural network dimensional structure and ASA of its extended tri-
[16, 20, 22], support vector machine [19, 21], two peptide (Ala-X-Ala) conformation
stage support vector machine [18], information the-
ory [23], and probability profile [24]. Early studies 
only use sequence to generate features [20, 23], while 
recent studies use the evolutionary information in the 
form of the PSSM profile to generate features [18, 19]. 

The PSI-BLAST profile [25] was recently intro- 2.3. Feature representation
duced as an efficient sequence representation that PSI-BLAST profile. PSI-BLAST is used to compare 
improves classification accuracy [16]. Subsequently, different protein sequences to find similar sequences 
researchers have found that secondary structure pre- and to discover evolutionary relationships [25]. PSI-
dicted using the PSI-PRED method [3] improves the BLAST generates a profile representing a set of simi-
real value RSA predictions [2]. lar protein sequences in the form of a 20 N position-

This paper investigates whether improved sequence specific scoring matrix, where N is the length of the 
representation, which is based on the information har- sequence (window) and where each amino acid in the 
vested from the sequence, the PSI-BLAST profile sequence (window) is described by 20 features. We 
and the predicted secondary structure, could lead to used PSI-BLAST with the default parameters and the 
improving the RSA predictions. We also investigate BLOSUM62 substitution matrix. The profile was 
whether it would be possible to build an index that computed for a 15 residues wide window centered on 
would indicate the quality of the predicted RSA value. a target residue and thus it consists of 300 features. 
The above hypotheses translate into the two follow- The selected size is motivated by previous studies 
ing goals: (1) we aim at proposing a prediction that adopted this window size [18] and obtained good 
method that minimizes the RSA prediction error; (2) secondary structure prediction results [3]. 
the method should provide a confidence value that Secondary structure predicted with PSI-PRED. 
indicates the quality of the predicted RSA values. The quality of secondary structure prediction has sig-

The first goal is achieved by designing a custom- nificantly improved in the last decade and nowadays 
selected set of features, which is based on performing it is successfully used in prediction of tertiary struc-
feature selection, to represent the input sequence. As ture. Recently, secondary structure predicted with the 
suggested in previous studies, the PSI-BLAST pro- PSI-PRED algorithm was shown to improve predic-
file, PSI-PRED predicted secondary structure and t ion of solvent  accessibi l i ty [2] .  We used PSI-
addit ional  features that  indicate termini  of the PRED25 with default parameters to predict second-
sequence  were adopted  to represen t  the inpu t  ary structure from the protein sequences. PSI-PRED 
sequence. In contrast to prior works, we do not use all assigns three probabilities for each residue, which 
features from the PSI-BLAST profile, but instead we correspond to the probability of assuming helix, 
use two feature selection methods to select a subset strand, and coil conformation, respectively. These 
of best-performing features. This results in a simpli- probabilities were taken as features for the proposed 
fied prediction model, reduced computational time, RSA prediction method.
and optimized predictive quality. Binary code. The amino acids that are located at 

To address the second goal, the confidence values the two termini of the sequence have larger probabil-
are computed based on the difference in predictions ity of being exposed to the solvent. This fact is imple-
of RSA by two predictors: a support vector regression mented during RSA prediction by using a binary code 
and a linear regression. These values can be used to that indicates position of a given residue that is 
indicate the quality of the output RSA predictions. located close to either terminus. The following 

binary vector

2. MATERIALS
2.1. Dataset
The dataset used in this paper is referred to as the 

is used to encode the first five positions at the N ter-Manesh da tase t [23]  and cons is t s  of 215 low-
minus (denoted by a )  and the las t f ive posi t ion similarity, i.e., < 25%, proteins. The sequences are i

available online at http://gibk21.bse.kyutech.ac.jp/ a t  the C terminus (denoted by b ) .  For  instance, i
rvp-net/all-data.tar.gz. The Manesh dataset was the third residue in the sequence is encoded as 
widely used by researchers to benchmark prediction (0,0,1,0,0 ,0 ,0 ,0 ,0 ,0) ,  while a  res idue that  is out-
methods [2, 12-15, 20, 24], and this motivated us to s ide of the f i rs t and the las t  f ive residues in the 
use it to design and validate our method. sequence is encoded as (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0) .
2.2. Relative solvet accessibility 
RSA reflects the percentage of the surface area of a 2.4. Feature selection
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PSI-BLAST profile includes 300 features, and thus user. Hence, we tested the performance of different 
feature selection methods were used to reduce the number of selected features using support vector 
dimensionality. We applied the correlation-based fea- regression model with default parameters to predict 
ture selection (CBFS), and another feature selection RSA values for the test set of the Monash dataset. The 
method, namely correlation-based method for rele- mean absolu te error (MAE) stea dily decrea ses to 
vance and redundancy analysis (CBRR), which 15.6% by adding up to 70 features, and i t saturates 
selects a subset of features based on filtering redun- when adding additional features, see . As a 
dancy within the feature set. The CBFS method is result, the 70 features with the highest Pearson corre-
based on Pearson correlation coefficient r computed lation were selected when using CBFS. The selected 
for a pair of variables (X, Y) as features include 65 features from the PSI-BLAST pro-

file, all 3 predicted secondary structure features, and 
2 binary code values that correspond to the first and 
last position in the sequence, see . 

The two feature sets selected by CBRR and CBFS 
and the full feature set (313 features) were compared 
by predicting RSA values for the test set of the 
Manesh dataset using support vector regression with  where x  is the mean of X and y  is the mean of Y. The i i
default parameters. The 15 features selected by value of r is bounded within [-1, 1] interval. Higher 
CBRR obtain 16.7% MAE, while the 70 features absolute value of r corresponds to stronger correla-
selected by CBFS and the full feature set both result tion between X and Y. This method ranks individual 
in 15.6% MAE, see . The features selected features based on the correlation coefficient between 
by CBFS provide lower MAE than the features each feature and the actual RSA values. A subset of 
selected by CBRR, and they cover only 23% of the features with the highest absolute r value is selected.
full feature set. As a result, the 70 features selected The CBRR feature selection method considers 
By CBFS were used to design the proposed predic-both the relevance of the features with respect to the 
tion model. The selected features are summarized in target (RSA values), and the redundancy between the 

features. It involves two steps: (1) selecting a subset 
The feature selection shows that most of the 300 of relevant features, and (2) selecting predominant 

features generated by PSI-BLAST are either redun-features from among the relevant features. The 
dant  and have  l i t t l e o r  no impac t  on the  RSA details can be found in [26].
Predictions.  shows that when predicting RSA The 300 features corresponding to the PSI-BLAST 
for the residue A  that is located in the center of the iprofile, 3 features corresponding to the predicted sec-
window:ondary structure and 10 binary code values were pro-

the features to encode the two leftmost positions cessed with both feature selection methods. The fea-
(A , A ) and the rightmost position (A ) were not ture selection was processed using the training set of i-7 i-6 i+7

Manesh dataset, which includes 30 sequences [14, 20]. selected, i.e., these amino acids have no impact on 
The CBRR method automatically filters the redun- the prediction of the central amino acid. Therefore, a 

dancy among the features and selects the final num- sliding window of size 13 would be sufficient for the 
ber of selected features, which in our case was 15. RSA prediction. The two amino acids that are adja-
The selected features include 13 features from the cent to A , i.e., A  and A , have the most significant i i-1 i+1
PSI-BLAST profile, and 2 predicted secondary struc- impact on the prediction since they correspond to the 
ture features, see . In case of CBFS, the num- largest number of the selected features. Interestingly, 
ber of selected features should be specified by the 

Figure 1

Table 1

Figure 2

Table 2

Table 2

Table 1

.

Figure 1. The MAE values against the number of selected 
features. The MAE is obtained by using support vector 
regression with default parameters to predict test set of the 
Monash dataset.

Figure 2. Bar chart of MAE values (white) and number of 
features (gray) for features selected by CBRR, CBFS, and 
the full feature set.
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and test a confidence value that is associated with 
each predicted RSA value. 

The proposed two-stage prediction model works as 
follows:

STAGE 1. The input sequences is inputted into 
PSIPRED to compute predicted secondary structure 
and into PSI-BLAST to compute the PSI-BLAST pro-
file. Next, the input sequence, the predicted second-
ary structure, and the PSI-BLAST profile are used to 
compute the selected 70 features using a 15 residues 
wide window centered over the being predicted resi-
due, and for each residue in the input sequence. The 

residues at i-2 and i+2 positions have relatively small 70 features are used as an input to the LR model and 
influence on the prediction. SVR model that predict a real value (predicted RSA 

The selected features are almost symmetrically value) for the central residue in a given window. 
distributed around A , e.g., amino acids E, K, Q, R, i STAGE 2.   The aim of the stage two is to refine the 
and D have similar impact on the solvent accessibil- predictions from stage one. Similarly to other two-
ity of the central residue at the third left position (A ) stage designs [13,18], the second stage “smoothes” the i-3

predictions. It takes the three predicted secondary and the third right position  (A ). i+3
s t ruc tu re  f ea tu re s ( compu ted  in s t age  one by  Hydrophilic residues, which include E, K, Q, R, 
PSIPRED) and a 7 residues wide window from the and D, may have impact on the solvent accessibility 
first stage predictions centered over the predicted res-of A  residue which is 3 or 4 positions away from the i idue as the input to provide the refined real value pre-

these residues. This pattern covers 19 of the selected dictions. 
features and we hypothesize that this is related to the Since the prediction quality of SVR is better than 
á-helical structures due to the following two reasons. the quality of LR (results are discussed in the follow-
Firstly, these 5 hydrophilic residues have larger prob- ing), the predictions from SVR are taken as the final 
ability (above 0.5) to form helical structure than prediction outcome.  The LR results serve as a refer-
strand and coil structures [27]. Secondly, á-helix con- ence to evaluate quality of SVR predictions. This 
sists of 3.6 residues per turn, and hence if two resi- means that if predictions from SVR and LR are simi-
dues in a helix are separated by 2 or 3 residues in the lar then SVR predictions are assumed to be of high 
sequence then they are spatially close to each other, quality. On the other hand, if the two predictions are 
which in turn may induce some interactions between different then the SVR prediction is assumed to be of 
them. For instance, the hydrogen bond that maintains lower quality. The corresponding confidence value is 
the helical structure occurs between two residues that defined as
are separated in a sequence by three other residues, 
i.e., A  and A .i i+4

where R  is the predicted RSA from SVR, and T  is the 3. METHODS i i

predicted RSA from LR. A detailed overview of the 3.1. Prediction method
prediction procedure is shown in .L i n e a r  R e g r e s s i o n ( L R )  a n d S u p p o r t  Ve c t o r  

The optimization of the prediction, through adjust-Regression (SVR) were already applied in the RSA 
ment of internal parameters of the predictors and prediction [10,13,15]. In this paper, we propose an 
selection of the window size for the second stage, improved two-stage model, which not only aims at 
was performed by dividing the Manesh dataset into reducing the prediction error, but we also propose 

Figure 3

Table 1. Summary of the feature selection results.

Features set

PSI-BLAST profile 
 Binary code

  
Predicted second. structure

Total

Total # 
features

300

10

3

313

# selected 
features by 

CBFS

65

2

3

70

# selected 
features by 
CBRR

13

0

2

15

Table 2. Summary of feature selection results for the PSI-BLAST profile by correlation-based feature selection method.

15-wide window

Total # of features

# of selected features   

The selected features

Ai-7

20

0

Ai-6

20

0

Ai-5

20

2

I

L

Ai-4

20

4

E

K

Q

R

Ai-3

20

5

E

K

Q

R

D

Ai-2

20

0

Ai-1

20

8

E

K

Q

R

D

N

P

S

Ai

20

19

C D

E F

G H

I K

L M

N P

Q R

S T

V W

Y

Ai+1

20

7

E

K

Q

H

D

N

G

Ai+2

20

1

P

Ai+3

20

6

E

K

Q

R

D

P

Ai+4

20

6

E

K

Q

R

D

P

Ai+5

20

4

I

L

V

F

Ai+6

20

3

I

L

V

Ai+7

20

0

(3)

Table 1. Summary of the feature selection results.
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two subsets, one used to compute the prediction 
model and the other to perform test. Similarly to [14], 
30 sequences were used for training and the remain-
ing 185 as the test set. The linear regression is 
parameterless and thus it does not require optimiza-
tion. For SVR, RBF kernel was used for both stages. 
The parameters for the first stage SVR are ã=0.01 and 
C=1, and for the second stage ã=0.15 and C=1. These 
parameters, which were based on experiments sum-
marized in , provide the lowest MAE. We note 
that the adjustment of C has little impact in the qual-
ity of predictions. The MAE of the final prediction 
for the second stage windows sizes of 5, 7, 9, 11, 15, 
and 21 equal 0.149, 0.148, 0.148, 0.148, 0.148, and 
0.148, respectively. This shows that the window size 
of 7 is the best choice to provide accurate predictions.

3.2. Linear regreesion
A linear regression with p coefficients and n data 
points (number of samples), assuming that n>p, cor-
responds to the construction of the following expres-
sion:

3.3. Support vector regression
Given a training set of n data point pairs (x , y ), i = 1, i i

2,…, n, where x  denotes the vector of p features rep-i
th

resenting i  protein sequence, y  denotes the pre-i

dicted RSA value,  f inding the opt imal  SVR is 
achieved by solving:

where y  is the predicted RSA value, x  = (x , x ,…, i i i1 i2
thx ) is the vector of p features representing i  protein ip

sequence, â (constant) is parameter to be estimated,  i

and å  is the standard error. The above formula can be such thati

written in vector-matrix form as:

The solution to minimize the mean square error ||å || i

is

where w is a vector perpendicular to wx-b=0 hyperplane, 
* C is a user defined complexity constant, î  and î are i i

Table 3

First stage Second stage

MAE

0.150

0.149

0.148

0.148

0.148

0.149

0.148

0.148

0.148

0.148

0.148

0.148

Parameter 

C

1

1

1

1

1

1

0.5

0.8

1

2

3

5

Parameter

 C

1

1

1

1

1

1

0.5

0.8

1

2

3

5

MAE

0.157

0.153

0.151

0.151

0.152

0.155

0.152

0.151

0.151

0.151

0.151

0.152

Parameter

 ã

0.001

0.005

0.01

0.02

0.03

0.05

0.01

0.01

0.01

0.01

0.01

0.01

Parameter 

ã

0.01

0.08

0.15

0.2

0.3

0.4

0.15

0.15

0.15

0.15

0.15

0.15

Table 3. Optimization of parameters for two-stage SVR.

Figure 3

Table 1

. RSA prediction with the proposed system; the RSA 
th value for the i residue is predicted based on the 70 feature 

values (see ) that are computed over a 15 residues 
th

wide window centered on i  residue; the feature values are 
inputted into the first-stage predictor (LR and SVR); next, the 
first-stage predictions are aggregated into 7 residue wide 
windows and inputted, together with the predicted secondary 
structure of the central residue, into the second-stage 
predictor that provides the RSA values. Finally, compare the 
predictions from SVR and LR, and calculate the confidence 
value C.

(5)

(6)

(7)

(8)
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A A … A A A …A A1 2 i-1 i i+1 n-1 n

PSI-PRED Select 15-wide window

A A …A …A Ai-7 i-6 i i+6 i+7
Predicted 
secondary 
structure

ss ss …ss …ss ss1 2 i n-1 n

Compute 70 features

Features values for the 15-wide window

Input feature vectors for 
all residues, i=1,2,…,n

First-stage SVR First-stage LR

r r … r r r …r r1 2 i-1 i i+1 n-1 n t t … t t t …t t1 2 i-1 i i+1 n-1 n

Select 7-wide window

r r … r …r ri-3 i-2 i i+2 i+3 t t … t …t ti-3 i-2 i i+2 i+3

Input feature vectors for 

all residues, i=1,2,…,N

Second-stage SVR Second-stage LR

T T …T …T T1 2 i n-1 n

Compute 
confidence value

R R …R …R R1 2 i n-1 n

C C …C …C C  1 2 i n-1 n



slack variables that measure the degree of prediction posed method equals 14.6 and the corres pondin g 
error of x  for a given hyperplane, and z= (x) where Pearson's correlation coefficient (r) equals 0.67. i

After the second stage, the MAE value is reduced to k(x,x')= (x) (x') is a user defined kernel function.
14.3 and r is improved to 0.68.  compares the The SVR was trained using sequential minimal 
proposed two-stage SVR with recent methods for optimization algorithm [28] that was further opti-
RSA prediction, which include neural network and mized by Shevade and colleagues [29]. The proposed 
support vector regression models [2, 12, 13, 15]. The SVR uses RBF kernel 
proposed method obtains 0.6 to 3.7 lower MAE when 
compared with the abovementioned methods. This 
translates into 4% to 20% error reduction, respec-

for both stages. tively. Since some methods predict discrete valued 
classes (exposed vs. buried), we also examined the 
performance of our method by converting the real 4. RESULTS AND DISCUSSION
value prediction into the two states prediction. We fol-

The SVR and LR predictors were implemented in 
lowed the standard approach, in which the state is 

Weka [30], which is a comprehensive open-source 
defined based on the predicted RSA value and a pre-

library of machine learning methods. The Manesh 
defined threshold. For instance, a 5% threshold 

dataset consists of 50682 instances (individual resi-
means that the residues having an RSA value (%) 

dues). The evaluation was performed using two test 
greater or equal 5 are defined as exposed, and other-

types to allow for a comprehensive comparison with 
wise they are classified as buried. The threshold's 

previous studies. To compare with [2] and [12], 5-
value is usually adjusted between 5% and 50%. We 

folds cross validation was executed. On the other 
note that for all thresholds, our method provides the 

hand, following several other prior studies [14, 20, 
highest accuracy, see . The proposed two-

24], Manesh dataset was divided into two subsets, 30 
stage model provides 0.3%-0.6% higher accuracies 

sequences were used for training and the remaining 
than the prediction coming from the first stage for var-

185 as independent test set. The results of both tests, 
ious thresholds. When compared to the best perform-

i.e., 5 folds cross-validation and independent test, 
ing, existing two-stage SVR method [13], our predic-

were reported in . In total, the pro-
tions are characterized by lower MAE and more accu-

posed method was compared with six real value RSA 
rate two states predictions.

prediction methods [2, 12-15, 24] and one method 
For the independent test, the MAE value for the 

that aims at prediction of discrete states [20].
first stage of the proposed method equals 15.0 and the 

We note that in statistical prediction, the following 
corresponding Pearson's correlation coefficient r 

three cross-validation methods are often used to 
equals 0.66. After the second stage, the MAE value is 

examine a predictor for its effectiveness in practical 
reduced to 14.8 and r is improved to 0.67. Table 5 

application: independent dataset test, sub-sampling 
compares the proposed two-stage SVR with recent 

(such as 5-fold and 7-fold) test, and jackknife test [31]. 
methods for RSA prediction, which include neural 

However, as elucidated by [32] and demonstrated in 
network and look-up table based methods [14, 20, 24]. 

[33], among the three cross-validation methods, the 
The proposed method obtains 1.5 to 4.0 lower MAE 

jackknife test is deemed the most objective that can 
when compared with the above three methods. This 

always yield a unique result for a given benchmark 
translates into 9% to 21% error reduction, respec-

dataset, and hence has been increasingly used by 
tively. Similarly to the 5-folds cross validation test, 

investigators to examine the accuracy of various pre-
we also examined the performance of our method by 

dictors [34-42].
converting the real value prediction into the two 
states prediction. The threshold's value was adjusted 

4.1. Comparison with competing prediction between 5 and 50%. 
methods For all thresholds our method consistently pro-
For the 5 folds cross-validation test, the mean abso- vides the highest accuracy, see . The two-
lute error (MAE) value of the first stage of the pro-

Table 4

Table 4

Tables 4 and 5

Table 5

Table 4. Experimental comparison between the proposed two-stage SVR and other reported methods; the results were 
reported based on 3 or 5-folds cross validation test; the real valued predictions were converted to two state prediction (buried 
vs. exposed) with different threshold (5%~50%); unreported results are denoted by “-“; best results are shown in bold.

Reference

[2]

[11]

[12]

[14]  
 This paper

This paper

Prediction 
method

Neural Network 
Neural Network 

 Two-stage SVR

SVR
 

One-stage SVR 
Two-stage SVR

MAE (%)

15.2

18.0

14.9

16.3

14.6

14.3

Correlation 
coefficient r

0.67

0.50

0.68

0.58

0.67

0.68

5%

74.9%

-

81.1%

-

80.5%

81.1%

20%

77.7%

-

77.6%

-

78.3%

78.8%

10%

77.2%

-

78.5%

-

79.1%

79.7%

30%

77.8%

-

-

-

78.3%

78.6%

40%

78.1%

-

-

-

78.3%

78.8%

50%

80.5%

-

79.5%

-

80.5%

80.8%

Accuracy for two-states (buried vs. exposed) prediction
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stage model provides 0.3%-0.5% higher accuracies between 0 and 0.294. As a result, the confide nce 
than the one-stage model for various thresholds. value C distributed in the interval [0.706, 1] for the 
When compared with the best-performing, compet- Manesh dataset. Higher C values indicate that the pre-
ing method based on neural network [24], our predic- dictions from SVR and LR are more consistent, and 
tions result in higher accuracies over all thresholds, there fore the corre spond ing predi ction s f rom the 
i.e., the differences range between 4% and 5.8%, and two-stage SVR are assumed to be more accurate.
better MAE and correlation coefficient value. Th e C value of 7101 samples , which covers 

The three main observations based on the per- 7101/50682= 14% of the dataset, are greater than 
formed empirical evaluation include: (1) the pro- 0.99, and the corresponding MAE of these samples 
posed two-state predictor obtains favorable (lower) equals 0.122, see . The C value of 12846 sam-
error rates when compared with six competing meth- ple s, whi ch cov ers 128 46/ 506 82= 25. 3% of the 
ods; (2) the improvements are obtained for both real dataset, are greater than 0.98, and the corresponding 
value and two-state predictions; and (3) the introduc- MAE of these samples equals 0.131. The C value of 
tion of the second stage in our design allows for 18174 samples, which covers 18174/50682= 35.9% 
obtaining improved predictions when compared with of the dataset, are greater than 0.97, and the MAE of 
a one stage design. these samples is 0.136. When the threshold for C 

value is set equal or lower than 0.96, the MAE satu-
4.2. Confidence value for RSA prediction rates at 0.143, see , which is equal to the 
As one of the goals of this work, we defined confi- MAE for the entire dataset (without using the confi-
dence values to measure the quality of the predicted dence values). This shows that the confidence values 
RSA. The confidence values are based on the differ- can be used to identify a subset of the predictions 
ence of predictions made by the two-stage SVR and which on average have better quality than the remain-
the two-stage LR. The following discussion is based ing predictions. This way, the user could select a 
on results of five folds cross-validation tests. desired fraction of best performing predictions. 

The MAE for two-stage SVR is 0.143 and for two- Additionally, the user could inspect quality of predic-
stage LR is 0.155. The difference between the predic- tion for specific amino acids or groupings of amino 
tions from SVR and LR for the same residues ranges acids that share certain properties such as hydrop hob ici ty, 

charge, size, etc.

5. CONCLUSIONS
This paper proposes a novel method for the real value 
RSA prediction. The proposed method addresses two 
goals, which include improving the quality of RSA 
prediction, and development of a confidence value 
that allows for selection of better performing RSA 
predictions. 

Empirical tests with the Manesh dataset show that 
the proposed method is characterized by lower pre-
diction error when compared with six competing real 
value RSA prediction methods. We also show that the 
PSI-BLAST profile that is commonly used to repre-
sent sequences can by largely reduced by using fea-
ture selection, which results a simpler, interpretable 
model and in reduction of the computational time 
required to develop the prediction model. Our model 
indicates that window size of 13 is sufficient and only 
about 22% of the PSI-BLAST features are useful for 

Figure 4

Figure 4

Table 5. Experimental comparison between the proposed two-stage SVR and other reported methods; the results were 
reported based on a test on the independent dataset (30 sequences for training and 185 sequences for test); the real valued 
predictions were converted to two state prediction (buried vs. exposed) with different threshold (5%~50%); unreported 
results are denoted by “-“; best results are shown in bold.

Reference

[13]

[19]

[23]

This paper

This paper

Prediction 

method

 Look-up table
 Neural Network
 Neural Network

 One-stage SVR
 Two-stage SVR

MAE (%)

18.8
-

16.3

15.0

14.8

Correlation 

 coefficient r

0.48

-

0.58

0.66

0.67

Accuracy for two-states (buried vs. exposed) prediction

5%

-

74.6%

75.7%

79.8%

80.3%

10%

-

71.2%

73.4%

78.7%

79.2%

20%

-

-

-

77.7%

78.1%

30%

-

-

-

77.7%

78.0%

40%

-

-

-

77.5%

78.0%

50%

-

75.9%

76.2%

79.8%

80.2%

Figure 4. Bar chart of MAE values for the corresponding 
thresholds of confidence value C. The numbers above the 
bar show the corresponding coverage, i.e., number of 
residues for which the predictions had confidence value 
above the threshold. For example, for residues predicted 
with which C > 0.99 the MAE equals 12.2, and these 
residues cover 14% of the dataset.
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has reduced stress concentrations in the ABSTRACT
crown. However, because the torque is trans-
ferred through the abutment screw to the abut-Objectives: The abutment connection with 
ment contact, changing the torque has greater the crown is fundamental to the structural 
effect on this hex system than the masticatory stabil ity of the implant system and to the pre-
force. Overall the masticatory force is more vention of mechanical exertion that can com-
influential on the stress within the crown for promise the success of the implant treatment. 
the external-hex system and the torque is more The aim of this study is to clarify the difference 
influential on the internal-hex system.in the stress distribution patterns between 

implants with internal and external-hex con-
nections with the crown using the Finite Ele-
ment Method (FEM). Material and Methods: The 
internal and external-hex connections of the 
Neoss and 3i implant systems respectively, are 1. INTRODUCTION
considered. The geometrical properties of the Dental implants are a consistently accepted form of 
implant systems are modeled using three- dental treatment. Clinical research in oral implantology 
dimensional (3D) brick elements. Loading con- has led to advancements in the biom echan ical as pects 
ditions include a masticatory force of 200, 500 of implants, implant surface features and implant 
and 1000N applied to the occlusal surface of componen t ry . These  advancements in  implan t 
the crown along with an abutment screw torque componentry include the modification of the exter-
of 110, 320 and 550Nmm. The von Mises stress nal-hex connection between the abutment and crown 
distribution in the crown is examined for all to the currently used internal-hex ( )). 
loading conditions. Assumptions made in the Although both internal and external-hex connected 
modeling include: 1. half of the implant system implant systems are extensively used, distinctly dif-
is modeled and symmetrical boundary condi- ferent performances are on offer in terms of the stress 
tions applied; 2. temperature sensitive ele- characteristics produced within the crown. Observa-
ments are used to replicate the torque within tions by practitioners have aided the identification of 
the abutment screw. Results: The connection implant components which lead to mechanical failure 
type strongly influences the resulting stress of the crown and implant [1-3]. Failure may be 

defined as the point at which the material exceeds the characteristics within the crown. The magni-
fracture stress, as indicated by its stress strain rela-tude of stress produced by the internal-hex 
tionship. There are two major factors which can implant system is generally lower than that of 
cause the crown and implant to fai l .  These are the external-hex system. The internal-hex sys-
described below;tem held an advantage by including the use of 

- typically, over tightening of the abutment screw an abutment between the abutment screw and 
causes failure of the crown for internal and external-the crown. Conclusions: The geometrical 
hex systems.design of the external-hex system tends to 

- failure of the implant may also be a result of over induce stress concentrations in the crown at a 
t ightening of the  abutment screw or excessive distance of 2.89mm from the apex. At this loca-
masticatory loads being transferred from the occlusal tion the torque applied to the abutment screw 
plane of the crown to an area of stress concentration also affects the stresses, so that the compres-
at the interface between the abutment and implant sive stresses on the right hand side of the 
body.crown are increased. The internal-hex system 

Keywords: Component; Biomedical modelling; 
Dental implant; Finite  element  technique
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Using theoretical techniques, such as the FEM, all 
mechanical aspects that could affect the implant suc-
cess can be evaluated. FEM has been used exten-
sively to evaluate the performance of dental implant 
prosthesis [4-15]. Studies by Maeda et al. (2006), 
Merz et al. (2000) and Khraisat et al. (2002) have all 
considered the behavior of the stress within the abut-
ment screw however disregarding the stress within 
the crown. To date no published research appears to 
have investigated the stress characteristics in the 
crown due to an internal or external-hex system. Ulti-
mately, the outcome of this study will facilitate den-
tal practitioners to identify locations within the 
implant system that are susceptible to stress concen-
trations.

2. METHODOLOGY
The modeling and simulation herein are performed 
using the Strand7 Finite Element Analysis (FEA) Sys-
tem (2004). The first step of the modeling is to define 
the geometry of the implant system. This is then fol-
lowed by specifying the material behavior in terms of 
the Young's modulus, Poisson's ratio and density for 
the implant and componentry. After applying the 
appropriate loading and restraint conditions, the 

c) Locations for measuring stress profile and contour 

a) Loading and restraint conditions 
    (with detailed variables) 

Figure 1.   Finite element model of internal and external-hex systems.

internal and external-hex systems can be evaluated 
for their contributions to the stress characteristics 
within the crown.

2.1. Modelling
Data acquisition for the internal and external-hex sys-
tems are obtained from the manufacturer's data. 
Shown in ) are details of the Neoss (2006) 
and 3i (2006) systems. 

Shown in ) are the detailed variables con-
sidered in this study. The implant is conical with 2 
degrees of taperage, a helical thread, diameter of 
4 . 5 m m ,  a n d  l e n g t h o f  1 1 m m . D i f f e r e n t  f i x e d 
restraints are applied to the symmetrical edge of the 
implant system as compared to the outer edge of 
implant thread. The symmetrical edge is restrained 
from rotating around the z-axis and translating 
through the x- and y-axis. The outer edge of the 
implant thread is restrained from deforming in any 
direction. Note that these loading and restraint condi-
tions are the same for both internal and external-hex 
systems.

For the Neoss and 3i finite element models, the 
total numbers of elements are respectively 13464 and 
30420 for the implant, 3564 and 9108 for the abut-
ment, 17424 and 25956 for the abutment screw, 
38484 and 47052 for the crown. The total number of 
nodal points for the entire Neoss and 3i models are 
82547 and 122688  respectively.

2.2. Stress Measuring
As indicated in ) the von Mises stresses 
along the lines NN (NN , NN and NN ) and II 1-2 2-3 3-4

(II , II , II , II , II and II ) for the Neoss  1-2 2-3 3-4 4-5 5-6 6-7

and 3i systems respectively, are measured for all pos-
sible combinations of loading. Note that, for example, 
along the line II the beginning location of the line  1-2

is identified as II  and the end as II . These locations 1 2

are believed by clinicians to be critical for examining 
the stress levels in the crown. Note that both lines NN 
and II are chosen on Section AA because the highest 
stress magnitudes (compressive is prominent over ten-

Figure 1b

Figure 1a

Figure 1c
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sile) occur on this plane due to the masticatory load-
ing characteristics.

2.3. Loading Conditions
Masticatory force, F , is applied to the occlusal sur-M

oface of the crown at 100, 250 or 500N, inclined at 45  
along the x- and y-axis ( ). The preload, F , P

of 100.97, 293.72 or 504.84N is applied to the abut-
ment screw through the use of temperature sensitive 
elements ( )). Note that F  and F  are set to M P

half of the total magnitude because only half of the 
implant system is modelled. Therefore the total F  M

modelled is 200, 500, 1000N and F  is 201.93, 587.44, P

1009.67N. The manner of modelling the masticatory 
forces and the preload applied to the abutment screw 
is described by van Staden et al. (2008). In this study 
both the abutment screw preload, F , and surface area P

between abutment and abutment screw are halved 
when compared with that used by van Staden et al. 
(2008) due to the modelling assumption aforemen-
tioned. Calculations for the abutment screw surface 
pressure, q, confer identical results than that found by 
van Staden et al. (2008).

For the present study a negative temperature (-10 
Kelvin, K) is applied to all the nodal points within the 
abutment screw, causing each element to shrink. A 
trial and error process is applied to determine the tem-
perature coefficient, C, for both the Neoss and 3i sys-
tems (i.e. C  and C ) that can yield an equivalent Neoss 3i

Figure 1a

Figure 1a

Figure 2. Stress characteristics when varying F .M Figure 3. Stress characteristics when varying F .P

a) Stress profile b) Stress contour

c) Stress profile d) Stress contour

a) Stress profile b) Stress contour

c) Stress profile d) Stress contour

q. It is found that when F =201.93, 587.44 and 1009.67N P
-4 -4 -4

then C =-3.51×10 , -9.28×10  and -15.60×10  /K, Neoss
-4 -4 -4

and C =-0.98×10 , -1.80×10  and -2.68×10  /K, respec-3i

tively.

2.4. Material Properties
The material properties used are specified in terms of 
Young's modulus, Poisson's ratio and the density for 
the implant and all associated components ( ). 
All material properties are assumed to be linear, 
homogeneous and elastic in behavior. 

3. RESULTS DISCUSSION
Zirconia typically used as a dielectric material has 
proven adequate for application in dentistry. With its 
typical white appearance and high Young's moduli it 
is ideal to be used in the manufacturing of sub frames 

Table 1

Table 1. Material propertles.

Component

Implantand
abutment  

Abutment
screw  

Crown

Description

Titanium
(grade4)
  Gold(prec-
isionalloy) 

 Zirconia(Y-
TZP)  

Young's  mo-

dulus, E (Gpa)

105.00

93.00

172.00

Poisons 

ratio, v

0.37

0.30

0.33

Density, p

 (g/cm3)

4.51

16.30

6.05
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stresses along the lines NN and II for all values of F  Pfor the construction of dental restorations such as 
are shown in . crowns and bridges, which are then veneered with 

As found for F , when F  increases the stresses conventional feldspathic porcelain. Zirconia has a M P

fracture strength that exceeds that of Titanium there- calculated along the line NN increase, showing two 
fore it may be considered as a high strength material. peaks along the line NN (refer to ) and  3-4
However with cyclic preload and masticatory loads )). Also, as found for F , elevated stress M
the compressive strength of 2.1GPa (Curtis et al. 

peaks are identified at the beginning of the line II  3-42005) can easily be exceeded especially for implant 
( ) and )). Overall, all values of systems with external-hex connections, as confirmed 
F  cause greater stresses along lines NN and II, than Mduring this study. 
do varying values of F .The distribution of von Mises stresses in the crown P

is discussed for both the internal and external-hex sys-
tems for all combinations of masticatory and preload 4. DISCUSSION
forces. Shown in ), are the von Mises FEA has been used extensively to predict the 
stresses measured between locations NN  (0-1-2 biomechanical performance of the jawbone sur-
1.76mm), NN  (1.76-1.87mm) and NN (1.87- rounding a dental implant [21, 22]. Previous research 2-3 3-4

considered the influence of the implant dimensions 3.96mm) for the Neoss system. For the 3i system the 
and the bone-implant bond on the stress in the sur-von Mises stresses are measured between locations 
rounding bone. However, to date no research has II (0-2.38mm), II (2.38-2.78mm), II (2.78-   1-2 2-3 3-4
been conducted to evaluate the stress produced by dif-3.67mm), II (3.67-4.06mm), II (4.06-4.65mm)   4-5 5-6 ferent implant to crown connections (i.e. internal and 

and II (4.65-5.27mm), as shown in ).  6-7 external-hex). The analysis completed in this paper 
uses the FEM to replicate internal and external-hex 
systems when subjected to both F  and F  loading M P3.1. Masticatory Force, F  M
conditions. As shown in , two stress peaks 

The distributions of von Mises stresses along the 
were revealed along the lines NN and II at locations 

lines NN and II for all values of F  are shown inM 3.76 and 2.89mm from the top. The stress values 
 Note that the preload, F , is set at its medium p shown were calculated with the other variables (i.e. 

value, i.e. 587.44N. F  or F ) set to its average. M P
In general, when the applied masticatory force, F , M The mastication force F  is applied on the M

is increased, the von Mises stresses also increase pro- occlusal surface of the crown, evenly distributed 
portionally, because the system being analysed is lin- along 378 nodal locations ( ), and orien-

oear elastic. When F  increases the stress along the M tated at 45  in the x-y plane. This induces compres-
line NN increases showing two peaks along the line sive stresses in the right hand side of the crown and 
NN (refer to )). The larger of these two tensile in the left. Varying F  from 200 to 1000N for  3-4 M
peaks occurs at a distance of ±3.8mm in length from the internal and external-hex systems results in a 
NN . This stress peak (as can be identified in change in von Mises stress of 545.64 (818.47-1

272.82MPa) and 698.09MPa (1047.14-349.05MPa) )) is caused by a sharp corner and sudden change in 
respectively. The geometrical design of the external-section at this point. 
hex system tends to induce stress concentrations, Elevated stress concentrations are identified at the 
located 2.89mm from the apex in this study. For this beginning of the line II  ( ) and )). 3-4
system, a stress concentration at this point is also This stress peak, as can be identified in ), is 
induced by F , increasing the compressive stresses Pcaused by a sharp corner at this point. For the 3i sys-
on the right hand side of the crown. Increasing F  tem, the volume of the crown exceeds that of the P

Neoss system, thereby suggesting that the 3i crown from its minimum to maximum values, for the exter-
may endeavor greater resistance to the applied nal-hex system, increases the stress by 485.46MPa 
masticatory forces. However, even though the Neoss (951.67-466.21MPa). 
crown has a thinner wall thickness along the line The internal-hex system has reduced stress concen-
NN , reduced stresses are still evident due to the 3-4

abutments high Young's modulus. Overall, the design 
differences between the Neoss and 3i systems ulti-
mately results in the 3i system having higher stresses 
when F  is increased. M

3.2. Preload Force, F  P

To investigate the effect of different preload F , F  P M

is kept as a constant and its medium value, i.e. 500N 
is considered herein. The distributions of von Mises 

Figure 3

Figure 3a

Figure 3b

Figure 3c Figure 3d

Figure 1c

Figure 1c

Table 2

 Fig-

ure 2.

Figure 1a

Figure 2a

Figure 

2b

Figure 2c Figure 2d

Figure 2c
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Table 2. Von Mises stress (MPa) in crown (location of stress 
recording in brackets).

Variables
                 

Line

NN 
(3.76mm)

    II
(2.89mm)

F (N) F (N)M P                                    

200

272.82

349.05

500

545.64

698.09

1000

818.47

1047.14

201.93

231.55

466.21

587.44

545.64

698.09

1009.67

891.83

951.67
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Clinical Implant Dentistry and Related Research 2005, trations, demonstrating that this design is less sus-
7(4):221-228.ceptible to stress concentrations within the crown. 

[7]F. H. G. Butz, M. Okutan & J. R. Strub. Survival rate, fracture 
However, because of the transfer of the preload strength and failure mode of ceramic implant abutments after 
through the abutment screw to abutment contact, chewing simulation. Journal of Oral Rehabilitation 2005, 

32(11):838-843.changing F  is more influential on this hex system P
[8]K. J. Anusavice & P. H. Dehoff. Influence of metal thickness on 

than F . Overall F is more influential on the stress  stress distribution in metal-ceramic crowns. Journal of Dental M M
Research 1986, 65(9):1173-1178.within the crown for the external-hex system and F  P [9]K. J. Anusavice. Stress distribution in metal-ceramic crowns 

is more influential on the internal-hex system. with a facial porcelain margin. Journal of Dental Research 
1987, 66(9):1493-1498.

[10]K. J. Anusavice. Influence of incisal length of ceramic and 
5. CONCLUSION loading orientation on stress distribution in ceramic crowns. 

Journal of Dental Research 1988, 67(11):1371-1375.This research is a pilot study aimed at offering an ini-
[11]H. Y. Suzuki. Finite element stress analysis of ceramics crown tial understanding of the stress distribution charac-

on premolar. Relation between ceramics materials and abut-teristics in the crown under different loading condi-
ment materials. Nippon Hotetsu Shika Gakkai Zasshi 1989, 

tions. Realistic geometries, material properties, load- 33(2):283-293.
[12]T. Hino. A mechanical study on new ceramic crowns and ing and support conditions for the implant system 

bridges for clinical use. Osaka Daigaku Shigaku Zasshi 1990, were considered in this study. The geometrical design 
35(1):240-267.of the external-hex system tends to induce stress con-

[13]Zhang, B. & Wang , H. Three-dimensional finite element anal-
centrations in the crown at a distance of 2.89mm from ysis of all-ceramic crowns of the posterior teeth. Hua Xi Yi Ke 

Da Xue Xue Bao 2000, 31(2):147-148.the apex. At this location, F  also affects the stresses, P
[14]K. A. Proos, J. Ironside & G. P. Steven. Finite element analysis 

so that the compressive stresses on the right hand side studies of an all-ceramic crown on a first premolar. Interna-
of the crown are increased. The internal-hex system tional Journal of  Prosthodontics 2002, 15(4):404-412.

[15]A. Imanishi, T. Ohyama & T. Nakamura. 3-D Finite element has reduced stress concentrations in the crown. How-
analysis of all-ceramic posterior crowns. Journal of Oral ever, because the preload is transferred through the 
Rehabilitation 2003, 30(8):818-822.

abutment screw to the abutment contact, changing F  P [16]Strand7 Pty Ltd. Strand7 Theoretical Manual 2004. Sydney, 
Australia.has greater effect on this hex system than F . Overall M

[17]Neoss Pty Ltd, Neoss Implant System Surgical Guidelines 
F is more influential on the stress within the crown  M 2006. United Kingdom.

th[18]http://www.3i-online.com.htm (accessed 12  July 2006).for the external-hex system and F  is more influen-P
[19]R. C. van Staden, H. Guan, Y. C. Loo, N. W. Johnson & N. 

tial on the internal-hex system. Meredith. Stress Evaluation of Dental Implant Wall Thickness 
Future recommendations include the evaluation using Numerical Techniques.Applied Osseointegration 

Research 2008, (In Press).of other implant variables such as the implant wall 
[20]A. R. Curtis, A. J. Wright & G. J. Fleming. The influence of thickness and thread design. Ultimately, all implant 

simulated masticatory loading regimes on the bi-axial flexure 
components can be understood in terms of their influ- strength and reliability of a Y-TZP dental ceramic. Journal of 
ence on the stress produced within the implant itself. Dentistry 2005, 34(5):317-325.

[21]D. H. DeTolla, S. Andreana, A. Patra, R. Buhite & B. Comella. 
Role of the finite element model in dental implants. Journal of 
Oral Implantology 2000, 26(2):77-81.
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[1,2,4,11,15,16,17,21] have been proposed. Among ABSTRACT
all the models, BNs and PBNs have received much 
attention. The approach is to model the genetic regu-In the post-genomic era, the construction and 
latory system by a Boolean network and infer the net-control of genetic regulatory networks using 
work structure from real gene expression data. Then gene expression data is a hot research topic. 
by using the inferred network model, the underlying Boolean networks (BNs) and its extension 
gene regulatory mechanisms can be uncovered. This Probabilistic Boolean Networks (PBNs) have 
is particularly useful as it helps to make useful pre-been served as an effective tool for this pur-
dictions by computer simulations. We refer readers to pose. However, PBNs are difficult to be used 
the survey paper by Shmulevich et al. [18, 19] and the in practice when the number of genes is large 
book by Shmulevich and Dougherty [20]. because of the huge computational cost.In this 

The BN model was first introduced by Kauffman paper, we propose a simplified multivariate Markov 
[12, 13, 14]. The advantages of this model can be model for approximating a PBN. The new model 
found in Akutsu et al. [1], Kauffman [14] and can preserve the strength of PBNs, the ability to 
Shmulevich et al. [17]. Since genes exhibit switching capture the inter-dependence of the genes in the 
behavior [10], BN models have received much atten-network, and at the same time reduce the com-
tion. In a BN, each gene is regarded as a vertex of the plexity of the network and therefore the compu-
network and is quantized into two levels only (ex-tational cost. We then present an optimal con-
pressed (1) or unexpressed (0)). We remark that the trol model with hard constraints for the purpose 
idea and the model can be extended easily to the case of control/intervention of a genetic regulatory 
of more than two states. The target gene is predicted network. Numerical experimental examples based 
by several genes called its input genes through a on the yeast data are given to demonstrate the 
Boolean function. If the input genes and the Boolean effectiveness  of our proposed model and control 
functions are given, a BN is defined. The only ran-policy.
domness involved here is the initial system state. 
However, the biological system has its stochastic 
nature and the microarray data sets used to infer the 
network structure are usually not accurate because of 
the experimental noise in the complex measurement 
process. Thus stochastic models are more reasonable 

1. INTRODUCTION choices. To overcome the deterministic nature of a 
An important issue in systems biology is to under- BN, Akutsu et al. [1] proposed the noisy Boolean net-
stand the mechanism in which cells execute and con- works together with an identification algorithm. In 
trol a huge number of operations for normal functions, their model, they relax the requirement of consis-
and also the way in which the cellular systems fail in tency imposed by the Boolean functions. Regarding 
disease, eventually to design some control strategy to the effectiveness of a Boolean formalism, Shmulevich 
avoid the undesirable state/situation. Many mathe- et al. [17] proposed a PBN that can share the appeal-
matical models such as neural networks, linear model, ing rule-based properties of Boolean networks and it 
Bayesian networks, non-linear ordinary differential is robust in the presence of uncertainty. The model 
equations, Petri nets, Boolean Networks (BNs) and parameters can be estimated by using Coefficient of 
its generalization Probabilistic Boolean Networks Determination (COD) [8].
(PBNs), multivariate Markov chain model etc. 

Keywords: Gene expression sequences; Multivariate 
Markov chain; Optimal control policy; Probabilistic 
Boolean networks
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(ij)The dynamics of the PBN can be studied in the con- Gene i. The matrix P  is a transition probability 
text of standard Markov chain [17, 18, 19]. This matrix for the transitions of states in Sequence j to 
makes the analysis of the network easy. However, the states in Sequence i in one step, see for instance [3]. 
number of parameters (state of the system) grows In matrix form we have
exponentially with respect to the number of genes n. 
Therefore it is natural to develop heuristic methods 
for model training or to consider other approximate 
model. Here we propose a simplified multivariate 
Markov model, which can capture both the intra- and 
inter-associations (transition probabilities) among 
the gene expression sequences. The number of 

2
parameters in the model is only O(n ) where n is the where
number of genes in a captured network. We remark 
that this order is already minimal. We then develop 
efficient model parameters estimation methods based 
on linear programming. We further propose an opti-
mal control formulation for regulating the network so 
as to avoid some undesirable states which may corre-
spond to some disease like cancer. 

The rest of the paper is structured as follows. In 
section 2, we present the simplified multivariate We note that the column sum of Q is not equal to one 
Markov model. In section 3, the estimation method (ij)

(the column sum of each P  is equal to one). The fol-for model parameters is given. In section 4, an opti-
lowings are two propositions [3] related to some prop-mal control formulation is proposed. In section 5, we 
erties of the model. apply the proposed model and method to some syn-
Proposition 2.1 If  0 for 1 i, j n , then the matrix thetic examples and also the gene expression dataset ij

of yeast. Concluding remarks are then given to Q has an eigenvalue equal to 1 and the eigenvalues of Q 
address further research issues in section 6. have modulus less than or equal to 1. 

(ij)
Proposition 2.2 Suppose that P  (1 i, j n ) are 

2 .  T H E M U L T I VA R I A T E M A R K O V  
irreducible and  0 for 1 i, j n  . Then there is ijCHAIN MODEL
a vector In this section, we first review a multivariate Markov 

chain model proposed in Ching, et al. [3] for model-
ing categorical time series data. We remark that the 
model has been first applied to predicting demand of 
inventory of correlated products. Later the model such that
was applied to the building of genetic regulatory net-
works [4] from gene expression data. However, the 
number of parameters is still large and further reduc-
tion of the model parameters is necessary and a sim- and 
plified model was proposed in [5]. In the remainder 
of this section, we present the simplified multivariate 
Markov chain model.

Given n categorical time sequences, we assume 
they share the same state space M. We denote the where m is the number of states. 

(ij)state probability distribution of Sequence j at time t 
In Proposition 2.2, we require all P  are irreduc-(j)

byV , j=1,2, ,n . In Ching, et al. [3], the following ible. But actually, if Q is irreducible, we can get the t

same conclusion. If the model is applied to gene first-order model was proposed to model the relation-
expression data sequences, one may take M={0,1} ships among the sequences:

(i)
and V  to be the expression level of the i-th gene at t

the time t. From (1), the expression probability distri-
bution of the i-th gene at time (t+1) depends on the 

(ij) (j)
weighted average of P V . We remark that this is a Where t

first-order model and  actually give the weighting ij

of how much Gene i depends on Gene j. In Ching, et 
al. [4], this model has been used to find cell cycles. 
The most proper parent genes for the i-th gene 

Here  is the non-negative weighting of Gene j to (i)ij
(i.e.,V ) can be retrieved from the corresponding t+1

(1)

(2)
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 . The higher the value of  , the stronger the par-ij ij rence of each gene and we denote it by
ent and child relationship between i-th and j-th gene 
will be. When this process is repeated for each j, the 
whole genetic network can be constructed. Given a 

We therefore expect that set of genes 

If for any gene in this set, the rest genes are the only 
candidates being a corresponding parent gene, then 
this set of genes forms a cycle.

A simplified model was proposed in Ching et al. [5] 
by assuming 

From the above equation, it suggests one possible V

way to estimate the parameters ={  } as follows:ij
The simplified model has smaller number of 

parameters and it has been shown to be statistically 
better in terms of BIC, see for instance [5]. Moreover, 
Propositions 1 and 2 still hold for the simplified 
model.

subject to 

3. ESTIMATION OF MODEL PARAME-
TERS

(ij)
In this section, we present methods to estimate P  
and  . We estimate the transition probability matrix ij We note that the following formulation of n linear 

(ij) programming problems can give the necessary solu-P  by the following method. First we count the tran-
tions of Problem (4). For each i: sition frequency of the states in the i-th sequence. 

After making a normalization, we obtain an estimate 
of the transition probability matrix. We have to esti-
mate n such m-by-m transition probability matrices to Subject to

(ij)
get the estimate for P  as follows:

Where

(ij) (ij)
From F , one can obtain the estimate for P  as 

follows:
and

V 

Here  is the i-th row of . ij

We remark that the estimation method can be 
applied to the simplified model (3). We remark that 

.  .  Where other vector norms such as   and   can also be 12

used but they have different characteristics. The for-
mer will result in a quadratic programming problem 
while       will still result in a linear programming 
problem. The main computation cost comes from solv-
ing the linear programming problem. In the estima-
tion of    , it involves only counting frequencies of 
transitions and therefore the cost is minimal. Once 

Besides       , we need to estimate the parameters  . ij the model parameters are available, one can then con-
It can be shown that the multivariate Markov model struct the underlying genetic network easily. We will 
has a “stationary vector” V in Proposition 2. The vec- demonstrate this in the section of numerical exam-
tor V can be estimated from the gene expression ples. The model can also be further modified to 
sequences by computing the proportion of the occur- include extra conditions such as some are known ij
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where v(i i i represents all the possible net-to be zero. Such information can be included by add- t t-1 1

ing the constraints =0 . Furthermore, for large net- work state probability distribution vectors up to time ij
t. We definework, it is known that the in-degree follows the Pois-

son distribution while the out-degree follows the 
power-law, i.e., the number of out-degree to some 
negative power. These important properties can also 
be easily included in our proposed model [24].

4. THE OPTIMAL CONTROL FORMU- to be the set which contains all the possible state prob-
LATION ability vectors up to time t. We note that one can con-
In this section, we present the optimal control prob- duct a forward calculation to compute all the possible 
lem based on the simplified multivariate Markov state vectors in the sets U(1),U(2), U(T) recursively. 
model (3) and formulate it based on the principle of Here the main computational cost is the matrix-

2dynamic programming. In the simplified model (3) vector multiplication and the cost is O((2n) ) where n 
we proposed above, the matrix Q can be regarded as a is the number of genes in the network. We note that 
“transition probability matrix” for the multivariate some state probability distribution actually does not 
Markov chain in certain sense, and V  can be regarded t exist because the maximum number of controls is K, 
as a joint state distribution vector. We then present a the total number of vectors involved is only
control model based on the paper by Ching, et al.[6]. 
Beginning with an initial joint probability distribu-
tion V  the gene regulatory network (or the mult ivari ate 0

Markov chain) evolves according to two possible tran-
For example if K=1, the complexity of the above algo-

sition probability matrices Q  and Q . Without any 20 1
rithm is O(T(2n) ). 

external control, we assume that the multivariate 
Returning to our original problem, our purpose is 

Markov chain evolves according to a fixed transition 
to make the system go to the desirable states. The 

probability matrix Q  ( Q). When a control is 0 objective here is to minimize the overall average of 
applied to the network at one time step, the Markov the distances of the state vectors v(i i ) (t=1,2, ,T) t 1chain will evolve according to another transition 

to the target vector z, i.e.,
probability Q  (with more favorable steady states or a 1

more favorable state distribution). It will then return 
back to Q  again if there is no control. We note that 0

one can have more than one type of controls, i.e., 
To solve (6), we have to define the following cost more than one transition probability matrix Q  to 1

functionchoose in each time step. For instance, in order to sup-
press the expression of a particular gene, one can 
directly toggle off this gene. One may achieve the 
goal indirectly by means of controlling its parent 

as the minimum total distance to the terminal state genes which have a primary impact on its expression 
at time T when beginning with state distribution vec-too. But for the simplicity of discussion, we assume 
tor v(w ) at time t and that the number of controls that there is only one direct possible control here. We t

then suppose that the maximum number of controls used is k. Here W  is a Boolean string of length t. t
that can be applied to the network during a finite Given the initial state of the system, the optimization 
investigation period T (finite-horizon) is K where problem can be formulated as:  
K T. The objective here is to find an optimal control 
policy such that the state of the network is close to a 
target state vector Z. Without loss of generality, here 
we focus on the first gene among all the genes. 

(1) subject to:Accordingly, we remark that the sub-vector Z  
denotes the vector containing the first two entries in 
Z. It can be a unit vector (a desirable state) or a prob-
ability distribution (a weighted average of desirable 
states). The control system is modeled as:

To solve the optimization problem, one may con-
sider the following dynamic programming formula-
tion:
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 (7)

(6)



Here 0w  and 1w  are Boolean strings of size t. t-1 t-1

The first term in the right-hand-side of (8) is the cost 
(distance) when no control is applied at time t while 
the second term is the cost when a control is applied. 
The optimal control policy can be obtained during the 
process of solving (8). We remark that instead of con-
sidering the objective (6), one can consider 

and  

With{ }a new weighting  and a different vector i
. norm  .Furthermore, it is interesting to study the l

case of infinite horizon. In this case is chosen to be   t
t-1

(1- )  for some discount factor (0,1). 

5. NUMERICAL EXPERIMENTS
5.1. A Simple Example
In this subsection, we consider a small five-gene net- The target here is to suppress the first gene but no 
work whose gene expression series can be found in preference on other genes. The control we used is to 
the Appendix. shows the five-gene network. suppress the first gene directly.  Thus the control 
We note that Gene 1 and Gene 4 depends on all the matrix is as follows: 
other genes, Gene 2 depends on Gene 1 and Gene 3 
only, Gene 3 depends on Gene 1 and Gene 2 only, 
while Gene 5 depends on itself only.

To solve the linear programming problem in equa-
tion (5), infinity norm is chosen for all numerical Without loss of generality, we assume that the ini-V

experiments. The matrices  , P, and Q  (without con- tial state vector is the uniform distribution vector (for 0

trol) are obtained from the proposed model as follow: each gene), that is

Moreover, we assume that the total time T is 12 and 
we try several different numbers of controls 
K=1,2,3,4,5.  shows the numerical results. All 
the computations were done in a PC with Pentium D 
and Memory 1GB with MATLAB 7.0. In , 
"Policy" represents the optimal time step at the end Where 
of which a control should be applied. For instance,  
means that the optimal control policy is to apply the 
control at the end of the t=1,2,3-th time step. From 

, observable improvements of the optimal 
value is obtained when K increases from 1 to 5.

5.2. The Yeast Example

Figure 1 

Table 1

Table 1

Table 1

Figure 1. The Five-gene Network.

Table 1. Numerical results for the 5-gene network.

K
Control
Policy 
Objective
Value 
Time in 
Seconds 

   1 

[1]

0.5628 

0.02 

    2 

[2] 

0.4277 

0.02 

    3 

[1,2,3] 

0.3379 

0.06 

      4 

[1,2,3,7] 

0.2717 

0.15 

        5  

[1,2,3,7,8] 

0.2090 

0.23 
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(8)

Q =0



In this subsection, we apply our proposed simplified first gene in the first 4 steps, and will not control it in 
multiv ariate Ma rkov mode ls to the yeast data other steps. These experiments show that even the 
sequences [23]. Genome transcriptional analysis is number of genes (384 genes in this data set) is com-
an important analysis in medicine, etiology and paratively large, the method still can find the control 
bioinformatics. One of the applications of genome policies fast. 
transcriptional analysis is used for eukaryotic cell 
cycle in yeast. The fundamental periodicity in 6. CONCLUDING REMARKS
eukaryotic cell cycle includes the events of DNA rep-

In this paper, we proposed a simplified multivariate 
lication, chromosome segregation and mitosis. It is 

Markov model for approximating PBNs. Efficient 
suggested that improper cell cycle regulation leads to 

estimation methods based on linear programming 
genomic instability, especially in the etiology of both 

method are presented to obtain the model parameters. 
hereditary and spontaneous cancers [9, 22]. Eventu-

Methods for recovering the structure and rules of a 
ally, it is believed to play one of the important roles 

PBN are also illustrated in details. We then give an 
in the etiology of both hereditary and spontaneous 

optimal control formulation for control the network. 
cancers. The dataset used in our study is the selected 

Numerical experiments on synthetic data and gene 
set from Yeung and Ruzzo (2001) [23]. In the 

expression data of yeast are given to demonstrate the 
discretization, if an expression level is above (below) 

effectiveness of our proposed model and formulation. 
a certain standard deviation from the average expres-

For future research, we will extend the control 
sion of the gene, it is over-expressed (under-

problem to the case of having multiple control policy. 
expressed) and the corresponding state is 1 (0) [4]. 

We will develop efficient heuristic methods for solv-
To solve the linear programming problem in (5), 

ing the control problem and genetic algorithm is a 
infinity norm is chosen for all numerical experiments. V possible approach [7]. Extension of the study to the 
The matrices , P , and Q  (without control) are 0 case of infinite horizon is also interesting. Finally, 
obtained from the proposed model. The initial state we will also apply our model to more real world 
vector is assumed to be the uniform distribution (for datasets. 
each gene) vector 

APPENDIX
The five gene expression sequences. 

In addition, we assume that the total time T is 12 
and several different maximum numbers of controls 
K=1,2,3,4,5  are tried in our numerical experiments. 
The target is to suppress the first gene but no prefer-

(1)
ence on other genes. That is the target state vector Z  

T
is (1,0) . The control we used is to suppress the first 
gene directly. Thus the control matrix Q  takes the 1

same form as the following: 
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Table 2. Numerical results for the yeast data set. 
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Policy 
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Time in 
Seconds 
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[2] 
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20.60 

     3 

[1,2,3] 

0.5165 

67.90 

       4 

[1,2,3,4] 

0.4582 
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        5  

[1,2,3,4,5] 

0.4000 

245.95 
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relations like video signals with intra-frame and ABSTRACT
inter-frame correlations, video codec technology can 
be used for ECG compression. For ECG signals, there In this paper, we present a method using 
is a little difference, so some pre-process will be video codec technology to compress ECG 
needed: ECG signals should be segmented and period signals. This method exploits both intra-beat 
normalized to a sequence of beat cycles with the and inter-beat correlations of the ECG sig-
same size. Then these beat cycles can be treated as nals to achieve high compression ratios (CR) 
'picture frames' and compressed with a video codec. and a low percent root mean square differ-

In this work, we present a method using video ence (PRD). Since ECG signals have both 
codec technology to compress ECG signals. This intra-beat and inter-beat redundancies like 
method exploits both intra-beat and inter-beat corre-video signals, which have both intra-frame 
lations of the ECG signals to achieve high compres-and inter-frame correlation, video codec tech-
sion ratios (CR) and a low percent root mean square nology can be used for ECG compression. In 
difference (PRD). Although video codec technology order to do this, some pre-process will be 
was developed to compress video signals, it can be needed. The ECG signals should firstly be 
used to compress other signals as well, and we illus-segmented and normalized to a sequence of 
trate how video codec technology can be used to com-beat cycles with the same length, and then 
press ECG signals. In Section II, we take a brief over-these beat cycles can be treated as picture 
view of video codec technology. Section III presents frames and compressed with video codec 
the coding algorithm. Experimental results and com-technology. We have used records from MIT-
parisons with other algorithm are presented in Sec-BIH arrhythmia database to evaluate our algo-
tion IV. At last, we provide conclusions.rithm. Results show that, besides compres-

sion efficiently, this algorithm has the advan-
tages of resolut ion  adjustable , random 2. OVERVIEW OF VIDEO CODEC TECH-
access and flexibility for irregular period and NOLOGY
QRS false detection. Represent ing  v ideo mater ia l  in a  d ig i ta l form 

requires a large number of bits. The volume of data 
generated by digitizing a video signal is too large for 
most storage and transmission systems. This means 
that compression is essential for most digital video 
applications. Statistical analysis of video signals indi-1. INTRODUCTION
cates that there is a strong correlation both between The electrocardiogram (ECG) is an important tool for 
successive picture frames and within the picture ele-diagnosis of heart diseases. The volume of ECG data 
ments themselves. Theoretically decorrelation of these produced by modern monitoring system can be quite 
signals can lead to bandwidth compression without large over a long period of time and data compression 
significantly affecting image resolution. A video sig-is often needed for efficient process, store and trans-
nal consists of a sequence of individual frames. Each mit of such data. In the past, many ECG compression 
frame may be compressed individually using an methods were proposed and could be classified into 
image CODEC, such as JPEG. This is described as three major categories [1]: a) Parameter extraction 
intra-frame coding for each frame is intra coded with-techniques .  b)  Transform-domain  techniques . c )  
out any reference to other frames. However, better Direct time-domain techniques.
compress ion performance may be achieved by In this paper, we present a method for compression 
exploi t ing the temporal redundancy in a video of ECG data using video codec technology. Since 
sequence or the similarities between successive ECG signals have both intra-beat and inter-beat cor-

K e y w o r d s :  E C G  c o m p r e s s i o n ; V i d e o  
CODEC; QRS detection; Arithmetic coding

Compression of ECG signal using video codec 
technology-like scheme
Compression of ECG signal using video codec 
technology-like scheme
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video frames. This may be achieved by introducing sequence of individual frames and these frames are of 
two functions: 1. Prediction: create a prediction of the same size. But for ECG signals, these 'frames' or 
the current frame based on one or more previously beat cycles are jointed together, and even the sizes of 
transmitted frames. 2. Compensation: subtract the them are not the same. The comparability of the ECG 
prediction from the current frame to produce a resid- signals and video signals motivates us to design a 
ual frame. Then the residual frame is compressed by novel ECG compression scheme using video codec 
an image CODEC. In order to decode the frame the technology, in which the scheme employs the arith-
decoder adds the prediction to the decoded residual metic coding for intra-beat redundancies, and a pre-
frame. This is described as inter-frame coding for dictor using cross correlation for inter-beat redun-
frames are coded based on some relationship with dancies.
other video frames.  show s the proc ess The functional block diagram of the proposed cod-
above. ing scheme is shown in . The encoder system 

consists mainly four parts: segmentation, period nor-
malization, predictor and residual coding. The pro-3. METHOD
posed encoding algorithm is briefly described as fol-3.1. System overview
lows. Since ECG signals are continuous and in order The redundancies in ECG signals can be broadly clas-
to use compress them using a video codec scheme, sified into two types: The redundancies in a single 
firstly we should segment them to a sequence of ECG cycle and the redundancies across ECG cycles. 
cycles, by noting that the length of each beat cycle These redundancies are sometimes referred to as 
may be varying, a period normalization process is intra-beat and inter-beat redundancies [2]. These are 
then proceeded to ensure that the size of each beat the same with redundancies in video signals. On the 
cycle is adjusted to be the same. Initially, the counter other hand, there is a little difference between video 
is set to zero and we select the first cycle as the pre-signals and ECG signals: A video signal consists of a 

Figure 1
Figure 2

Figure 1. Video CODEC with prediction.

Figure 2. Functional block diagram of the encoder.
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diction cycle and compress this cycle with no predic- nology, we normalize each ECG period to the same 
tion, then any time when there is a new cycle, the length. We implement this using a method similar to 
counter is added  by one and the cross correlation the one described in [4]. Let x =[x (1)x (2) x (N )] k k k k k
coefficient of the new cycle and the prediction cycle denote the k-th ECG cycle. Then the period-normalized ECG 
is calculated. If the result is less than the threshold, cycle y =[y (1)y (2) y (N)] is computing using k k k k
which indicates that this new cycle and the prediction 
cycle have little similarity, or the count is larger than 
L (used for random access), we set the counter to zero 
and set this new cycle as the prediction cycle and com-
press it with no prediction, else the prediction cycle Where        is an interpolate version of the samples 
is subtracted from this new cycle, and the residual x (n) , and  t'=                  , N   is the period of the k-th k k
cycle is then quantized and compressed with the ECG cycle, and N is the normalized period. We uti-
arithmetic coding. lize cubic-spline interpolation [5] to determine        .

The N above can be thought as the resolution, like 
3.2. QRS detection and segmentation the spatial resolution (typically 352 288 or 352
To cut continuous ECG signals to individual beats, 240 pixels in MPEG-1) in a video encoder. The value 
the peaks of QRS waves should be detected firstly to of N is predefined in consideration of the sample fre-
identify each heartbeat. We use a different method to quency and it can affect the CR and the PRD.
do this: Let x(i) denote the ECG signal, and a corre- After period normalization, each ECG period will 
sponding different signal x'(i) is given by be with the same length like video frames with the 

same size. Then we can use similar video CODEC 
technology to compress them.

3.4. Predictionwhere n is a small integer determined by the sampling 
In part 2 we know that, in order to exploit the similar-frequency (typically a value between 0.01f and 0.02f 
ities between successive video frames, two functions is used, where f is the sampling frequency). Several 
prediction and compensation are introduced. The key zero points are added to the front and the end of the 
to this approach is the prediction function: if the pre-ECG signals for calculation of the first and last few 
diction is accurate, the residual frame will be con-points of x'(i). When select proper n for different sam-
taining little data and will hence be compressed to a ple frequency, (1) is like a band pass filter. It makes 
very small size by the image CODEC. the QRS waves be amplified and the other waves be 

For video compression, the simplest predictor is weaken. shows a typical ECG signal and its 
just the previous transmitted frame. We can utilize corresponding difference signal generating by (1). 
this in ECG compression. Since successive ECG The sample frequency is 360Hz with n equals to 5. 
cycles are very similar all the times, we make a small For the different signal x'(i), we can use a similar 
change and introduce the cross correlation coeffi-scan algorithm in [3] for the QRS detection. Results 
cient. Cross correlation coefficient is a standard show that, our method has a higher detection rate.
method of estimating the degree to which two series After each QRS peak of heartbeat cycles is identi-
are correlated. Consider two series x  and y  where fied, the original ECG signal is cut at every QRS peak. i i

i=0,1,2 N 1, the cross correlation coefficient is 
defined as 3.3. Period normalization

Since each ECG period can have a different duration, 
and in order to compress them using video codec tech-

Where x and y are the means of the corresponding 
series.

Prediction with cross correlation is shown in 
. Initially we set the counter to zero. The first 

ECG beat cycle is set as the prediction beat cycle and 
compressed with no prediction. Any time when there 
is a new beat cycle, the counter is added by one and 
the cross correlation coefficient of the new beat cycle 
and the prediction beat cycle is calculated. If the 
counter is smaller than L (predefined for random 
access) and the correlation result is higher than the 
threshold (typically 0.95 or more), which indicates 
that the prediction beat is similar with the current 
beat to a great extent, then we use it as the prediction 

Figure 3 

Fig-
ure 2

(3)

(2)
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(1)

Figure 3. ECG signal and corresponding different signal.
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of the current beat. Otherwise, we use the current picture. It is followed by an arrangement for P- and 
beat to replace the prediction beat and compress it B-pi ctur es. Li kewi se, we intr oduc e the g roup o f 
with no prediction and set the counter to zero again. cycles in our scheme to assist random access into the 

ECG data. The group of cycles length is defined as 
the distance between I-cycles, which is represented 3.5. Quantization and Coding
by parameter L in . A short group of cycles The quantization stage removes less important infor-
may support random access well at the cost reducing mation, such as information that does not have a sig-
the compression ratio. shows a typical nificant influence on the appearance of the recon-
group of cycles.structed ECG signals, making it possible to compress 

the remaining data. 
In this paper, we use the arithmetic coding [6] for 4. RESULT

compression of the residual signal and the period infor- We used the MIT-BIH arrhythmia database to evalu-
mation. An arithmetic encoder converts a sequence of ate the performance of the proposed scheme. The 
data symbols in to a single fractional number. The lon- ECG data used in our experiments are sampled at 360 
ger the sequence of the symbols, the greater the preci- Hz and each sample has a resolution of 12 bit per sam-
sion required to represent the fractional number. ple. Through period normalization, we have made the 
Arithmetic coding provides a practical alternative to number of samples in each beat cycle equal 240. 
Huffman coding and can more closely approach the Although for a typical hart rate of 75 beat per minute, 
theoretical maximum compression [7]. 288 samples in each beat cycle will be good, but a rel-

ative small samples will increase compression ratio 
3.6. Coding of beat cycles without obviously affecting the reconstruction qual-
In the video coding standard MPEG-1, each frame of ity. 
video is encoded to produce a coded picture. There We use two widely used measures, the compres-
are three main types: I-pictures, P-pictures and B- sion ratio (CR) and the percent root mean square dif-
pictures.  I-pictures are intra-coded without any ference (PRD) to evaluate our scheme. The CR and 
motion-compensated prediction. An I-picture is used PRD are defined as 
as a reference for further predicted pictures. P-
pictures are inter-coded using motion-compensated 
prediction from a reference picture. B-pictures are 

Where B  is the total bits of the original ECG sig-inter-coded using motion-compensated prediction ori

from two reference pictures, the P- and/or I-pictures nal, B  is the total bits of the ECG signal after com-cp
before and after the current B-picture. However, in pression.
our proposed scheme for ECG compression, we only 
introduced two types: I-cycles and P-cycles. 

I-cycles are useful resynchronization points in the 
coded bit stream: because it is coded without predic-
tion, an I-cycle may be decoded independently of any 
other coded cycles. This support random access by a 

Where x  and x  are the original and the recon-decoder in some degree (a decoder may start decod- ori rec

ing the bit stream at any I-cycle position). However, structed ECG signals, and n denotes the length of the 
an I-cycle has poor compression efficiency because signals. 
no prediction is used. and  show example of ECG data 

In MPEG-1 due to the existence of several picture from record 117 and record 119 with irregular period 
types, a group of pictures (GOP) is the highest level before and after compression. 
of the hierarchy. A GOP is a series of one or more pic- In , the proposed method is compared with 
ture to assis t  randomly access into the picture other methods in literature for record 117 and 119.
sequence. The first coded picture in the group is an I-

Figure 2

Figure 4 

Figure 5  Figure 6

Table 1

Figure 4. Group of cycles in coded bit stream.

(5)

Figure 5. Reconstruction example of MIT-BIH record 117 with  

quantization level of 10 V  and 20 V : (a) original signal of 
channel 1, (b) reconstruction signal of channel 1 with quantization 

level of 10 V , CR=16 and PRD=2.87, (c) reconstruction signal of 

channel 1 with quantization level of 20 V ,CR=30.79 and 
PRD=5.50. 

(4)
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5. CONCLUSION
The main contribution of this paper is to provide an 
effective and efficient ECG compression scheme 
using video codec technology. We have tested the per-
formance of the proposed scheme by compressing 
record from the MIT-BIH arrhythmia database and 
compared the results with other methods. The results 
show that the proposed algorithm compares favorable 
to other methods in literature. Besides compression 
efficiently, the proposed algorithm benefits from char-
acteristics of the video codec and has the following 
advantages: a) Resolution adjustable. By changing 
the length N in section 3.3, we can achieve different 
resolution just like spatial resolution in a video codec; 
b) Random accessible. In coding stream of the ECG 
data, the I-cycles are intra-coded without any predic-
tion, thus we can access the ECG data from every I-
cycle. c) Flexibility for irregular period and QRS 
false detection. In our scheme, the irregular periods 
or the QRS false detection beat cycles will be treated 
as the new prediction cycles and compressed with no 
prediction if they don't have enough similarity with 
the formal prediction cycle.

Figure 6. Reconstruction example of MIT-BIH record 119 with  

quantization level of 10 V and 20 V : (a) original signal of 
channel 1, (b) reconstruct ion signal of channel 1 with 

quantization level of 10 V , CR=14.2 and PRD=3.03, (c) 
reconstruction signal of channel 1 with quantization level of 

20 V ,CR=24.2 and PRD=6.25.

Algorithm

Lu et. al[8]

Hilton[9]

Djohan et. al[10]

Proposed

Proposed

Proposed

Lee et.al[1]

Lu et. al[8]

Proposed

Proposed

Record

117

117

117

117

117

117

119

119

119

119

CR

8:1

8:1

8:1

8.1:1

16:1

30.8:1

24

21.6

14.2

24.2

PRD (%)

1.18

2.6

3.9

1.13

2.87

5.5

10.5

5.5

3.03

6.25

Table1. PRD comparison of different algorithms for record 
117 and 119.

SciRes JBiSECopyright © 2008                                                                                                                                                 

 26 D.H. Chen et al./J. Biomedical Science and Engineering 1 (2008) 22-26

REFERENCE
[1] H. Lee & K. M. Buckley. ECG data compression using cut and 

align beats approach and 2-D transforms. IEEE Trans-Biomed. 
Eng. 1999, (46):556-565.

[2]Ali Bilgin & W. Marcellin. Compression of electrocardiogram 
signals using JPEG2000. IEEE Transaction on Consumer Elec-
tronics. 2003, 49(4).

[3] Engelse, W.A.H. & Zeelenberg, C. (). A single scan algorithm 
for QRS detection and feature extraction. IEEE Computers in 
Cardiology 1979, pages 37-42.

[4] Wei, J. J., Chang, C. J., Chou, N. K. & Jan, G. J. ECG data com-
pression using truncated singular value decomposition. IEEE 
Trans. on Information Technology in Biomedicine 2001, 5:290-
299.

 [5] T. M. Lehman, C. Gonner, & K. Spitzer. Survey: interpolation 
methods in medical image processing. IEEE Trans. on Medical 
Imaging 1999, 18:1049-1075.

[6] James A. Storer, ed. Practical implementations of arithmetic 
coding. Image and text compression, MA, 1992 pages 85-112.

[7] I. Witten, R. Neal & J. Cleary. Arithmetic coding for data com-
pression. Communications of the ACM 1987, 30(6).

[8] Lu, Z., D. Y. Kim, & W. A. Pearlman. Wavelet compression of 
ECG signals by the set partitioning in hierarchical trees algo-
rithm. IEEE Trans. on Biomedical Engineering 2000, 47:849-
856.

[9] M. L. Hilton. Wavelet and wavelet packet compression of elec-
trocardiograms. IEEE Trans. on Biomedical Engineering 1997, 
44:394-402.

[10] A. Djohan, T. Q. Nguyen & W. J. Tompkins. ECG compression 
using discrete symmetric wavelet transform.   Proc. of 17th  
Int. IEEE Med. Biol. Conf. 1995.



Possible roles of electrical synapse in temporal 
information processing: a computational study
Possible roles of electrical synapse in temporal 
information processing: a computational study

Xu-Long Wang, Xiao-Dong Jiang & Pei-Ji Liang

Department of Biomedical Engineering, Shanghai Jiao Tong University. * Correspondence should be  addressed to Pei-Ji Liang (pjliang@sjtu.edu.cn).

and motor tasks. Neuroscientists roughly categorize ABSTRACT
temporal information processing in the neural system 
into four different time scales: microseconds, millisec-Temporal informat ion processing in the 
onds, seconds and circadian rhythm, which serve for range of tens to hundreds of milliseconds is 
different physiological functions and rely on differ-critical in many forms of sensory and motor 
ent neural mechanisms. The process within the scale tasks. However, little has been known about 
of millisecond is perhaps the most sophisticated and the neural mechanisms of temporal informa-
the least well understood one among these categories. tion processing. Experimental observations 
Behavioral tasks with temporal information process-indicate that sensory neurons of the nervous 
ing falling within this scale include speech discrimi-system do not show selective response to 
nation in the auditory system, motion information temporal properties of external stimuli. On 
processing in the visual systems, and movement the other hand, temporal selective neurons in 
coordination in the motor system  [1-3].the  cor tex have  been repor ted  in many 
Information processing in neural systems normally species. Thus, processes which realize the 
consists of a number of successive stages. Neural t e m p o r a l - t o - s p a t i a l  t r a n s f o r m a t i o n o f  
activities in a certain stage are mostly determined by neuronal activities might be required for 
neural activities of the preceding stages and our temporal  information processing.  In the 
perception of the world in the brain is based on the present study, we propose a computational 
spat io- temporal  pat terns  of neuronal  act ivi t ies  model to explore possible roles of electrical 
produced at sensory stages [4-5].  Physiological synapses in processing the durat ion of 
observations indicate that neurons in the sensory external  st imul i . F irst ly , we construct a  
levels do not respond selectively to the temporal small-scale network with neurons intercon-
properties of external stimuli. Temporal information nected by electrical synapses in addition to 
is thus suggested to be contained in the temporal chemical synapses. Basic properties of this 
patterns of neuronal activities in the sensory layer. small-scale neural network in processing 
On the other hand, neurons which show selective duration information are analyzed. Secondly, 
response to specific temporal properties, especially a large-scale neural network which is more 
the duration content, have been reported in the cortex biologically realistic is further explored. Our 
of many species [6-10]. Temporal information is results suggest that neural networks with 
therefore suggested to be t ransformed into the electrical synapses functioning together 
spatially distributed neuronal activities in the cortex 

with chemical synapses can effectively work 
and neural mechanisms which contribute to the 

for the temporal-to-spatial transformation of 
t empora l to-spa t ia l  t ransformat ion  of neurona l  

neuronal activities, and the spatially distrib-
activities are required.

uted sequential neural activities can poten-
Electr ical  synapse is another  type of widely 

tially represent temporal information.
distributed neuronal connection in the neural systems 
in addition to chemical synapse [11-12]. Functional 
role of electrical synapse has been identified in fine 
motor coordination which requires temporal infor-
mation processing in milliseconds scale [13]. In the 

1. INTRODUCTION present work, we try to explore possible neural 
Biological neural systems are endowed with the mechanisms of electrical synapse in processing the 
ability to process temporal information given the duration content of external stimuli via computa-
inherent temporal nature of sensory environments tional approach. Briefly, we construct neural net-

Keywords: Model; Neural network; Electrical 
synapse; Temporal information processing
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works containing both e lect r ical  and chemical scale model are l is ted as fol lows:
synapses, which are activated by stimuli with various IS : Intensity of the input current;ip
durations. Computational results show that electrical CS : Strength of chemical synapse from input se
synapse can substantially contribute to the temporal- neuron to excitatory neurons;
to-spatial transformation of neuronal activities, and CS :  Strength of chemical  synapse between eethe neuronal activities in such networks can poten-

excitatory neurons;tially represent information about stimulus durations.
ES :  Strength of electr ical  synapse between ee

excitatory neurons;2. MODELS AND METHODS
CS : Strength of chemical synapse from excitatory ei2.1. Model structure

neurons to inhibitory neurons;Two types of computational models are constructed. 
CS : Strength of chemical synapse from inhibitory One is a small-scale neural network which contains ie

only several tens of neurons. Another is a large-scale neurons to excitatory neurons.
one which is more biologically realistic. We use the The large-sc ale neural network model contain s 
simple model to clarify the basic properties of neural 400 excitatory neurons and 100 inhibitory neurons. 
ne tworks  wi th e lec t r ica l  synapses funct ioning  The ra t io be tween the  exci tatory and inhibi tory 
together with chemical synapse in temporal informa- neurons follows the experimental observations from 
tion processing. The overall behavior is further tested neocortical area  [14]. The neural network is further 
in the large-scale model which is more biologically div ide d i nto 100 sub gro ups wit h e ach sub gro up 
realistic. consisting of 4 excitatory neurons and 1 inhibitory 

The schematic structures of the small- and large- neuron. Excitatory and inhibitory neurons in each 
scale neural networks are illustrated in , A individual subgroup are connected recurrently. Input 
and B respectively. Stimuli with various durations neuron is connected to excitatory and inhibitory 
are applied, as represented by various durations of neurons on a random basis. All excitatory neurons are 
the input currents. The input current is injected to an further connected with each other probabilistically in 
input neuron (S) and then transformed into spike a recur rent wa y, and the syna ptic st reng ths are 
t ra in s o f t hi s neu ron. va r i ab l e s  wh ich fo l l ow  no rma l d i s t r i bu t i ons .  

The input neuron is connected to some of the ten Parameters used for synaptic connections in the 
excitatory neurons (E) in the small-scale model. extended model are listed as follows:
Electrical synapses are presented among assigned CP : Probability of chemical synapse from input se
neurons,  as indicated in the f igure. Exci ta tory to excitatory neurons;
neurons are connected to each other recurrently by CM  and CD : Mean and standard deviation of se se
chemical synapses and each excitatory neuron is 

strength of chemical synapse from input to excitatory 
further coupled with an inhibitory neuron (I) to 

neurons;
ensure its stability. Parameters used in the small-

CP : Probability of chemical synapse from input si

Figure 1

Figure 1. A. Schematic structure of the small-scale neural network model. The input neuron (S) is connected to 4 of the 10 
the excitatory neurons (E). All excitatory neurons are connected to each other in a recurrent way and each excitatory neuron 
is coupled with an inhibitory neuron (I). Excitatory and inhibitory synapses are represented by open and solid circles, 
respectively. Neurons in grey shadow are electrically coupled together recurrently.B. Schematic structure of the large-scale 
neural network model. Input neuron is connected to excitatory (E) and inhibitory (I) neurons in the network on a random basis. 
All excitatory neurons are further connected with each other probabilistically in a recurrent way. Electrical synapses are 
formed between some of the excitatory neurons randomly.
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to inhibitory neurons; potentials of excitatory and inhibitory synapses, 
CM  and CD : Mean and standard deviation of respectively;si si

 I  represents  the current  passing through strength of chemical synapse from input to inhibitory esyn

neurons; electrical synapses.
CP : Probabil ity of chemical synapse between In addition, when the membrane potential reaches ee

a threshold (V ), the neuron fires an action potential, excitatory neurons; th

CM  and CD : Mean and standard deviation of and the membrane potential is immediately reset to ee ee
the equilibrium potential (V ) after a firing lasting strength of chemical synapse between excitatory eq

neurons; time (T ).fire
CM  and CD : Mean and standard deviation of Parameter values chosen for the I-F neuron model ei ei

strength of chemical synapse from excitatory to are listed in . These values are mostly adopted 
inhibitory neurons; from Troyer and Miller (1997) [15], except that the 

CM  and CD : Mean and standard deviation of firing lasting time of inhibitory neurons is chosen as ie ie
4 to ensure the neurons' inhibitory effect on the strength of chemical synapse from inhibitory to 
activities of excitatory neurons.excitatory neurons;

EP :  P robab i l i t y o f  e l ec t r i ca l connec t ion  e e 1
2.2.2 Description of synaptic currentbetween excitatory neurons within one subgroup;
The chemical synapses are modeled as follows [16-EP :  P robab i l i t y o f  e l ec t r i ca l connec t ion  e e 2 17]:

between excitatory neurons in different subgroups;
EM  and ED : Mean and standard deviation of ee ee

strength of electrical synapse between excitatory 
neurons.

where g (t) and g (t) in eqns (2) and (3) are ex in
.presented by g (t) g(t) here, with g  representing 2.2. Mathematical description of neurons and csyn csyn

synaptic strength which is modified by a factor of g(t):synapses
2.2.1 Description of integrate-and-fire neuron
Neurons are descr ibed in an integrate-and-f i re 
manner (I-F neuron) [5]. Membrane potential of the 
input neuron (V ) ,  excitatory neuron (V ) ,  and wheres Ex

inhibitory neuron (V ) can be determined as follows:In

in which =15 ms , E = - 40 mV, and (u)   syn thr

follows a step function:

  
The electrical synapses are described as follows:

Where g  represents the synaptic strength. We csynwhere
adopt this abstract function which simply depicts that  C represents the membrane capacitance; 
the current passing through the electrical synapses is  V  denotes the equilibrium membrane potential; eq generally dependent on the membrane potential 

 g  is the leak conductance; leak dif ference  be tween the  pre-synapt ic  and pos t -
 g  and g  represent the conductance of excitatory synaptic neurons [18].ex in

and inhibitory synapses, respectively; 
 E  and E  represent the reversal membrane 3. RESULTSex in

Table 1

(2)

(3)

(1)

(4)

(5)

(6)

(7)
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Table 1. Parameter values for the I-F neuron model. The firing lasting time (T ) for sensory and excitatory neurons is set as fire

1.75 ms  whereas that for inhibitory neuron is set as 4 ms. 

C

(pF)

0.5

 Veq

(mV)

-74

 Vth

(mV)

-54

 gleak

( S)

0.025

 Eex

(mV)

0

 Ein

mV)

-74

 Tfire

(ms)

1.75/4



neuronal groups are electrically coupled together 3.1 Stimulus duration is represented by spike 
which contain 2, 3 and 4 neurons, respectively. trains of input neuron
Raster plots of the firing performances of the model The injected current is first transformed into a spike 
neurons  in  absence and  presence  of e lec t r ica l  train of the input neuron. Spiking properties of the 
synapses are compared with stimulus duration being input neuron (S) are shown in . Injected 
50 ms ( ) and 100 ms ( ), currents with different magnitudes and durations are 
respectively.applied to the input neuron to test its performance. A 

Resul t s  g iven  in  sugges t  tha t  sustained current elicits periodic spikes from the 
electrical synapses in a neural network can effec-input neuron and the duration of the spike train is 
tively transform the temporal domain spike train of determined by the stimulus duration. Input neuron 
the input neuron into the spatial-temporal firing can therefore mimic the function of sensory neuron in 
pattern of a group of neurons. Each activated neuron neural system.
in the group fires within a specific time window, 
which is determined by the configuration of the 3.2 Performance of the small-scale neural 
synaptic connection of the neural network. Fur therm ore, network model
stimulus with longer duration can evoke spikes from 3.2.1 Temporal information can be represented by 
more neurons and therefore the stimulus durations the spatially distributed activities of a group of 
can be represented by the spatial and temporal  neurons
structure of the sequential neuronal activities.Representative firing patterns of the simple model 

are given in . Parameters used for  
3.2.2 The output pattern is closely related to the are listed in  and the synaptic connection 
electrical coupling configurationfollows that illustrated in . Input neuron is 
Electrical synapses between excitatory neurons and connected to four of the ten excitatory neurons. Three 

Figure 2
Figure 3A&B Figure 3C&D

Figure  3B&D

Figure 3 Figure 3
Table 2

Figure 1A
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Figure 2. Spike activities of the input neuron (S) in response to constant injected currents with various intensities and 
magnitudes.
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Figure 3. Raster plots for neuronal activities of the small-scale model elicited by 50 and 100 ms stimulus durations. Stimuli 
are indicated by grey shadows. A, 50 ms duration, without electrical synapses; B, 50 ms duration, with electrical synapses; C, 
100 ms duration, without electrical synapses; D, 100 ms, with electrical synapses.

Table 2. Parameter values used in the small-scale neural network model.

 IS (pA)ip

2.0

 CS ( S)se

0.075

 CS ( S)ee

0.0001

ES ( S)ee

0.02

 CS ( S)ei

1.0

 CS ( S)ie

2.0

sy na pt ic c on ne ct io ns f ro m in pu t ne ur on t o th e neural network kept unaltered. The spiking activities 
network are important factors that influence the of these three neurons under the test conditions are 
model's performance. There are three groups of plotted in .  The firing activities are quite 
neurons electrically coupled together in the small- diff eren t with d iffe rent s ynap tic co nfig urat ions . 
scale model presented in . Neurons within Generally, spikes can be elicited from the neurons 
each group are all electrically coupled in a recurrent that are chemically connected to the input neuron, 
manner. Furthermore, only one neuron in each group and longer delay is produced when the chemically 
is connected to the input neuron. The model outputs activated neuron is electrically coupled with more 
in response to stimuli with different durations are neurons that do not receive chemical input from the 
presented in . However, any change in the input neuron (e.g.  vs ).
configurations of the electrical coupling and input 
neuron connection may also cause relevant changes 3.3 Performance of the large-scale neural 
in the results. Take the 3-neuron group in  network model
(E4, E5 and E6) for an example, relevant possibilities Performance of the small-scale model suggests a 
of the electrical coupling within this group as well as mechanism for temporal information processing in a 
the chemical synapses between these neurons and the neural network containing electrical synapses. In real 
input neuron are tested, with the rest structure of the neural network, the synaptic strengths as well as the 

Figure 4

Figure 1A

Figure 3 A&F B&D

Figure 1A
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Figure 4. Raster plots for spike activities of threeneuron group with different synaptic configurations. Neurons receive 
synaptic input from input neuron are represented by solid circle. Electrical synapses are represented by solid lines. The 
stimulus duration is 100 ms with the current intensity to input neuron being 2.0 pA.



electrical coupling configuration are not fixed but The inset graphs represent the recruitment process of 
variable. A large-scale model which is more biologi- the neuronal spiking activities. The temporal distribu-
cally realistic is constructed with parameter varia- tion of the neuronal activities under these two condi-
tions, and its performance is tested. tions is compared by analyzing the recruitment 

Representative firing patterns of the large-scale process in ten independen t trials. The results are 
model in absence and presence of electrical synapses sho wn in  and . It is cle ar tha t the 
are shown in  and , respectivel y. The presence of electrical synapses results in a broader 
stimulus duration time is 100 ms. Neural network temporal distribution of the sequential spike activi-
parameters used for  are listed in . ties of the neurons ( ), while the neuronal firing 

Figure 5C D
Figure 5A B

Figure 5 Table 3 B & D

Figure 5. A and B are representative raster plots of the neuronal activities of the large-scale model in absence and presence 
of electrical synapses, respectively. The stimulus duration is 100 ms. Inset graphs represent the processes of spike activity 
recruitment. C and D show the recruitment processes in absence and presence of electrical synapses, respectively. Data are 
averaged based on 10 independent trails (Mean S.D.).
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Table 3. Parameter values used in the large-scale neural network model.

CPse

CPsi

CPee

/

/

EPee1

EPee2

0.25

0.98

0.005

/

/

0.25

0.0002

CM /CD  ( S)se se

CM /CD  ( S)si si

CM /CD  ( S)ee ee

CM /CD  ( S)ei ei

CM /CD  ( S)ie ie

EM /ED  ( S)ee ee

EM /ED  ( S)ee ee

0.055/0.003

0.03/ 0.01

0.001/0.001

0.2/0.01

0.7/0.01

0.01/0.001

0.01/0.001



Figure 6. Raster plots of the large-scale neural network in response to stimuli with different durations. The configuration of 
the model is identical for Figure A to F.
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act ivi tie s are l imi ted w ith in a na rro w tem por al temporal firing pattern of neuronal ensembles while 
window in absence of electrical coupling ( ). ea ch ne ur on wi th in th e en se mb le fi re s wi th in 

The firing patterns of the large-scale model in different time windows, and the spatio-temporal 
response to stimuli with various durations are further pat ter n of the neu ron al act ivi tie s is cap abl e of 
tested. Stimuli with durations varying from 50 ms to represen t ing  s t imulus dura t ion  in the  form of  
100 ms are applied to the network, with steps being 10 sequential firing activities of the spatially distributed 
ms. Raster plots of typical spike activities of the neurons.
network are given in ,  to . It is revealed The contribution of electrical synapses in the 
that the model neurons fire in a sequential pattern, fo rm at io n o f s pa ti o- te mp or al fi ri ng pa tt er n i s 
with more neurons being sequentially recruited in particularly examined in the present study. However, 
response  to  longer  dura t ion.  Such recrui tment  i t i s necessary to mention that o ther fac tors can a lso 
process in response to durations ranging from 50 ms contribute to this process. For example, membrane 
to 100 ms is averaged based on ten independent trials capacitance of specific neurons can be variable 
and the result is shown in . because of variation in surface area as well as the 

Stimuli with durations varying from 50 ms to 100 membrane capacitance value per unit area [25-28]. 
ms are app lied an d relev ant res ults ar e given in These changes can function in parallel to electrical 

 and . However, models with this synapses in influencing the sequential firing patterns 
structure can effectively represent durations in other of neuronal ensembles.
ranges while relevant parameters are changed. These Special role of electrical synapse is proposed in 
parameters include the capacitance value of the I-F our mod els and there a re also experimen tal clu es 
neu ron al mod el, th e time c ons tan t for ch emi cal which indicated possible roles of electrical synapse 
synaptic strength, the synaptic strengths from input in te mporal informa tion process ing. Data demon-
neuron to the network et al. Stimuli with durations strated that gap junction coupling within inferior 
ranging from 100 ms to 200 ms are applied to the olive mediated by connexin 36 could add 10-20  of 
ne tw or k, i n wh ic h th e me an v al ue o f sy na pt ic precision to the fine temporal coordination of muscle 
strength from input neuron to the neural network firing during movement [13].
(Cm ) are changed (from 0.055    S to 0.038    S ). Neurons in the present work are modeled follow-se

ing the classic I-F neuron fashion without  any The performance of the model (averaged across ten 
specific properties for temporal information process-independent trials) is plotted in .
ing. These neurons can be tuned to response to any 
non-temporal properties of natural stimulus and 4. DISCUSSION
thereby function for the corresponding behavioral Temporal information processing in neural system is 
tasks. For example, these neurons could be tone critical for animal behavior. Neuroscientists have 
selective neuron which function for auditory behav-tried a lot in understanding the neural basis of 
ior, or mechanosensory neurons which function for relevant processes via both experimental [6-10] and 
mechanosensa t i on .  Whi l e bo th  e l ec t r i c a l and  computational approaches [19-24].
chemical  synapses  are universal  in  the central  In the present study, the computational results 
nervous system, the model results suggest that both demonstrate that electrical synapses could effec-
the spatial and temporal neuronal activities produced t ively  contr ibute to  the format ion of a  spat io-

A & C

Figure 6 A F

 Figure 7A

Figure 6 Figure 7A

Figure 7B

Figure 7. Recruitment of neuronal activities (activated numbers) for the large-scale model in response to stimuli with 
durations ranging from 50 to 100 ms (A, step 10 ms) and 100 to 200  ms (B, step 20 ms). The mean values of synaptic strength 
from input to excitatory neurons are 0.055 and 0.038 for results in Figure A and B, respectively. Data are analyzed from 10 
independent trials in the form of (Mean S.D.).
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of the cellulose backbone during the formation of ABSTRACT
free radical grafting sites, and the presence of a con-
siderable amount of ungrafted cellulose in the prod-In homogeneous media , N,N -Dimethylacrylamide 
uct. In addition, these techniques usually results in (DMA) was grafted copolymerization to cellulose 
the graft copolymer with poor control over the com-by a metal-catalyzed atom transfer radical poly-
posi t ion,  such as  molecular weight  and the  merization (ATRP) process. First, cellulose was 
polydispersity of the grafted chains [3]. Recently, dissolved in DMAc/LiCl system, and it reacted 
controlled/“living” radical polymerization methods with 2-bromoisobutyloyl bromide (BiBBr) to pro-
have been developed [4], which is able to minimize duce macroinitiator (cell-BiB). Then DMA was 
chain transfer and to control the molecular weight polymerized to the cellulose backbone in a 
and polydispersity. Among them atom transfer radi-homogeneous DMSO solution in presence of 
cal polymerization (ATRP) and reversible addition the cell-BiB. Characterization with FT-IR, NMR, 
fragmentation transfer polymerization (RAFT) are and GPC measurements showed that there 
the two convenient methods to prepare well-defined obtained a graft copolymer with cellulose back-
polymers. Using living free radical polymerization bone and PDMA side chains (cell-PDMA) in well-
methods to prepare cellulose graft copolymer is an defined structure. The proteins adsorption stud-
attractive topic and some investigations had been car-ies showed that the cellulose membranes modi-
ried out. Perrier, et al. reported a preparation of poly-fied by the as-prepared cell-PDMA copolymer 
styrene graft cellulose by a RAFT process [5]. own good protein adsorption resistancet.  Carlmark and Malmstrom synthesized a poly(2-
hydroxyethyl methacrylate) graft cellulose using an 
ATRP process [6]. However, in both the studies, the 
graft copolymerization occurs only on the surface of 
cellulose fiber due to the heterogeneous process. 
Huang, et al. reported a homogeneous ATRP process 

1. INTRODUCTION to prepare cellulose graft copolymers with different 
Cellulose is the most fluent feedstock in the world monomers; the reason why ethyl cellulose was 
that could be used to prepare new kinds of materials, selected as the feedstock is its easily dissolving abil-
and cellulose derivatives have potential application ity in many solvents[8, 9, 25, 26, 27]. By now there 
as functional polymers. Graft copolymers are the are still less reports to synthesize cellulose graft 
important topic for their novel properties. Today, copolymer through a living radical polymerization 
“grafting from” method has been widely used to pre- directly from cellulose in its homogeneous solution, 
pare cellulose copolymers. Ceric ion initiation, and it is important to prepare well-defined structures 
Fenton's reagent and -radiation are the widely used of the graft copolymer.
methods to graft monomers to cellulose [1,2]. How- Poly(N,N-dimethylacrylamide) (PDMA) is well-
ever, there are some drawbacks of these methods, known for its remarkable water solubility and 
such as the production of unwanted homopolymer biocompatibility [10]. Recently, well-defined PDMA 
together with the graft copolymer, chain degradation has been prepared by both RAFT [11] and ATRP pro-

Keywords: Cellulose; Atom transfer radical 
polymerization (ATRP); Homogeneous; Graft 
copolymerization; Hemocompatibility
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 cesses [12]. Also PDMA has been grafting polymer- pyridine as shown in [25, 26, 27]. In a 250 
ization to polystyrene colloid by ATRP method [13]. ml three-necked round-bottom flask, 60 ml of the cel-

Hemodialysis is one of the most important meth- lulose solution in DMAc/LiCl and 5 ml of pyridine 
ods for blood purification [14], and cellulose mem- were added and mixed, then 6.3541 g of BrBiB  was 

obranes, especial cellulose acetate (CA) membranes, slowly dropped into the solution at 0 C in an 
are still the major materials for hemodialysis [15]. ice/water bath. The reaction mixture was further 
The cellulose membranes could take the porous and stirred at room temperature overnight. Then the mix-
asymmetrical structure and have both good perme- ture was added with de-ionized water and plenty of 
ability and mechanical strength.  However thrombus precipitate appeared, and after washed by plenty of 

oformation on the blood-contact surface could not sup- de-ionized water, the precipitate was dried at 50 C in 
pressed by the membrane. Thus, its hemocompatibility vacuum overnight. Finally, there obtained white pow-
must be further improved for better hemodialy sis [16].  der product of macroinitiator(cell-BiB) with weight 
Several efforts had been carried out to solve these of 4.81 g. The cell-BiB can be well dissolved in 
problems, such as modification of the surface of the dimetyl sulfoxied (DMSO).
membrane with low-molecular-weight compounds, 
hydrophilic polymers and biologically active heparin 2.4. Grafting copolymerization of DMA by the 
[17,18]. cell-BiB

In this paper, synthesis of the graft copolymer com- The cell-BiB(0.1737 g, 0.9 mmol) was dissolved in 
posed of PDMA chains and cellulose backbone (cell- 30 ml of DMSO in a 100 ml of flask. Then 7.92 g 
PDMA) in homogeneous solution have been studied (0.08 mol) of DMA was added, and the solution was 
via an ATRP. Moreover, the protein adsorption resis- evacuated and flushed with nitrogen for 30 min. 
tivity on the cellulose membrane surface modified Finally, 0.1021 g of bpy (0.7 mmol) and 0.0444 g of 
with the cell-PDMA was evaluated to understand CuBr (0.31 mmol) were added, and the polymeriza-
hemocompatibility of the cell-PDMA. tion was carried out at room temperature under the 

protect of nitrogen. A few milliliter of samples were 
2. EXPERIMENTAL SECTION withdrawn from the flask at different reaction time 
2.1. Materials using degassed syringes to determine monomer con-
The chemical formula of the DMA is shown in version and molecular weight.
Scheme 1. Commercial product of microcrystalline 
(Sigma, DP = 121) was used without further purifica-
tion. 2,2'-Bipyridine (bpy) purchased from Aldrich 
was recrystallized from ethanol to remove impurities. 
DMA, CuBr with puri ty of 99.999% and 2-
bromoisobutyloyl bromide (BrBiB) were purchased 
from Aldrich and used without further purification. 
Other solvents and reagents were extra-pure grade 
reagents and used without further purification.

2.2. Dissolution of cellulose in N,N-dimethyl 
acetoamide (DMAc)/LiCl

oAfter dried in vacuum at 35 C overnight microcrystalline 
cellulose (5.167 g) was put into a 250 m l th ree -necked 
round-bottom flask, and adding 100 ml of distilled 
water for 30 min to swell it, then water was removed 
and fresh water was added again, and the process was 
repeated for three times. Then removing the water 
and adding 100 ml of methanol to swell again for 30 
min for three times. After removing methanol the cot-

oton was dried in vacuum at 50 C for 3 h. Then cooling 
down the solution and adding 120 ml of DMAc and 

oheated at 160 C for 1.5h, and removing 20 ml of 
DMAc under reduced press by a rotary evaporator. At 
the same time, about 10.22 g of LiCl was dried in 

obaker at 60 C. After the removing process of DMAc 
finish, adding the dried LiCl into the system, and stir-

oring at 80 C for 13 h, and the cellulose solution was 
obtained at the end [19].

The samples were diluted with DMSO and filtering 
the solution through a silicon gel column to remove 2.3. Synthesis macroinitiator for ATRP
the Cu ions catalyst, and then plenty of hexane was Cellulose was acylated with BrBiB in the presence of 

Scheme 2
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Scheme 1. Chemical structure of DMA.

Scheme 2. Synthesis route for the macroinitiator (cell-BiB).

Scheme 3. Graft copolymerization of DMA on cellulose 
backbone in homogeneous solution via the ATRP route.



added to produce the precipitate of the products. The from the XPS elemental analysis. 
oproducts were dried at 40 C in vacuum overnight.

2.8. Protein adsorption on the membrane sur-
face2.5. Isolation of the grafted PDMA chains by 
Amount of proteins adsorbed on the membrane was hydrolysis
measured by almost the same method reported previ-The copolymers were hydrolyzed by 70% H SO  for 2 4
ously [20]. The round (diameter: 1.5 cm) cellulose 

8h at boiling point. At the end, the residual polymer 
membranes were placed into a 24-well plate. To 

was participated into plenty of hexane and was dried 
equilibrate the membrane surface, phosphate buffer 

by freeze drying, then the products were analyzed by 
solution (PBS, pH 7.4, ionic strength : 0.15 mol/l) 

GPC.
was added into each well and allowed to remain for 
15 h at room temperature.  Protein solutions were pre-

2.6. Characterization pared in the concentration of 4.5 mg/ml of albumin, 
The chemical structure was confirmed using an FT- 1.6 mg/ml of -globulin, and 0.3 mg/ml of fibrinogen, 

1 13
IR (FT/IR-615, JASCO, Tokyo, Japan).  H- and C- which are 10% of the concentration of the human 
NMR spectra were obtained on a NMR spectrometer plasma level. After removing the PBS, 1.0 ml of each 
( -300, JEOL, Tokyo, Japan) with D O as the sol- protein solution was poured onto each membrane and 2

o
vent. The molecular weights of these polymers were allowed to remain at 37 C for 3 h. After rinsing the 
determined by gel permeation chromatography (GPC). membrane three times with PBS, the membrane was 
The mixture of methanol/water = 7/3 containing 10 taken out of the 24-well plate, and was rinsed again 
mmol/L of lithium bromide was used as an eluent for sufficiently with the 50 ml of PBS. The membrane 
the GPC measurement at a flow rate of 0.4 ml/min was placed into a glass bottle with a 1 wt% aqueous 
(Column: SB-804 HQ, Shodex, Tokyo, Japan). The solution of sodium dodecyl sulfate (SDS) and shaken 
number-averaged molecular weight (M ) and weight- (150 rpm) in a shaking bath for 3 h at room tempera-n

ture to detach the adsorbed protein on the surface. A averaged molecular weight (M ) were calculated w
protein analysis  ki t (Micro BCA protein assay using poly(ethylene glycol) standards. 
reagent kit, #23235, Pierce, Rockford, IL, USA) X-ray photoelectron spectroscopy (XPS) was con-
based on the bicinchoninic acid method was used to ducted on an AXIS-HSi (Shimadzu/KRATOS, Kyoto, 
determine the protein concentration in the SDS solu-Japan) employing Mg K excitation radiation (1253.6 
tion.

eV). The take-off angle of the photoelectron for each 
atom was fixed at 90 deg.

3. RESULTS AND DISCUSSIONFor Atomic force microscopy (AFM) measurement, 
The cell-BiB was prepared by partial esterification of the sample was dissolved in DMF at a concentration 
the hydroxyl groups of the glucose units of cellulose -6

of 8 10  g/m. Then a droplet ( 20 l ) of the solution with BiBBr in the presence of pyridine. The reaction 
was deposited onto freshly cleaved mica, and it was was carried out homogeneously in DMAc/LiCl solu-
spin-coated at speed of 900 rpm for 8 s and then 4000 tion at room temperature for 23 h. The formation of 
rpm for 30s. The height image of the copolymer on the ester bond resulted in the appearance of the char-
mica were measured by an AFM (Nanoscope IIIa, D.I.) -1

acteristic peaks at 1743 cm  for the C=O stretching in tapping mode with silicon TESP cantilevers. The 
band in the FTIR spectrum, as shown in . scanning rate ranged from 0.5 Hz to 1.0 Hz, and 

The substitution of the hydroxyl groups on the cel-512 512 pixels images were record.
lulose backbone with BiBBr was also confirmed by 

2.7. Coating of the cell-PDMA on cellulose 
membrane

(TM)
The regenerated cellulose membrane, Cuprophan , 
was obtained from Enka, A. G. (Wappertal-Barmen, 
Germany).  The thickness of the membranes was 
20 m.  First the cellulose membranes were cut into 
pieces with diameter of 1.5cm, and they were 
immersed into deionized water for 30 min, and then 

owere dried at 35 C in vacuum for 15h. Then the cellu-
lose membranes were immersed into the 0.5 wt% 
aqueous solution of the cell-PDMA for 3 min, and the 
membranes were took out and dried under atmo-

ospheric conditions for 2h, and then was dried at 35 C 
in vacuum for 15 h. The structure of the grafted DMA 
on the cellulose membranes were confirmed using 
XPS and FT-IR. The ratio of nitrogen atom (N) in the 
DMA unit versus carbon atom (C) was determined 

Figure 1
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Figure 1. FT-IR spectra of cotton (1), cell-BiB (2), DMA (3) 
and cell-PDMA (4).

Ccell-PDMA

DMA

Ccell-B/B

Ccellulose

-1
Wavelength(cm )

T
ra

n
s
m

it
ta

n
c
e

(%
)



1 13 PDMA was compared with that of the cell-BiB and both the H-NMR and C-NMR. As shown in 
-1

, there appears a new single peak at 1.8 ppm (peak DMA mono mer, the abso rpti ons at 1642 cm  
a) for methyl protons in the ester group of BiB, and appeared after grafting, which was assigned to the 
the peaks at = 2.8-5.6 ppm (peak b) for the methy- free C=O of PDMA, and the peaks at about 3100-

-1 lene protons and hydroxyl protons in the glucose 3500 cm was assigned to the OH group of cellulose 
 units of cellulose [21]. The total substitution degree [23]. 

1(DS) of BiB is obtained by the ratio of the integral of  shows a H-NMR spectrum for the cell-
the methyl groups to the integral of protons of glu- oPDMA in methanol-d  at 25 C, the spectra is about 13 4
cose, and the DS is 0.2.  shows the C-

the same as that of PDMA. The resonance bands 
NMR of the cell-BiB, and clearly both the methyl car-

observed at 2.9-3.1 ppm are attributed to the 
bon from BiB (peak a) and the carbon in glucose 

dimethyl group, and those observed at 1.3~1.8 ppm is 
(peak b) appear, and the peak c at 176 ppm attributed 

attributed to the methyl amd methylene protons of 
to the C=O carbon of BiB [22]. 

PDMA [24]. Part of the resonance bands of cellulose 
The as-prepared cell-BiB can be dissolved well in protons are overlapped with that of PDMA while 

DMSO. The graft copolymerization of DMA to cellu- there appear peaks at 2.9-4.0 ppm for the characteris-
o

13l o se  was ca r r i ed  ou t in  DMSO a t 100  C ,  
tics of cellulose. shows a C-NMR spec-

o[DMA]:[cell-BiB]:[CuBr]:[bpy] = 88:1:2.9:1.3, and trum for cell-PDMA in D O at 25 C. The characteris-2[DMA]  = 2.7 M.   shows the kinetic plot of 0 tic of the resonance peak for PDMA was observed at 
the reaction, and the variation of ln([M] /[M]) is lin-0 35 ppm, which is attributed to the dimethyl moiety 
ear with time, indicating a constant concentration of [25]. The weak peaks appear at 75-85 ppm are attrib-
propagating radicals which is the characteristic of the uted to the carbon for cellulose back bone, and the 
controlled/“living” radical polymerization. peak appear at 182 ppm is attributed to the carbon for 

The chemical structure of the cell-PDMA was iden- the carbonyl groups.
tified by FT-IR spectroscopy, NMR and GPC. As The grafted PDMA chains were converted to indi-
shown in , when the FT-IR spectrum of cell- vidual molecules through hydrolysis of the backbone 

Figure 
2a

Figure 2c

Figure 2b

Figure 2d 

Figure 3

Figure 1
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Figure 2.
1 13
 H-NMR and C-NMR spectra of cell-BiB (a, b) and cell-PDMA (c, d).
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Figure 3. Time-conversion and the first-order kinetic plot for 
the polymerization of DMA initiated by the cell-BiB in the 

ohomogeneous solution of DMSO at 100 C. [M ] and [M] are 0

concentrations of monomer at polymerization time = 0 and at 
corresponding time, respectively.

Figure 4. Dependence of M  and M /M  on monomer conversion in n w n

the graft polymerization of DMA in DMSO, the PDMA was hydrolyzed 
from the side chain of the copolymer before the GPC measurements. 

Figure 5. Typical AFM image of the cell-PDMA (a) and the 
perimeter distribution of the particles (b).

Figure 6. XPS spectra of P , N , C , and O  observed on 2p 1s 1s 1s

the original cellulose membrane (down row) and that coated 
with the cell-PDMA (upper row).

Figure 7. Amount of proteins adsorbed on original cellulose 
membrane (a) and cellulose membrane coated with cell-
PDMA (b).

to determine their molecular weight.  shows 
the plot of M  and the M /M  versus the monomer con-n w n

version during the polymerization. The molecular 
weight of the graft copolymer is increased linearly 
with the monomer conversion, and the polydispersity 
is decreased with the monomer conversion. The 
results also confirmed that the graft copolymerization 
is a controlled/”living” radical polymerization.

Figure 4

a: cellulose membrane
b: polymer-coated cellulose membrane

Albumin -Globulin Fibrinogen
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Figure 5 

Figure 5b 

Figure 6

Figure 7

shows the AFM image of the cell-PDMA controlled/”living” radical polymerization. The char-
copolymer deposited on surface of the new cleaved acterizations indicate that the graft copolymerization 
mica. Many nanoparticles appear with a homoge- is efficient and the obtained copolymer owns well-
neous size, and gives the perimeter distri- defined structures.After coated the cell-PDMA onto 
bution of the particles. Clearely, there are two kinds the surface of commercial cellulose membrane, there 
of particles exist, one with the diameter about 200 nm, obtained membrane with good hemocompatibility, 
and the other about 38 nm in diameter. Huang also which was confirmed by the protein adsorption 
reported similar result when they measrued the size experiments. This provides a new chance to modify 
of celluose-PS graft copolymer by AFM, and they con- the surface of polysaccharide materials to improve 
cluded that the smaller particles are the graft copoly- their hemocompatibility. The cell-PDMA has a strong 
mer and the bigger one are the micelles of the graft potential application on surface treatment to enhance 
copolymer when comparing the AFM data to dynamic separation ability and selectivity on every cellulose 
laser light scattering results. Here, we believe that membrane including CA and nitrocellulose, which 
the smaller particles result from the cell-PDMA are applied in biotechnology research and bioengi-
copolymer while the bigger one is the aggregates or neering field.
micelle of the graft copolymer.

The as-prepared cell-PDMA was a water-soluble 
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bases, the CGR would be a uniformly filled square, ABSTRACT
conversely, any patterns visible in the CGR represent 
some pattern (information) in the DNA sequence Chaos game representation (CGR) of DNA 
(Goldman 1993). Goldman (1993) interpreted the sequences and linked protein sequences 
CGRs in a biologically meaningful way. All points from genomes was proposed by Jeffrey (1990) 
plotted within a quadrant must corresponding to sub-an d Yu et al.  (2004), respectively. In this 
sequences of the DNA sequence that end with the paper, we consider the CGR of three kinds of 
base labelling the corner of that quadrant. He also pro-sequences from complete genomes: whole 
posed a discrete time Markov Chain model to simu-genome DNA sequences, linked coding DNA 
late the CGR of DNA sequences and use the sequences and linked protein sequences. 
sequence's dinucleotide and trinucleotide frequen-Some fractal patterns are found in these 
cies to calculate the probabilities in these models. CGRs. A recurrent iterated function systems 
Goldman's Markov model can be calculated directly (RIFS) model is proposed to simulate the 
and easily from the raw DNA sequences, without ref-CGRs of these sequences from genomes and 
erence to the CGR.their induced measures. Numerical results 

Deschavanne et al. (1999) used CGR of genomes on 50 genomes show that the RIFS model can 
to discuss the classification of species. Almeida et al. s i m u l a t e  v e r y w e l l  t h e C G R s  a n d t h e i r  
(2001) showed the distribution of positions in the induced measures. The parameters est i-
CGR plane is a generalization of Markov Chain prob-mated in the RIFS model reflect information 
ability tables that accommodates non-integer orders. on species classification.
Joseph and Sasikumar (2006) proposed a fast algo-
rithm for identifying all local alignments between 
two genome  sequences using the sequence informa-
tion contained in their CGR.

Twenty different kinds of amino acids are found in 
1. INTRODUCTION proteins. The idea of CGR of DNA sequences pro-
The hereditary information of organisms (except for posed by Jeffrey (1990) was generalized and applied 
RNA-viruses) is encoded in their DNA sequences for visualizing and analyzing protein databases by 
which are one-dimensional unbranched polymers Fiser et al. (1994). Generalization of CGR of DNA 
made up from four different kinds of monomers (nu- may take place in several ways. In the simplest case, 
cleotides): adenine (a), cytosine (c), guanine (g), and the square in CGR of DNA is replaced by an n-sided 
thymine (t). Based on a technique from chaotic regular polygon (n-gon), where n is the number of dif-
dynamics, Jeffrey (1990) proposed a chaos game rep- ferent elements in the sequence to be represented. As 
resentation (CGR) of DNA sequences by using the proteins consist of 20 kinds of amino acids, a 20-
four vertices of a square in the plane to represent sided regular polygon (regular 20-gon) is the most 
a,c,g and t. The method produces a plot of a DNA adequate for protein sequence representation. A few 
sequence which displays both local and global pat- thousand points result in an 'attractor' which gives a 
terns. Self-similarity or fractal structures were found visualization of the rare or frequent residues and 
in these plots. Some open questions from the biologi- sequence motifs. Fiser et al. (1994) pointed out that 
cal point of view based on the CGR were proposed the chaos game representation can also be used to 
(Jeffrey 1990). study 3D structures of proteins.

If the DNA sequences were a random collection of 
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Basu et al. (1998) proposed a new method for the sequences and linked sequences of all protein 
chaos game representation of different families of sequences from complete genomes.
proteins. Using concatenated amino acid sequences For DNA sequences, the CGR is obtained by using 
of proteins belonging to a particular family and a 12- the four vertices of a square in the plane to represent 
sided regular polygon, each vertex of which repre- a,c,g and t (Jeffrey 1990). The first point of the plot is 
sents a group of amino acid residues leading to con- placed half way between the center of the square and 
servative substitutions, the method generates the the vertex corresponding to the first letter, the ith 
CGR of the family and allows pictorial representa- point of the plot is placed half way between the (i-
tion of the pattern characterizing the family. Basu et 1)th point and the vertex corresponding to the ith let-
al. (1998) found that the CGRs of different protein ter in the DNA sequence.
families exhibit distinct visually identifiable patterns. For linked protein sequences, we outline here the 
This implies that different functional classes of pro- way to get the CGR from Yu et al. (2004b). The pro-
teins produce specific statistical biases in the distri- tein sequence is formed by twenty different kinds of 
bution of different mono-, di-, tri-, or higher order ami no a cid s, n ame ly Ala nin e (A),  Arginine ( R),  
peptides along their primary sequences. Aspara gine (N), Aspartic acid (D), Cysteine (C), 

A well-known model of protein sequence analysis Glut amic acid (E), Glutamine (Q), Glycine (G), 
is the HP model proposed by Dill et al. (1985).  In this Histidine (H), Isoleucine (I), Leucine (L), Lysine (K), 
model 20 kinds of amino acids are divided into two Meth ioni ne (M), Phenylalanine (F), Proline (P), 
types, hydrophobic (H) (or non-polar) and polar (P) Serine (S), Threonine (T), Tryptophan (W), Tyrosine 
(or hydrophilic). But the HP model may be too simple (Y) and Valine (V) (Brown 1998, page 109). In the 
and lacks sufficient information on the heterogeneity detailed HP model, they can be divided into four 
and the complexity of the natural set of residues classes: non-polar, negative polar, uncharged polar 
(Wang and Wang 2000). According to Brown (1998), and positive polar. The eight residues A, I, L , M, F, P, 
one can divide the polar class in the HP model into W, V designate the non-polar class; the two residues 
three classes: positive polar, uncharged polar and neg- D, E designate the negative polar class; the seven resi-
ative polar. So 20 different kinds of amino acids can dues N, C, Q , G, S, T, Y designate the uncharged polar 
be divided into four classes: non-polar, negative class; and the remaining three residues R, H, K  desig-
polar, uncharged polar and positive polar. In this nate the positive polar class.
model, one considers more details than in the HP For a given protein sequence s=s s  with length l, 1 l
model. We call this model a detailed HP model (Yu et where s  is one of the twenty kinds of amino acids for i
al.2004a). Based on the detailed HP model, we pro- i=1, ,l ,we define 
posed a CGR for the linked protein sequences from 
the genomes (Yu et al. 2004b).

The recurrent iterated function system in fractal 
theory (Barnsley and Demko, 1985; Falconer, 1997) 
has been applied successfully to fractal image con-
struction (Barnsley and Demko, 1985; Vrscay, 1991), 
one dimensional measure representation of genomes 
(Anh et al. 2002; Yu et al. 2001, 2003) and magnetic 

We then obtain a sequence X(s)=a a , where a  is field data (Wanliss et al. 2005; Anh et al. 2005) for 1 l i

example. Yu et al. (2007) proposed a CGR for the a letter of the alphabet {0,1,2,3}. We next define the 
magnetic field data and used the RIFS model to simu- CRG for a sequence X(s) in a square [0,1] [ 0,1], 
late the CGR. where the four vertices correspond to the four letters 

Although we proposed the CGR for linked protein 0,1,2,3. The first point of the plot is placed half way 
sequences from genomes (Yu et al. 2004b), we did between the center of the square and the vertex corre-
not consider how to simulate the CGRs. In this paper, sponding to the first letter of the sequence X(s); the 
we extend the CGR to the study of whole-genome ith point of the plot is then placed half way between 
DNA sequences and linked coding DNA sequences the (i-1)th point and the vertex corresponding to the 
from genomes. Then we use the RIFS model to simu- ith letter. We then call the obtained plot the CGR of 
late the CGR of these 3 kinds of data from genomes the protein sequence s based on the detailed HP 
and their induced measures. The probability matrix in model.
our RIFS model is similar to the one in Markov model Usually whole-genome DNA sequences and linked 
used by Goldman (1993), but the way to estimate this coding DNA sequences are relatively long, hence the 
matrix is different. resulting CGRs are too dense to visualize any pattern 

directly. The linked protein sequences are 3 times 
shorter than the linked coding DNA sequences, and 2. CHAOS GAME REPRESENTATION OF 
their CGRs produce clearer self-similar patterns. For GENOMES
example, we show the CGR of the linked protein Three kinds of sequences from complete genomes are 
sequence of the bacterium Mycobacterium tuberculo-considered, namely, whole-genome DNA sequences 
sis CDC1551 (MtubC) in .(including protein-coding and non-coding regions), 

Considering the points in a CGR of an organism, l inked sequences of  al l protein-coding DNA 

Figure 1

(1)
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we define a measure by (B)=#(B)/N  , where #(B) is The coefficients in the contractive maps and the l

the number of points lying in a subset B of the CGR and probabilities in the RIFS are the parameters to be esti-
N  is the length of the sequence. We divide the square mated for the me asure that we wa nt to simulate . We l

now describe the method of moments to perform this [0,1] [0,1] into meshes of sizes 64 64, 128 128, 
task. In the two-dimensional case of our CGRs, we 512 512 or 1024 1024. This results in a measure for 
consider a system of N contractive mapseach mesh. We then obtain a 64 64, 128 128, 

512 512 or 1024 1024 matrixA=( )  , where kl J J

J=64,128,512 or 1024, each element is the measure  kl

value on the corresponding mesh. We call A the mea-
sure matrix of the organism. The measure  based on If is the invariant measure and A the attractor of 

2a 128 128 mesh on the CGRs are considered in this the RIFS in R , the moments of are
paper . For  example, the measure based on a  
128 128 mesh of the CGR in is shown in 

.

Using the propert ies of the Markov operator  
3. RECURRENT ITERATED FUNCTION defined by (S, P) (Vrscay, 1991), we get                                                            
SYSTEM FOR A MEASURE
Consider a system of contractive maps S={S ,S ,1 2

S } and the associated matrix of probabilities P=(p ) N ij

such that p =1,i=1,2, ,N. We consider a random j ij

sequence generated by a dynamical system

where x  is any starting point and is chosen  0 n

among the set {1,2, ,N}with a probability that 
depends on the previous index  : P( =i)=p .  n-1 n i-1,i 

Then (S, P) is called a recurrent iterated function sys- When n=0, m=0, from                       we have
tem. Then there exist compact setsA,A ,i=1,2, N i

such that      

                                                 for i=1,2, ,N.
where set A is called the attractor of the RIFS (S, P). j

Then we can get the values for g , j 1 2, ,N by ,00A major result for RIFS is that there exists a unique 
solving the above linear equations.  invariant measure of the random walk (Eq. 2) 

When m=0, n 1whose support is A (Barnsley et al., 1989).

Figure 1 
Figure 2

Figure 1. Chaos game representation of the linked protein 
sequence from genome of Mycobacterium tuberculosis 
CDC1551(MtubC) (with 1325681 amino acids).

Figure 2. The measure based on a 128 128 mesh of the 
CGR in Figure 1.

(2)

(3)

(4)
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If we denote by G  the moments obtained directly mn

from a given measure, and g  the formal expression mn

of moments obtained from the above formulae, then 
solving the optimization problem

hence the moments are given by the solution of the 

linear equations

will provide the estimates of the parameters of the 
RIFS.

Once the RIFS (S (x),p ,i,j=1,2, ,N ) has been esti-i ij

mated, its invariant measure can be simulated in the 
following way: Generate the attractor of the RIFS via 
the random walk (Eq. 2). Let be the indicator func-B

When n=0,m 1 
tion of a subset B of the attractor A. From the ergodic 
theorem for RIFS (Barnsley et al., 1989), the invari-
ant measure is then given by

hence the moments are given by the solution of the 
linear equations

By  de f in i t i on ,  an RIFS  desc r ibes  t he s ca l e  
invariance of a measure. Hence a comparison of the 
given measure with the invariant measure simulated 
from the RIFS will confirm whether the given mea-
sure has this scaling behaviour. This comparison can 
be undertaken by computing the cumulative walk of a 
measure visualized as intensity values on a J J  
mesh; here J=128 in this paper. When  m,n 1

I f  w e  c o n v e r t t h e  t w o - d i m e n s i o n a l  m a t r i x       
A=( ) to an one dimensional vector by concate- kl J J

nate every row in A at the end of previous row. We 
denote the one-dimensional vector as f=(f ,f , ,f ). 1 2 J J

The cumulative walk is defined as

Where f is the average value of all element in vec-
tor f.

Returning to the CGR, an RIFS with 4 contractive hence the moments are given by the solution of the 
maps {S ,S ,S ,S } is fitted to the measure obtained linear equations 1 2 3 4

from the CGR using the method of moments. Here we 
can fix

Hence the parameters needed to be estimated are the 
probabilities in the matrix P. Once we have estimated 
the probability matrix in the RIFS, we can start from 
the point (0.5, 0.5) and use the chaos game algorithm 
Eq. (2) to generate a random point sequence{x } with i

the same length N  of the whole- genome DNA l                                                 for i=1,2, ,N.
sequence, linked coding DNA sequence or the linked 

(6)

(7)
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protein sequence. Then the plot of the random point 
sequences is the RIFS simulation of the original CGR 
of the data. For example the RIFS simulated CGR of 
the CGR in  is shown in . Compar-
ing the RIFS simulation in  with the original and
CGR in , it is apparent that they are quite sim-
ilar. We then obtain the 128 128 mesh measure
based on the simulated CGR. The measure   can be 
regarded as a simulation of the measure   induced 

M Mfrom the original CGR. For example, we show the 
Here M=128 128, (F ) and (F ) are the walks j j=1 j j=1128 128 mesh measure     based on the simulated 
of the original measure and the RIFS simulated mea-CGR of  in . The cumulative walks 

M
sure respectively, F is the mean value of(F ) . of these two measures can then be obtained to show ave j j=1

the performance of the simulation. The goodness e 1.0 indicates the simulation is 
We determine the goodness of fit of the measure very well (Anh et al. 2002). For example, the cumula-

simulated from the RIFS model relative to the origi- tive walks for the measure induced by the CGR in 
nal measure based on the following relative standard and its RIFS simulation in  are given in 
error (RSE) (Anh  et al. 2002): . It is seen that the two walks are almost iden-

tical. This indicates that RIFS fits very well the mea-
sure induced by the original CGR. The RSE e=0.0300 
is very small, which also indicates excellent fitting.

Where
4. DATA, DISCUSSION AND CONCLUSION

We downloaded whole-genome DNA sequences, 
coding DNA sequences and protein sequences from 
50 complete genomes of Archaea and Eubacteria 
from the public database Genbank at the web site 
http://www.ncbi.nlm.nih.gov/Genbank/. We list the 
name of the 50 bacteria in Appendix.

We then produce the CGRs of the data from the 50 
genomes as described in . For more exam-
ples, we plot the chaos game representation of the 
linked coding sequence from genome of Mycoplasma 
pulmonis  UAB CTIP (Mpul) in . Fractal 
(self-similarity) patterns can be seen in these CGRs. 
We on ly  use  the moments  o f  128 128  mesh  
measure based on the CGRs to estimate the param-
eters (probability matrix) in the RIFS model. Then 
the RIFS simulation of the original CGRs is per-
formed using the chaos game algorithm. We then get 

Figure 1 Figure 3
 Figure 3

Figure 1

Figure 3 Figure 4

Fig-
ure 1 Figure 4
Figure 5

Section 2

Figure 6

Figure 3. The RIFS simulated CGR for the CGR in  Figure 1.
Figure 4. The measure   based on a 128 128 mesh of the 
RIFS simulated CGR in Figure 3.

Figure 5. The walk representation of measures induced by 
the CGR in Figure 1 and its RIFS simulation in Figure 4.
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the 128 128 mesh measure based on the simulated 
CGR. To show the performance of the simulation, we 
compare the cumulative walks of the original mea-
sure and its simulation .  For example, the RIFS sim-
ulated CGR of the linked coding sequence from 
genome of Mycoplasma pulmonis UAB CTIP (Mpul) 
based on the 128 128 mesh measure from 

is shown in , while the walk representation 
of measures induced by the CGR in and its 
RIFS simulation in  are shown in .

Goldman (1993) interpreted the patterns in CGRs 
o f  D N A s e q u e n c e s  b y t h e  d i n u c l e o t i d e a n d  
trinucleotide frequencies in the original sequence. 
The probability matrix in our RIFS model character-
izes the dinucleotide or di-amino acid frequencies (in-
formation) which is similar to the one in Markov 
model used by Goldman (1993), but the way to esti-
mate this matrix is different. 

The values of the RSE of the simulation for 50 

Figure 
6 Figure 7

Figure 6 
Figure 7 Figure 8

Figure 6. Chaos game representation of the linked coding 
sequence from genome of Mycoplasma pulmonis  UAB CTIP 
(Mpul) (with 873,651 bps).

Figure 7. The RIFS simulated CGR for the CGR in  Figure 6.

Figure 8. The walk representation of measures induced by 
the CGR in Figure 6 and its RIFS simulation in Figure 7.

Table 1. The goodness of fit for the walk representations of 
three kinds of data from 50 genomes.

Species
(abbrev.)

Aful  
Paby  
Pyro 
Mjan 
haloNRC 
Taci  
Tvol  
Mthe 
Aero 
Ssol
MtubH 
MtubC 

pMle  &  
Mpneu 
Mgen 
Mpul 
Uure 
Bsub 
Bhal 
Llac 
Spyo 
Spne 
SaurN 
SaurM 
CaceA 
Aqua 
Tmar 
Ctra 
Cpneu 
CpneuA      

pC neuJ 
Syne 
Nost 
Bbur 

pT al 
Atum 
smel 
Ccre 

pR ro 
Nmen 
NmenA 
EcoliKM 
EcoliOH 
Hinf 
Xfas 
Paer 
Pmul 
Buch 
Hpyl 
Cjej 

e  f  or  
whole DN A

0.5797
0.3502
0.4324
0.2136
0.3728
0.2707
0.3126
0.5188
0.6213
0.3798
1.3037
1.3010
0.4271
0.0484
0.0731
0.0639
0.0783
0.4051
0.1198
0.1032
0.1049
0.1125
0.1264
0.1229
0.1887
0.4825
0.4470
0.8986
0.7786
0.7593
0.7899
0.0521
0.1411
0.1466
0.3068
0.2614
0.1739
0.1171
0.3887
0.1973
0.2039
0.3225
0.3222
0.0677
0.1246
0.2149
0.1032
0.1954
0.2567
0.1540

e   f o r  
coding DN A

0.2669
0.3214
0.3411
0.2675
0.3569
0.2735
0.2716
0.5676
0.2222
0.3612
0.5862
0.5711
0.3332
0.0589
0.2305
0.1261
0.2064
0.8012
0.2652
0.1879
0.1759
0.1358
0.2728
0.2680
0.1693
0.3457
0.6674
0.4769
0.7170
0.7093
0.7352
0.0396
0.1439
0.1255
0.1212
0.2655
0.1957
0.1558
0.7126
0.1933
0.1993
0.3472
0.3810
0.2388
0.1460
0.1823
0.2087
0.2598
0.2615
0.1797

e for     
linked   
proteins 
0.0366
0.0333
0.0361
0.0647
0.0297
0.1030
0.1308
0.0299
0.0452
0.1098
0.0333
0.0300
0.0404
0.1686
0.2617
0.2267
0.4058
0.0684
0.0489
0.0500
0.0678
0.0932
0.1020
0.1054
0.1859
0.0661
0.0597
0.1066
0.1312
0.1044
0.1290 
0.0667
0.0931
0.2008
0.0908
0.0403
0.0380
0.0259
0.2132
0.0430
0.0559
0.0714
0.0868
0.0883
0.0324
0.0470
0.0911
0.3911
0.1161
0.0802
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genomes and their induced measures. Third, the RIFS genomes are listed in .
simulation of measures for linked protein data is It is seen that all the values of the RES except two 
better than that of measures for whole-genome DNA are much less than 1.0, confirming that the RIFS 
data and linked coding DNA data. Finally, the esti-model can simulate very well the measures of three 
mated parameters in the RIFS models for the linked kinds of data. The values of e for whole-genome DNA 
protein data from genomes can be used to character-data are generally larger than those for linked coding 
ize the phylogenetic relationships of the genomes.DNA data, which in turn are larger than those for 

linked protein data. In other words, the RIFS model 
can simulate the measures for linked protein data 
better than the measures for linked coding DNA data, ACKNOWLEDGEMENTS  
and can simulate measures for linked coding DNA Financial support was provided by the Chinese National Natural 
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NC002491); two Cyanobacterium: Synechocystis sp. PCC6803 (Syne, These 50 bacteria include eight Archae Euryarchaeota: Archaeoglobus 
NC000911) and Nostoc sp. PCC 7120 (Nost, NC003272); two Spirochaete: fulgidus DSM 4304 (Aful, NC000917), Pyrococcus abyssi GE5 (Paby, 
Borrelia burgdorferi B31 (Bbur, NC001318) and Treponema pallidum NC000868), Pyrococcus horikoshii OT3 (Pyro, NC000961), 
Nichols (Tpal, NC000919); and fifteen Proteobacteria. The fifteen Methanococcus jannaschii  DSM 2661 (Mjan, NC000909), Halobacterium 
Proteobacteria are divided into four subdivisions, namely alpha subdivision: sp. NRC-1 (haloNRC, NC002607), Thermoplasma acidophilum DSM 1728 
Agrobacterium tumefaciens strain C58 (Atum, NC003062), Sinorhizobium (Taci, NC002578), Thermoplasma volcanium GSS1 (Tvol,NC002689), and 
meliloti 1021 (smel, NC003047), Caulobacter crescentus CB15 (Ccre, Methanobacterium thermoautotrophicum deltaH (Mthe, NC000916); two 
NC002696) and Rickettsia prowazekii Madrid (Rpro, NC000963); beta sub-Archae Crenarchaeota: Aeropyrum pernix K1 (Aero, NC000854) and 
division: Neisseria meningitidis MC58 (Nmen, NC003112) and Neisseria Sulfolobus solfataricus P2 (Ssol, NC002754); three Gram-positive 
meningitidis Z2491 (NmenA, NC003116); gamma subdivision: Esche-Eubacteria (high G+C): Mycobacterium tuberculosis H37Rv (MtubH, 
richia coli K-12 MG1655 (EcoliKM, NC000913), Escherichia coli O157:H7 NC000962), Mycobacterium tuberculosis CDC1551 (MtubC, NC002755) 
EDL933 (EcoliOH, NC002695), Haemophilus influenzae Rd (Hinf, and Mycobacterium leprae TN (Mlep, NC002677); twelve Gram-positive 
NC000907), Xylella fastidiosa 9a5c (Xfas, NC002488), Pseudomonas Eubacteria (low G+C): Mycoplasma pneumoniae M129 (Mpneu, 
aeruginosa PA01 (Paer, NC002516), Pasteurella multocida subsp. NC000912), Mycoplasma genitalium G37 (Mgen, NC000908), Mycoplasma 
multocida str. Pm70 (Pmul, NC002663) and Buchnera str. APS (Buch, pulmonis  UAB CTIP (Mpul, NC002771), Ureaplasma urealyticum serovar 
NC002528); and epsilon subdivision: Helicobacter pylori 26695 (Hpyl, 3 str. ATCC 700970 (Uure, NC002162), Bacillus subtilis subsp. subtilis str. 
NC000915) and Campylobacter jejuni  subsp. jejuni NCTC 11168 (Cjej, 168 (Bsub, NC000964), Bacillus halodurans C-125 (Bhal, NC002570), 
NC002163). The abbreviations in the brackets stand for the names of these Lactococcus lactis subsp. lactis Il1403 (Llac, NC002662), Streptococcus 
species and their NCBI accession numbers.pyogenes M1 GAS (Spyo, NC002737), Streptococcus pneumoniae TIGR4 

(Spne, NC003028), Staphylococcus aureus subsp. aureus N315 (SaurN, 

SciRes JBiSECopyright © 2008                                                                                                                                                 

 51Z.G. Yu et al./J. Biomedical Science and Engineering 1 (2008) 44-51



words ,  genet ic fac tor  has been invoked in  the ABSTRACT
pathogenesis of the disease.

Although the Crohn's disease cannot easily be The both environmental and genetic factors have 
treated, it can be avoided if people at high risk change roles in the development of some diseases. Complex 
their living style, such as their diet. But how can we diseases, such as Crohn's disease or Type II diabetes, 
tell the susceptibility of people to the disease before are caused by a combination of environmental fac-
symptoms are found and help them make informed tors and mutations in multiple genes. Patients who 
decisions about their health?  With the development have been diagnosed with such diseases cannot eas-
of DNA microarray technique, it is possible to access ily be treated. However, many diseases can be 
the human genetic information related to specific dis-avoided if people at high risk change their living style, 
eases. Assessing the association between DNA vari-one example being their diet. But how can we tell their 
ants and disease has been used widely to identify susceptibility to diseases before symptoms are 
regions of the genome and candidate genes that con-found and help them make informed decisions about 
tribute to disease [2]. their health? With the development of DNA 

99.9% of one individual's DNA sequences are iden-microarray technique, it is possible to access the 
tical to that of another person. Over 80% of this 0.1% human genetic information related to specific dis-
difference will be Single Nucleotide Polymorphisms eases. This paper uses a combinatorial method to 
(SNP) and they promise to significantly advance our analyze the genetic data for Crohn's disease and 
ability to understand and treat human disease. A SNP search disease-associated factors for given 
is a single base substitution of one nucleotide with case/control samples. An optimum random forest 
another. Each individual has many single nucleotide based method has been applied to publicly available 
polymorphisms that together create a unique DNA genotype data on Crohn's disease for association 
pattern for that person. It is important to study SNPs study and achieved a promising result. 
because they represent genetic differences among 
human beings. Genome-wide association studies 
require knowledge about common genetic variations 
and the ability to genotype a sufficiently comprehen-
sive set of variants in a large patient sample [3]. 

1. INTRODUCTION High-throughput SNP genotyping technologies make 
Crohn's disease (also known as regional enteritis) is a massive genotype data, with a large number of indi-
chronic, episodic, inflammatory condition of the gas- viduals, publicly available. Accessibility of genetic 
t ro intes t inal  t rac t  character ized by t ransmural  data makes genome-wide association studies for com-
inf lammat ion (af fec t ing the  ent i re wal l  of the  plex diseases possible.
involved bowel) and skip lesions (areas of inflamma- Success stories when dealing with diseases caused 
tion with areas of normal lining in between). Crohn's by a single SNP or gene, sometimes called monogen ic 
disease is a type of inflammatory bowel disease (IBD) diseases have been reported [4]. However, most com-
and can affect any part of the gastrointestinal tract plex diseases, such as psychiatric disorders, are char-
from mouth to anus. As a result, the symptoms of acterized by a non-mendelian, multifactorial genetic 
Crohn's disease can vary among affected individuals. contribution with a number of susceptible genes 
The exact cause of Crohn's disease is unknown. How- interacting with each other [5]. A fundamental issue 
ever, research shows that the inflammation seen in in the analysis of SNP data is to define the unit of 
the people with Crohn's disease involves several fac- genetic function that influences disease risk. Is it a 
tors: the genes the patient has inherited, the immune single SNP, a regulatory motif, an encoded protein 
system itself, and the environment [1]. In other subunit, a combination of SNPs in a combination of 
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genes, an interacting protein complex, a metabolic or association study we described above. The Disease-
a physiological pathway [6]? In general, it may be associated multi-SNP combination found in associa-
impossible to associate a single SNP or gene with a tion studies can be used to predict the susceptibility 
disease because a disease may be caused by com- to diseases. On the other side, the prediction results 
pletely different modifications of alternative path- can be used to evaluate the accuracy of the associa-
ways, and each gene only makes a small contribution. tion studies. A higher prediction rate means the 
This makes the identification of genetic factors diffi- higher reliability of the association studies. 
cult. Multi-SNP interaction analysis is more reliable The proposed method is applied to analyze the 
but it is computationally infeasible. An exhaustive genetic data of the Crohn's disease. We find the dis-
search among multi-SNP combination is computationally ease-associated multi-SNP combination and apply it 
infeasible even for a small number of SNPs. Further- to predict the susceptibility. The accuracy of the pre-
more, there are no reliable tools applicable to large diction is higher than that of all previously known 
genome ranges that could rule out or confirm associa- methods. It can be also applied in disease prevention 
tion with a disease. and control in the near future. For example, after 

It is important to search for informative SNPs among a training the available case-control genome data, we 
huge number of SNPs. These informative SNPs are can fi nd tho se sig nif icant SNPs which ar e well a sso-
assumed to be associated with genetic diseases. Tag SNPs ciated with the disease. When a patient comes, and 
generated by the multiple linear regression based method we obt ain hi s/her gen eti c data , we don 't nee d to che ck 
[7] are good informative SNPs, but they are reconstruc- the who le sequence, but only dis ease-a sso cia ted 
tion-oriented instead of disease-oriented. Although the SNP s ins tead. Thi s will s ave mu ch mon ey and t ime 
combinatorial search method [8] for finding disease- for d iagnos is and can be done befo re the onset of di s-
associated multi-SNP combinations has a better result, the eases. The refore , t rea tment cou ld sta rt ear lie r t o p re-
exhaustive search is still very slow. vent or delay the occurrence of the disease.

 Multivariate adaptive regression spline models [9, 
10] are used to detect associations between diseases 2. DISEASE ASSOCIATION SEARCH FOR 
and SNPs with some degree of success. However, the CROHN'S DISEASE
number of selected predictors is limited, and the type In this section we first give an overview of the ran-
of possible interactions must be specified in advance. dom forest tree and classification tree, then we will 
Multifactor dimensionality reduction methods [11, describe the genetic model. Next we propose the opti-
12] are developed specifically to find gene-gene mum random forest algorithm to search Tag SNPs.
interactions among SNPs, but they are not applicable 
to a large set of SNPs.

2.1. Classification Trees and Random Forest
Random forest model has been explored in disease 

In machine learning, a Random Forest is a classifier 
association studies [13], but it was applied on simu-

that consists of many classification trees. Each tree is 
lated case-control data in which the interacting 

grown as follows:
model among SNPs and the number of associated 

1. If the number of cases in the training set is N, 
SNPs are specified, thus making the association 

sample N cases at random - but with replacement, 
model simple and the association is relatively easier 

from the original data. This sample will be the train-
to detect. For real data, such as Crohn's disease [14], 

ing set for growing the tree.
multi-SNP interaction is much more complex , which 

2. If there are M input variables, a number m<<M 
involves more SNPs.

is specified such that at each node, m variables are 
In Section 2 of this paper, we propose an optimum 

selected randomly out of the M and the best split on 
random forest model for searching the disease-

these m is used to split the node. The value of m is 
associated multi-SNP combination for given case-

held constant during the forest growing.
control data. In the optimum random forest model, 

3. Each tree is grown to the largest extent possible. 
we generate a forest for each variable (e.g. SNP) 

There is no pruning [19].
instead of randomly selecting some variables to grow 

A different bootstrap sample from the original data 
the classification tree. We can find the best classifier 

is used to construct a tree. Therefore, about one-third 
(a combination of SNPs which includes the SNP) for 

of the cases are left out of the bootstrap sample and 
each SNP, and then we may have M classifiers if the 

not used in the construction of the tree. Cross-
length of the genotype is M. We rank classifiers 

validation is not required because the one-third oob 
according to their prediction rate, and the SNP with a 

(out-of-bag) data is used to get an unbiased estimate 
higher prediction rates is more disease-associated.

of the classification error as trees are added to the for-
The association of multi-SNP combination can be 

est. It is also used to get estimates of variable impor-
measured by the disease susceptibility prediction rate.  

tance. After each tree is built, we compute the 
In Section 3 we address the disease susceptibility pre-

proximities of each terminal node. 
diction problem [15, 16, 17, 18]. The goal of disease 

In every classification tree in the forest, put down 
susceptibility prediction is to assess accumulated 

the oob samples and make prediction the classifica-
information targeted to predicting susceptibility to 

tion of the oob samples. In such way we can compute 
complex diseases with significantly high accuracy 

the importance score for variables in each tree based 
and statistical power. The problem is based on the 
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on the number of votes cast for the correct class. All posed of two haplotypes.
variables can be ranked and those important variables The case-control sample populations consist of N 
can be found in this way. individuals who are represented in genotype with M 

Random forest is a sophisticated method in data SNPs. Each SNP attains one of the three values 0, 1, 
mining to solve classification problems, and it can be or 2. The sample G is an (0, 1, 2)-valued N x M matrix, 
used efficiently in disease association studies to find where each row corresponds to an individual, each 
most disease-associated variables such as SNPs that column corresponds to a SNP.
may be responsible for diseases. The sample G has 2 classes, case and control, and 

M variables, and each of them represents a SNP. To 
construct a classification tree, we split the sample S 2.2. Genetic Model
into 3 child sub-samples, depending on the value (0, 1, Recent work has suggested that SNPs in human popu-
2) of the variable (SNP) on the splitting site (loci). In lation are not inherited independently; rather, sets of 
fact we can construct a binary tree (split sample adjacent SNPs are present on alleles in a block pat-
according to homozygous or heterozygous), but there tern, so called haplotype. Many haplotype blocks in 
is no way to tell the difference between major allele human have been transmitted through many genera-
(1) and minor allele (0). In order to distinguish them tions without recombination. This means although a 
we split the sample into 3 sub-samples instead of 2. block may contain many SNPs, it takes only a few 
We grow the tree to the largest possible extent. The SNPs to identify or to tag each haplotype in the block. 
construction of the classification tree for case-A genome-wide haplotype would comprise half of a 
control sample is illustrated in . In the first diploid genome, including one allele from each 
level, we split the sample (30 genotypes, 14 cases and allelic gene pair. The genotype is the descriptor of 
16 controls) into 3 sub-samples (17, 8, 5) at loci 5 the genome which is the set of physical DNA mole-

thcules inherited from the organism's parents. A pair of (the 5  SNP). In the second level, the first sub-
haplotype consists of a genotype. sample splits at loci 9 and the second sub-sample 

SNPs are bi-allelic and can be referred as 0 for splits at loci 7. No splitting is required for the third 
majority allele and 1, otherwise. If alleles on both sub-sample because it is a terminal node with only 
haplotypes are the same, then the corresponding geno- one class. In the third level, the only split node splits 
type is homogeneous, and can be represented as 0 or 1. at loci 3. The relationship of a leaf to the tree on 
If the two alleles on the two haplotypes are different, which it grows can be described by the hierarchy of 
the genotype is heterozygous, represented as 2. splits of branches (starting from the trunk) leading to 

In , there are four chromosomes, we the last branch from which the leaf hangs. The collec-
assume the first two chromosomes belong to one per- tion of split site is a Multi-SNPs combination (MSC), 
son and the other two chromosomes belong to another which can be viewed as a classification tree. In this 
person. We can find on most sites the four chromo- example, MSC = {5, 9, 7, 3}and m = 4, which is a col-
somes are identical, but on some sites they are differ- lection of 4 SNPs, represented as their loci. 
ent, nucleotides on these sites are SNP. The haplotype 
is the concatenation of SNPs and a genotype is com- 2.3. Searching for Disease Associated Multi-

SNPs 
To fully understand the basis of complex diseases, it 

Figure 2

Figure 1

Figure 1.  SNP, haplotype and genotype. Figure 2.  Classification tree for case-control sample.
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is important to identify the critical genetic factors with the highest weight. The contribution to diseases 
involved, which is a combination of multiple SNPs. of each SNP is quantified by its weight, but in GRF 
For a given sample G, S is the set of all SNPs (de- there is no way tell the difference of contribution 
noted by loci) for the sample, and a multi-SNPs com- among SNPs. The GRF can only tell the difference 
bination (MSC) is a subset of S. In disease associa- among classifiers (trees).
tions, we need to find a MSC which consists of a com-
bination of SNPs that are well associated with the dis- 3. DISEASE SUSCEPTIBILITY PREDICTION
ease. To find such MSC, we need first rank all SNPs In this section we first describe the input and the out-
according to their association degree (measured as put of prediction algorithms and then show how to 
weight) with diseases. Based on the sorting, we can apply the optimum random forest to the disease sus-
find the n most disease associated SNPs for a given ceptibility prediction.
threshold n. Data sets have n genotypes and each has m SNPs. 

Although there are many statistical methods to The input for a prediction algorithm includes:
detect the most disease associated SNPs, such as odds (G1) Training genotype set g  = (g ), i = 0, 1, …, n, i i,j
ratio or risk rates, the result is not satisfactory. We 

j =1,… m, g {0,1,2}i,jdecide to use the random forest to find them.
(G2) Disease status s(g {0,1}, indicating if g , i i i

= 0, 1, …, n, is in case (1) or in control (0) , and2.4. Optimum Random Forest  
(G3) Testing genotype g  without any disease sta-We randomly generate a group of MSCs for each SNP. t

The size of the MSC should be much less than the size tus.
of set S (m << M). Each MSC can be represented as a We will refer to the parts (G1-G2) of the input as 
tree and all trees make the forest F. All trees (or the training set and to the part (G3) as the test set. The 
MSCs) of the forest F (i=1, 2, …, M) must include the output of prediction algorithms is the disease status  i

th of the genotype s(g ).ti  SNP and the other (m-1) SNPs can be randomly cho-
th We use leave-one-out cross-validation to measure sen from S except the i  SNP.  In this way, the M for-

the quality of the algorithm. In the leave-one-out ests cover all SNPs in S.
cross-validation, the disease status of each genotype We grow a classification tree for every MSC in 
in the data set is predicted while the rest of the data is each forest F . We run all the testing samples down i regarded as the training set.

these trees to get the classifier for each sample in the We describe several universal prediction methods 
training set, then we can get a classification rate for below. These methods are adaptations of general com-
each tree in F . The MSC  is the representative for the i i puter-intelligence classifying techniques.
forest F  and the MSC  has the highest classification Closest Genotype Neighbor (CN). For the test i i

genotype g , find the closest (with respect to Ham-rate among all trees in F . Each member (SNP) of the ti

ming distance) genotype g  in the training set, and set MSC  is assigned a weight w  (j MSC) based on the ii i,j

the status s(g ) equals to s(g ).classification rate. The weights for SNPs in the same t i
MSC are the same. We can find M MSCs for the M for- Support Vector Machine Algorithm (SVM). Sup-
ests. If a SNP is not a member of MSC , then w  = 0. port Vector Machine (SVM) is a generation learning i i,j

system based on recent advances in statistical learn-The weight for each SNP W  (j = 1, 2 , …, M) in M is j
ing theory. SVMs deliver a state-of-the-art perfor-the sum of weights from all MSCs.
mance in real-world applications and have been used 
in case/control studies [18, 20]. There are some SVM 
softwares available and we decide to use libsvm-2.71 
[19] with the following radial basis function:In the general random forest (GRF) algorithm, the 2

                          exp(-  | u-v | )MSC is selected completely randomly and m << M . It 
General Random Forest (GRF). We use Leo may miss some important SNPs if they are not chosen 

Breiman and Adele Cutler's original implementation for any MSC. In our optimum random forest (ORF) 
of RF version [19]. This version of RF handles unbal-algorithm, this scenario is avoided because we gener-
anced data to predict accurately. RF tries to perform a ate at least one MSC for each SNP. On the other hand, 
regression on the specified variables to produce the in GRF, the classifier (forest) consists of trees where 
suitable model. RF uses bootstrapping to produce ran-there is a correlation between any two trees in the for-
dom trees and it has its own cross-validation tech-est, and the correlation will decrease the rate of the 
nique to validate the model for predicti on/ cla ssi fic ati on.classifier. But in ORF, we generate a forest by ran-

Most Reliable 2 SNP Prediction (MR2) [17]. domly choosing MSC and samples for each tree and 
This method chooses a pair of adjacent SNPs (site of the prediction for testing samples is in this forest only, 
s  and s ) to predict the disease status of the test which is completely independent from the other trees. i i+1

In this way, we extinguish the correlation among genotype g  by voting among genotypes from the t
trees. training set which have the same SNP values as g  at t

All SNPs are sorted according to their cumulative 
the chosen sites s  and s . They choose the 2 adja-i i+1weights. The most disease-associated SNP is the one 

(1)

SciRes JBiSE Copyright © 2008                                                                                                                                                 

 55W.D. Mao et al./J. Biomedical Science and Engineering 1 (2008) 52-58



cent SNPs with the highest prediction rate in the to grow many different classification trees by per-
training set. muting the order of the splitting site (Note that the 

LP-based Prediction Algorithm (LP). This tree {3, 9, 5}is different from the tree {5, 9, 3}). We 
method assumes that certain haplotypes are suscepti- may use the m Tag SNPs to grow many (say, 500) 
ble to the disease while others are resistant to the dis- trees and choose the best tree (classifier) to predict 
ease. The genotype susceptibility is then assumed to the disease status of the testing genotype. The best 
be a sum of susceptibilities of its two haplotypes. tree has the highest average prediction rate (over 

We want to assign a positive weight to susceptible 1000 trials) in the training set. Then we run the test-
haplotypes and a negative weight to resistant haplotypes ing genotype down the best tree to get its disease sta-
such that for any control genotype the sum of weights tus. The Optimum Random Forest algorithm is illus-
of its haplotypes is negative and for any case geno- trated in .
type it is positive. We would also like to maximize 
the confidence of our weight assignment which can 4. RESULTS & DISCUSSION
be measured by the absolute values of the genotype In this section we first describe the genetic data of the 
weights. In other words, we would like to maximize Crohn's disease and then discuss our experimental 
the sum of absolute values of weights over all geno- results.
types.

This method is based on a graph X = {H, G }, where 4.1. Data Set
the vertices H correspond to distinct haplotypes and The genetic data is derived from the 616 kilobase 
the edges G correspond to genotypes connecting its region of human Chromosome 5q31 that may contain 
two haplotypes. The density of X is increased by drop- a genetic variant responsible for Crohn's disease by 
ping SNPs which do not collapse edges with an oppo- genotyping 103 SNPs for 129 trios [14]. All offspring 
site status. The linear program assigns weights to belong to the case population, while almost all par-
haplotypes that, for any non-diseased genotype, the ents belong to the control population. In the entire 
sum of weights of its haplotypes is less than 0.5 and data, there are 144 case and 243 control individuals. 
greater than 0.5 otherwise. We maximize the sum of The missing genotype data and haplotypes have been 
absolute values of weights over all genotypes. The inferred using the 2SNP phasing method [21].
status of the testing genotype is predicted as sum of 
its endpoints [15]. 4.2. Measures of Prediction Quality

Optimum Random Forest (ORF). In the training To measure the quality of prediction methods, we 
set, the optimum random forest algorithm we need to measure the deviation between the true dis-
described above is used to sort all SNPs, and find out ease status and the result of predicted susceptibility, 
the m most disease associated SNPs for a given which can be regarded as measurement error. We will 
threshold m.  The m most disease associated SNPs present the basic measures used in epidemiology to 
(Tag SNPs) are used to build the optimum random for- quantify the accuracy of our methods.
est to test the left-out sample. In leave-one-out test, The basic measures are:
since the training set is different after leaving one Sensitivity: the proportion of persons who have 
sample out, we may have different Tag SNPs for dif- the disease and who are correctly identified as cases.
ferent training sets. The m variables (SNPs) are used Specificity: the proportion of people who do not 

Figure 3

Figure 3.  Optimum Random Forest Algorithm.
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have the disease and who are correctly classified as shows the receiver operating characteris-
controls. tics (ROC) curve for 6 methods. A ROC curve repre-

The definitions of these two measures of validity sents the tradeoffs between sensitivity and specificity. 
are illustrated in . The ROC curve also illustrates the advantage of ORF 

In this table: over all previous methods.
a = True positive, people with the disease who test If the size of MSC is m, and the total number of 

positive SNPs is M, to get a good classifier, then m should be 
b = False positive, people without the disease who much less than M. The prediction rate depends on the 

test positive size of MSC, as shown in . In our experiment, 
c = False negative, people with the disease who we found that the best size of MSC is 19.

test negative
d = True negative, people without the disease who 5. CONCLUSION 

test negative In this paper, we discuss the potential of applying ran-
From , we can compute Sensitivity (accu-

racy in classification of cases, Specificity (accuracy 
in classification of controls) and accuracy:

Sensitivity is the ability to correctly detect a dis-
ease. Specificity is the ability to avoid calling normal 
as disease. Accuracy is the percent of the population 
that are correctly predicted.

4.3. Results and Discussion
The normalized weights of 103 SNPs are shown in 

. SNPs with higher weights are more associ-
ated with the disease.

In we compare the optimum random forest 
(ORF) method with the other 5 methods we described 
in Section 3. The best accuracy is achieved by ORF - 
74.4%. From the results we can find that the ORF has 
the best result since we select the most disease-
associated multi-SNPs to build the random forest for 
prediction. Because these SNPs are well associated 
with the disease, the random forest may produce a 
good classifier to reflect the association. 

Figure 5 

Table1

Figure 6

Table1

Figure 4

Table 2 

Prediction MethodsMeasures

Sensitivity

Specificity

Accuracy

CN

45.5

63.3

54.6

SVM

20.8

88.8

63.6

GRF

34.0

85.2

66.1

MR2

30.6

85.2

65.5

LP

37.5

88.5

69.5

ORF

70.1

76.9

74.4

Table 2. The comparison of the prediction rates of 6 prediction 
                 methods.

Figure 5. ROC curve for 6 prediction methods.
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Table1. Classification contingency table.
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Figure 6. Best MSC size.

Figure 4. Normalized weights for 103 SNPs.
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Factors for Complex Diseases. Proc. IEEE International Con-dom forest on disease association studies. The pro-
ference on Granular Computing  2006, pages 754-757.posed genetic susceptibility prediction method based 

[17]Kimmel, G. & Shamir R. A Block-Free Hidden Markov Model 
on the optimum random forest is shown to have a for Genotypes and Its Application to Disease Association. J. 
high prediction rate and the multi-SNPs being of Computational Biology 2005, 12(10): 1243-1260.

[18]Listgarten, J.,  Damaraju, S., Poulin B.,  Cook, L., Dufour, J., selected to build the random forest are well associ-
Driga, A., Mackey, J.,  Wishart, D., Greiner,R.  & Zanke, B. ated with diseases. Actually the cause of complex dis-
Predictive Models for Breast Cancer Susceptibility from Mul-

eases is the combination of the environmental, tiple Single Nucleotide Polymorphisms. Clinical Cancer 
genetic factors and some other factors such as infec- Research 2004, 10:2725-2737.

[19]Breiman, L. & Cutler, A. http://stat.berkeley.edu/breiman.tion and races. In our future work we are going to ana-
[20]Waddell, M., Page,D., Zhan, F., Barlogie, B. & Shaughnessy, J., lyze the interactive contribution of these factors for 

Predicting Cancer Susceptibility from SingleNucleotide Poly-
the development of complex diseases. Our next pro- morphism Data: A Case Study in Multiple Myeloma. Proc. of 
ject is going to find the relationship between the the 5th international workshop on Bioinformatics 2005, pages 

21-28.genetic factor and race in the development of Type 2 
[20]Chang, C. and Lin, C. http://www.csie.ntu.edu.tw/libsvm.Diabetes.  The integrated software will be available 
[21]Brinza, D. & Zelikovsky, A. 2SNP: Scalable Phasing Based on 

soon for public use. 2-SNP Haplotypes. Bioinformatics 2006, 22(3):371-373.
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apoptosis  mechanism and funct ions of  var ious ABSTRACT
apoptosis proteins, it will be helpful to obtain infor-
mation about their subcellular location. This is Apoptosis proteins have a central role in the 
because the subcellular location of apoptosis proteins development and homeostasis of an organism. 
is closely related to their function [5,6]. It has been These proteins are very important for under-
known that there are 732 archetypical proteins with standing the mechanism of programmed cell 
“apoptosis” domains [7], and only 98 of these pro-death, and their function is related to their 
teins are known to be the apoptosis protein (for more types. The apoptosis proteins are categorized 
details, one can visit: http://www.apoptosis-db.org). into the following four types: (1) Cytoplasmic 
Scientists usually deal with a number of protein protein; (2) Plasma membrane-bound protein; 
sequences already known belonging to apoptosis pro-(3) Mitochondrial inner and outer proteins; (4) 
teins. However, it is both time-consuming and costly Other proteins. A novel method, the Hilbert-
to determine which specific subcellular location a Huang transform, is applied for predicting the 
given apoptosis protein belongs to. Confronted with type of a given apoptosis protein with support 
such a situation, can we develop a fast and effective vector machine. High success rates were 
way to predict the subcellular location for a given obtained by the re-substitute test (98/98=100%) 
apoptosis protein based on its amino acid sequence? and jackknife test (91/98 = 92.9%).
Recently, Guo-ping Zhou [7] attempted to identify 
the subcellular location of apoptosis proteins accord-
ing to their sequences by means of the covariant 
discriminant function, which was established on the 
bas is  of the  Mahalanobis d is tance  and Chou 's  
invariance theorem [7,8,9].The results were quite 

1. INTRODUCTION promising, indicating that the subcellular location of 
Apoptosis, or programmed cell death, is a fundamen- apoptosis proteins are predictable to a considerably 
tal process controlling normal tissue homeostasis by accurate extent if a good vector representation of pro-
regulating a balance between cell proliferation and tein can be established. It is expected that, with a con-
death [1]. This process entails the autolytic degrada- tinuous improvement of vector representation meth-
tion of cellular components, and is characterized by ods by incorporating amino acid properties, and by 
blebbing of cell membranes, shrinkage of cell vol- using more powerful mathematics methods, some the-
umes, and condensation of nuclei [2], and is currently ory predicting method might eventually become a use-
an area of intense investigation. Cell death and ful tool in this area because the function of an 
renewal are responsible for maintaining the proper apoptosis protein is closely related to its subcellular 
turnover of cells, which ensures a constant controlled location.  The present study was init iated in an 
flux of fresh cells. Programmed cell death and cell attempt to address this problem.
proliferation are tightly coupled. When apoptosis Chou and Elrod made an extensive research in pre-
malfunctions, a variety of formidable diseases can dicting subcellular location mainly based on the 
ensue: blocking apoptosis is associated with cancer amino acid composition. Subsequently, in order to 
a n d  a u t o i m m u n e  d i s e a s e , w h e r e a s  u n w a n t e d  take into account the sequence-order effects and 
apoptosis can possibly lead to ischemic damage or improved the prediction quality, Chou has further 
neurodegenerative disease [3]. Apoptosis is consid- incorporated the quasi-sequence order effect [5] and 
ered to have a key role in these several devastating introduced the concept of “pseudo-amino-acid com-
diseases and, in principle, provides many targets for position” [9]. For example, Chou [10] classified mem-
therapeutic intervention [4].  To understand the brane proteins into five different types and proposed 

Keywords:Hilbert Huang transform; Sup-
port vector machine; Subcellular location 
predict

Hilbert Huang transform for predicting proteins 
subcellular location 
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a covariant discriminant algorithm to predict the and the lower envelop (linked by local minima) are 
types of membrane proteins. Recently, Cai et al. [11] zero at every point.
applied neural network to this problem. To improve The EMD proc ess is as foll ows. Acco rdin g t o 
the p red ict ion  qua li t y,  Chou [5 ] p roposed a  new Hi lbe r t -Huang  t r ans fo rm(HHT)[14] , once  the 
method in which the covariant discriminate algo- extrema of a time series x(t) are identified, all the 
r i thm was augmented to incorporate the quasi- local maxima and minima are connected by two spe-
sequence-order effect. This method uses the amino cial lines as the upper and lower envelopes respec-
acid composition and the sequence-order-coupling tively. Their mean is designated as m , and the differ-1
numbers (reflecting the sequence order effect) in ence between x(t) and m  is x(t)-m =h  . If h  is not an 1 1 1 1
order to improve the prediction quality. Feng [12] pro- IMF, h  is treated as the data and undergoes the pro-1posed a new representation of unified attribute vector, 

cedure above, then h -m =h  . Repeat this sifting 1 11 11that each protein can be represented by a vector, 
procedure k times until h  is an IMF, that is h -which is 20-D vector in Hilbert space with unified 1k 1(k-1)

length. Hence, all of proteins have their representa- m =h , thus the first IMF component is obtained, 1k 1k
tive points on the surface of the 20-D globe. The rep- i.e. . Then separate IMF  from the original time series 1resentative points of the proteins in the same family 

by x(t)- IMF =r . Treat r  as the new data and subject 1 1 1or with the higher sequence identity are closer on the 
it to the same sifting process above. Repeat this pro-surface. The overall predictive accuracy could be 
cedure on all the subsequent r  , i.e. r -IMF =r , r - improved from 3% to 5% for different databases [12] j 1 2 2 2

with this simply modification of the usage of the IMF =r , , r -IMF =r  .3 3 n-1 n n
amino acid composition. Recently, a series of new So the result is:
powerful approaches have been developed by Chou 
and his co-workers [13]. Encouraged by the great suc-
cesses of the previous invertigators in the area, here  
we would like to use a different strategy, the support 
vector machines, to approach this very important but 
also very difficult problem in the hope that our 2.2. Hilbert transform 
approach can play a complementary role to the exist- Having obtained the intrinsic mode function compo-
ing methods. nents IMF  (denoted as c ), one will have no difficulty i i

in applying the Hilbert transform to each IMF compo-
2. HILBERT HUANG TRANSFORM nent, 
The HHT consists of two parts: empirical mode 
decomposition (EMD) and Hilbert spectral analysis 
(HSA). This method is potentially viable for nonlin-
ear and nonstationary data analysis, especially for 
time-frequency-energy representations. It has been in which the PV indicates the principal value of the 
tested and validated exhaustively, but only empiri- singular integral. With the hilbert transform, the ana-
cally. In all the cases studied, the HHT gave results lytic signal is defined as
much sharper than those from any of the traditional 
analysis methods in time-frequency-energy represen-
tations. Additionally, the HHT revealed true physical 

Here, a (t) is the instantaneous amplitude, and (t) meanings in many of the data examined. Powerful as i i

it is, the method is entirely empirical. In order to is the phase function, 
make the method more robust and rigorous, many out-
standing mathematical problems related to the HHT 
method need to be resolved. In this section, a brief 
introduction to the methodology of the HHT will be 
given. Readers interested in the complete details 
should consult [14].

and the instantaneous frequency is simply

2 .1 .  The empir ica l  mode decompos i t ion  
method (the sifting process)
In this method any time series, including non-linear 
and non-stationary series, can be decomposed into a With the Hilbert Spectrum defined, we can also 
finite number of intrinsic mode functions (IMFs) define the marginal spectrum h(w) as
through empirical mode decomposition (EMD) pro-
cess. An IMF is a function which must follow two con-
ditions: (1) the difference between the numbers of 
extrema and zero-crossings is of 1 ; and (2) the The marginal spect rum offers a measure of t he 
mean of the upper envelop (linked by local maxima) total amplitude (or energy) contribution from each 
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nonstationary processes: it is based on an adaptive 
basis; the frequency is derived by differentiation 
rather than convolution; therefore, it is not limited by 
the uncertainty principle; it is applicable to nonlinear 
and nonstationary data and presents the results in 
time-frequency-energy space for feature extraction.

Support Vector Machine (SVM) is one type of 
learning machines based on statistical learning the-
ory. A complete description to the theory of SVMs for 
pattern recognition is in Vapnik's book.[15]. SVMs 
have been used in a range of bioinformatics problems 
including protein fold recognition [16]; proteinprote in 
interactions prediction [17]; prediction of protein 
subcellular location [17, 18], protein secondary 
structure prediction,T-cell epitopes prediction, Clas-
sification of protein quaternary structure [19].

In this paper, we apply Vapnik's support vector 
machine for predicting the types of apoptosis proteins. 
We have used the OSU_SVM, a Matlab SVM toolbox 
(http://www.ece.osu.edu/~maj/osu_svm), which is an frequency value. This spectrum represents the accu-
implementation of SVM for the problem of pattern rec-mulated amplitude over the entire data span in a 
ognition. probabilistic sense. 

The combination of the empirical mode decompo-
sition and the Hilbert spectral analysis is also known 3. TRAINING AND PREDICTION
as the “Hilbert-Huang transform” (HHT) for short. Acco rd ing  t o t he i r  subce l lu l a r l oca t i on  [12 ] , 
Empirically, all tests indicate that HHT is a superior apoptosis proteins are classified into the following 
tool for time-frequency analysis of nonlinear and four types: (1) type I: Cytoplasmic protein; (2) type II: 
nonstationary data. It is based on an adaptive basis, Plasma membrane-bound protein; (3) type : Mito-
and the frequency is defined through the Hilbert chondrial inner and outer proteins; (4) type : Other 
transform. Consequently, there is no need for the spu- proteins (see ).
rious harmonics to represent nonlinear waveform In this research, we first translate every aminoacid 
deformations as in any of the priori basis methods, sequence s into a numerical sequence  f  by hydrophobicity 
and there is no uncertainty principle limitation on index, then, decompose it into a finite number of 
time or frequency resolution from the convolution intrinsic mode functions (IMFs) through empirical 
pairs based also on a priori basis. mode decomposition (EMD) process, we just select 

A comparative summary of Fourier, wavelet and the 2nd to 4th components (IMF2, IMF3, IMF4), 
HHT analyses is given in the : because first IMF just reflects the rand composition 

This table shows that the HHT is indeed a powerful and the last is just the trendences composition of the 
method for analyzing data f rom nonl inear and numerical sequence f. Then applying the Hilbert 

Table 2

Table1
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Type I

NP_033941, NP_033940, NP_033939, 

NP_031637, NP_031570, NP_031563, 

NP_031490, NP_033447, , NP_036246, 

NP_001218, NP_004041, NP_065209, 

NP_001151, NP_071610, NP_071567, 

NP_066961, NP_037054, NP_036894, 

NP_005649, NP_004392, NP_004315, 

NP_001187, NP_001159, NP_001157, 

NP_001156, P55212, P42574, P39429, 

P55867, P22366, P55866, P55214, 

P55269,  P29466, P55865, P29452, 

Q02357, O54786, Q60989, Q62210, 

Q60431, O70201,  XP_013050,

Type

proteins

Type II

NP_037223, NP_037275, 

NP_032013, NP_032612, 

NP_037315, NP_005916, 

NP_005579, NP_000034, 

NP_001056, NP_003781, 

NP_002498, NP_036742, 

NP_031553, NP_031549, 

P50555, P25118, P18519, 

P51867, O19131, Q63199, 

O77736, , O02703, Q13014, 

Q63690, Q07820, Q91828, 

Q91827, Q07812, P28825, 

NP_001179

Type III

P10417, P53563, 

Q07816, P49950, 

Q07817, O95831, 

Q9OX1, Q9JM53, 

Q9VQ79, O77737, 

Q00709, 

XP_008738, 

NP_033873,

Type IV

Q63369, 

Q90660, 

Q00653, 

Q04861, 

P19838, 

NP_032715, 

P98150, 

Q15121, 

Q62048, 

NP_033872, 

NP_004040, 

NP_005736

a.Derived from SWISS-PROT data bank.
b.Of the 12 other apoptosis proteins, five are located in nucleus, two in endoplasmic reticulum, one in microtubule, and one in lysosome [7].

Table 2. List of the acession numbers for the 98 apoptosis proteins classified into four categories according to their 
subcellular locations. (Type I: 43 Cytoplasmic proteins; Type II: 30 Plasma membrane-bound proteins; Type III: Mitochondrial 
inner and outer proteins ; Type IV: 12 Other proteins).

Basis

Frequency

Presentation

Nonlinear

Nonstationary 

Feature 

Extraction

Theoretical 
base

 

Wavelet
a priori

convolution: 
regional 

uncertainty
energy-time-

frequency
 no

yes  

discrete: no 
continuous:

yes 
theory

complete

Fourier
A priori

Convolution:  
global 

Uncertainty
energy 

-frequency
 no

no

 

no

theory
complete

Hilbert
adaptive

differentiation
local,

certainty
energy-time-

frequency

yes

yes

yes

empirical

Table 1. Comparative summary of Fourier, Wavelet and HHT 
analyses.



transform to each IMF component, we get the instan- When the re-substitution test was performed for the 
taneous amplitude a (t), then get the energy value   current study, the type of each apoptosis protein in a i

data set was in turn identified using the rule parame-e =           , (t=2, 3, 4).  Next, get its energy ratio                       i
ters derived from the same data set, the so-called 
training data set. As shown in , the overall suc-.Last every protein was represented as a 
cess rate thus obtained for the 98 apoptosis proteins point or a vector in a 23-D space. The first 20 compo-
in  was 100%, indicating an excellent self-nents of its vector were supposed to be the occur-
consistency.rence frequencies of the 20 amino acids in the protein 

However, during the process of the re-substitution concerned, the last three components were its energy 
test, the rule parameters derived from the training ratio times a weight, there, we set the weight is 0.2. 
data set include the information of the query protein  The computations were carried out on a PC. Also 
later plugged back in the test. This will certainly for the SVM, the width of the Gaussian RBFs is 
underestimate the error and enhance the success rate selected as that which minimized an estimate of the 
because the same proteins are used to derive the rule VC-dimension. After being trained, the hyper-plane 
parameters and to test themselves. Nevertheless, the output by the SVM was obtained. The SVM method is 
re-substitution test is absolutely necessary because it applied to two-class problems. In this paper, for the 
reflects the self-consistency of a prediction method, four-class problems, we have used a simple and 
especially for its algorithm part. A prediction algo-effective method: “one-against-others” method [16] 
rithm certainly cannot be deemed as a good one if its to transfer it into two-class problems. We first test the 
self-consistency is poor. In other words, the re-selfconsistency and leave-one-out cross-validation 
substitution test is necessary but not sufficient for (jackknife test) of the method, followed by testing 
evaluating a prediction method. As a complement, a the method by prediction of an independent dataset. 
cross-validation test for an independent testing data As a result, the rates of self-consistency, cross-
set is needed because it can reflect the effectiveness validation of prediction were quite high.
of a prediction method in practical application. This In addition to the prediction algorithm, we also 
is important especially for checking the validity of a need to construct a training data set to complete the 
training data set-whether it contains sufficient infor-establishment of a statistical prediction method. To 
mation to reflect all the important features concerned realize this, based on the SWISS-PROT data bank, 98 
so as to field a high success rate in application.apoptosis proteins (the date were taken from Zhou [7]) 

were classified into the following four subcellular 
locations: (1) cytoplasmic, (2) plasma membrane- 4.2. Jackknife test
bound, (3) mitochondrial, and (4) other ( ). As is well known, the independent data set test, sub-

sampling test, and jackknife test are the three meth-
4 RESULTS AND DISCUSSION ods often used for cross-validation in statistical pre-
By means of the SVM algorithm described in the last diction. Among these three, however, the jackknife 
section, a statistical prediction was performed for the test is deemed as the most effective and objective one  
98 apoptosis proteins listed in . The predic- for a comprehensive discussion about this). During 
tion was conducted by two different approaches, the jackknifing, each protein in the data set is in turn sin-
re-substitution test and the jackknife test. The results gled out as a tested protein and all the rule parameters 
are given in . are calculated based on the remaining proteins. In 

o the r  words ,  the subce l lu la r  loca t ion  o f each  
apoptosis protein is identified by the rule parameters 4.1. Re-substitution test
derived using all the other apoptosis proteins except The so-called re-substitution test is an examination 
the one that is being identified. During the process of for the self-consistency of a prediction method[7]. 

yi    
Las   everti

Table 3

Table 1

Table 1

Table 2

Table 3

Test method
Success Rate

Re-substitute

Jack-knife

covariant

SVM

HHT

covariant

SVM 

HHT

Type 

43/43=100%

42/43=97.70%

43/43=100%

42/43=97.7%

39/43=91.4%

41/43=95.3%

Type 

30/30=100%

30/30=100%

30/30=100%

22/30=73.3%

28/30=93.3%

29/30=96.7%

Type 

9/13=60.2%

13/13=100%

13/13=100%

4/13=30.8%

12/13=92.5%

12/13=96.7%

Type 

7/12=58.3%

12/12=100%

12/12=100%

3/12=25.0%

9/12=75.0%

9/12=75.7

Overall

89/98=90.8%

97/98=99.0%

98/98=100%

71/98=72.5%

88/98=89.8%

91/98=92.9%
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Table 3. Tested results for the 98 apoptosis prtoeins in Table 2 by both Re-substitution test and Jackknife test.All use Gauss 
RBF kernel function, while the value C =15, and the gama= 80.
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Bioinformatics 2001, 17:349-358. have indicated that the types of apoptosis proteins are 

[17]Cai, Y. D., Liu, X. J., Xu, X. B.& Chou, K. C. Support vector 
predictable with a considerable accuracy. It is antici- machines for prediction of protein subcellular location by 
pated that the HHT, and the SVM, if effectively com- incorporating quasisequenceorder effect. J. Cell. Biochem. 

2002, 84:343-348. plemented with each other, will become a powerful 
[18]Hua, S. J. & Sun, Z. R. Support vector machine approach for tool for predicting the types of apoptosis proteins. 

protein subcellular localization prediction. Bioinformatics 
The current study has further demonstrated that the 2001, 17:721-728. 
datasets originally constructed by Zhou[7] will be [19]Hua, S. J. & Sun, Z. R. A novel method of protein secondary 

structure prediction with high segment overlap measure: sup-very useful for the area of apoptosis study. It is 
port vector machine approach. J. Mol. Biol. 2001, 308:397-expected that the prediction quality can be further 
407. 

improved if the current HHT can be properly com-
bined with pseudoamino acid composition[9] and 
function domine composition and with other amino 
acid properties. 
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This paper presents a novel effective method for ABSTRACT
feature extraction of motor imaginary. We combine 
the  d iscre te  wavele t t ransform (DWT) wi th Brain-computer interface (BCI) provides new 
autoregressive model (AR) to extract more useful communication and control channels that do 
information for non-stationary EEG signals. Apply-not depend on the brain's normal output of 
ing this method to analyze the Graz dataset for BCI peripheral nerves and muscles. In this paper, 
competition 2003, we achieved the classification we report on results of developing a single 
accuracy of 90.0%.trial online motor imagery feature extraction 

method for BCI. The wavelet coefficients and 
2. METHODOLOGYautoregressive parameter model was used to 

extract the features from the motor imagery 2.1. Experimental paradigm
EEG and the linear discriminant analysis The data set was provided by department of medical 
based on mahalanobis distance was utilized informatics, institute for biomedical engineering, uni-
to classify the pattern of left and right hand versity of technology Graz [5]. It was recorded from 
movement imagery. The performance was a normal subject (female, 25y) during a feedback ses-
tested by the Graz dataset for BCI competition sion. The subject sat in a relaxing chair with armrests. 

The task was to control a feedback bar by means of 2003 and the satisfactory results are obtained 
imagery left or right hand movements. The order of with an error rate as low as 10.0%.
left and right cues was random. 

 shows the timing of the experiment. The 
first 2s was quite; at t=2s an acoustic stimulus indi-
cated the beginning of the trial; the trigger channel 
(#4) went from low to high, and a cross “+” was dis-
played for 1s; then at t=3s, an arrow (left or right) 1. INTRODUCTION
was displayed as cue. At the same time the subject Left and right hand movement imagery can modify 
was asked to move a bar into the direction of the cue. the neuronal activity in the primary sensorimotor 
The feedback was based on AAR parameters of chan-areas, leading to the changes of the mu rhythm and 
nel #1 (C3) and #3 (C4), the AAR parameters were beta rhythm. BCI requires effective online process-
combined with a discriminant analysis into one out-ing method to classify these EEG signals in order to 
put parameter.construct a system enabling severely physically dis-

The recording was made using a G.tec amplifier abled patients to communication with their surround-
and a Ag/AgCl electrodes. Three bipolar EEG chan-ings [1-4]. 

Keywords Brain-computer interface (BCI); Motor 
imagery; Wavelet coefficients; Autoregressive 
model

Figure 1

Figure1. Timing scheme. Figure 2. Electrode positions.
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nance. This led us to use wavelet decomposition to 
extract the differences between the two motor imag-
ery tasks.

2.3. Procedure
The flow chart of processing single-trial motor imag-
ery EEG is shown as in . First, the time win-
dow was used to filter the data in temporal domain in 
order to get the segment that contained the most obvi-
ous difference between the two motor imagery tasks. 
Then EEG signals were decomposed into the fre-
quency sub-bands using DWT and a set for statistical 
features was extracted from the sub-bands to repre-
sent the distribution of wavelet coefficients accord-
ing to the characteristics of motor imagery EEG sig-
nals. Also the sixth-order AR coefficients of segmen-
tation EEG signals were estimated using Burg's algo-
rithm. Next, the combination features of wavelet coef-

nels (anterior '+', posterior '-') were measured over ficients and the AR coefficients were used as an input 
C3, Cz and C4 [ ]. The EEG was sampled vector. Finally linear discriminant analysis (LDA) 
with 128Hz, it was filtered between 0.5 and 30Hz. based on mahalanobis distance was utilized to clas-
Similar experiments are described in [6]. sify computed features into different categories that 

The experiment consists of 7 runs with 40 trials represent the left or right hand movement imagery.
each. All runs were conducted on the same day with 
several minutes break durrng experiment. One half of 

2.4. Feature extraction using discrete wavelet 
the datasets are provided for training; others are for 

transforms evaluating the performance of the system. 
Classic Fourier transform has succeeded in station-
ary signals processing. However, EEG signal con-2.2. Feature consideration
tains non-stationary or transitory characteristics. 

Central brain oscillations in the mu rhythm in the 
Thus it is not suitable to directly apply Fourier trans-

range of 7-12Hz and beta above 13Hz bands are 
form to such signals.  The wavelet transform decom-

strongly related to sensorimotor tasks. Sensory stim-
poses a signal into a set of functions obtained by 

ulation, motor behavior, mental imagery can change 
shifting and dilating one single function called 

the functional connectivity cortex which results in an 
mother wavelet [10 11]. Continuous wavelet trans-

amplitude suppression or in an amplitude enhance-
form is given by

ment .This phenomenon was also called event-
related desynchronization (ERD) and event-related 
synchronization (ERS) [7 8]. Left and right hand 
movement imagery is typically accompanied with 
ERD in the mu and beta rhythms and has the charac-
teristic of contralateral dominance. Where (t) is the mother wavelet,  is the scale 

The power spectrums on C3 and C4 of the training parameter and is the shift parameter. In principle 
set are shown in . It indicates that the power the CWT produced an infinite number of coefficients, 
spectrums mainly distribute in the range of 8-13Hz thus it provides a redundant representation of the sig-
and 19-24Hz.In addition, the power of mu and beta nal.
rhythms evoked by right hand movement imagery is The DWT provides a highly efficient wavelet rep-
lower than that of left hand movement imagery for resentation that can be implemented with a simple 
channel C3, and it is contrary for channel C4 which is recursive filter scheme and the original signal recon-
consistent with the principle of contralateral domi- struction can be obtained by an inverse filter. The pro-

Figure 4

Figure 2

Figure 3

Figure 4. Flow chart of the data processing.

(1)
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Figure 3. Average power spectrums on channel C3 and C4.
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cedure of multi-resolution decomposition of a signal trum and too high tends to introduce spurious peaks. 
x[n] is schematically shown in . Here order six was used based on the suggestions [9].

The number of levels of decomposition is chosen Then the Burg's method was used to estimate the 
on the basis of the dominant frequency components AR coefficients. This method is more accurate and 
of the signal. According to the motor imagery EEG yields better resolution without the problem of spec-
signals itself, we chose the level of 4 and the wavelet tral 'leakage' as compared to other methods such as 
of Daubechies order 10.As a result, the EEG signal is Levison-Durbin as it uses the data points directly. In 
decomposed into the details D1-D3 and approxima- addition, the Burg's method can minimize both for-
tion A3. The ranges of different frequency band are ward and backward error.
shown in . Next the AR coefficients were computed and we 

The extracted wavelet coefficients show the distri- got six coefficients for each channel, giving a total of 
bution of the motor imagery signal in time and fre- 12 AR coefficients features for each EEG segment for 
quency. It can be seen from the table that the compo- a motor imagery task. 
nent D3 decomposition is within the mu rhythm, D2  
is within the beta rhythm. Statistics over the set of 2.6. Linear discriminant analysis (LDA)
wavelet coefficients were computed so as to reduce LDA is one of the most effective linear classification 
the total dimension of the feature vectors. The statis- methods for brain-computer interface, and it requires 
tical features of each sub-band are as follows: fewer examples for obtaining a reliable classifier out-

(1) Mean of the absolute values of the coefficients. put [12]. 
(2) Standard deviation of the coefficients. As to the LDA method, assume that each data ele-
(3) Average power of the wavelet coefficients. ment s  has m features. Then, an element s  is one i i
These features represent the frequency distribu- point in a dimensional feature space. The number of 

tion and the amount of changes in frequency distribu- examples is n , each example is assigned to one of two 
tion. Thus 12 statistical features of wavelet coeffi- classes C={0,1}; Then, S is a matrix of size n×m, and 
cients are obtained for two channels. C is a vector of size  n.N . And N  are the number of 0 1

elements for class 0 and 1, respectively.
2.5. Feature extraction using autoregressive The mean  of each class c is the mean over all s  c imodel

with i being all elements with in class c . The total 
EEG signal can be considered as the output of a linear 

mean of the data is
filter driven by a white noise. This filter, referred to 
as AR, is a linear combination of the previous output 
itself. A zero-mean, stationary autoregressive pro-
cess of order p is given by 

Where p is the model order, x(n) is the signal at the 
sampled point n, a (i) is the AR coefficients and (n) p

is a zero-mean white noise. In application, the values 
of the a (i) have to be estimated from the finite sam-p

ples of data x(1),x(2),x(3),…,x(N).
The first important things involved in using AR 

model is determining the optimal AR model order 
since too low a model order tends to smooth the spec-

Figure 5

Table 1

Figure 5. Decomposition of DWT; h[n] is the high-pass filter; g[n] is the low-pass filter.

Decomposed signal

D1

D2

D3

A3

Frequency range (Hz)

32-64

16-32

8-16

0-8

Level

1

2

3

3

Table 1. Frequencies correspond to dif ferent levels of 
deposition for daubechies order 10 wavelet with a sample 
rate 128HZ.
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tion and channel to outside world. 
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among four different wavelets. The results show the 
Daubechies order 10 gave the best performance and 
the recognition rate is as high as 90.0%. Also the 
results indicate that method of combining DWT with 
AR model are capable of extracting more useful 
information from the simultaneously acquired motor 
imagery EEG. Furthermore, when the window of 384 
samples with a shift of 1 sample was used, maximum 
classification accuracy of 92.1% is achieved. 

4. CONCLUSION AND FUTURE WORK
In this paper, a novel single-trial motor imagery EEG 
classification method is proposed. The pattern classi-
fication techniques as described in this work make 
possible the development of a fully automated motor 
imagery EEG signals analysis system which is accu-
rate, simple and reliable enough to use in brain-
computer interface. Future work will utilize the algo-
rithms developed in this study to directly control the 
embedded rehabilitation robot so as to help the 
patient with severed paralysis to solve the problem of 
environment control and provide a new communica-

Table 2

Wavelet

Daubechies order 10

Discrete Meyer

Coiflets order 5

Rbio1.3

Recognition rate

90%

90%

89.29%

87.86%

Table 2 . Dirrerent wavelet used for extracting features.
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(6)

SciRes JBiSE Copyright © 2008                                                                                                                                                 

 67B.G. Xu et al./J. Biomedical Science and Engineering 1 (2008) 64-67

(4)

(7)



Design and control of a novel  
hydraulically/pneumatically actuated robotic 
system for MRI-guided neurosurgery  

Design and control of a novel  
hydraulically/pneumatically actuated robotic 
system for MRI-guided neurosurgery  
1 2 3Cyrus Raoufi, Andrew A. Goldenberg  Walter Kucharczyk

1 2Department of Applied Technology, California State University, Humboldt. Department of Mechanical and Industrial Engineering, University of 
3Toronto, Toronto, Canada. Department of Medical Imaging, University of Toronto, Toronto, Canada. Correspondence should be addressed to 

Cyrus Raoufi (raoufi@humboldt.edu), Andrew A. Goldenberg (golden@mie.utoronto.ca), and  Walter Kucharczyk (w.kucharczyk@utoronto.ca).

&

MR-compatibility of materials and devices. Conven-ABSTRACT
tional robotic systems are not suitable for use inside 
the MRI scanner because they contain ferromagnetic In this paper the design of a novel modular 
materials and electrical circuits. These components hydraulic/pneumatic actuated tele-robotic sys-
cause spatial distortions and impart noise to the MR tem and a new infrastructure for MRI-guided 
images, while conversely the magnetic field of the intervention for closed-bore MRI-guided neuro-
MRI system interferes with the electrical circuits. surgery are presented. Candidate neurosurgical 
The strong magnetic field dictates that only non-procedures enabled by this system would 
ferromagnetic materials can be used for the mechani-include thermal ablation, radiofrequency abla-
cal parts. tion, deep brain stimulators, and targeted drug 

The major shortcoming in the use of conventional delivery. The major focus is the application of the 
MRI systems for neurosurgery is their reliance on pre-designed MR-compatible robotic system to MRI-
operative MR images. As surgery progresses and ana-guided brain biopsy. Navigation and operating 
tomic tissue are removed or distorted, the intracranial modules were designed to undertake the align-
anatomic positional relationship of the brain and sur-ment and advancement of the surgical needle 
rounding s t ructures  change. This  is commonly respectively.  The mechanical design and  con-
referred to as “brain shift”. Intra-operative changes 

trol paradigm are reported.   
due to tumor resection, brain swelling, and cere brospinal 
fluid (CSF) leakage further increase brain shift [1, 2, 
3].  As these processes are unavoidable in most 
neurosurgical procedures, they decrease the accuracy 
in all surgery that is based on preoperative MR 

1. INTRODUCTION images [3]. These intra-operative changes make it dif-
The common requirement for most neurosurgical pro- ficult or impossible to accurately determine the true 
cedures is to manipulate a surgical tool relative to an intra-operative anatomic position of the anatomic tar-
anatomic target. This includes aligning, orienting, get based on the preoperative images. Accurate local-
and advancing the tool to a specific anatomic target in ization during surgery thus requires the acquisition 
the brain. The advantages of robotic-based neuros urgi cal of intra-operative images. In recent years, advances 
procedures are well recognized in the clinical and in computer technology, robotics, and a significant 
technical community due to both the locating accu- increase in the accuracy of imaging have helped the 
racy and the tele-surgery potential of the robotic sys- clinicians in planning and executing surgical proce-
tems. A neurosurgical procedure is a highly interactive dures in MRI environments. The advantages of surgi-
process and the goal of neurosurgical robotic system is cal robotics are well known in clinical environments 
to provide the neurosurgeon with a reliable tool that due to their precisions, accuracy, repeatability, and 
augments his or her ability during the operation. Any capability for tele-surgery [4]. 
surgical robotic system has to meet specific design In the area of MRI-guided tele-surgery, there are 
considerations for its intended use such as safety, currently several systems under development. Tajima 
capability of being sterilized, fault-tolerancy, accu- et al. [5] designed and built a prototype of an MRI-
racy, stability, and dexterity. MRI-guided applica- compatible manipulator for treatment and diagnosis 
tions impose additional demands such as remote con- of heart diseases.  Larson et al. [6] developed a 
trol, reduce d size, lightweight structure, and ability to device to perform minimally invasive interventions 
operate in the MRI bore. Primarily, there is the issue of in the breast with real time MRI guidance for the 

Keywords: MR-compatible robot; Tele-surgery; 
Tele-robotics;  Medical robot
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early detection and treatment of breast cancer. Engi- Nakamura et al. [17] developed and manufactured 
neerin g Servic es Inc. (Ontar io, Canada ) has also the 6 DOF manipulator using non ferromagnetic mate-
developed an MR-compatibletele-robotic system for rials (aluminum) and actuated by ultrasonic motors. 
prostate surgery [7]. Krieger et al. [8] designed and The goal of our research project is to design, fabri-
developed a novel remotely actuated manipulator cate, and test a hydraulic/pneumatic actuated MR-
(APT-MRI) to access prostate tissue under MRI guid- compatibletele-robotic system for MRI-guided neu-
ance. Fischer et al [9] des igned a robot ic ass is tant sys- rosurgery , in  par t icular ,  the  bra in  b iopsy. The 
tem using pneumatic components aimed to be used mechanical design and related infrastructure are 
for prostate needle placement in a closed-bore MRI reported. 
scanner. Kim et al [10] designed and developed a new 
master-slave MR-compatible surgical manipulator 2. ROBOT DESIGN
for minimally invasive liver surgery. Chinzei et al. 2.1. MR-compatible robotic system infra-
[11] designed and developed a novel MR-compatible structure
manipulator used to position and direct an axi- MRI-guided tele-robotic system requires surgical 
symmetric tool such as laser pointer or a biopsy cath- planning, MR-image acquisition, human-machine 
eter. Moser et al. [12] designed and developed a one interface, navigation, and sensing.  To address those 
DOF MR-compatible master-slave robotics system components required for MRI-guided intervention, 
and a haptic interface using hydraulic transmission. an infrastructure is needed regardless of the type of 
Koseki et al. [13] designed and developed an endo- surgical operation. A schematic diagram of the pro-
scope manipulator for trans-nasal neurosurgery capa- posed infrastructure is illustrated in . The 
ble of being used inside the gantry of vertical field entire system consists of three main subsystems as 
open MRI. Flueckiger et al. [14] proposed a haptic follows: (i) operating unit; (ii) power/control unit; 
interface compatible with MR scanner for neurosci- and (iii) surgeon-machine interface unit. The operat-
ence studies. Miyata et al. [15] designed and devel- ing and surgeon-machine interface units are commu-
oped an MR-compatible forceps manipulator using a nicating through MR images and related information 
n e w  c a m m e c h a n i s m  f o r t h e  m u l t i - f u n c t i o n using an image processing device. The image pro-
micromanipulator system for neurosurgery proce- cess ing  device i s  used to  provide informat ion  
dures. Engineering Services Inc. has also developed required by both the surgeon-machine interface unit 
an MR-compatibletele-robotic system using water and power/control unit .  The operating unit and 
hydraulic and pneumatic actuators for neurosurgery power/control  uni t are  communicat ing through 
[7]. The Calgary Health Region and University of Cal- power transmission and sensory information systems. 
gary are developing the world's first image guided Also, the surgeon-machine interface and power/ contr ol TM
neurosurgical robot (NeuroArm ) in collaboration units are communicating through operation inputs 
with MD Robotics for micro-neurosurgery. The robot created by operator input device (master). 
is under design and construction stage now [16]. As shown, all three units communicate through 

Figure 1

Figure 1. A schematic of the entire system.
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image information, sensory information, control sig- the head holder is considered as a major component 
nals, and power transmission. As illustrated, the visu- in the proposed infrastructure for application of the 
alization of the surgical tool and the target as well as tele-robotic system in MR-guided neurosurgery pro-
surgical  planning based on intra-operat ive MR cedures.
images are completed on a display monitor in front of 
the surgeon in the surgeon-machine interface unit. 2.3. Manipulator power/control unit
One should note that the proposed infrastructure is The manipulator power/control unit is located in an 
based on a fundamental principle which is both the adjacent control room at a proper distance away from 
surgeon and power/control unit share the control of the MR scanner due to electrical/electronic devices 
the tele-robotic system such that the surgeon will use and circuits as well as non-MR-compatiblematerials 
his/her judgment and expertise to control the entire used in its structure. The major function of the manip-
procedure. In other words, it is almost impossible to ulator power/control unit is to provide required 
eliminate the surgeon from the control system and power to the slave manipulator. The power/control 
have the entire tele-robotic system performed the unit consists of two major sub-units: (i) hydraulic 
required task autonomously.  power units, hydraulic valves, and pneumatic valves; 

and (ii) motion controller devices such as computer 
2.2. Operating unit and electrical/electronic components and circuits. 
Operating unit comprises the slave manipulator, head The surgeon could manipulate the slave manipulator 
holder, surgical table, and MRI scanner located in inside the MR scanner through a master manipulator 
MR operating room. The patient's head and the slave located in the surgeon-machine interface unit. The 
manipulator are fixed to the surgical table in order to motion controller in the power/control unit is also 
avoid any relative displacement during the surgical communicating with the master manipulator in the 
operation. The patient's head needs to be secured and surgeon-machine interface unit to provide appropri-
fixed in all surgical operations to avoid unexpected ate control signals to hydraulic and pneumatic valves. 
motions caused by disorderly reaction of the patient's The motion controller also receives the sensory data 
body. feedback from the slave manipulator. In addition, the 

Due to the presence of strong magnetic field and moti on cont roll er is also prov ided with the MR 
switching gradien ts both the head holder and the images data originated from the image processing 
slave manipulator are required to be constructed from device as shown in .
MR-compatible materials and devices. The slave 
manipulator must perform the required tasks in a con- 2.4. Surgeon-machine interface unit
fined space between the patient and the bore of the The major function of the surgeon-machine interface 
MR scanner. Therefore, the slave manipulator is unit is to provide an interface between the entire tele-
needed to be designed in a very compact size. In addi- robotic system and the surgeon as the end user. The 
tion, the slave manipulator required to be registered goal of using tele-robotic system for MR-guided neu-
with respect to the MR scanner such that the position rosurgery is not to replace the surgeon with the robot, 
and orientation of the surgical tool with respect to the but to provide him/her with advanced tools for 
target could be determined based on data obtained remote execution of neurosurgical procedures.  The 
from the MR images. One should note that the unit is located in the adjacent control room to avoid 
patient's head must be secured during the operation magnetic interference due to use of electrical devices 
as the desired position and orientation of the surgical and non-MRI-compatible materials used in its struc-
tool with respect to the target will be obtained while ture. A master and a screen control user interface are 
the surgical device is outside the patient's skull. Thus, the major subsystems of this unit. The images of the 

Figure 1

Figure 2. 3D model of the slave manipulator. Figure 3. 3D model of the navigation module.
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slave and surrounding environment are projected on 
the screen to allow visualization of the target and sur-
gical tools movements. The surgeon would manipu-
late the position and orientation of the surgical 
devices via the master controller.  Surgeons strongly 
rely on the visual MR images as they are only reliable 
source of information during the operation. The 
screen control user interface is the unit that provides 
the visualization of the tissue and surgical tool while 
the operation progresses. There are several important  It consists of a base plate and a moving plate 
challenging issues that one must consider in design- interconnected through 6 links. Each link consists of 
ing the screen control user interface including [18]: (i) a hydraulic linear actuator, a spherical joint, and a uni-
integration of navigation and display with robot sys- versal joint.
tems; (ii) updating the MR images in real time; (iii) 
providing the surgeon with means of controlling the 2.7. Biopsy module and locking mechanism 
information displayed; and (iv) finding ways to com- A 3D model of the biopsy module is presented in 
municate useful information without overwhelming  It is basically a three-plate mechanism inc luding: (i ) 
the surgeon by pointless details. The master manipu- a lower fixed plate, (ii) anupper fixed plate, and (iii) 
lator is the unit with which surgeons could communi- a moving plate. Both lower and upper fixed plates are 
cate their control commands. Any commonly used attached to the base plate by two sets of screws. Two 
interfaces for human-machine interactions such as guide pins are used to support the moving plate. The 
mice, joystick, touch screens, push buttons, and foot moving plate is moved up and down using a pneu-
switches could be used.     matic rodless cylinder. The moving plate is attached 

to the slide of the pneumatic cylinder. A 3D model of 
2.5. Mechanical design for the slave manipu- the locking system is shown in  The locking 
lator system consists of a connecting arm and locking mecha-
A 3D model of the slave manipulator is shown in nism. As shown, the locking mechanism is attached to the 

 The surgical needle is held and advanced by base plate of the parallel mechanism th rou gh the con-
the biopsy module. The biopsy module is attached to necting arm. All mechanical parts are constructed 
the navigation module. from MR-compatible  materials.

The navigation module is a six degrees of freedom 
parallel mechanism consisting of a base and a plat- 2.8. Surgical arm
form interconnected through 6 legs (or struts). Six lin- The surgical arm supports both the navigation and 
ear hydraulic actuators are used to provide required biopsy modules during the operation. The surgical 
linear displacement for each leg. A locking mecha- arm has to be easily maneuvered by the clinician to be 
nism is used to guide the needle as well as lock the located at the entry point on the patient's skull. The 
robot at desired orientation. It is fixed to the base of design of the surgical arm is shown in . It 
the parallel mechanism through a connecting arm by consists of two links and three joints as follows: (i) a 
screws. All three units (the navigation module, spherical joint 1; (ii) a revolute joint 2; and (iii) a 
biopsy module, and the locking mechanism) are held spherical joint 2. The Spherical-Revolute-Spherical 
by a surgical arm. The surgical arm is attached to a (SRS) arm is illustrated in fully deployed configura-
surgical table through a set of screws. tion in order to show its components and correspond-

ing function of each component. As shown, rod 1 con-
2.6. Navigation module nects the SRS arm to the surgical table and rod 2, at 
A 3D model of the navigation module is shown in the other end, connects the navigation module to the 

ure 3.

Figure 
4.

Figure 2.

Fig-
ure 2.

Figure 5

Fig-

Figure 4. 3D model of the biopsy module.
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Figure 5. A schematic diagram of the surgical arm.
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operative images as visual feedback. When the nee-
dle reaches the target, it is rotated by 180 degrees in 
order to cut the tissue specimen (tumor). Then the nee-
dle is pulled out completing the operation. 
(6)Final stage. The MRI table is moved out the MRI 
bore. The slave manipulator and head holder are 
detached from the table and patient's skull respec-
tively.

3.2. Robot control architecture
As mentioned, the surgeon adjusts the orientation of 
the surgical tool (yaw and pitch angles) based on 
visual MR images through the master. The inverse 
kinematics of the navigation module is used to obtain 
the desired length of each strut related to the desired 
position and orientation of the needle biopsy.

 The hydraulic/pneumatic circuit of the system and 
overall control system are shown in  and 

 respectively. Six MR-compatible hydraulic cyl-
inders are equipped with six fiber optic encoders to 

SRS arm. feedback the actual length of each strut.  Using 
inverse kinematic of the navigation module, the 
desired length of each strut of the navigation module 3. ROBOT CONTROL
is determined. A PID controller provides a control sig-

3.1. Needle alignment 
nal that drives a hydraulic proportional valve in each 

An entry point,  a surgical tool and a target are 
servo control loop. The hydraulic valve controls the 

depicted in . Required motions to align and 
length of the strut by regulating the flow from/to each 

advance the surgical tool with respect to the target 
hydraulic actuator. In addition, a pneumatic valve 

are also shown. The surgical tool is rotated about the 
(V7) is used to control the tip position of the biopsy 

burr-hole by Yaw and Pitch angles. This point is also 
needle. The semi-rotary pneumatic motor is also actu-

called the pivot point. The conventional surgical tool 
ated by an on/off pneumatic valve (V8).

placement at an entry point includes the following 
A block diagram of the control algorithm used in 

three tasks: (i) move the needle tip to the entry point 
the controller is shown in .  The inputs are 

using 3 DOFs; (ii) orient the needle by pivoting 
six feedback displacement signals from the slave side 

around the entry point using 2DOF (Yaw and Pitch 
(LA1, LA2, LA3, LA4, LA5, and LA6), two signals 

angles); and (iii) insert the needle into the body using 
form master side including desired Yaw and Pitch 

1 DOF (translation along a straight trajectory). Using 
angels, and desired length of each strut (LD1, LD2, 

the proposed tele-robotic system shown in , 
LD3, LD4, LD5, and LD6). The outputs are control 

the brain biopsy procedure would be carried out as fol-
signals (S1, S2, S3, S4, S5, and S6) to control the pro-

lows:
portional valves. 

(1)Preoperative imaging stage. The patient is  
A PC-based supervisory controller is designed to 

placed inside the MRI scanner and preoperative 
control entire system as illustrated in .  The 

images are obtained. 
trajectory of each joint is calculated based on the 

(2)Surgical planning stage. Based on the pre-
inverse kinematics in a PC-based supervisory con-

operative images, an entry point is determined and 
troller and fed to each joint controller RS485 Bus. As 

the incision is made by a surgeon. 
shown in , six optical encoders are used to 

(3)Pre-alignment stage. The slave manipulator is 
feedback the position signals to six microprocessors. 

attached to the surgical table, and the navigation mod-
Each actuator has individual microprocessor to con-

ule and biopsy needle are manually located at the 
trol its proportional valve. 

entry point. Although this stage doesn't require high 
accuracy in positioning, the slave has to be locked 

4. CONCLUSION AND FUTURE WORKsuch that the surgical tool is positioned at the entry 
We have designed an MR-compatible tele-robotic sys-point. Accurate alignment with respect to target will 
tem that can be used for orientation and advancement be done in the next stage; 
of a biopsy needle on the brain biopsy procedure. The (4)Real time navigation stage. The patient is moved 
robot has been designed such that it will perform into the bore of MRI scanner. The navigation module 
desired tasks inside MR scanner GE Signa 1.5T. To is maneuvered remotely in order to align the surgical 
date, design and analysis of the entire system have tool  with the desired direct ion based on intra-
been completed. Material selection and the controller operative images. 
architecture and its component have been finalized.  (5)Intra-operative operation stage. The operation 
A physical prototype of the slave manipulator is in is carried out by advancing the needle using intra-
the process of being constructed. Current and future 

Figure 7 Fig-
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Figure 6. The target, entry point, and the needle.
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Figure 9.  A schematic of overall control architecture.
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Figure 8.  A schematic of overall control architecture.

Figure 7.  A schematic of hydraulic/pneumatic circuit.

Copmuter or/and Panel

Surgeon

Input

Master

PC Based Controller

FID CONTROLLER

Inverse 
Kinematic

Rodless Cylinder

Semi-rotary pneumatic
motor V8

V7

V6

V5

V4

V3

V2

V1

V1

V2

V3

V4

V5

V6

V7

V8

A6

A5

A4

A3

A2

A1

Hydranlic Unit

Compressed

Air

Air Pre-preparation
Unit

Low magnetic field Inside MR scanner

Semi-rotary Motor

Rodless Cylinder

Desired Lenghts:
LD1
LD2
LD3
LD4
LD5
LD6

Control Singnals:
S1
S2
S3
S4
S5
S6

Trajectory Planing

Inverse kinematicMaster

Desired trajectory:
Yaw Angel
Pitch Angel

Actual Lenghts
La1      La4
La2      La5
La3      La6

PID Controller

Optical Encoders

Proportional Valves Hydraulic Actuators



Manipulator for Image Guided Prostate Intervention. IEEE work includes the development of the slave manipu-
Trans. On Biomedical Engineering 2005, 52(2):306-313. lator and performance of series of experimental tests 

[9]G.S. Fischer, I. Iordachita, S. P. DiMaio & G. Fichtiger. Design 
inside the MR scanner using the first physical proto- of a Robot for Transperineal Prostate Needle Placement in MRI 
type. scanner. IEEE International Conference on Mechatronics 2006, 

page 6.
[10]K. Daeyoung et al. A New, Compact MR-Compatible Surgical  Manipulator for Minimally Invasive Liver Surgery. MICCAI 

2002, pages 99-106.
[11]K. Chinzei & K. Miller. MR Guided Surgical Robot. Proc. 

ACKNOWLEDGEMENTS  2001 Australian Conference on Robotics and Automation 
This work was partially supported by Natural Sciences and Engi- 2001, Sydney. 
neering Research Council of Canada (NSERC), grant held by Pro- [12]R. Moser, R. Gassert, E. Burdet, L. Sache, H. Woodtli, J. Erni, 
fessor Andrew A. Goldenberg and Ontario Research and Develop- W. Maeder & H. Bleuler. An MR-compatibleRobot Technol-
ment Challenge Fund (ORDCF), grant held by Professor W. ogy. Proc. Of the IEEE, International Conference on Robotics 
Kucharczyk. The authors would like to thank Engineering Services & Automation 2003.
Inc., Canada, and MRI department in Toronto General Hospital, [13]Y. Koseki, T. Washio, K. Chinzei & H. Iseki. Endoscope 
Canada, for providing help and equipment. Manipulator for Trans-nasal Neurosurgery, Optimized for and 

Compatible to Vertical Field Open MRI.  Proc. of MICCAI 
2002, pages 114-121.REFERENCE

[14]M. Flueckiger, M. M. Bullo et al. FMRI compatible haptic 
[1]R. D. Howe, & Y. Matsuoka. Robotics for Surgery. Annual 

interface actuated with traveling wave ultrasonic motor. IAS 
Review of Biomedical Engineering 1999, 1:211-240.

Annual Meeting (IEEE Industry Applications Society) 2005, 
[2]J. Kettenbach, D. F. Kacher, S.K. Koskinen, S. Silverman, A. 

3:2075-2082. 
Nabavi, D. Geringt, C. Tempany, R. B. Schwartz, R.Kikinis, P. 

[15]N. Miyata , E. Kobayashi, D. Kim, K. Masamue et al. Micro-
K. Black & F.A. Jolesz.  Interventional and Intra-operative Mag-

grasping Forceps Manipulator for MR-Guided Neurosurgery. 
netic Resonance Imaging. Annual Review Biomedical Engi-

MICCAI 2002, pages 107-113.
neering 2000, 2:661-90.

[16]Calgary HealthTrust, www.cbi.ucalgary.ca/CHT, 2004.
[3]A. Nabavi, D. F. Kacher, D. T. Gering et al. Neurosurgical pro-

[17]R. Nakamura, K. Masamune, Y. Nishikawa, E. Koboayashi, I. 
cedure in 0.5 Tesla, open-configuration intraoperative MRI: 

Sakuma,T. Dohi, H. Iseki & K. Takakura. Development of a 
planning, visualization, and navigation. Automedia 2001, 00:1-

sterilizable MRI-compatible manipulator for stereotactic neu-
35.

rosurgery . Proc.  Of Computer  Ass is ted  Radio Surgery  
[4]K. Chinzei, N. Hata, F.A. Jolesz, & R. Kikinis, Medical Image 

(CAR'99) 1999.
Computing and Computer-Assisted Intervention - MICCAI 

[18]R. Taylor & D. Stoianovici. Medical Robotics in Computer-
2000. Third International Conference Proceedings 2000, pages 

Integrated Surgery. IEEE Transaction on Robotics and Auto-
921-30.

mation 2003, 32(5):765-781.  
[5]F. Tajima, K. Kishi, K. Nishizawa, K. Kan, Y. Nemoto, H. 

Takeda et al. Development of MR-compatibleSurgical Manipu-
lator toward a Unified Support System for Diagnosis and Treat-
ment of Heart Disease. Proc .of  MICCA O2 2002, pages 83-90.

[6]B. Larson, N. Tsekos & A. g. Erdman. A Robotic Device for 
Minimally Invasive Breast Intervention with Real-Time MRI 
G u i d a n c e .  P r o c .  O f t h e  T h i r d I E E E  S y m p o s i u m  o n 
Bioinformatics and Bioengineering 2003.

[7]Engineering Services Inc., http://www.esit .com, Internal 
report.

[8]A. Krieger, R. Susil, C. Menard, J. Coleman, G. Fichtinger, E. 
Atalar, & L. Whitcomb. Design of a Novel MRI Compatible 

SciRes JBiSE Copyright © 2008                                                                                                                                                 

74                                                                          C. Raoufi et al./J. Biomedical Science and Engineering 1 (2008) 68-74

Figure 10. Supervisory control configuration.
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