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ABSTRACT 

We revisit the recently studied supersymmetric gauged inverse seesaw model [1] to incorporate astrophysical con-
straints on lightest supersymmetric particle (LSP) lifetime such that LSP constitutes the dark matter of the Universe. 
The authors in [1] considered light sneutrino LSP that can play the role of inelastic dark matter (iDM) such that desired 
iDM mass splitting and tiny Majorana masses of neutrinos can have a common origin. Here we consider a generalized 
version of this model without any additional discrete symmetry. We point out that due to spontaneous R-parity 

  3( ) 2
= 1 B L S

pR
   breaking in such generic supersymmetric gauged inverse seesaw models. LSP can not be perfectly 

stable but decays to standard model particles after non-renormalizable operators allowed by the gauge symmetry are 
introduced. We show that strong astrophysical constraints on LSP lifetime makes sneutrino dark matter more natural 
than standard neutralino dark matter. We also show that long-livedness of sneutrino dark matter constrains the left right 

symmetry breaking scale . 4< 10 GeVRM

 
Keywords: PACS Numbers; 12.10.-g; 12.60.Jv; 11.27.+d 

1. Introduction 

Left-Right Symmetric Models (LRSM) [2-6] provide a 
framework within which spontaneous parity breaking as 
well as tiny neutrino masses [7-10] can be successfully 
implemented without reference to very high scale physics 
such as grand unification. Incorporating Supersymmetry 
(SUSY) into it comes with other advantages like provid- 
ing a solution to the gauge hierarchy problem, and pro- 
viding a Cold Dark Matter candidate which is the lightest 
supersymmetric particle (LSP). In Minimal Supersym- 
metric Standard Model (MSSM), the stability of LSP is 
guaranteed by R-parity, defined as    3 2

= 1
B L S

pR
   

where  is the spin of the particle. This is a discrete 
symmetry put by hand in MSSM to keep the baryon 
number (B) and lepton number (L) violating terms away 
from the superpotential. In generic implementations of 
Left-Right symmetry, R-parity is a part of the gauge 
symmetry and hence not ad-hoc like in the MSSM. In 
one class of models [11-14], spontaneous parity breaking 
is achieved without breaking R-parity. This was not pos- 
sible in minimal supersymmetric left right (SUSYLR) 
models where the only way to break parity is to consider 
spontaneous R-parity violation [15]. In minimal SUSYLR 
model parity, 

S

 2
R

SU  gauge symmetry as well as R- 
parity break simultaneously by the vacuum expectation 

value of right handed sneutrino. 
Here we study a different SUSYLR model which be- 

long to a more general class of models where both 
R-parity and D-parity break spontaneously [16] by the 
vacuum expectation value (vev) of a Higgs field carying 
 1

B L
U


 gauge charge 1  and hence odd under R- 

parity. Spontaneous R-parity breaking models have re- 
ceived lots of attention recently due to their rich phe- 
nomenology [17-19]. In such generic spontaneous R- 
parity breaking models, the scalar superpartner of right- 
handed neutrino acquire a non-zero vev which breaks 
 1

B L
U


 symmetry spontaneously. Such a scenario gives 

rise to tree level mixing between neutralinos and light 
neutrinos and hence the neutralino dark matter candidate 
is lost in such a model unless one talks about long lived 
gravitino dark matter. However the model we study in 
this letter, although breaks R-parity spontaneously, does 
not give rise to tree level mixing terms between LSP and 
standard model fermions. Thus we can have a dark mat- 
ter candidate in such a model without introducing the 
least understood gravity sector into account. Recently 
right handed sneutrino dark matter in such a model was 
discussed in [1]. However, the authors in [1] (also in [20]) 
considered an additional discrete 2Z  symmetry so as to 
guarantee a perfectly stable LSP. Here we consider a 
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generalized version of this model without any additional 
symmetries apart from the gauge symmetry. We point 
out that LSP dark matter, although stable at the renor- 
malizable level, decays after higher dimensional gauge 
invariant terms are introduced. The strength of such op- 
erators will be tightly constrained from the fact that LSP 
lifetime should be longer than the age of the Universe 
and large enough so as to agree with astrophysical ob-
servations of nearby galaxies and clusters [21]. Astro-
physical constraints on such operators within the frame-
work of MSSM was studied in [22]. Here we follow a 
similar analysis in our model and show that astrophysical 
constraints not only put an upper bound on the left-right 
symmetry breaking scale but also make the sneutrino 
dark matter more natural than standard neutralino dark 
matter. It is worth mentioning that constraints on the 
left-right symmetry breaking scale in such a model were 
derived recently in [23] from the requirement of suc-
cessful gauge coupling unification and disappearance of 
transitory domain walls formed as a result of spontane-
ous discrete symmetry breaking. 

This letter is organized as follows. In Section 2 we 
briefly review the model. In Section 3 we discuss the 
higher dimensional operators in the model and astro-
physical constraints. We summarise the constraints from 
gauge coupling unification and domain wall disappear-
ance from our earlier work [23] in Section 4 and finally 
conclude in Section 5. 

2. The Model 

Spontaneous R-parity breaking can be achieved even 
without giving vev to the sneutrino fields. If the 
 1

B L
U


B 

 symmetry is broken by a Higgs field which has 
odd  charge then R-parity is spontaneously bro-
ken. We call this model as Minimal Higgs Doublet (MHD) 
Model. The minimal such model [16,24] has the follow-
ing particle content  

L

      1
2,1, 1 , 1, 2,1 , 1,1,0 , 2,1, , 1, 2,

3 3c cL L S Q Q     
  

1 



 

0 0
= (2,1,1), = (1, 2, 1),

2 2
L R

c
L R

H H
H H

H H

    
   

    
   

   
0 02 2

= 2,1, 1 , = 1, 2,1 ,L R
c

L R

H h
H H

h H 

    
   

   
 



 

  1 22, 2,0 , 2,2,0   

where the numbers in brackets correspond to the quan-
tum numbers corresponding to 

     2 2 1
L R B

SU SU U


 

The symmetry breaking pattern is  

   
   
   

2 2

1 , 2

1 1

L R

cB L

Y em

SU SU

U H H SU

U U







 
 L



         (1) 

Neutrino masses arise naturally in this model by so 
called inverse seesaw mechanism by virtue of the pres-
ence of singlet superfields  (one per genera-
tion). The renormalizable superpotential relevant for the 
spontaneous parity violation and neutrino mass is given 
as follows 

1,1,0S 

   
2 2 2 2

*
2 2

= i iT T
ren l i c q i c

T T
c c s

W h L L h Q Q

fL SH f L SH M SS

   

   

  

  
 

 2 2

2 2  

T T T
ij i j h i c i c

T T
h h c c

Tr f H H H H

m H H m H H

  

 

      

 
   (2) 

We denote the vev of the neutral components of 

1 2, , , , ,L L R RH H H H   as 

   1 1 2 211 22
= , = , ,

= , , =

L L

L R R R

v v H

v H H v

  H

R

 

The neutrino mass matrix in the basis    is 
given by 

, ,c S 

0

= 0
D L

T
D

T T
L R s

M Fv

M M

F v F v M


 
  
  

F v           (3) 

where  

 0 0 *
12 1 22 2= , = 2 , =DM h h F f F f   2 . 

After orthogonalization we get the following expression 
for   mass  

 1= T T
D R D D D L RM M M M M M v v

       (4) 

where 

  1= T R R s RM F v M F v              (5) 

It should be noted from the neutrino mass matrix that 
these mass terms allow the mixing of an R-parity odd 
singlet fermion  with an R-parity even neutrino. Note 
that the superpotential preserves R parity. The mild R 
parity violation occurring in the neutrino mass matrix 
should be understood as an accidental consequence of 

S

B L  gauge symmetry breakdown. 
Neutrino mass can arise from type III seesaw mecha-

nism [25] if we introduce fermionic triplets instead of 
singlets. However when we have a TeV scale intermedi-
ate  1

B L
U


 symmetry, the fermion triplets will spoil 

the gauge coupling unification [16,26] and hence fermion L
. 

Copyright © 2012 SciRes.                                                                                 JMP 
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singlets will serve a better purpose in this case. 

3. Non-Renormalizable Operators and 
Astrophysical Constraints 

The authors of [22] considered explicit R-parity violating 
terms in the MSSM superpotential of the form  

 which lead to the decay of LSP dark 
matter candidate in the model. Similar analysis within the 
framework of grand unified theories can be found in 
[27,28]. We take the conservative lower bound  

  cLLE LH  

 27> 10 sLSP  on LSP lifetime coming from the recent  

Fermi telescope observation of nearby galaxy and clus-
ters [21]. 

In the model we are studying, the effective terms in the 
superpotential leading to LSP decay can arise after in-
troduing dimension four and dimension five operators as 
follows: 

  

  

1
2 2 2 2

2
2 2 2 22

T T T T
non ren c c c c

T T T
i c c c

f
W L H L H H H H H

f
L L L H L H

   

   

   


  


 

The first term give rise to terms like  LH  in the 
low energy effective theory after gauge symmetry is 
spontaneously broken. The strength of such a term is 
dictated by 

2

non ren cH   . Here cH  is the left- 
right symmetry breaking scale which has a lower bound 
of 

R
 [29]. And, the cut-off scale 2.5 TeVWM    is 

the generic grand unified theory (GUT) scale  
. Using these values and as-

suming generic order one dimensionless coefficients 

16= 2GUT   10 GeV

1f , 
we have 

10> 10 GeVnon ren 
             (6) 

As shown in [22], the decay width of neutralino cor-
responding to a term  LH  in the superpotential is 
given by  

2 3
2

3768π
FG m

                  (7) 

with constant of proportionality of order unity. Now, for 
generic neutralino dark matter with mass of the order of 

, the astrophysical constraint on LSP lifetime 
 gives rise to  

100 GeV
 > 10LSP 27 s

22< 10 GeVastro                (8) 

Clearly the astrophysical bound (8) does not agree 
with the strength of non ren   arising from generic non- 
renormalizable operators in the theory. If we fine tune 

1f  to be as small as electron Yukawa coupling 510 , 
then   can be as small as . But this lies around 
seven orders of magnitude above the upper bound set by 
astrophysical constraints (8). Thus, standard neutraino 

dark matter is very unlikely in these models unless we 
have unnatural fine tuning of the dimensionless coeffi-
cients in the non-renormalizable operators. It should be 
noticed that a term like  arise at tree level in 
generic spontaneous R-parity violating models with non- 
zero right handed sneutrino vev [17-19]. 

1510

LH 

The second term in the non-renormalizable superpo-
tential gives rise to an effective term of the form 

 non ren c cLL L   which opens the decay channel of sneu-
trino into two standard model fermions. The strength of 
such a term is given by 2

non ren cH    where 
210 GeV   and > 2.5 Tc eVH . For = GUT   

such a term is of strength  
27> 10non ren 

                (9) 

The decay width of a sneutrino to standard model fer-
mion-antifermion pairs is given by  

3 222

2

4
= 1

8π
fmm

m





  
 

 





           (10) 

Now, for sneutrino LSP mass of the order of 
, the astrophysical constraint on LSP lifetime 100 GeV

 27 s> 10LSP  gives rise to  
26< 10astro                 (11) 

which agrees with the generic non ren   arising from the 
non-renormalizable operators in the theory (9). Thus 
sneutrino LSP in such a model can be a viable dark mat-
ter candidate provided it satisfies other relevant con-
straints of relic density, direct detection etc. Recently it 
was shown that such a right handed sneutrino dark matter 
(within the framework of a similar left right model) can 
satisfy relic density as well as direct detection constraints 
[1]. 

For right handed sneutrino dark matter to obey the 
relevant astrophysical constraints (11), the left right 
symmetry breaking scale should however have an upper 
bound. Requiring 2 < 10c GUTH  26  gives rise to a 
bound on the left-right symmetry breaking scale  

4< 10 GeVcH             (12) 

for generic GUT scale and order one dimensionless cou-
plings. However, as studied in [16,23] and summarised in 
the next section, successful gauge coupling unification in 
such a minimal model puts a lower bound on left-right 
symmetry breaking scale . 1210 GeV

4. Constraints on MR from Unification and 
Domain Wall Disappearance 

Similar to generic SUSYLR models, here also the inter- 
mediate symmetry breaking scales are constrained by 
demanding successful gauge coupling unification at a 
very high scale  16> 2 10 GeVGM  . The couplings of 

Copyright © 2012 SciRes.                                                                                 JMP 
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 1
B L

 and 
,

U  2
L R

 meet much before the allowed 
Unification scale if the intermediate symmetry breaking 
scale 

SU

RM  is lower than a certain value. For the minimal 
SUSYLR model with Higgs doublets, this lower bound 
on RM  is found to be of the order of  GeV. We 
also consider two additional heavy colored superfields so 
that the 

c
 coupling meet the other two couplings 

at one point. They are denoted as  

1210

 3SU

can be removed by including a parity odd singlet to our 
model. As studied in [16,26,30], such a framework allows 
even a TeV scale RM  from the requirement of suc-
cessful gauge coupling unification as can be seen from 
Figure 2. It should be noted that the authors of [1] in-
deed considered such a model with parity odd singlet 
which allows a TeV scale RM . Such TeV scale RM  is 
not just a requirement from astrophysical constraints as we 
have found above, but these TeV scale gauge bosons also 
contribute to the dark matter annihilations [1] in the early 
universe producing the correct relic density at present. 

2 2
, 3,1,1,

3 3
   

   
   

 and can be accommodated  3,1,1, 

SOwithin  GUT theory in the representations  10
120,126 . Here we assume that the structure of the GUT 
theory is such that these fields survive the symmetry 
breaking and can be as light as the 

5. Results and Conclusions 

 2
R

SU  breaking 
scale. The resulting gauge coupling unification as shown 
in the Figure 1. 

We have discussed the issue of stability of LSP dark 
matter in a specific version of SUSYLR model with in-
verse seesaw mechanism of neutrino mass where both 
D-parity and R-parity are spontaneously broken. We 
point out that, although LSP is a stable particle in the 
renormalizable version of the model, it can decay into 
standard model fermions after the non-renormalizable 
terms are introduced. The requirement that LSP dark 
matter should be long lived so as to satisfy strict astro-
physical and cosmological bounds constrains the strength 
of these higher dimensional operators suppressed by  

As discussed in details in [23], the succesful disappear-
ance of domain walls in this model do not put any strict 
constraints on the left-right symmetry breaking scale and 
can be anywhere between a TeV scale and the Planck 
scale. Thus unification and domain wall disappearance 
constraints are compatible with each other. The discrep-
ancy between the astrophysical limit  
and the limit from successful unification  

4< 10 GeV
1210 GeV

RM

RM 
 

 

Figure 1. Gauge coupling unification in minimal SUSYLR model with higgs doublets,  TeV,  GeV, 

 GeV. The figure is redrawn from [16,23]. 

susyM = 1 RM 12= 10

M 16.4= 10GUT
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Figure 2. TeV scale  is possible with the introduction of parity odd singlets into the MHD model. The figure is redrawn 

from [16,26] with  and . 

RM

susyM = 500 GeV GUTM 16= 10 GeV

 
GUT scale. We point out that standard neutralino dark 
matter (decaying through dimension four operators in the 
superpotential) scenario is disfavored in this model 
unless one considers unnatural fine-tuning of the dimen-
sionless coefficients in the higher dimensional operators. 
However, right handed sneutrino dark matter (decaying 
through dimension five operators in the superpotential) 
satisfy the astrophysical bounds more naturally and can 
be a viable dark matter candidate provided it satisfies 
other relevant constraints like relic density, direct detec-
tion etc. 

Interestingly, the dimension five operators leading to 
sneutrino decay involve the left right symmetry breaking 
scale. The requirement that the strength of such an op-
erator should be small enough to satisfy astrophysical 
bounds constrains the left right symmetry breaking scale. 
For generic GUT scale and order one dimensionless 
couplings, we find this bound to be . 
However, as studied in [16,23], successful gauge cou-
pling unification puts a lower bound . 
The mismatch between these two bounds can be fixed by 
introducing a parity odd singlet [16,26,30] which allow 

4< 10 GeVRM

1210 GeVRM 

RM  as low as a TeV from the requirement of successful 
gauge coupling unification. Such TeV scale gauge bos-

ons, apart from satisfying the astrophysical constraints 
also opens up new dark matter annihilation channels [1] 
producing the correct relic density in the present Uni-
verse. 
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ABSTRACT 

The unified generalized non-local theory is applied for mathematical modeling of cosmic objects. For the case of 
galaxies the theory leads to the flat rotation curves known from observations. The transformation of Kepler’s regime 
into the flat rotation curves for different solitons is shown. The Hubble expansion with acceleration is explained as 
result of mathematical modeling based on the principles of non-local physics. Peculiar features of the rotational speeds 
of galaxies and effects of the Hubble expansion need not in the introduction of new essence like dark matter and dark 
energy. The origin of difficulties consists in the total Oversimplification following from the principles of local physics. 
 
Keywords: Dark Matter; Dark Energy; Galaxy: Halo; Galaxy: Kinematics and Dynamics; Hubble Expansion; 

Hydrodynamics 

1. Introduction 

More than ten years ago, the accelerated cosmological 
expansion was discovered in direct astronomical obser- 
vations at distances of a few billion light years, almost at 
the edge of the observable Universe. This acceleration 
should be explained because mutual attraction of cosmic 
bodies is only capable of decelerating their scattering. It 
means that we reach the revolutionary situation not only in 
physics but also in the natural philosophy on the whole. 
Practically we are in front of the new challenge since 
Newton’s Mathematical Principles of Natural Philosophy 
was published. As result, new idea was introduced in 
physics about existing of a force with the opposite sign, 
which is called universal antigravitation. Its physical 
source is called as dark energy that manifests itself only 
because of postulated property of providing antigravita- 
tion. 

It was postulated that the source of antigravitation is 
“dark matter” which inferred to exist from gravitational 
effects on visible matter. However, from the other side 
dark matter is undetectable by emitted or scattered elec- 
tromagnetic radiation. It means that new essences—dark 
matter, dark energy—were introduced in physics only 
with the aim to account for discrepancies between meas- 
urements of the mass of galaxies, clusters of galaxies and 
the entire universe made through dynamical and general 
relativistic means, measurements based on the mass of the 
visible “luminous” matter. It could be reasonable if we are 
speaking about small corrections to the system of know- 

ledge achieved by mankind to the time we are living. But 
mentioned above discrepancies lead to affirmation, that 
dark matter constitutes 80% of the matter in the Universe, 
while ordinary matter makes up only 20%. 

Dark matter was postulated by Swiss astrophysicist 
Fritz Zwicky of the California Institute of Technology in 
1933. He applied the virial theorem to the Coma cluster of 
galaxies and obtained evidence of unseen mass. Zwicky 
estimated the cluster’s total mass based on the motions of 
galaxies near its edge and compared that estimate to one 
based on the number of galaxies and total brightness of the 
cluster. He found that there was about 400 times more 
estimated mass than was visually observable. The gravity 
of the visible galaxies in the cluster would be far too small 
for such fast orbits, so something extra was required. This 
is known as the “missing mass problem”. Based on these 
conclusions, Zwicky inferred that there must be some 
non-visible form of matter, which would provide enough 
of the mass, and gravity to hold the cluster together. 

The work by Vera Rubin (see for example [1,2]) re- 
vealed distant galaxies rotating so fast that they should fly 
apart. Outer stars rotated at essentially the same rate as 
inner ones (~254 km/s). This is in marked contrast to the 
solar system where planets orbit the sun with velocities 
that decrease as their distance from the centre increases. 
By the early 1970s, flat rotation curves were routinely 
detected. It was not until the late 1970s, however, that the 
community was convinced of the need for dark matter 
halos around spiral galaxies. The mathematical modeling 
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(based on Newtonian mechanics and local physics) of the 
rotation curves of spiral galaxies was realized for the 
various visible components of a galaxy (the bulge, thin 
disk, and thick disk). These models were unable to predict 
the flatness of the observed rotation curve beyond the 
stellar disk. The inescapable conclusion, assuming that 
Newton’s law of gravity (and the local physics description) 
holds on cosmological scales, that the visible galaxy was 
embedded in a much larger dark matter (DM) halo, which 
contributes roughly 50% - 90% of the total mass of a 
galaxy. As result another models of gravitation were in- 
volved in consideration—from “improved” Newtonian 
laws (such as modified Newtonian dynamics and tensor- 
vector-scalar gravity [3]) to the Einstein’s theory based on 
the cosmological constant [4]. Einstein introduced this 
term as a mechanism to obtain a stable solution of the 
gravitational field equation that would lead to a static 
Universe, effectively using dark energy to balance grav- 
ity. 

Computer simulations with taking into account the 
hypothetical DM in the local hydrodynamic description 
include usual moment equations plus Poisson equation 
with different approximations for the density of DM 

 containing several free parameters. Computer 
simulations of cold dark matter (CDM) predict that CDM 
particles ought to coalesce to peak densities in galactic 
cores. However, the observational evidence of star dy- 
namics at inner galactic radii of many galaxies, including 
our own Milky Way, indicates that these galactic cores are 
entirely devoid of CDM. No valid mechanism has been 
demonstrated to account for how galactic cores are swept 
clean of CDM. This is known as the “cuspy halo problem”. 
As result, the restricted area of CDM influence introduced 
in the theory. As we see the concept of DM leads to many 
additional problems. 

 DM 

I do not intend to review the different speculations 
based on the principles of local physics. I see another 
problem. It is the problem of Oversimplification—but not 
“trivial” simplification of the important problem. The 
situation is more serious—total Oversimplification based 
on principles of local physics, and obvious crisis, we see 
in astrophysics, simply reflects the general shortcomings 
of the local kinetic transport theory. It is important to 
underline that we should have expected this crisis of local 
statistical physics after the discovery of Bell’s funda- 
mental inequalities [5]. The antigravitation problem in ap- 
plication to the theory of galaxies rotation and the Hubble 
expansion is solved further in the frame of non-local sta- 
tistical physics and the Newtonian law of gravitation. 

I deliver here some main ideas and deductions of the 
generalized Boltzmann physical kinetics and non-local 
physics. For simplicity, the fundamental methodic aspects 
are considered from the qualitative standpoint of view 
avoiding excessively cumbersome formulas. A rigorous 

description can be found, for example, in the monograph 
[6]. 

In 1872 L. Boltzmann [7,8] published his kinetic equa- 
tion for the one-particle distribution function (DF) 
 , ,f tr v . He expressed the equation in the form 

 BDf Dt J f ,              (1) 

where BJ  is the local collision integral, and 
D

Dt t

  
    

 
v F

r v
 is the substantial (particle) de- 


rivative,  and r  being the velocity and radius vector 
of the particle, respectively. Boltzmann Equation (1) 
governs the transport processes in a one-component gas, 
which is sufficiently rarefied that only binary collisions 
between particles are of importance and valid only for 
two character scales, connected with the hydrodynamic 
time-scale and the time-scale between particle collisions. 
While we are not concerned here with the explicit form 
of the collision integral, note that it should satisfy con- 
servation laws of point-like particles in binary collisions. 
Integrals of the distribution function (i.e. its moments) 
determine the macroscopic hydrodynamic characteristics 
of the system, in particular the number density of parti- 
cles  and the temperature . The Boltzmann equa- 
tion (BE) is not of course as simple as its symbolic form 
above might suggest, and it is in only a few special cases 
that it is amenable to a solution. One example is that of a 
maxwellian distribution in a locally, thermodynamically 
equilibrium gas in the event when no external forces are 
present. In this case the equality  and 

v

n T

0BJ  0f f  is 
met, giving the maxwellian distribution function 0f . A 
weak point of the classical Boltzmann kinetic theory is the 
way it treats the dynamic properties of interacting parti- 
cles. On the one hand, as the so-called “physical” deriva- 
tion of the BE suggests, Boltzmann particles are treated as 
material points; on the other hand, the collision integral in 
the BE brings into existence the cross sections for colli- 
sions between particles. A rigorous approach to the deri- 
vation of the kinetic equation for f  (noted in following 
as fKE ) is based on the hierarchy of the Bogolyubov- 
Born-Green-Kirkwood-Yvon (BBGKY) [6,9-13] equa- 
tions.  

A fKE  obtained by the multi-scale method turns into 
the BE if one ignores the change of the distribution func- 
tion (DF) over a time of the order of the collision time 
(or, equivalently, over a length of the order of the particle 
interaction radius). It is important to note [6,14] that ac- 
counting for the third of the scales mentioned above 
leads (prior to introducing any approximation destined to 
break the Bogolyubov chain) to additional terms, gener- 
ally of the same order of magnitude, appear in the BE. If 
the correlation functions is used to derive fKE  from the 
BBGKY equations, then the passage to the BE means the 
neglect of non-local effects. 
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Given the above difficulties of the Boltzmann kinetic 
theory, the following clearly inter related questions arise. 
First, what is a physically infinitesimal volume and how 
does its introduction (and, as the consequence, the un- 
avoidable smoothing out of the DF) affect the kinetic 
equation? This question can be formulated in (from the 
first glance) the paradox form—what is the size of the 
point in the physical system? Second, how does a sys- 
tematic account for the proper diameter of the particle in 
the derivation of the fKE  affect the Boltzmann equa- 
tion? In the theory developed here, I shall refer to the 
corresponding fKE  as Generalized Boltzmann Equa- 
tion (GBE). The derivation of the GBE and the applica- 
tions of GBE are presented, in particular, in [6]. Accord- 
ingly, our purpose is first to explain the essence of the 
physical generalization of the BE. 

Let a particle of finite radius be characterized, as be- 
fore, by the position vector  and velocity  of its 
center of mass at some instant of time . Let us intro- 
duce physically small volume (PhSV) as element of 
measurement of macroscopic characteristics of physical 
system for a point containing in this PhSV. We should 
hope that PhSV contains sufficient particles 

r v
t

ph  for 
statistical description of the system. In other words, a net 
of physically small volumes covers the whole investi- 
gated physical system. 

N

Every PhSV contains entire quantity of point-like 
Boltzmann particles, and the same DF f  is prescribed 
for whole PhSV in Boltzmann physical kinetics. There- 
fore, Boltzmann particles are fully “packed” in the refer- 
ence volume. Let us consider two adjoining physically 
small volumes 1  and 2PhSV . We have in prin- 
ciple another situation for the particles of finite size 
moving in physical small volumes, which are open ther- 
modynamic systems. 

PhSV

Then, the situation is possible where, at some instant 
of time t, the particle is located on the interface between 
two volumes. In so doing, the lead effect is possible (say, 
for 2 ), when the center of mass of particle moving 
to the neighboring volume 2  is still in 1 . 
However, the delay effect takes place as well, when the 
center of mass of particle moving to the neighboring 
volume (say, 2 ) is already located in  but 
a part of the particle still belongs to .  

PhSV
PhSV PhSV

2hSVPhSV P

1

Moreover, even the point-like particles (starting after 
the last collision near the boundary between two men- 
tioned volumes) can change the distribution functions in 
the neighboring volume. The adjusting of the particles 
dynamic characteristics for translational degrees of free- 
dom takes several collisions. As result, we have in the 
definite sense “the Knudsen layer” between these vol- 
umes. This fact unavoidably leads to fluctuations in mass 
and hence in other hydrodynamic quantities. Existence of 
such “Knudsen layers” is not connected with the choice 

of space nets and fully defined by the reduced description 
for ensemble of particles of finite diameters in the con- 
ceptual frame of open physically small volumes, there- 
fore—with the chosen method of measurement. 

PhSV

This entire complex of effects defines non-local effects 
in space and time. The corresponding situation is typical 
for the theoretical physics—we could remind about the 
role of probe charge in electrostatics or probe circuit in 
the physics of magnetic effects. 

Suppose that DF f  corresponds to 1  and DF PhSV
f f  is connected with 2  for Boltzmann parti- 

cles. In the boundary area in the first approximation, 
fluctuations will be proportional to the mean free path (or, 
equivalently, to the mean time between the collisions). 
Then for PhSV the correction for DF should be intro- 
duced as 

PhSV

af f Df D  t               (2) 

in the left hand side of classical BE describing the trans- 
lation of DF in phase space. As the result  

aDf Dt J B ,                 (3) 

where BJ  is the Boltzmann local collision integral. 
Important to notice that it is only qualitative explana- 

tion of GBE derivation obtained earlier (see for example 
[6]) by different strict methods from the BBGKY—chain 
of kinetic equations. The structure of the fKE  is gener- 
ally as follows 

B nonlocalDf
J J

Dt
  ,              (4) 

where  is the non-local integral term incorpo- 
rating the non-local time and space effects. The general- 
ized Boltzmann physical kinetics, in essence, involves a 
local approximation 

nonlocalJ

nonlocal D Df
J

Dt Dt
 
 


             (5) 

for the second collision integral, here in the simplest case 
  being the mean time between the particle collisions. 
We can draw here an analogy with the Bhatnagar- 
Gross-Krook (BGK) approximation for BJ , 

0B f f
J




 ,                 (6) 

which popularity as a means to represent the Boltzmann 
collision integral is due to the huge simplifications it of- 
fers. In other words—the local Boltzmann collision inte- 
gral admits approximation via the BGK algebraic ex- 
pression, but more complicated non-local integral can be 
expressed as differential form (5). The ratio of the second 
to the first term on the right-hand side of Equation (4) is 
given to an order of magnitude as  2Knnonlocal BJ J O  
and at large Knudsen numbers (Kn defining as ratio of 
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mean free path of particles to the character hydrody- 
namic length) these terms become of the same order of 
magnitude. It would seem that at small Knudsen numbers 
answering to hydrodynamic description the contribution 
from the second term on the right-hand side of Equation 
(4) is negligible. 

This is not the case, however. When one goes over to 
the hydrodynamic approximation (by multiplying the 
kinetic equation by collision invariants and then inte- 
grating over velocities), the Boltzmann integral part van- 
ishes, and the second term on the right-hand side of 
Equation (4) gives a single-order contribution in the gen- 
eralized Navier-Stokes description. Mathematically, we 
cannot neglect a term with a small parameter in front of 
the higher derivative. Physically, the appearing addi- 
tional terms are due to viscosity and they correspond to 
the small-scale Kolmogorov turbulence [6,15]. The inte- 
gral term  turns out to be important both at 
small and large Knudsen numbers in the theory of trans- 
port processes. Thus, 

nonlocalJ

Df Dt  is the distribution func- 
tion fluctuation, and writing Equation (3) without taking 
into account Equation (2) makes the BE non-closed. 
From viewpoint of the fluctuation theory, Boltzmann 
employed the simplest possible closure procedure 

af f . 
Then, the additional GBE terms (as compared to the 

BE) are significant for any Kn, and the order of magni- 
tude of the difference between the BE and GBE solutions 
is impossible to tell beforehand. For GBE the generalized 
H-theorem is proven [6,16]. 

It means that the local Boltzmann equation does not 
belong even to the class of minimal physical models and 
corresponds so to speak to “the likelihood models”. This 
remark refers also to all consequences of the Boltzmann 
kinetic theory including “classical” hydrodynamics. 

Obviously the generalized hydrodynamic equations 
(GHE) will explicitly involve fluctuations proportional to 
 . In the hydrodynamic approximation, the mean time 
  between the collisions is related to the dynamic vis- 
cosity   by 

p   ,                (7) 

[17,18]. For example, the continuity equation changes its 
form and will contain terms proportional to viscosity. On 
the other hand, if the reference volume extends over the 
whole cavity with the hard walls, then the classical con-
servation laws should be obeyed, and this is exactly what 
the monograph [6] proves. Now several remarks of prin-
cipal significance: 

1) All fluctuations are found from the strict kinetic 
considerations and tabulated [6]. The appearing additional 
terms in GHE are due to viscosity and they correspond to 
the small-scale Kolmogorov turbulence. The neglect of 
formally small terms is equivalent, in particular, to drop- 

ping the (small-scale) Kolmogorov turbulence from con- 
sideration and is the origin of all principal difficulties in 
usual turbulent theory. Fluctuations on the wall are equal 
to zero, from the physical point of view this fact corre- 
sponds to the laminar sub-layer. Mathematically it leads to 
additional boundary conditions for GHE. Major difficul- 
ties arose when the question of existence and uniqueness 
of solutions of the Navier-Stokes equations was ad- 
dressed. 

O. A. Ladyzhenskaya has shown for three-dimensional 
flows that under smooth initial conditions a unique solu- 
tion is only possible over a finite time interval. Ladyz- 
henskaya even introduced a “correction” into the Navier- 
Stokes equations in order that its unique solvability could 
be proved (see discussion in [19]). GHE do not lead to 
these difficulties.  

2) It would appear that in continuum mechanics the 
idea of discreteness can be abandoned altogether and the 
medium under study be considered as a continuum in the 
literal sense of the word. Such an approach is of course 
possible and indeed leads to the Euler equations in hy- 
drodynamics. However, when the viscosity and thermal 
conductivity effects are to be included, a totally different 
situation arises. As is well known, the dynamical viscos- 
ity is proportional to the mean time   between the par- 
ticle collisions, and a continuum medium in the Euler 
model with 0   implies that neither viscosity nor 
thermal conductivity is possible. 

3) The non-local kinetic effects listed above will al- 
ways be relevant to a kinetic theory using one particle 
description—including, in particular, applications to liq- 
uids or plasmas, where self-consistent forces with appro- 
priately cut-off radius of their action are introduced to 
expand the capability of GBE [20-25]. Fluctuation ef- 
fects occur in any open thermodynamic system bounded 
by a control surface transparent to particles. GBE (3) 
leads to generalized hydrodynamic equations [6] as the 
local approximation of non local effects, for example, to 
the continuity equation 

 0 0
a

a

t

  
 

 
v

r
 ,             (8) 

where a , 0 ,  are calculated in view of non- 
locality effect in terms of gas density 

av  0

av
 , hydrody- 

namic velocity of flow 0 , and density of momentum 
flux 0

v
v ; for locally Maxwellian distribution, a , 

 are defined by the relations  0v a

   

    

0

0 0 0

0 0

,

I

a

a

t

t
p

   

   

 

 
   

 


 


 
    
 



v
r

v v v

v v а
r r

,        (9) 
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where  is a unit tensor, and  is the acceleration due 
to the effect of mass forces.  

I


a

In the general case, the parameter   is the non-lo- 
cality parameter; in quantum hydrodynamics, the “time- 
energy” uncertainty relation defines its magnitude. The 
violation of Bell’s inequalities [5] is found for local sta- 
tistical theories, and the transition to non-local descrip- 
tion is inevitable. The following conclusion of principal 
significance can be done from the generalized quantum 
consideration [22,23]: 

1) Madelung’s quantum hydrodynamics is equivalent 
to the Schrödinger equation (SE) and leads to description 
of the quantum particle evolution in the form of Euler 
equation and continuity equation. 

2) SE is consequence of the Liouville equation as re-
sult of the local approximation of non-local equations. 

3) Generalized Boltzmann physical kinetics defines 
the strict approximation of non-local effects in space and 
time and after transmission to the local approximation 
leads to parameter  , which on the quantum level cor- 
responds to the uncertainty principle “time-energy”. 

4) GHE lead to SE as a deep particular case of the 
generalized Boltzmann physical kinetics and therefore of 
non-local hydrodynamics. 

In principal GHE needn’t in using of the “time-en- 
ergy” uncertainty relation for estimation of the value of 
the non-locality parameter  . Moreover, the “time-en- 
ergy” uncertainty relation does not lead to the exact rela- 
tions and from position of non-local physics is only the 
simplest estimation of the non-local effects. 

Really, let us consider two neighboring physically in- 
finitely small volumes 1  and 2  in a non- 
equilibrium system. Obviously the time 

PhSV PhSV
  should tend 

to diminish with increasing of the velocities  of parti- 
cles invading in the nearest neighboring physically infi- 
nitely small volume (  or ): 

u

21hSVP PhSV
nH u  .                   (10) 

However, the value   cannot depend on the velocity 
direction and naturally to tie   with the particle kinetic 
energy, then  

2 ,H mu                    (11) 

where H  is a coefficient of proportionality, which re- 
flects the state of physical system. In the simplest case 
H  is equal to Plank constant  and relation (11) be- 
comes compatible with the Heisenberg relation. 



Finally, we can state that introduction of open control 
volume by the reduced description for ensemble of parti- 
cles of finite diameters leads to fluctuations (proportional 
to Knudsen number) of velocity moments in the volume. 
This fact defines the significant reconstruction of the 
theory of transport processes. Obviously the mentioned 

breaking of the Bell’s inequalities [5] because in the 
non-local theory the measurement (realized in 1PhSV ) 
has influence on the measurement realized in the - 
ing space-time point in 2PhSV  and verse versa. 

In the following secti tend to apply the u

non-local effects can be discussed from viewpoint of 

ge

e dark matter is not signifi- 
ca

tion curves have the character 
fla

possible to obtain the continuous transition 
fr

he explo- 
si

her words—is it possible using only Newtonian 
gr

2. Disk Galaxy Rotation and the Problem of 

Ab after Zwicky’s initial observations 

of the type B corre- 
sp

 adjoin

nified ons I in
neralized non-local theory for mathematical modeling 

of cosmic objects. For the case of galaxies the theory 
leads to the flat rotation curves known from observations. 
The transformation of Kepler’s regime into the flat rota- 
tion curves for different solitons is shown. The Hubble 
expansion with acceleration is explained as result of 
mathematical modeling based on the principals of non- 
local physics. Therefore the answers for the following 
questions are formulated: 

1) Why the concept of th
nt in the Solar system? 
2) Why the galaxy rota
t form? 
3) Is it 

om the Kepler regime to the flat halo curves? 
4) Why after Big Bang explosion (or after t

on in the Hubble boxes) the Hubble expansion exists 
with acceleration? ([26-28], Nobel Prize for the observ- 
ers S. Perlmutter, A. G. Riess, B. Schmidt of the year 
2011). 

In ot
avitation law and non-local statistical description to 

forecast the flat gravitational curve of a typical spiral 
galaxy (Section 2) and the Hubble expansion (including 
the Hubble expansion with acceleration, PRS-regime), 
(Section 3)? The last question has the positive answer. 

Dark Matter 

out forty years 
Vera Rubin, astronomer at the Department of Terrestrial 
Magnetism at the Carnegie Institution of Washington 
presented findings based on a new sensitive spectrograph 
that could measure the velocity curve of edge-on spiral 
galaxies to a greater degree of accuracy than had ever 
before been achieved. Together with Kent Ford, Rubin 
announced at a 1975 meeting of the American Astro- 
nomical Society the astonishing discovery that most stars 
in spiral galaxies orbit at roughly the same speed re- 
flected schematically on Figure 1. 

For example, the rotation curve 
onds to the galaxy NGC3198. The following extensive 

radio observations determined the detailed rotation curve 
of spiral disk galaxies to be flat (as the curve B), much 
beyond as seen in the optical band. Obviously the trivial 
balance between the gravitational and centrifugal forces 
leads to relation between orbital speed V  and galacto- 
centric distance r  as 2

NV M r  bey nd the physi- 
cal extent of the galaxy of m

o
ass M  (the curve A). The  
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obvious contradiction with the velocity curve B having a 
“flat” appearance out to a large radius, was explained by 
introduction of a new physical essence—dark matter be- 
cause for spherically symmetric case the hypothetical 
density distribution   2~ 1r r  leads to V const . 
The result of this activity is known—undetectable dark 
matter which does not emit radiation, inferred solely 
from its gravitational effects. But it means that upwards 
of 50% of the mass of galaxies was contained in the dark 
galactic halo. 

 

B

A

Distance

V
el

oc
it

y 

 

Strict consideration leads to the following system of 
the generalized hydrodynamic equations (GHE) [6,22-25, 
29-31] written in the generalized Euler form: 

Figure 1. Rotation curve of a typical spiral galaxy: pre- 
(Continuity equation for species  ) dicted (A) and observed (B). 
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(Momentum equation for species  ) 
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(Energy equation for  species) 
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Here  1

F  
agneti

are the forces of the non-magnetic origin, 
—m c induction, —unit tensor, B  I


q —charge 

he ponent part , of t α-com icle p —static p re for 
om , 

ressu
α-c ponent  —intern  f 

om , — hydr na c velocity ixture, 
al en
ody

ergy
mi

for the particles o
 for mα-c ponent 0v

 —n rameter. 
GHE can lied to th ysical systems from the 

Universe to atomic scales. All additional explanations 
will be done by delivering the results of modeling of 
corresponding physical systems with the special consid- 
eration of non-local parameters 

on-local pa
 b

 
e e app ph

 . Generally speaking 
to GHE should be added th stem of generalized 
Maxwell equations (for example in the form of the gen- 
eralized Poisson equation for electric potential) and 
gravitational equations (for example in the form of the 
generalized Poisson equation for gravitational potential). 

In the following I intend to show that the character 
features reflected on Figure 1 can be explained in the 
fram
ki

consider the formation of the soliton’s type of solution of 
the generalized hydrodynamic equations for gravitational 
media like galaxy in the self consistent gravitational field. 
Our aim consists in calculation of the self-consistent hy- 
drodynamic moments of possible formation like gravita- 
tional soliton. 

Let us investigate of the gravitational soliton formation 
in the frame of the non-stationary 1D Cartesian formula- 
tion. Then the system of GHE consist from the g
ized Poisson equation reflecting the effects of the density 
and the density flux perturbations, continuity equation, 
motion and energy equations. The GHE derivation can be 
found in [6,15,29]. This system of four equations for 
non-stationary 1D case is written as the deep particular 
case of Equations (12)-(17) in the form: 

(Poisson equation) 

e sy

eneral- 
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2
4π N u

t xx
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e of Newtonian gravitation law and the non-local 
netic description created by me. With this aim let us  (Continuity equation) 
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(Motion equation) 
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(Energy equation) 
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where  is translational velocity of the one species 
object, —self consistent gravitational potential 

2
4 2 p



u


(   g r   is acceleration in gravitational field),   
is density and  is pressure, p   is non-locality pa- 
rameter, N  i

Let u
s wtonian gravi on constant.  

e coordi m moving
the positive direction of x-axis in ID space with velocity 

e velocity of considering object 

 Ne
troduce th

tati
nate systes in  along 

0 equal to phasC u  

x Ct   .                 (22) 

Taking into account the De Broglie relation we should 
wait that the group velocity gu

penden
 is equal . In moving 

coordinate system all de t hydrody ic values 
are function of 

2 0u
nam

 , t . 
n of th

plicit depe
 with

uati

W
the object formatio e so n type. is solution 
there is no ex nde n tim oordinate 
system moving  the ph elocity . Write down 
the system of Eq ons (1 21) in t ensionless 
form, where dimensionless symbols are marked by tildes.  

e investigate the possibility of 
lito

nce o
ase v
8)-(

For th
e for c

0

e dim
u

h
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2
0 0 0 0 0 0 0, , ,u x u t u    ,  2 2

0 0 0 0N u x  , For the scales  
2

2
4π N u

   
  

     
         

      ,     (23) 

(Continuity equation) 

2
0 0p u0  and conditions 0 1C C u  , the equations 

rm: 
(Generalized Poisson equation) 
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(Energy equation) 
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 the system of four ordinary non- 
linear Equations (23)-(26): 

1) Every equation from the system is of the second 
order and needs two conditions. The problem belongs to 
the class of Cauchy problems. 

2) In comparison for example, with the Schrödinger 
theory connected with behavior of the wave function, no 
special conditions are applied for dependent variables 
in  of the solution existing. This do- 
main is defined automatically in the process of the nu- 
merical solution of the concrete variant of calculations. 

3) From the introduced scales 

Some comments to

cluding the domain

2
0 0 0 0 0 0 0, , ,u x u t u    , 

 2 2
0 0 0 0N u x  , 2

0 0p u0 ,
ly, 0 0, ,u x

 on
independent, name

ly three parameters are 

0 . 
m4) Approximati

rameter 
on for the di ensionless non-local pa- 

  
se it is 

tic co

should be introduced (see (11)). In the defi- 
nite sen not the problem of the hydrodynamic level 
of the physical system description (like the calculation of 
the kine efficients in the classical hydrodynamics). 
Interesting to notice that quantum GHE were applied 
with success for calculation of atom structure [22-25], 
which is considered as two species charged ,e i  mixture. 
The corresponding approximations for non-local pa- 
rameters i , e  and ei  are proposed in [22,23]. In 
the theory of the atom structure [23] afte ng into 

account the Balmer’s relation, (11) transforms into 

 2
e en m u   ,                (27) 

where 

r taki

1, 2,n    is principal qua
sult the length scale relation was written as  

ntum number. As re- 

   0 0e e 0x H m u n m u   . But the value qu
ev m    

has the dimension 2cm s    and can be titled as quan- 
tum viscosity, 21.1577cm s.quv   Then 

2qu
e nv u  .                 (28) 

Introduce now the quantum Reynolds number 

0 0Requ quu x v .              (29) 

As result from (27)-(29) follows the condition 
quantization for . Namely 

           (30) 

5) Taking into account the previous considerations I 
in

of 
Requ

Re , 1, 2,qu n n    

troduce the following approximation for the dimen- 
sionless non-local parameter 

21 u   ,                     (31) 

2 2ku x u u   ,           (32) 0 0 0
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where the scale for the kinematical viscosity is intro- 
du 0 the physically transpar

d in i  proportion to the 
sq

ced 0
k u x  . Then we have - 

ocal parameter is proportional to the 
kinematical viscosity an nverse

0

ent result—non-l

uare of velocity. 
The system of generalized hydrodynamic Equations 

(23)-(26) (solved with the help of Maple) have the great 
possibilities of mathematical modeling as result of 
changing of eight Cauchy conditions describing the 
character features of initial perturbations which lead to 
the soliton formation. The following Maple notations on 
figures are used: r—density  , u—veloc  u , p— 
pressure p  and v—self consistent potential  . 

Explanations placed under all following figures, Maple 
program contains Maple’s notations—for example the 
expression   0 0D u   means in the usual nota

ity

tions 
  0 0 , indepeu    ndent variable t  responds to 
 . 

We be vestigation of the problem of princi- 
ple significance—is it possible after a perturbation (de- 
fined by

gin

 Cauchy condition avitationa
object of the soliton’s kind 

ith thi
ns (SYSTEM I): , 

 with in

s) to obtain the gr l 
as result of the self-organiza- 

tion of the matter? W s aim let us consider the ini- 
tial perturbatio  u 0 = 1  p 0 = 1 , 

, ,  r 0 = 1   D u 0 = 0   0 = 0 ,  D p  D r 0 = 0 , 
  D v 0 = 0 ,  v 0 = 1 . 
The Figures 2-4 reflect the result of solution of Equa-

tions (23)-(26) with the choice of scales leading to 
1N  . 

the
Figures 2-5 correspond to the approximation of 

 non-local parameter   in the form (31). Figure 2  
 

 

Figure 2. r density ρ  (dash dotted line), u velocit  u  in 
gravitational soliton. 

 

Figure. 3. p pressure (dashed line), u velocity  in 
gravitational soliton. 

 

p  u

 

Figure 4. u velocity v self consistent potential , u , Ψ
  v Ψ D t = ξ   in liton. 

 
displays the gravitational object placed in bounded re- 
gion of 1D Cartesian space, all parts of this object are 
moving with the same velocity. Important to underline 
that no special boundary conditions were used for this 
and all following cases. Then this soliton is product of 
the self-organization of gravitational matter. Figures 3 
and 4 contain the answer for formulated above question  

so

y

Copyright © 2012 SciRes.                                                                                 JMP 



B. V. ALEXEEV 1113

 

Figure 5. u velocity u , density r ρ ,   v ΨD t = ξ   in 

soliton, ( γ = 0.01 ). N

 
about stability of the object. The derivative (see Figure 4)  

     20
0 02

0

x
g u x g

u
 


 

    



  is proportional  

to the self-consistent gravitational force acting on the 
soliton and in its vicinity. Therefore the stability of the 
object is result of the self-consistent influence of the 
gravitational potential and pressure.  

Extremely important that the self-consistent gravita- 
tional force has the character of the flat area which exists 
in the vicinity of the object. This solution exists only in 
the restricted area of space; the corresponding character 
length is defined automatically as result of the numerical 
solution of the problem. The non-local parameter 

gnificant.
drody

ation f

, in 
the definite sense plays the role analogous to kinetic co- 
efficients in the usual Boltzmann kinetic theory. The in- 
fluence on the results of calculations is not too si  
The same situation exists in the generalized hy - 
namics. Really, let us use the another approxim or 
  in the simplest possible form, namely 

1  .                   (3 ) 

 Figures 6-10

3

The following  reflect the results of so- 
lution of Equations (23)-(26) with the choice of scales 
leading to 1N  , but with the approximation of the 
non-local parameter   in the form (33). 

Spiral galaxies have rather complicated geometrical 
forms and 3D calculations can be used. But reasonable to 
suppose that influence of halo on galaxy kernel is not too 
significant and to use for calculations the spherical coor- 
dinate system. The 1D calculations in the Cartesian 

 

Figure 6. r density ρ  (dashed n  in 
gravitatio on. 

li e), u velocity
nal solit

 u

 

 

  Figure 7. u velocity u , v Ψ t = ξ   (dash-dotted D

lin

system
radii of curva- 

tu

e). 
 
coordinate  correspond to calculations in the 
spherecal coordinate system by the large 

re, but have also the independent significance in an- 
other character scales. Namely for explanations of the 
meteorological front motion (without taking into account 
the Earth rotation). In this theory cyclone or anticyclone 
corresponds to moving solitons. In the Earth scale the  
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Figure 8. r density ρ , u velocity w orbital velocity u , w . 

G = 0.01 . 

 

 

Figure 9. p pressure p , 

, 

v self consistent potential in gravi- 

tational soliton, Ψ   v Ψ D t = ξ   in gravitational 

ales can be used: 

soliton. 
 
sc 3 31.29 10 cmair g   , 0 1u m s , 

0 10x km  and ~ 0.01N . Figure 5 reflects the results 
of the corresponding calculation and in particular reflects 
correctly the wind orientation in front and behind of the  
soliton. 

The full system of 3D non-local hydrodynamic equa- 
tions in moving (along x axis) Cartesian coordinate sys- 
tem and the corresponding expression for derivatives in  

 

Figure 10. r density ρ , u velocity u  in gravitational soli-

bi

 

n, w or tal veloci  

the spherical coordinate system can be found in [29,30]. 
The following figures reflect the result of soliton calcula- 
tions for the case of spherical symmetry for galaxy kernel. 
The velocity corresponds to the direction of the soli- 
ton moveme or spherical coordinate system on fol- 
lowing figu Self-consistent gravitational force 

to
 

ty w . G = 1 .

u  
nt f
res. F  

orbital acting on the unit of mass permits to define the 
velocity jects in halo, w  of ob w F r , or 

w r
r







 


,                 (34) 

where is the distance from the center of galaxy. All 
calculations are realized for the conditions (SYSTEM I) 
but for different parameter  

r  

2 2
0 0 0N N N NG x       0u .       (35) 

Parameter plays the role of similarity criteria in 
traditional hydrodynamics. Important conclusions: 

Fi

ik urve A on Figur
s 14 and 15; large G, like curve B on Figure 1) 

r typical spiral galaxies. 
planets (like Sun) corr

gravitation

l physics in principal and authors of many pa- 
pe

G  

1) The following gures 8-15 demonstrate evolution 
of the rotation curves from the Kepler regime (Figures 8 
and 9; small G, l e c e 1) to observed 
(Figure
fo

2) The stars with espond to the 
al soliton with small G and therefore originate 

the Kepler rotation regime. 
3) Regime B cannot be obtained in the frame of local 

statistica
rs introduce different approximations for additional 

“dark matter density” (as usual in Poisson equation) try- 
ing to find coincidence with data of observations. 
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Figure 11. p pressur  e p , v self c nsistent potential Ψ , 


o

 v Ψ D t = ξ   in g vi al soliton. ra tation

 

 

Figure 12. r density ρ , u velocity u  in gravitational soli-

ton, w orbital velocity w . G = 10 . 
 

4) From the wrong position of local theories Poisson 
Eq

udes “dark energy”, energy 
Eq

uation (18) contains “dark matter density”, continuity 
Equation (19) contains the “flux of dark matter density”, 
motion Equation (20) incl

uation (21) has “the flux of dark energy” and so on to 
the “senior dark velocity moments”. This entire situation 
is similar to the turbulent theories based on local statisti- 
cal physics and empirical corrections for velocity mo- 
ments. 

 

v self consistent potential ΨFigure 13. p pressure p , , 

  v Ψ D t = ξ  . 

 

 

Figure 14. r density ρ
 w

, u velocity in gravitational sol

features of the halo movement can 
e

lest interpretation of the local theories the dark  

u  

. 
i-

ton, w orbital velocity . G = 100

 
As we see peculiar 

b  explained without new concepts like “dark matter”. 
Important to underline that the shown transformation of 
the Kepler’s regime into the flat rotation curves for dif- 
ferent solitons explains the “mysterious” fact of the dark 
matter absence in the Sun vicinity. 

3. Hubble Expansion and the Problem of 
Dark Energy 

In simp
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ssFigure. 15. p pre ure p , v self consistent potential Ψ , 

  v Ψ D t = ξ  . 

 
energy is related usually to the Einstein cosmological 
constant. In review [4] the modified Newton force is 
written as 

  2

8π

3
N NM

F r r
r

     v ,          (36) 

where v  
e lim

is the Einstein-Gliner vacuum density [33]. 
In th it of large distances the influence of central 
mass M  

 (36)
 rv

o-
p of
m th

becomes negligibly small and the field of 
forces is determined only by the second term in the right 
side of . It follows from relation (36) that there is a 
distance at which the sum of the gravitation and an- 
tigravitation forces is equal to zero. In other words  is 
“the zer avitational radius”. For so 
Grou ies estimation of is about 1Mpc.

Fro e non-local statistical eory the physical p c- 
ture follows which leading to the Hubble flow witho  

rk  
36  

The main origin of Hubble effect (including the matter 
ex

 to obtain the corre- 
near 
eal- 

ize rect mathematical model supporting 

(USA) and B. Schmidt (Australia). These researchers 
studied Type 1a supernovae and determined that more 
distant galactic objects seem to move faster. Their ob- 
servations suggest that not only is the Universe expand- 
ing, its expansion is relentlessly speeding up. 

Effects of gravitational self-catching should be typical 
for Universe. The existence of “Hubble boxes” is dis- 
cussed in review [4] as typical blocks of the nearby Uni- 
verse. Gravitational self-catching takes place for Big 
Bang having given birth to the global expansion of Uni- 
verse, but also for Little Bang in so called Local Group 
(using the Hubble’s terminology) of galaxies. Then the 
evolution of the Local Group (the typical Hubble box) is 
really fruitful field for testing of different theoretical 
constructions (see Figure 16). The data were obtained by 
Karachentsev and his collaborators in 2002-2007 in ob-
servation with the Hubble Space Telescope [4,32]. Each 
point corresponds to a galaxy with measured values of 
distance and line-of-site velocity in the reference fram

 
shows two distinct structures, the Local Group and the 

cal flow of galaxies. The galaxies of the Local Group 

(positive velocities) and toward the center 
(negative velocities). These galaxies form
ally bound quasi-stationary system. Th
velocity is equal to zero. The galaxies of the local flow 

 

gr
 galax

rv

called Local 
 

i
rv  

 th
ut

new essence like da  energy and without modification 
of Newton force like ( ).

Namely: 

pansion with acceleration) is self—catching of ex- 
panding matter by the self—consistent gravitational field 
in conditions of weak influence of the central massive 
bodies. 

The formulated result is obtained in the frame of the 
linear theory [25,31]. Is it possible
sponding result on the level of the general non-li
description? Such an investigation was successfully r

d and leads to a di
the well known observations of S. Perlmutter, A. Riess 

e 
related to the center of the Local Group. The diagram 

lo
occupy a volume with the radius up to ~1.1 - 1.2 Mpc, 
but there are no galaxies in the volume whose radius is 
less than 0.25 Mpc. These galaxies move both away from 
the center 

 a gravitation- 
eir average radial 

are located outside the group and all of them are mov- 
ing from the center (positive velocities) beginning their 
motion near 1 MpcR   with the velocity ~ 50 km/sv . 
By the way the measured by Karachentsev the average 
Hubble parameter for the Local Group is 72 ± 6 

1 1km s Mpc  . 
Let us choose these values as scales: 

0 01 Mpc, 50 km/sx u  .         (37) 

Recession velocities increase as the distance increases 
in accordance with the Hubble law. The straight line 
correspond the dependence from observations 

 r r  v H                 (38) 

for the region outside of the Local Group. In the non- 
dimensional form  

 v H r r                     (39) 

where 

 0

0

x
H H r

u
  .               (40) 

For the following calculations we should choose the 
corresponding scales (especially for estimating G ) for 
modeling of the Local Group evolution     
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tances of up to 3 Mpc for local group of galaxies. Figure 16. Velocity-distance diagram for galaxies at
 

 dis

2 2
0 0 0 0N N N NG x u       .        (41) 

For the density scale estimation the average density of 
the local flow could be used. But the corresponding data 
are not accessible and I use the average density of the 
Local Group which can be taken from references [32,34] 
with 29 3

0 4.85 10 g cm   .
1

 Then from (41) we have 

Let us go now to the mathematical modeling. The non- 
local system of hydrodynamic equations describing the 
explosion with the spherical symmetry is written as (see  

[30], Appendix 2) 

G  . 

rg
r


 


,                (42) 

(Poisson equation) 
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2
2 2

1 1
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r v
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, (43) 

(Continuity equation) 
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(Motion equation) 
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(Energy equation) 
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The system of Equations (43)-(46) belongs to the class 
of the 1D non-stationary equations and can be solved by 
kn thods. But for the aims of the trans-
pa cal modeling of self-catching of the 
expanding matter by the self-consistent gravitational 
field I introduce the following assumption. Let us allot 
the quasi-stationary Hubble regime when only the im-
plicit dependence on time for the unknown values exists. 
It means that for the intermediate (Hubble) regime the 

substitution 

(46) 

r

r
v

t r t r

   
 

   
              (47) 

can be introduced. As result we have the following sys- 
tem of the 1D dimensionless equations: 

own numerical me
rent vast mathemati
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The system of generalized hydrodynamic equations 

(48)-(51) have the great possibilities of mathematical 
modeling as result of changing of eight Cauchy condi- 
tions describing the character features of the local flow 
evolution. The following Maple notations on figures are 
used: r—density  , u—velocity , p—pressure 
and v—self consistent potential 

rv p  
 , h — H

placed unde
s Map
  

 and i
pendent variable . Explan
following figures, e progra ain le’s 
tations—for exam e the expression  m
in the usual not

nde- 
r all 
no- 

eans 

t is 
 Map
pl

ations 

r
l

ations 
 cont

D u
m

  0 0
  

-
0 0 .  

local
u r  

As mentioned  the non before,  parameter 

gnificant,
general

following 
e

, in 
the definite sense plays the role analogous to kinetic co- 
efficients in the usual Boltzmann kinetic theory. The in- 
fluence on the results of calculations is not too si  
(see (31, 33)). The same situation exists in the - 
ized hydrodynamics. As before I introduce the 
approximation for the dimensionless non-local param ter 
(see (31), here ru v  ) 21 u   . Let us define als  the 
dime celeration func  
quasi-stationary regime 

o
tion for thensionless acceleration-de

rv u
Q

r r

 
 
 
 
 

,                 (52) 

as an analogue of the dimensionless deceleration function 
which was used in [28]. 

One obtains for the approximation (31) and SYSTEM 
2:  

q  

 v 1 = 1,  u 1 = 1,  r 1 = 1, ,  p 1 = 1   D v 1 = 0
. 

= 1. From these 

, 

cal- culations follow: 
) As it was waiting the quasi-stationary regime exists 

on

sh F or-
ce ct al

  D u 1 =
Figures

0 ,  D r
 17 and 18

 1 = 0 , 
 correspo

  D p 1 =
nd to G 

0

1
ly in the restricted (on the left and on the right sides) 

area. Out of these boundaries the explicit time dependent 
regime should be considered. But it is not the Hubble 
regime. 

2) In the Hubble regime one obtains the negative area 
(low part of the da -dotted curve of igure 17). It c  
responds to the self-consistent for  a ing ong the ex- 
pansion of the local flow.  

3) The dependence of  H r   is not linear (see Figure 
18), more over the curvature cont m. The 
area of acceleration pl

ains maximu
aced between two areas of the de-

celeration. 
Let us show now the result of calculations for another 

  approximation in the simplest possible form, namely 
(see also (33)) 1  . One obtains for this  - approxi- 
mation and SYSTEM 2 for G = 1, see Figures 19-22. 

We can add to the previous conclusions: 
4) Approximation const   conserves all principal 

characters of the previous dependences, but the area of 
the Hubble regime becomes larger. 

5) Approximation const 

 

Figure 17. Dependence of the acceleration-deceleration 
function  (in Maple notation Q     D u t = u r  ), deriva-

tion of -consistent potential  the self   v Ψ D t = ξ   and 

velocity on the radial distance 

 
u  u = r . 

 

Figure 18. Dependence of the dimensionless Hubble pa-
rameter on the radial distance. 
 
numerical transition to the “classical” gas dynamics of 
explosions. By the 0   there are no Hubble regimes 
in

istent gravitational field. 

 principal. 
6) Diminishing of G leads to diminishing of the area of 

the Hubble regime with the positive acceleration of the 
matter catched by the self-cons

7) Dependence of  H r   es not contain the maxi- do   allows realizing the  
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Figure 19. r density ρ , u u ,   v Ψ D t = ξ  . 

 

 

Figure 20. Dependence of the acceleration-deceleration 

    D u t = u r 

 

 

Figure 21. Dependence of the dimensionless Hubble pa-
rameter on the radial distance for G = 1. 
 

 

Figure 22. Dependence of the dimensionless hubble pa- 
rameter on the radial distance for G = 10. 
 
the rotational speeds of galaxies and the Hubble expan- 
sion with acceleration need not in the introduction of new 
essence like dark matter and dark energy. 

4. Conclusion 

The  n o heory is applied for 
athematical modeling of cosmic objects with success. 

 case of galaxies the theory leads to the flat rota- 
tion curves known from observations. The transformation  

 on r . 

mum on the curve for the small value of parameter G (A- 
regime). It is reasonable to find from the observation the 
Hubble boxes where A-regime is realizing. Considera- 
tion of the Local Group evolution of galaxies (see Figure 
16) leaves the impression that this burst responds to the 
PRS-regime. 

As we see the Hubble expansion with acceleration is 
explained as result of mathematical modeling based on 
the principles of non-local physics. Peculiar features of  

unified generalized on-l cal t
m
For the
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of Kepler’s regime into the flat rotation curves for dif- 
ferent solitons is shown. The origin of Hubble effect (in-
cluding the matter expansion with acceleration) is self- 
catching of the expanding matter by the self-consistent 
gravitational field in conditions of weak influence of the 
central massive bodies. The Hubble expansion with ac- 
celeration is obtained as result of mathematical modeling 
based on the principles of non-local physics. Peculiar 
features of the rotational speeds of galaxies and effects of 
the Hubble expansion need not in the introduction of new 
essence like dark matter and dark energy. The origin of 
difficulties consists in the total Oversimplification fol- 
lowing from the principles of local physics. 
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ABSTRACT 

For the past forty years the search for dark matter has been one of the primary foci of astrophysics, although there has 
yet to be any direct evidence for its existence [1]. Indirect evidence for the existence of dark matter is largely rooted in 

the rotational speeds of stars within their host galaxies, where, instead of having a  radial dependence, stars ap-
pear to have orbital speeds independent of their distance from the galactic center, which led to proposed existence of 
dark matter [1,2]. We propose an alternate explanation for the observed stellar motions within galaxies, combining the 
standard treatment of a fluid-like spacetime with the possibility of a “bulk flow” of mass through the Universe. The 
differential “flow” of spacetime could generate vorticies capable of providing the “perceived” rotational speeds in ex-
cess of those predicted by Newtonian mechanics. Although a more detailed analysis of our theory is forthcoming, we 
find a crude “order of magnitude” calculation can explain this phenomena. We also find that this can be used to explain 
the graviational lensing observed around globular clusters like “Bullet Cluster”. 

1/2r

 
Keywords: Dark Matter; Galaxy; Relativity; Gravitation 

1. Introduction 

In the pursuit of determining a model that accurately 
predicts the past, present, and future of the evolution of 
the Universe, physicists have generated a range of possi-
ble candidates. Currently, the most generally accepted 
being the CDM model, which contains, among others, 
parameters dealing with the existence of a cosmological 
constant ( ) and cold dark matter (CDM). Furthermore, 
the existence of the dark matter component of this cos-
mology, and others, is not that which is generally con-
sidered contentious. Dark matter has rather become 
somewhat of a staple in the diet of cosmologies. How-
ever, there are observational reasons to give pause to the 
assumed existence of Universal cold dark matter, which 
then should lead us to question whether or not there are 
other alternative models. 





Models of dark matter succeed in accounting for the 
galactic rotation curves observed throughout the Uni-
verse, by increasing the mass of the galaxy beyond the 
observed. There are, however, simple problems with the 
dark matter halo model that have yet to be fully ex-
plained (e.g. [3-7]). One of these problems is the dispar-
ity between the observed (stellar) mass function, usually 
defined in terms of the Schechter function, and the theo-
retically expected cosmological halo mass function [8]. 
One of the defining problems of galactic formation and 

evolution is determining the origins of this disparity. This 
is an example of how our understanding of dark matter 
(or lack there of) is still grounds for much debate. How-
ever, if it may be possible to utilise a different model for 
the origin of galactic formation then it is possible that 
some of these questions may be answered. 

Recently, there has been some observational evidence 
for the “bulk flow” of matter through the Universe [9-13]. 
If these measurements prove to be true, then the nature of 
this flow is of interest beyond that of the distribution of 
matter in the Universe. Specifically relevant to this dis-
cussion is the interpretation that the “flow” observed is 
caused not by an en masse transit of matter through the 
Universe, but rather by the motion of spacetime itself. 
Whilst this concept is indeed foreign it can be considered 
somewhat preferential to the former case, from an iso-
tropic viewpoint, as the motions of objects in the Uni-
verse need not be preferentially oriented in this regime. 
More importantly, variation in the “bulk flow” of space-
time fluid through the Universe could produce eddies in 
spacetime and provide the additional unexplained veloc-
ity to rotational speeds of stars beyond the central bulge 
of galaxies. 

As the intention of this paper is to merely propose an 
alternative theoretical explanation for observations con-
sistent with the existence of dark matter the structure is 
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as follows: Section 2 describes the treatment of space-
time as a fluid. Sections 3 and 4 discuss classical fluid 
dynamics and relativistic fluid dynamics and how votices 
in the spacetime “fluid” can produce observations con-
sisten with dark matter. Finally we present concluding 
remarks and propose future work in Section 5. 

2. Spacetime as a Fluid and the Differential 
Rotation of Spacetime 

In General Relativity it is common for theories to com-
pare the nature of the spacetime coordinate system to an 
ideal fluid, often called the “cosmic fluid”. This treat-
ment is integral for the formulation of many concepts in 
GR, including the formation and propagation of gravita-
tional waves. Additionally, Kerr-Newman geometry for a 
rotating black hole, which predicts an effective “differ-
encial rotation” of spacetime. The principle effect re-
garding black hole studies is the implication that, within  

2 2 2
0 cosr M M a    , it is impossible to remain sta-  

tionary with respect to distant “stationary” observer 
beyond . 0

The Kerr-Newman geometery has been used to suc-
cessfully describe the light curves of rapidly rotating 
neutron stars [14]. Doppler boosting and time-delay- 
induced pertubations from frame-dragging cause “soft 
lags” in pulse profiles of neutron stars which have been 
measured in X-ray spectra. 

r

As a starting point for our proposition we use this ge-
ometry, simply as an example of how the differential 
rotation of spacetime is possible. We leave all other black- 
hole allegories or implications of a large, dense, rotating 
mass located at the “centre of the Universe” behind. 

3. Vortices in Classical Fluid Dynamics 

If spacetime is able to experience a form of differential 
rotation, then it is of interest to examine how this would 
impact the fluid treatment we noted earlier. 

Classical fluid dynamics states that eddies/vortices 
with angular velocity  occur for any differential 
flow as:  

vort

v =ort  v                  (1) 

and 

 
v

v= .
ort

ort

t

 
 


v  

Due to the chaotic nature of this relationship, when 
applied to astronomical distances and timescales even 
small perturbations can ultimately produce large scale 
phenomena. 

Essentially, if we treat spacetime as a classical fluid 
with turbulence caused by a differential flow as observed 
by Osborne et al. [12] (and others), spatial variations in 

the flow would generate eddies that could not only host 
galaxies, but adequately explain their rotational dynamics 
as well. 

Treating spacetime as a classical fluid, and assuming 
the velocity of any “bulk flow” is  

   ˆ ˆ= , ,x yv x y x v x y yv
v 2ort

,  

we find  where  1/22=z x yv v    =i i jv v x i   .  

van Albada et al. [15] utilised light curves to show that 
rotational velocities of stars deviated from Newtonian 
mechanics by  km/s at a radial distance of  
kpc from the galactic centre. We find that, to account for 

50 20

this discrepancy ,   1/22 2
x yv v v   

1 1v = 3kms kpcort v   

v

 for observed velocities of the 
outer most stars of a galaxy which correspond to the 
largest values of  . So, given some bulk flow through 
in the local Universe, there only need be a systematic 
variation of 13kms kpc 1 

r r

 within the flow to produce 
an eddy large enough to provide the unaccounted veloc-
ity to the outermost stars of a galaxy. Furthermore, as the 
velocity of the eddy is dependent on radius from the cen-
tre of the eddy (i.e. the galactic centre), the effect will 
diminish as the radius from the galactic centre decreases. 
Accounting for the increase in observable galactic mass 
with decreasing radius, it can be supposed that as one 
approaches the galactic centre the motion of stars be-
comes primarily governed by gravitation. Formulated 
simply: as c , * Nv  v , where c  is the radius of 
the galactic “bulge” and 

r

Nv  is the orbital speed of stars 
predicted by Newtonian mechanics. 

In this way, we propose that the observed motion of 
galactic stars over the entire disk may be explained by 
the presence of eddies in spacetime caused by apprecia-
bly small variations in “bulk flow”. 

Thus far we have treated spacetime as a classical fluid, 
but as we are dealing with distortions of spacetime rela-
tivistic effects must be addressed. Greenberg found that, 
independent of any relativistic geometry used, the angu-
lar velocity 2-form of an eddy/vortex is  

 ; ;

1
=

2
u u                   (2) 

where u  is the velocity 4-vector of the “fluid” [16]. 
The most noticeable difference between Equations (1) 
and (2) is the coupled nature of spacetime. Therefore any 
changes in the “flow” over time could also produce vor-
tices in spacetime, much like those produced by varia-
tions in differential flow in classical dynamics. Coupling 
temporal and spatial variations could further enhance the 
turbulent nature of spacetime, and thus the production of 
eddies where galaxies could grow. 

4. Relativis Fluid Dynamics 

Examining the relativistic case, we can choose a refer-
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ence frame such that 0tu  , and the spatial components 

iu  are all zero. The r ng behind this is that, for an 
ternal observer, the motion of a “fluid” through a sta-

tionary reference frame is observationally indifferent to a 
static “fluid” in a co-moving reference frame. Using this 
restriction, Equation (2) becomes  

easoni
ex

;

1
= =

2ti it t iu                  (3) 

Since this essentially a 2-form for a vortex in space-
time, the magnitude of the resulting rotation would be 

2 = = ,g g  
                 (4) 

which is the magnitude of the rotation for the vortex, 
squared. Since it contains products of    , then, in 
principle, 2  can be non-zero. Additionally, the co-
variant der tive embedded in iva   provides us with 
information on variations within g  (spacetime) that 
yield 2 0  , possibly explaining o rved phenomena. 

We  the comprehensive mathematical analysis 
bse

reserve
for a forthcoming paper and merely present a simplified 
“glimpse” of the interpretation of Equation (4). If a vor-
tex in spacetime is to be used as a possible explanation 
for the observed rotational velocities of stars, and on av-
erage, these velocities are independent of angular posi-
tion within the galaxy as well as vertical position within 
the disc, we have assumed that ; ;= = 0t t zu u , hence 

 

  

2

2 2

= 2

1
=

4

rt

t tt rr tr
r t rt t

g g g

u u g g g

  
2 2 tt rr tr   

,     

      (5) 

because =tr rtg g  and =tr rt  . This can be used as a 
restrictio pertiesn for pro  of g  and expand upon ex-
isting geometries such as the Kerr-Newman and/or 
Friedmann-Robertson-Walker metrics, which will be 
presented in subsequent publications. Here we merely 
present evidence that small perturbations in g  and 

tu  may be used to explain the rotational speeds  stars 
other galaxies. 
Assuming the 

 of
in 

metric for the local spacetime is es- 
sentially flat, =g g    , as well as the variations 
in tu  tu r tu   tions in  and the varia g  as  

t
t rt tgu u ,

riat
   can approximate the magnit

ions” that could explain observed phenom-
ena. Since we are assuming cross terms are small and 

1tt rrg g  ,  22
t tu gu   . In the extreme case 

rot tars for a galaxy, as 
predicted by theory is zero, * ?=v r

 we

ational speed of

udes of 
these “va

where the  s
  or  

4 1 1
* ?= 10 kms Lyrv r    at  and th = 0tu  imply- 

ing that the stellar motion is purely from s in the 
geometry. Coupling this with the afore mentioned indif-
ference of motion through spacetime and spacetime mov- 
ing with the “fluid” we can approximate the magnitude 

of 

variation

g . Based on observations of Osborne et al. [12], we 
assu  that 1100kmstume  . Therefore, we determine 
that 10g 6 1Lyr   could  produce effects consistent 
with stellar rotational velocities observed. Additionally, 
Osborne et al. [12] also found that the “flow” changed by 

150kms  between the redshifts of 0.4 and 0.8. Again, 
argely due to variations in the geometry of 

spacetime, this would imply 8 110 kmsg   . Though 
this is smaller than the previou , that ap-
proximation did not account for the motion of stars from 
Newtonian mechanics. 

if this is l

5. Summary 

s approximation

ted to dark maIf the observed effects attribu tter are in-
deed caused by the turbulent flow of spacetime, then we 
can simply hypothesise that any galaxy in a cluster 
formed in this way should all rotate in the same direction. 
Albeit only significant to 1.6 , evidence for this effect 
has been detected by Long al. [17]. There is no rea-
son to expect that this observation would also be caused 
in the dark matter Regime for reasons other than chance. 
As this is a simple method to determine if turbulent 
spacetime flows may be the cause of galactic rotational 
curves, Doppler measurements of stellar velocities in 
galaxies are extremely important. Furthermore, if rota-
tional curves for distant galaxies can be found, isotropy 
measurements could serve as an additional constraint for 
the validity of this theory. 

Finally, we find that cha

o 

oti

e

c t on both 

xplain the 

t 

 flows could exis

, effectively e

“la

ma

rge” and “small” scales. Large scale turbulence is 
dominated by the “flow” velocity and the uniformity 
thereof. In this context, “large” scale turbulence would 
be on a galactic scale, with “large” eddies being compa-
rable to the size of a galaxy, which could be used to ex-
plain why galaxies are not “sheared” apart. Small scale 
turbulence is dominated by the viscosity of the flow, 
which would most likely be caused by the gravitational 
attraction of masses present in the region of the eddy, as 
mentioned previously in relation to the galactic rotation 
curves. The scale of a “small eddy” would be comparable 
to that of stellar clusters. Since these clusters are still 
affected by distortions in spacetime, this could explain 
the observed gravitational lensing caused by some stellar 
clusters that could not be explained by modified Newto-
nian dynamics (MOND) [18]. 

This concept can, therefore
jor observations that lead to the introduction of dark 

matter, and removes the need for the existence of a mas-
sive dark matter halo about galaxies. If this theory is 
correct, galaxies co-located within a differentially mov-
ing frame, should all rotate in the same direction (i.e. 
same chirality). Additionally, when observed from an 
external reference frame, there should be variations in the 
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local spacetime of a galaxy 4 1 110 kms Lyrtgu     
where tu  is the observed “flow  
galaxie

Finally can n

” of the surrounding
s. 

ow draw some different, interesting, c
cl

ated above, many of these conclusion are too 
co
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ABSTRACT 
Modified Newtonian Dynamics (MOND) is one of the successful theories to explain the dark matter problem in galax-
ies. However, the data from clusters and the cosmic microwave background (CMB) indicate some dark matter should 
exist in larger scales. In addition, recent dynamical studies of clusters show that the effect of dark energy should not be 
ignored in cluster scale. In this article, I will demonstrate how dark energy affects the cluster mass calculation by using 
MOND. Also, I will show that the calculated cluster mass is consistent with the total matter to baryonic matter ratio 
obtained by the CMB data. 
 
Keywords: Gravitation-Galaxies; Clusters; General-Dark Matter 

1. Introduction 
The dark matter problem is one of the key issues in mo- 
dern astrophysics. The existence of cold dark matter 
(CDM) particles is the generally accepted model to tackle 
the darkmatter problem. However, no such particles have 
been detected directly. In addition, the CDM model also 
encounter many well-known unresolved issues such as 
the cusp problem [1,2], the missing satellite problem [3] 
and more recently the observation of the tidal dwarf ga-
laxies [4]. Another alternative theory uses the Modified 
Newtonian Dynamics (MOND) as the weak acceleration- 
limit of Einstein’s general relativity to explain the dark 
matter problem [5-7]. It is consistent with a wide range 
of observational data including the rotation curves of ga- 
laxies and the Tully-Fisher relation [6]. However, the re- 
cent data from gravitational lensing and hot gas in clus- 
ters challenge the original idea of MOND without any 
dark matter (classical MOND) [7-9]. Sanders (1999) stu- 
died 93 X-ray emitting clusters and pointed out that the 
cluster dark matter problem cannot be solved by MOND 
alone. Some 2 eV active neutrinos are needed to account 
for the missing mass in clusters [10]. Later, studies of 
gravitational lensing and hot gas in clusters show that the 
existence of 2 eV neutrinos is still not enough to explain 
the missing mass in clusters. Therefore, some more mas- 
sive dark matter particles (e.g. sterile neutrinos) is re-
quired to account for the missing mass [9,11,12]. It can 
be shown that the equilibrium configuration of these ste-
rile neutrinos is consistent with the missing mass in clus- 
ters [13]. On the other hand, the data from the Cosmic 
Microwave Background (CMB) indicate a large amount 
of dark matter is needed to explain the CMB spectral 

shape [14]. Angus (2009) shows that the existence of 
∼11 eV neutrinos is consistent with the CMB data and 
the analytic results of the Miniboone experiment [15]. 
Therefore, the mainstream of the discussion in MOND 
recently is not opposing the existence of dark matter, but 
the existence of CDM [16]. 

It has recently been recognized that dark energy exists 
in our universe. Angus (2009) shows that if MOND the- 
ory is needed to satisfy the fitting in CMB spectrum, a 
large amount of dark energy is required. Therefore, both 
CDM and MOND theories should consider the effect of 
dark energy. The local dynamic effects of dark energy 
were first reported by Chernin, Teerikorpi and Baryshev 
(2003) [17]. Later, Bisnovatyi-Kogan and Chernin (2012) 
show that the dark energy may affect the clusters at a few 
Mpc scale by Newtonian dynamics [18]. In the MOND 
regime, the calculated cluster mass is smaller than the 
one calculated by the Newtonian dynamics [6]. Therefore, 
the effect of the dark energy in clusters under the MOND 
theory will be larger. In this article, I will demonstrate 
how dark energy affects the cluster mass calculation by 
using MOND. Also, I will show that the calculated clus- 
ter mass is consistent with the total matter to baryonic 
matter ratio obtained by the CMB data. 

2. MOND with Dark Energy in Clusters 
The effective gravitational acceleration in MOND is 
given by [5,6] 

0ng g a=                   (1) 
when 0g a , where gn is the Newtonian gravity and a0 
= 1.2 × 10−8 cm·s−2. If we assume that the hot gas with 
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uniform temperature T in cluster is a pressure supported 
system, we have [6] 

d
dg

kT g
m r

ρ ρ
 

′= −  
 

          (2) 

where mg is the mass of a gas particle, ρ  is the density 
profile of the hot gas and g′ is the total gravity of the sys- 
tem. The global dark energy density is λρ  = 7 × 10−30 
g·cm−3 [18]. This dark energy density contributes to the 
antigravity in the system. Since there are no MOND ef- 
fects before recombination, no MOND effects should in- 
fluence the CMB [7]. Therefore, the amount of dark en- 
ergy should be the same for Newtonian and MOND limit. 
The major difference is the effect of the dark energy in 
MOND limit may be smaller than that in the Newtonian 
limit. Therefore, the anti-gravity in the MOND regime is 

08π
3

Ga r
g λ
λ

ρ
= −          (3) 

Since the total gravity can be written as g g gλ′ = + , 
by using Equations (1)-(3), we have 

3
0

0
8πd ln

d ln 3g

Ga rkT GMa
m r

λρρ 
= − +  

 
   (4) 

where M is the total mass of the cluster. By using the gas 
model in clusters for large r, d ln d ln 3rρ β≈ −  [19]. 
Therefore, from the above equation, we get 

2 23
0 2

0 1

8π1 3 1
3 m

g

Ga r CkTM M
Ga m C

λρβ   
 = + = +     

(5) 

where Mm ≈ 6 × 1012 M⊙(T/1 keV)2 is the total cluster 
mass without dark energy in classical MOND [10],  

1 3C kT mgβ=  and 3
2 08π3C Ga rλρ= . For a typical  

cluster, β = 0.66, T = 5 × 107 K and r = 1.5 Mpc, C2/C1 ≈ 
0.17. Therefore, the total cluster mass is 1.172 ≈ 1.4 times 
larger than the one calculated by the classical MOND. 
For larger clusters, the effect of dark energy will be much 
more significant. Therefore, the cluster mass probed from 
the hot gas by MOND is underestimated if we do not 
consider the dark energy. It means that more dark matter 
should exist in clusters. 

In fact, observational data shows that the mass of hot 
gas can be fitted empirically by [20] 

2
121.7 10

1 keVg
TM M

 
≈ ×  

 
          (6) 

where Mg is the total mass of hot gas in a cluster. There- 
fore, the predicted cluster mass by the classical MOND is 
3.5 times larger than the observed baryonic mass  
( gmM M  ≈ 3.5) [10]. Sanders (2007); Angus, Famaey 
and Buote (2008) propose that the existence of active or 

sterile neutrinos in clusters may account for the missing 
mass. Angus (2009) obtains a good fit to the CMB spec- 
trum by assuming all non-baryonic matter is composed 
by the acitve and sterile neutrinos. The fitted cosmologi- 
cal density parameters of baryons and matter are Ω bh2 = 
0.0024 and Ωmh2 = 0.117 respectively [7]. Therefore, we 
have m bΩ Ω  ≈ 5. This ratio is indeed larger than the 
ratio predicted by the classical MOND. Nevertheless, if 
we include the effect of dark energy by using the Equa-
tion (5) for a typical cluster, the ratio becomes gmM M  
= 1.172 gmM M  ≈ 4.8, which is very closed to the ratio 
obtained by the cosmological density parameters. There-
fore, the calculated ratio of total matter to baryonic mat-
ter in clusters by using MOND matches the result of the 
CMB if we include the effect of dark energy. 

3. Discussion and Conclusions 
In this article, we consider the effect of dark energy in 
clusters. In the MOND regime, the contribution of the 
anti-gravity effect by dark energy density is significant to 
the total cluster mass calculation. The total cluster mass 
for a typical cluster can be 40% larger than the one cal- 
culated by the classical MOND. It represents a larger 
amount of dark matter should exist in clusters. Therefore, 
the existence of 2 eV active neutrinos in clusters is not 
enough to account for the missing mass. Since more mas- 
sive active neutrinos (>2 eV) may violate the experimen- 
tal bounds [10], the existence of sterile neutrinos are re- 
quired for the explanation in MOND. On the other hand, 
the calculated total mass to baryonic mass ratio is con- 
sistent with the cosmological data from the CMB spec-
trum if we include the effect of dark energy. 

Since the CDM scenario encounters many fundamen- 
tal problems including the cusp and the missing satellite 
problem, the MOND together with the existence of ste-
rile neutrino hot dark matter (HDM) is the only theory 
which can retain in the recent challenges. Since neutrinos 
contain mass, there should exist right-handed neutrinos 
which may indeed be the massive sterile neutrinos [21]. 
The existence of eV order sterile neutrinos can explain 
the missing mass in the clusters and our universe [7]. 
Also it can explain the recent analysis of the Miniboone 
experiment and get a good fit in the CMB spectrum [7, 
15]. The free stremaing scale of the eVorder sterile neu-
trinos is λ∼Mpc [10], which can form structure in clus-
ters and contribute to the total mass in clusters. Since the 
free streaming scale is larger than the size of a typical 
galaxy, no hot dark matter can form detectable structure 
within galaxies. As a result, the classical MOND alone is 
able to explain the rotation curves of galaxies without the 
help of HDM. 

To conclude, the existence of dark energy can affect 
the calculated cluster mass by MOND significantly. Also, 
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the MOND + HDM scenario may be one of the best theo- 
ries to explain the dark matter problem in the future. 
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ABSTRACT 

Dark matter was first suspected in clusters of galaxies when these galaxies were found to move with too high a speed to 
be retained in the cluster by their gravitational influence on each other. Some current theories favor cold dark matter 
models where particles are created with low velocity dispersions and thus would become trapped in baryonic gravita-
tional potentials. According to the standard Big-Bang model, dark matter is of nonbaryonic origin, otherwise the ob-
served abundance of helium in the Universe would be violated. In this work, recent theoretical and observational de-
velopments are used to form a consistent picture of the events in the early Universe that gave rise to dark matter. Ac-
cording to the model that will be presented in this paper, supersymmetry plays a major role. In addition, the possibility 
that dark matter evolves in a spacetime manifold different from that of the observed Universe is discussed. 
 
Keywords: Dark Matter; Observations; Candidates; Supersymmetry 

1. Introduction 

During the last two decades, dark matter (DM) has occu- 
pied a pioneering position in research concerning cos- 
mology and theoretical physics. There is compelling 
evidence that about 90% of the mass of the Universe is 
invisible, that is, it neither emits nor absorbs electro- 
magnetic radiation. Data implying nonluminous matter 
surfaced in the 1930s. The first glimpse came when Oort 
analyzed the Doppler shift in the spectra of stars in the 
galactic disk and concluded that the mass of visible stars 
cannot explain the amount of gravitating matter implied 
by the measured velocities [1]. This finding was then 
confirmed by Zwicky who, by observing the Coma 
Cluster of galaxies, concluded that the velocity disper- 
sions in rich clusters of galaxies require a huge amount 
of mass to keep them bound than could be accounted for 
by the luminous galaxies themselves [2]. The strongest 
evidence for dark matter comes from studies of the mass 
of individual galaxies. Mass estimates of individual gal- 
axies can be obtained from the velocity dispersions or 
rotation curves of stars and gas making up the galaxy 
itself, or from the positions and velocities of globular 
clusters and satellite galaxies. Although these rotation 
curves trace the disk, several lines of argument strongly 
suggest that much of the nonluminous mass is in the 
spherical component that makes up the galactic halo 
[3-7]. 

Several models have been proposed to explain the ori- 

gin of dark matter. Weakly interacting massive particles 
(WIMPs) and massive compact halo objects (MACHOs) 
are the prime candidates [8,9]. The proposal of WIMPs 
as a potential candidate is motivated by the fact that pri- 
mordial nucleosynthesis provides only 0.2 of the cosmo- 
logical density parameter (Ω0 = ρ/ρC = 0.2), whereas in- 
flationary theory and observational evidence suggest Ω0 
= 1 [10-12]. The MACHOs’ approach is based on finding 
a more natural explanation for DM using microlensing 
techniques. This approach, as we are going to see, may 
prove to be an invaluable tool for investigating the possi-
bility of DM clumps in the galactic halo. Other potential 
DM candidates, such as primordial black holes and 
holeums, will also be discussed. Modified Newtonian dy- 
namics (MOND) was a new approach that was proposed 
as a modification of Newton’s law of gravity to explain 
the galactic rotation curves [13], and it will be briefly de- 
scribed in this paper. 

Recently, new strategies have been developed to di- 
rectly observe DM by mapping its distribution in the 
Universe through its gravitational interaction with ordi- 
nary matter. Moreover, models and observational data 
give strong hints about the origin of DM [14,15]. 

The primary motivation for this paper is twofold: 1) to 
highlight the difficulties associated with the existing mo- 
dels that attempt to explain the nature and origin of DM. 
2) to discuss some possible theoretical frames, sup- 
ported by recent theoretical and observational data, in 
order to have a deeper understanding of the origin of DM 
and the associated problems. *Corresponding author. 
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2. Observational Evidence for Dark Matter 

Observational evidence for dark matter has a long history 
starting with the work of Jan Oort and Fritz Zwicky in 
the early 1930s. In 1932, while studying the spectra of 
nearby stars in the Milky Way Galaxy, Oort noticed that 
the Doppler shifts of these stars indicated velocities that 
were too high to be accounted for by ordinary visible 
matter. In fact, the stars were moving so fast that they 
should have escaped from the Galaxy. Since the stars 
were clearly bound to the galaxy, Oort suggested that 
there must be additional, nonvisible matter in our Galaxy. 
Shortly after that, in 1933, Fritz Zwicky reached a similar 
conclusion while studying the velocities of galaxies in 
the Coma Cluster [16]. By measuring the velocities of 
galaxies near the edge of the cluster and making use of 
the virial theorem which states that 

2 K U                 (1) 

where K  and U  are the system’s mean kinetic 
and potential energies, respectively, and where it is un- 
derstood that the system has reached equilibrium or 
steady-state, Zwicky was able to estimate the cluster’s to- 
tal mass, which turned out to be approximately 400 times 
that of the luminous mass. Thus, Zwicky concluded that 
there must be a huge amount of nonvisible matter hold-
ing the cluster together [16]. 

Much later, in the 1960s and 1970s, work by Vera Ru- 
bin and her collaborators led to new observational evi-
dence for dark matter. Rubin investigated the rotation 
curves for edge-on spiral galaxies, and surprisingly found 
flat rotation curves that extended all the way to the edges 
of the galaxies [17]. To appreciate why these observa- 
tions were completely unexpected, consider a star of 
mass m orbiting at a distance r from the center of a spiral 
galaxy with a velocity v. From Newtonian mechanics 

2  rmv r GM m r 2          (2) 

where Mr is the galaxy’s mass contained within the star’s 
orbit, and G is the gravitational constant. Solving for Mr 
and then differentiating with respect to r, we obtain 

2d drM r v G             (3) 

But for a spherically symmetric system, the mass con- 
tinuity equation gives 

 2d d 4πrM r r  r         (4) 

where (r) is the mass density as a function of orbital 
distance. By equating Equations (3) and (4) we obtain 

  2 4πr v Gr  2           (5) 

which indicates that the density varies as r2, whereas the 
observed number density of visible stars seems to fall off 
much more sharply, specifically as r3.5. To reconcile this 

discrepancy, one needs to invoke the existence of nonlu- 
minous or dark matter. 

Building on the work of Rubin, other investigators 
studied the velocity dispersions of elliptical galaxies. The 
velocity dispersion, , refers to the range of velocities 
about some mean value. The results obtained by different 
groups were in line with those of Rubin, and again 
pointed to the existence of large amounts of dark matter 
[18]. 

Another source of observational evidence for the exis- 
tence of dark matter comes from gravitational lensing, 
which does not rely on orbital dynamics but rather uses 
the effects of general relativity to predict the mass. The 
results obtained for the mass-to-light ratio are in agree- 
ment with those obtained from dynamical studies [19]. 

Further evidence for the existence of dark matter 
comes from Big Bang nucleosynthesis, structure forma- 
tion studies, and investigations of the anisotropies in the 
Cosmic Microwave Background, especially those by 
COBE, Boomerang, and WMAP [20-23]. The WMAP 
power spectrum results for the Cosmic Microwave Back- 
ground provided compelling evidence for the existence 
of dark matter. The first peak in the power spectrum is 
related to baryonic matter, whereas the third peak, which 
was resolved by WMAP, is directly related to the density 
of dark matter [24,25]. 

The above observations succeeded in ruling out certain 
models for structure formation like cosmic strings, and 
lent support to other theories like cosmic inflation. 
WMAP also succeeded in establishing the CDM model 
which is currently considered the Standard Model of 
Cosmology. In this model, the universe is flat and is do- 
minated by dark energy but with appreciable contribu-
tions from dark matter [24]. In this so-called concordance 
model, the total density parameter, 0, has three contri- 
butions: 

0 b DM                (6) 

where the observed value for: the baryon density b = 
0.04; for the dark matter density DM = 0.23; and for the 
dark energy density  = 0.73. Of course, for a flat uni- 
verse, these contributions add up to give a total 0 = 1. 

3. WIMPs as DM Candidates 

The interest in WIMPs as dark matter candidates arises 
from a combination of particle physics, astrophysics, and 
cosmological arguments. The main astrophysical motiva- 
tion for WIMPs is the success of cold dark matter theory 
to explain the origin of galaxies and large scale structure 
of the Universe [26]. WIMPs, if they exist, are all stable 
particles. All current theories assume that galaxies and 
the structure of the Universe arise from the gravitational 
growth of density fluctuations. As mentioned earlier, 
these assumptions were verified by the Cosmic Back- 
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ground Explorer satellite (COBE), and more recently by 
the Wilkinson Microwave Anisotropy Probe (WMAP). 
The cosmological motivation for WIMPs is that their 
mass could be adjusted to give an DM that could even 
reach 1, something that has been referred to as the WIMP 
miracle. It requires a WIMP having a mass of the order 
of 10 GeV and an asymmetry equal to the baryon asym- 
metry [27]. WIMPs interact only through the gravita- 
tional and weak forces, and therefore they are considered 
as the primary candidates for dark matter. 

3.1. Axions 

Many hypothetical particles have been proposed as dark 
matter candidates. Among these is a hypothetical ele- 
mentary particle called the axion that was first postulated 
in 1977 to resolve the strong CP (charge conjugation and 
parity) problem in quantum chromodynamics. Axions 
were considered as a potential candidate for cold dark 
matter. They have no electric charge, a very small mass, 
and an interaction cross section for both the strong and 
weak nuclear forces. Therefore, they interact only weakly 
with ordinary matter [28]. The axion mass is given by 
(see for example [29]) 

   1 2

π π 1u d u d ama m m m m m f f         (7) 

where mu  4 MeV and md = 8 MeV are the up and down 
quark masses, respectively, and m = 135 MeV is the 
pion mass, fa is the axion decay constant, and f  93 
MeV is the pion decay constant. Astrophysical con- 
straints require that fa  109 GeV, implying an axion mass 
ma ≤ 10 MeV [30]. Axion theories predict that the uni- 
verse would be filled with Bose-Einstein condensates of 
primordial axions, and thus plausibly explain the dark 
matter problem [31]. In 2005, it was thought that the 
PVLAS dark matter detector had received a signal due to 
axions. However, it was shown later that the PVLAS 
result was incorrect [32]. In 2009 some authors casted 
doubt on the existence of axions, arguing that cosmo- 
logical observations imply that axions create a greater 
fine tuning problem than the one they are hypothesized to 
solve [33]. 

3.2. Cosmions 

Another particle that was of interest three decades ago is 
the cosmion. It was proposed to solve the solar neutrino 
problem [34]. This particle acts as an efficient transporter 
of heat in the Sun’s core and thereby reduces the emis- 
sion rate of 8B neutrinos. In order for the cosmion solu- 
tion to work, its mass must be in the range of 4 ≤ md ≤ 10 
GeV [27]. It is clear that the relatively recent discovery 
of neutrino oscillations in the Sudbury Neutrino Obser- 
vatory provides a natural way to explain the solar neu- 
trino problem [35,36]. 

3.3. Supersymmetric Particles 

Supersymmetric models provide a whole set of possible 
particles as DM candidates. Some supersymmetric parti- 
cles were introduced by particle theories to solve prob- 
lems entirely unrelated to the cosmology of dark matter. 
Among these is the lightest supersymmetric particle (LSP) 
which is a stable particle in models with R-parity con- 
servation. If LSP exists, it may account for the observed 
missing mass of the Universe. In order to fit observations, 
LSP must be neutral, non-colored [37], interacts only 
through weak and gravitational interactions, and must 
have a mass of 100 GeV to 1 TeV. With these con- 
straints, theoretical studies limit the LSP to either the gra- 
vitino, the sneutrino, or the neutralino, a mixture of neu- 
tral Majorana fermions, namely, the photino, the hig- 
gsino, and the zino [38,39]. In what follows, each of 
these particles will be discussed separately as a potential 
DM candidate. 

3.3.1. Gravitino 
The gravitino is the supersymmetric partner of the gravi- 
ton. It has a spin of 3/2, and is not a WIMP. If it exists, it 
is the fermion mediating supergravity interactions. Ac- 
cording to the Standard Model, the mass of the graviton 
must not exceed 1 TeV/c2 [40]. The gravitino has a mass 

1 23gravitino plm F M              (8) 

where F is the supersymmetry-breaking scale squared,  

and   1 2
8πplM G

    2.4 × 1018 GeV. The gauge hier-  

archy problem requires that F (1011 GeV)2, and there- 
fore all the superpartners including the gravitino have a 
weak-scale mass [29]. Two possible options emerge from 
the stability status of the gravitino. In the first option, the 
gravitino is a stable dark matter candidate that obeys the 
R-parity conservation. In such a case, gravitinos would 
have been created in the very early universe. It turns out 
that the calculated density of stable gravitinos is much 
higher than the observed dark matter density [41]. The 
second option is that the gravitino is unstable. In this case, 
it will decay only through gravitational interaction with a 
lifetime of the order of 2 3

plM m , without contributing 
to the observed dark matter density. In the above relation, 
Mpl = hc/G = 1.2 × 1019 GeV is the Planck mass, and m is 
the mass of the gravitino. Assuming m is of the order of 
TeV, would imply a lifetime of the order of 105 seconds, 
which goes well beyond the era of nucleosynthesis. The 
decay products of the gravitino may destroy almost all 
nuclei created in this era, which is inconsistent with ob- 
servations [42]. Other possible solutions to the cosmo- 
logical gravitino problem include the split supersymmetry 
model where the gravitino mass far exceeds the TeV 
scale, or models in which the R-parity is violated, which 
would preclude the synthesis of primordial nuclei [43]. 
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3.3.2. Sneutrino 
Another dark matter particle that is of interest is the 
sneutrino. According to the Minimal Supersymmetric 
Standard Model (MSSM), the sneurtino is ruled out as a 
DM particle, because it exhibits large scattering and an- 
nihilation cross sections. Its abundance is limited and it 
shows null results in direct detection experiments for all 
masses near mweak  10 GeV - 1 TeV [44,45]. The sneu- 
trino interacts via Z boson exchange and would have 
been detected by now had it existed. However, extended 
modules involving right-handed (RH) sneutrinos reopen 
the possibility of the sneutrino as a DM particle [46,47]. 

3.3.3. Neutralino 
The most interesting supersymmetric DM particle is the 
neutralino. It is a hypothetical WIMP dark matter particle 
that is predicted by supersymmetry [48,49]. The super- 
partners of the Z-boson (zino), the photon (photino), and 
the neutral Higgs (higgsino) have the same quantum 
number, and therefore they can mix to form four eigen- 
states of the mass operator called the neutralino. The 
properties of each neutralino are determined by the de- 
tails of the mixing, and they would have weak scale 
masses in the range 100 GeV to 1 TeV. The neutralino is 
stable in models where R-parity is conserved, and the 
lightest of the four neutralinos is the LSP. The lightest 
neutralino is considered as a prime candidate for cold 
dark matter in the Universe. Neutralino DM particles can 
be detected by observing gamma rays and neutrinos re- 
sulting from their annihilation, preferably in regions of 
high DM density such as the galactic centers. So far, no 
experimental evidence of neutralino annihilation has 
been found. 

3.4. Sterile Neutrino 

In contrast to fermion masses described in quantum field 
theories that have terms that couple left-and right-handed 
fields together, no right-handed neutrino field is pre- 
dicted by the Standard Model (SM). So all observed neu- 
trinos exhibit left-handed helicities, where spins are anti- 
parallel to momenta. Furthermore, all antineutrinos have 
left-handed helicities. Therefore, all neutrinos and anti- 
neutrinos are massless. Adding a right-handed neutrino 
may give them mass through the same mechanism that 
generates mass for quarks and charged leptons. This is 
achieved by adding a Majarona mass term to the Lagran- 
gian, and thus extending the SM model to include more 
than two sterile neutrinos. When electroweak symmetry 
is broken, mass eigenstates will consist primarily of a 
combination of left-handed neutrinos called active neu- 
trinos, whereas those dominated by right-handed neutri- 
nos are called sterile neutrinos (s). Sterile neutrinos do 
not interact via any fundamental interaction of the SM 
except for gravity. In general, they are not considered 

DM candidates. However, there exists a range for the 
Yukawa coupling in the SM where sterile neutrinos may 
be dark matter candidates. The mixing angle in this case 
is defined by 

   cos sins r lv v v            (9) 

where r and l are a linear combination of right-handed 
and left-handed gauge eigenstates, repectively. All the 
mechanisms of production of sterile neutrinos require 
very small masses and mixing angles to be viable candi-
dates for DM [29]. Sterile neutrinos can be produced by 
oscillations at temperatures T  100 MeV [50]. Being 
neutral particles, sterile neutrinos do not interact electro- 
magnetically, weakly, or strongly with known particles, 
and therefore they are very difficult to detect. Because of 
their mass, however, they interact gravitationally, and 
they are heavy enough to explain cold dark matter. 

3.5. SuperWIMPs 

SuperWIMPs are superweak interacting massive particles 
that have the required relic density, but their interaction 
is much weaker than the weak interaction. In spite of 
their superweak interaction, superWIMPs scenarios cor- 
rectly predict signals emanating from cosmic rays. In the 
early Universe, one scenario assumes that WIMPs freeze 
out but later decay to produce superWIMPs that form the 
dark matter that exists today. Because superWIMPs are 
very weakly interacting, they will not affect the WIMPs’ 
freeze out in the early Universe. This causes the WIMPs 
to decouple with a relic density WIMP = DM. Super- 
WIMPs inherit their relic density from WIMPs and 
therefore produce the required DM density. If super- 
WIMPs interact only gravitationally, the natural time 
scale for WIMPs to decay to superWIMPs is (1/Gm3

weak) 
 103 to 107 seconds [29]. Superwimps may also be pro- 
duced after reheating, in the era where the inflation po- 
tential is transferred to SM particles. If the temperature is 
high enough, significant amounts of superWIMPs are 
generated [51-53]. The superWIMP relic number density 
is linearly proportional to the reheating temperature TR, 
with the constant of proportionality equal to the gravitino 
production cross section [29]. For a gravitino mass 
mgravitino ≤ 100 GeV, the constraint on DM implies TR ≤ 
1010 GeV [54]. Thus, the gravitino is a typical super- 
WIMP particle [55,56]. 

Another example of a superWIMP is the axino [57,58]. 
The axino is the supersymmetric partner of the axion. If 
both axions and axinos contribute to DM, then this would 
constitute an interesting multicomponent DM scenario 
[59]. SuperWimp candidates in the form of KK graviton 
and axion states also exist in the Universal Extra Dimen- 
tions (UED) models [55]. The KK graviton is the lightest 
KK state for all R1 800 GeV, where R is the compactifi- 
cation radius [60]. The lightest stabilized KK states by 
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KK-parity conservation have very similar properties to 
their supersymmetric counterparts [29]. To sum up, there 
are many superWIMP candidates that inherit their relic 
density from WIMPs, and are thus produced with the 
required relic density. 

4. Kaluza-Klein Dark Matter 

Extra spatial dimensions provide an alternative to weak- 
scale physics. The possibility of the existence of extra 
spatial dimensions dates back to the work of Kaluza and 
Klein in the 1920s. In the Universal Extra Dimensions 
(UED) model, all particles are restricted to move in a flat 
and compact extra dimension of size 1018 m or smaller. 
In minimal UED, there is one extra dimension of size R, 
compactified on a circle. In this model, every SM particle 
has an infinite number of partner particles with mass nR1 
at every Kaluza-Klein (KK) level n. These particles have 
the same spin, in contrast to superpatners. The KK parity 
in UED models is preserved, implying that the lightest 
KK particle (LKP) is stable and a possible dark matter 
candidate [61,62]. The required LKP mass is 600 GeV 
≤ Bm   ≤ 1.4 TeV, where Bm   is the LKP mass, the level 
1 partner of the hypercharge gauge boson, sometimes 
called the KK photon. The detection of KK dark matter 
particles can be achieved by elastic scattering via cou- 
pling with nuclei through the exchange of Higgs bosons 
and KK quarks. Indirect detection of KK dark matter has 
several attractive features. Firstly, almost 60% of KK 
dark matter annihilates into charged lepton pairs (20% 
for each generation), 33% of the annihilation produces 
pairs of up quarks, and 3.6% produces neutrino pairs. 
The remaining 3.4% generate down quarks and Higgs 
bosons. Secondly, the low velocity cross section is the 
maximum possible for a thermal relic. Finally, KK dark 
matter spin-dependent elastic scattering cross sections for 
protons can be quite large, making the capture of such 
particles in the Sun an efficient process, which leads to 
the production of large neutrino fluxes. 

5. Primordial Black Holes and Holeums 

Theoretical investigations have shown that black holes 
may have been formed in the early universe due to initial 
inhomogeneities [63]. Hawking [64,65] argues that pri- 
mordial black holes (PBH) were formed in a wide spec- 
trum of masses ranging from 2.17 × 108 kg, corre- 
sponding to the Planck mass, up to 1017 solar masses. 
Formation of PBH is triggered when the gravitational 
attraction in certain overdense regions in the early Uni- 
verse overcomes the pressure forces and the velocity 
expansion. This condition is realized when the potential 
energy of self-gravitation exceeds the kinetic energy of 
expansion. Hawking has shown that quantum effects 
cause black holes to create and emit particles as if they 

were blackbodies of temperature 
3 16π B BHT hc k GM            (10) 

where h and kB are the Planck and Boltzmann constants, 
respectively. As Equation (10) shows, the Hawking tem- 
perature, T, is inversely proportional to the black hole 
mass, MBH, and thus, as the black hole radiates, its tem- 
perature increases. Dimensional arguments indicate that 
the lifetime will be less than the age of the Universe only 
if M ≤ 1015 g [66]. Non-rotating PBH with initial mass 5 
× 1015 g would have just evaporated within the present 
age of the Universe, whereas a black hole created maxi-
mally rotating would have just evaporated if its initial 
mass was 7 × 1015 g. If the Big Bang spews PBHs with 
enough mass, they will be manifested as dark matter. 
Many models have been proposed to describe the mecha- 
nism of evaporation. The Hagedron model assumes that 
the PBH mass would be converted in an extremely short 
time to hadronic matter at TPBH ~ 140 - 160 MeV [67]. In 
the quark-gluon deconfinement phase transition model, 
the emitted free quarks and gluons would hadronize at 
some distance from the PBH horizon at a temperature T ~ 
100 - 300 MeV [68]. Diffused gamma rays in the galactic 
halo may serve as an indicator of the PBH density in the 
Galactic halo, and thus of dark matter [68,69]. Cline et al. 
[68] assumed a clumping factor of 5 × 1015 g corre- 
sponding to a density of PBH of 1010 pc3 in the Galactic 
halo. In this case, they estimated the number of PBHs to 
be ~1022. For a decay rate of 3 × 104 s1, they found a 
photon flux of ~1038 erg/s released into the halo. Cline 
[70] further assumed a Page-Hawking bound of 2 × 104 
pc3 and obtained a diffuse gamma-ray flux of ~0.12 
photons m2·s1·sr1. This result is consistent with the 
value obtained by [71,72]. An important remark con- 
cerning the above estimation of the Galactic flux is that 
the evaporation is restricted to PBHs with masses corre- 
sponding to the present epoch. 

Detection of PBHs was the subject of intensive re- 
search since their existence was postulated in the early 
1970s. The Hawking evaporation is the key process that 
allows a potential detection of PBHs. The evaporation is 
accomplished by a burst of emitted particles and gamma 
rays. Thus, the population of the galactic halo with PBHs 
can be inferred only by a careful analysis of possible sig- 
nals emanating from their evaporation products. No such 
signal has been reported so far. 

Chavda & Chavda [73] have shown that PBH in the 
early universe did not decay until gravity decoupled from 
other interactions. In this case, they demonstrated that 
micro PBH, having masses between 8 × 1018 GeV and 
1019 GeV, formed gravitational bound states called 
holeums when the temperature of the Universe was be- 
tween 1030 K and 1029 K. Being coupled, these PBH will 
not evaporate by the Hawking mechanism, unless they 
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are ionized. The condition leading to the formation of 
stable bound states of PBHs are met when extremely 
high number density, vastly stronger gravity, and enor- 
mously large rates of interaction dominate the fireball. 
The frequency nn  of the gravitational radiation emitted 
by a holeum when it makes a transition from a higher 
state  to a lower state n is given by  

v 

n

 5 2
0 1 1nn pv v m m n n     

2        (11) 

where, 0 = mpc
2/4h, and mp is the Planck mass. The en- 

ergy spectrum given by the above equation is identical to 
that of the hydrogen atom. In other words, the holeum is 
a gravitational analog of the hydrogen atom. Chavda & 
Chavda [73] consider holeums as an essential component 
of DM that populates the Galactic halo. Holeum theory, 
in spite of its richness, is still in the infant stage, and a lot 
of future theoretical and observational work has to be 
accomplished before testing its adequacy as a DM can- 
didate. 

6. Massive Astrophysical Compact Halo 
Objects 

Massive astrophysical compact halo objects (MACHOs) 
are any kind of astronomical object in the Galactic halo 
that may account for dark matter. Generally, these bodies 
emit no light, or in certain cases they may emit very faint 
radiation in the far infrared region of the spectrum. 
Therefore, they are very difficult to detect using conven- 
tional methods. MACHOs include objects such as black 
holes, neutron stars, brown dwarfs, or freely floating 
planets. Detection of MACHOs becomes possible when 
they pass in front of a star through microlensing [74]. 
The MACHO gravity amplifies light by gravitational 
micro-lensing, causing the star to appear brighter. The 
increase and subsequent decrease of light intensity 
caused by microlensing has a symmetric form, with no 
change in wavelength. Two important quantities charac- 
terize microlensing. The first is the Einstein angle, also 
called the Einstein radius, which is given by 

  1 2
24E S L SGM d d c d d       L



    (12) 

where G once again is the gravitational constant, M is the 
lens mass, dL is the distance of the lens, and dS is the dis- 
tance of the source. A typical value for the Einstein ra- 
dius of a bulge microlensing event is 1 milliarcsecond, 
which is a very small quantity. The second important 
quantity of a microlenseing event is the amplification 
factor A, which is given by 

  2 22A u u u u 4                (13) 

where u is a unitless number defined as the angular sepa- 
ration between the source and the lens. An important 

property of A(u) is that it is always greater than 1, and 
therefore microlensing can only increase the brightness 
of the source. As u approaches infinity, A(u) approaches 
1, that is, at large separations microlensing becomes neg- 
ligible. Finally, for perfect alignment (u = 0), A(u) be- 
comes infinite. 

Certain theories postulate the existence of PBHs or 
holeums surrounding our galaxy. The black holes can be 
detected by observing possible bright gas, or an accretion 
disk formed by the pulling of nearby gas. Alternatively, 
they can be identified by a burst of gamma rays and par- 
ticles resulting from their evaporation. However, there is 
no evidence so far of a microlensing event by a PBH. 
Neutron stars and old white dwarfs may radiate away 
enough energy to become cold and therefore undetect- 
able. Nevertheless, the Universe is not old enough for 
these objects to reach this stage of evolution. Brown 
dwarfs are “aborted stars” and emit very faint infrared 
radiation, basically from their gravitational contraction.  

Gravitational microlensing has inspired many groups 
to look for MACHOs in the Galactic halo. One group 
(MACHO group) claimed that it observed microlensing 
events accounting for up to 20% of dark matter in the 
Galaxy with an optical depth toward the Large Magel-
lanic Cloud (LMC) of 1.2 × 107 and toward the Galactic 
bulge of 2.43 × 106 [8]. The EROS2 collaboration oper-
ates with higher sensitivity by a factor of 2, but has not 
confirmed the results of the MACHO group. The 
NICMOS instrument aboard the Hubble Space Telescope 
showed that less than one percent of the Galactic halo 
mass is composed of red dwarfs [75,76]. Microlensing 
was also used to discover exoplanets [77-80]. Micro- 
lensing has been a powerful tool for discovering planet 
size bodies. However, the bulk of the discovered events 
falls way short of accounting for the Galactic DM. 

7. Modified Newtonian Dynamics 

Modified Newtonian Dynamics (MOND) is a theory that 
was put forward by Milgrom [81,82] to modify Newton’s 
law of gravity in order to explain the galactic rotation 
problem without evoking the need for dark matter. 
MOND assumes that acceleration is not linearly propor- 
tional to the gravitational force at small values. Stars in 
their journey around the galaxy are assumed to be go- 
verned solely by gravitational forces, and therefore, ob- 
jects in the outer edges of the galactic disk are supposed 
to have much lower orbital velocities than those close to 
the center. However, observations reveal that stars at all 
distances from the center exhibit almost the same speed. 
Therefore, the rotation curve flattens and extends to 
much higher distances than the furthest observed visible 
matter at the edge of the Galaxy. This behavior is usually 
attributed to the existence of dark matter in the Galactic 
halo. The same phenomenon is observed in all galaxies. 
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MOND assumes that acceleration due to gravity does not 
simply depend upon the mass m, but rather on a quantity 
of the form m/(a/ao), where  is some function ap-
proaching unity for a large argument, and approaching 
(a/ao) for a small argument, where a is the acceleration 
due to gravity, and ao is a natural constant equal to 1010 
m/s2. In our everyday world (a/ao) = 1, and therefore, the 
change in Newton’s law of gravity is negligible. Apply-
ing the above concepts to a star orbiting the Galactic 
center, one can easily obtain an expression for the orbital 
velocity 

1 4

ov GMa                  (14) 

The above equation predicts that the velocity of a star 
in a circular orbit far away from the Galactic center is 
constant, and is independent of its distance from the cen- 
ter. If a and M are known, the constant ao can be calcu- 
lated. For our Galaxy [81] found 1.2 × 1010 m/s2. This is 
an extremely small quantity, and [81] interpreted this 
constant as the acceleration that will take an object from 
rest to the speed of light in the lifetime of the Universe. 
Many interpretations and inconsistencies have been ad- 
vanced to discuss the validity of MOND. One interpreta- 
tion is that the behavior of dark matter in the Galaxy dic- 
tates the results of MOND, and in this case DM is tightly 
correlated with visible matter according to a fixed rela- 
tion. Compatibility issues between MOND and the ob- 
served world have been proposed. It has been argued that 
acceleration is not the only parameter to be considered. 
To verify MOND, one may consider large systems, such 
as galaxies or galaxy clusters, that possess the required 
dynamics to permit comparison with observation. In this 
case, MOND agrees with observation within the uncer- 
tainties of the data. To test the validity of MOND, ex- 
periments should be conducted only outside the Solar 
System. One proposed experiment involves flying the 
future LISA pathfinder spacecraft through the Earth-Sun 
saddle point. MOND was also successful in predicting 
rotation curves for the majority of low surface brightness 
galaxies (LSB) [83]. Smolin et al. [84] were unsuccessful 
in establishing a theoretical basis for MOND from quan- 
tum gravity. Recently, a study of a gravity-induced red- 
shift of galactic clusters strongly supported general rela- 
tivity, but was inconsistent with MOND [85]. In 2006, 
criticism of MOND based on the Bullet Cluster system 
was advanced. This is a system of two colliding clusters, 
and whenever a phenomenon associated with either 
MOND theory or DM is present, they appear to emanate 
from a physical location that has the same center of grav- 
ity. However, the effect produced by DM in this colliding 
system appears to emanate from different points in space 
and not just from the center of mass of the visible part in 
the system. This is easy to discern due to the higher en- 
ergy collisions of the gas in the vicinity of the colliding 

galactic clusters [13]. This observation cannot be ex- 
plained by a purely baryonic model. To sum up, MOND 
was not able to address all issues raised by observations. 
Tensor-Vector-Scalar (TeVeS) gravity theory is a rela-
tivistic theory proposed as an equivalent to MOND [86]. 
This theory was able to explain structure formation with- 
out cold dark matter, but required ~2 eV massive neutri- 
nos. However, other authors claim that TeVeS cannot 
explain Cosmic Microwave Background anisotropies and 
structure formation at the same time. Another theory 
known as nonsymmetric gravitation theory was proposed 
to explain the rotation curves of galaxies [87]. However 
it was unable to address other issues associated with dark 
matter. Furthermore, conformal gravity theory claims to 
offer an alternative explanation to DM [88]. 

8. Supersymmetry, Superstrings, and Dark 
Matter 

Supersymmetry is one of the great achievements of par- 
ticle physics. It is regarded as a necessary feature of 
quantum theories of gravity. It is derived from the idea 
that there should be a fundamental symmetry in nature 
between fermions and bosons. 

In supersymmetry, there is one superpartner particle 
state for every ordinary state. In a previous section we 
discussed the possibility that LSP constitutes potential 
candidates for DM. It is believed that these particles have 
not yet been observed because supersymmetry is a bro- 
ken symmetry, and consequently the superpartners are 
heavier than the known elementary particles. Several 
arguments have been presented to estimate the range of a 
typical superpartner mass. It is argued that a range of the 
order of 100 GeV to 1000 GeV is consistent with elec- 
troweak symmetry breaking and with the unification of 
the electroweak and strong nuclear forces. 

The prospect of detecting superpartners relies to a 
great extent on accelerators capable of achieving such 
high energies. The Large Hadron Collider (LHC) is de- 
signed to reach energies exceeding the above limit. 
Therefore, if supersymmetry is correct, physicists have 
good reasons to believe that LHC can find the new spec- 
trum of predicted particles. Nevertheless, not finding 
superpartners in future experiments does not rule out 
their existence, since there is no compelling evidence that 
they necessarily evolve in our spacetime dimensions. 

The last few decades have witnessed the emergence of 
superstring theory as the leading candidate for a unified 
description of fundamental particles and forces in nature 
including gravity. In this theory, particles arise as excita- 
tions of strings and interactions are simply given by the 
geometric splitting and joining of these strings. There are 
five kinds of superstring theories, but recent develop- 
ments have shown that what was thought to be a set of 
completely different theories is in fact a different way of  
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looking at the same thing. The unified string theory is 
called the M theory. Among the superstring theories is a 
symmetry group known as E8 × E8 Heterotic string theory 
that was historically thought to be the most promising 
theory describing the physics beyond the Standard Model. 
It was discovered in 1987 by Gross, Harvey, Martinec, 
and Rohm [89]. For a long time it was thought to be the 
only string theory relevant to our Universe. The symme- 
try group E8 × E8 essentially describes two universes 
living alongside each other. Each of the E8 symmetries 
can be naturally broken and reduced to the kind of sym- 
metries used in particle physics to describe the Universe. 
So, only one E8 component is needed to describe our 
Universe, leaving a complete duplicate set of possibilities. 
The symmetry between the two halves of the group was 
broken at the Planck era when gravity split away from 
the other forces in nature. Some theorists interpret the E8 
× E8 group in terms of two interpenetrating universes but 
influencing each other only through gravity. A specula-
tive idea is that the other world is a shadow universe and 
is identified with dark matter. An interesting perspective 
would be to investigate the possibility that the E8 com- 
ponent represents a “supersymmetric universe”, a world 
populated by supersymmetric particles, and remains 
bound to our Universe through gravitational interaction. 
Although this idea is speculative at this stage, it provides 
a frame that accommodates most of the observed proper-
ties of dark matter and is supported at the same time by 
recent theoretical works as explained below. Such de-
velopments may preclude our particle accelerators from 
discovering supersymmetric particles by conventional 
methods, and the signatures of missing energies may 
provide an indirect test of their existence. 

The strength of the E8 × E8 symmetry group comes 
from the fact that it gives a natural explanation for the 
origin of DM, while bypassing some unnecessary details 
that are typically required by any theory concerned with 
the origin and evolution of the Universe. Among these 
details are the scenario of inflation and the discrepancy 
between Ω0 = 1, as imposed by inflation, and Ω0 = 0.2, as 
obtained from primordial nucleosynthesis. However, in 
the recent past [14] analyzed old published data of 160 
distant galaxies and reported a systematic rotation of the 
plane of polarization over cosmological distances. The 
discovery could mean that light travels at two slightly 
different speeds depending on the direction of movement, 
or it could mean that the Big Bang spewed two universes, 
each with an opposite twist. 

Another important development was provided by [15]. 
He introduced a model in which two weakly coupled 
systems maintain opposite running thermodynamic ar- 
rows of time, and concluded that there exists a real pos- 
sibility that at some distance from us there are regions 
that exhibit such peculiar directions for the arrow of time. 

He argued that the extended absorber theory indicates 
that we would see them (the other universe) at an era 
later than our own due to the light travel time to them. 
Moreover, [15] discussed the way these regions have 
arisen, and considered the possibility that our Universe 
will have a Big Crunch in the (our) future. Furthermore, 
[15] showed that these regions cannot communicate ele- 
ctromagnetically, and he identified the properties of their 
content with that attributed to dark matter. The analysis 
of the observational data presented by [14] suggests the 
existence of another universe. On the other hand, Schul- 
man’s [15] theoretical work indicates the existence of a 
DM universe evolving in different spacetime dimensions. 
Accepting these results at face value, we conclude that 
they are in agreement with the general features of the E8 
× E8 superstring theory. 

Recently, an international team of astrophysicists pre- 
sented a map of the distribution of dark matter in the 
Universe [90]. The map was constructed using gravita- 
tional lensing data. This result constituted direct evidence 
for the existence of dark matter. It was shown that DM 
forms along filaments that span hundreds of millions of 
light years. These filaments cross each other forming 
nodes of higher density DM. The most important aspect 
of these results is that DM tends to clump and form large 
scale structures similar to those observed for the distribu- 
tion of visible matter in the Universe. This view supports 
the E8 × E8 Heterotic string theory in providing insight 
into the spacetime manifold of dark matter. 

9. Conclusions 

Dark matter has been one of the most challenging topics 
in cosmology for the past 80 years, both for observers 
and theoreticians. In this paper, we have highlighted the 
difficulties associated with the current detection strategy, 
which is primarily based on incomplete theoretical mo- 
dels. A wide spectrum of particles has been proposed as 
DM candidates. In spite of the ever growing sophistica- 
tion of the detection techniques, none of the proposed 
DM particles has been discovered so far. The Large Had- 
ron Collider (LHC) will certainly be the right machine to 
determine the road map for identifying the valid theo-
retical models in particle physics, which in turn will have 
a great impact on future search strategies. The recent 
discovery of the Higgs boson has provided new momen-
tum for the Standard Model as a cornerstone in our un-
derstanding of the Universe. Although energies of super- 
symmetric particles fall in the detection range of LHC, a 
failure to discover any of them does not necessarily dis-
prove their existence, but will rather raise questions 
about their nature and the strategy to be adopted to dis-
cover them, or alternatively may motivate scientists to 
embark on new physics. 

MACHO searches, on the other hand, have not been 
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conclusive in accounting for the missing mass. Further- 
more, accepting PBH and holeums as potential candi- 
dates for DM is premature at this stage, since no signal 
from their potential evaporation has been received de- 
spite intensive searches. However, their existence may in 
the future be indirectly inferred through other strategic 
searches, such as the intensity of the Galactic gamma ray 
background, which is an important component of their 
evaporation products. 

It was shown that the E8 × E8 Heterotic string theory 
offers a general framework to understand the nature of 
DM. It seems to be consistent with certain experimental 
data [14] and theoretical models [15] that suggested the 
possibility that DM may evolve in another spacetime 
manifold. This result conforms to Kaluza-Klein theory, 
where extra dimensions are needed to accommodate the 
KK particles. Furthermore, it was pointed out that dark 
matter surveys, using microlensing techniques, indicate 
the existence of a large scale structure of dark matter, 
similar to the distribution of ordinary matter populating 
the visible Universe. 

The essence of the dark matter problem is that it is in- 
terdisciplinary in nature, and thus requires a search strat- 
egy that utilizes more than one approach. Dark matter 
will certainly remain a challenge for theoreticians and 
observers for some time to come. 
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ABSTRACT 

Energy-time and momentum-position phase spaces defined by the electron orbits in the hydrogen-like atom exhibit spe-
cial properties of equivalence. It is demonstrated that equivalence of the same kind can be obtained for the phase-space 
areas defined by the orbit pairs of planets, or satellites, which compose the solar system. In the choice of the examined 
areas it is useful to be guided by the Bohr-Sommerfeld atomic theory. 
 
Keywords: Ratios of the Phase-Space Areas and Their Invariance; Planets and Satellites; Bohr-Sommerfeld Atomic 

Theory 

1. Introduction 

In physics, but not only in this domain, we look very 
often for parameters which allow us to identify the ex- 
amined objects. For example a typical parameter of this 
kind is the mass which helps us to identify a given parti- 
cle, or a system of particles collected together, say, in an 
atom. Also large systems of particles, especially those 
composed of mainly the same atoms or molecules, have 
some properties which are characteristic for the whole 
ensemble. A typical parameter is here a definite tempera- 
ture associated—at special conditions—with the change of 
the system phase, for example the change is from a va-
pour to a liquid. Sometimes a combination of several pa- 
rameters is required to be characteristic for a system. 

In mechanics of a circular motion of a body along a 
specific closed orbit there are important phase integrals 

= dS p q



                 (1) 

met in the Sommerfeld quantum conditions; see e.g. [1]. 
Here p is the body momentum and q is the body position 
on the orbit. The integral (1) is the phase-space area of 
the variables  circumvented by the body in course 
of its motion along the orbit. The body energy E—which 
is conserved on the orbit—can be represented as a func- 
tion of S and the frequency 

 ,p q

  of the body motion, equal 
to the reciprocal value of the circulation period T, be- 
comes 

1
= = .                  (2) 

E

T S
 



In some special cases, however, for example for a 
linear oscillator, there is a linear dependence between E  

and S, so 
E

S




 is a constant independent of E or the am-  

plitude of oscillation. In this case we have 

=E S .                   (3) 

A characteristic property of (3) is that the ratio 

=
E

S


                   (4) 

called the adiabatic invariant, remains unchanged for 
slow changes of the oscillator Hamiltonian [2]. 

But in case of the body orbital motion in the solar 
system the simplifications of (3) and (4) do not hold. For 
from the reversed Formula (2) we obtain (see e.g. [3]):  

 
3 2

1 2

1 2π
= = = ,

S

S
T a

EGM



          (5) 

where G is the gravitational constant, a—the major se- 
miaxis of the Kepler orbit and SM  is the central mass 
which for the planetary orbital motion is the mass of the 
Sun. Since 

=
2

S pGM M
E

a
 ,                  (6) 
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where pM  is the planetary mass, we obtain 

   

 

 

3 2 3 2

1 2 1 2

3 2

1 2 2

1 2

1/2

2π 2π
= =

2π
=

2

= π .

S S

S p

S

p
S

a a
S E

aGM GM

GM Ma
a

aGM

M
GM a

a

     





E
a

     (7) 

The integration performed for (7) gives, with the ac- 
curacy to a constant term,  

 1 2 1 2= 2π ,S pS GM M a              (8) 

whereas the product of E  and T becomes 

 

 

3 2
1 2

1 2 1 2

2π
=

2

1
= π = .

2

S p

S

S p

GM M
E T a

a GM

GM M a S

         (9) 

But a similar relation can be obtained for the product 
of the planetary momentum P and average distant R of 
the moving body from the Sun, if we note that for the 
Kepler motion of planets the eccentricity parameter e is 
regularly small, so  

,R a                    (10) 

 

 

1 2

3/2

1 2

1 2

2π 2π

2π

= .

p S p

S p

R a
P M GM

T a

GM M

a

  M

     (11) 

In this case 

 1 2 1 2 1
π π =

2SRP GM a S ,            (12) 

therefore 

1
.

2
E T RP S               (13) 

Evidently, the products entering (13) together with S in 
(8) represent the phase-space areas of .  ,p q

However, any of the factors E, T, R, and P entering (13) 
depends on a in a different way, and a separate depen- 
dence on a applies to S. A question which may arise here 
is as follows: if we have a pair of the planetary objects in 
which one of the objects has its  

1 1 1 1, , ,E T R P                (14) 

at some , and 1=a a 1pM , and the other object in this 
pair has its 

2 2 2 2, , ,E T R P               (15) 

at some 2 , and 2=a a pM , is it possible to combine the 
phase-space areas obtained in terms of parameters en- 

tering (14) and (15) in such a way that the resulted com- 
bination is approximately independent of 1 , 2 , 1a a pM , 
and 2pM ? In effect, such a combination may become 
approximately constant for the whole of the planetary 
system. 

We find an affirmative answer to that question, also 
for the satellitary systems, and details of the correspon- 
ding formulae are given below. It should be noted, how- 
ever, that a search for the required formalism is much 
facilitated when similarities which exist in description of 
the Kepler’s planetary problem and the electron motion 
in the framework of the Bohr-Sommerfeld atomic theory 
are taken into account. 

2. Parameters Useful in Calculating the 
Phase-Space Areas of the Planetary 
Motion 

Similarities between the planetary motion performed in 
the gravitational field of the Sun and the electron motion 
in the electrostatic field of the atomic nucleus are well 
known. However, any quantitative reference between 
parameters characteristic for both kinds of the examined 
motions is rather difficult to assess. This difficulty seems, 
in general, to be quite obvious if we note a macroscopic 
nature of the planetary objects and microscopic proper-
ties of an atom. Nevertheless, a geometric and mechani-
cal similarity in the behaviour of the solar system to that 
of an atomic system considered in the framework of the 
old quantum theory is evident. This similarity may sug-
gest a quantitative search for comparison between the 
macroworld of planets and the microworld connected 
with the electron motion in an atom. A search of this 
kind can materialize in definite calculations when the 
properties of the phase space associated with an electron 
circulating in the atom are compared with the phase 
space of the planetary, or satellitary, motion in the solar 
system. 

In practice, the position-momentum and energy-time 
phase spaces can be defined both for the orbiting planets 
and the circulating electron. Here, for the sake of sim-
plicity, the elliptical character of orbits can be approxi-
mately neglected equally in the macroscopic and the mi-
croscopic case. Let us begin with the action function Sn 
for a planet on the orbit n which satisfies the relation  

= 2π = 2 ,n n n nS P R E Tn            (16) 

whereas a similar action function for an electron moving 
on a circular trajectory corresponding to the atomic state 

 is  n

= 2π = 2 .e e e e
n n n n nS p r E T           (17) 

Symbols Pn, Rn, En and Tn in (16) denote respectively 
the momentum, orbital radius  
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 21
= 1

2n n nR a e 1 ,             (18) 

energy and time period on the planetary orbit  having 
the major semiaxis na  and the eccentricity ne  [4-6], 
whereas , ,  and  in (17) are similar pa- 
rameters for an electron in its quantum state, or on an or- 
bit, labelled also by . In our calculations we are guided 
by the atomic properties which are given by the formulae 
[7]: 

n

e
np e

nr
e
n

n

E e
nT

22π
= =e e e

n e n

m Ze
p m v

nh
,           (19) 

2 2

2 2
=

4π
e

n
e

n h
r

m Ze
,                (20) 

2 2 4

2 2

2π
=e e

n

m Z e
E

n h
 ,              (21) 

3 3

2 2 4
= .                (22) 

4π
e

n
e

n h
T

m Z e

Here Ze is the nucleus charge,  the electron charge, 
 the electron mass, and h is the Planck constant. 

e

em

3. Change of the Phase-Space Area Due to 
the Orbit Change 

When the orbit n is changed to another orbit, say n , the 
parts of the difference in the action function equal to  

   = = d
n n n n n n n nS S S S S        nd         (23) 

can be examined both in the planetary and the electron 
case. These parts can be classified as diagonal (d) changes 
represented by the formulae  

     1
, = π ,

2
d

n n n n n nS p r R R P P          (24) 

   1
( , ) =

2
d

n n n n n nS E T E E T T           (25) 

concerning respectively the momentum-position and en-
ergy-time phase-space areas entering Sn and nS   in (16). 
Similar non-diagonal  changes entering  nd n nS   are 

   

   

1
,

2

= π ,

nd
n n

n n n n n n

S p r

R R P P P R



 



    

        (26) 

   

   

1
,

2

=

nd
n n

n n n n n n

S E T

T T E E E T



 



   .
          (27) 

In the next step, it can be noted that relations concer- 
ning components of n n  for planets defined in (24)- 
(27) can be calculated also for the changes n n

S 
S   for 

electrons, on condition Pn, Rn, En and Tn entering the 

mentioned formulae are replaced by , ,  and 
. The electron parameters give [6]:  

e
np e

nr
e
nE

e
nT

       2

,1 2 ,d e e
n n

n
S p r h

n



          (28) 

       2
3

1 2 ,d e e
n n

n
S E T

n



   ,h       (29) 

for small =n n n  , so the ratio  
   
   

,
= 1 3

,

d e e
n n

d e e
n n

S p r

S E T








            (30) 

is practically a constant number independent of the orbit 
index . In a further step  n

     2
1

, 2
 

  
,

2 2
nd e e

n n

nh
S p r n

n



         (31) 

     2
1

, 6
 

  
,

2 2
nd e e

n n

nh
S E T n

n



          (32) 

so the ratio of (31) and (32) is approximately also a con- 
stant: 

   
   

,
1,

,

nd e e
n n

nd e e
n n

S p r

S E T









            (33) 

which holds especially on condition when . n n 
A check of the properties of (30) and (33) for the solar 

system has been done on the numerical way; see [6]. An 
almost constant behaviour of (30) is widely confirmed, 
although this ratio becomes close rather to unity, espe-
cially for planets, than to 1/3 obtained in (30). On the 
other hand, the ratio (33) fluctuates more than (30) for 
different planetary, or satellitary, pairs chosen to occupy 
n and n . This behaviour can be attributed to unequal se- 
cond terms entering the square brackets in (31) and (32). 
In the most part of the examined planetary cases the ratio 
between (31) and (32) is about 2 instead of the result 
approximately equal to 1 obtained in (33). 

4. Phase-Space Areas Made Free from the 
Orbit Index and Their Comparison 

A more convenient way of comparison between the 
phase-space areas for an electron moving in the atom and 
similar areas obtained for circulating planets is when 
these areas are made, at least approximately, free from 
the orbital index. This situation, in fact, can be obtained 
beginning with the areas for the moving electron. For 
example, such an area in the momentum-position space 
about state  can be defined as n

  1 1

1 2
π = .h

2 2
e e e e

n n n n

h
r r p p n

n          (34) 

Copyright © 2012 SciRes.                                                                                 JMP 



S. OLSZEWSKI, T. KWIATKOWSKI 1145

The result in (34) holds on condition  is assumed to 
be a large number. The area in (34) is a belt of thickness  

n

 
2

2 2
1 2 2

2

2 2

= 1
4π

2

4π

e e
n n

e

e

h
r r n n

m Ze

nh

m Ze


    



       (35) 

plotted in the coordinate space, and the length of the belt 
is proportional to  

 
2 2

1

2 2

2π1 1
π =

2 2 1

2π

e e e
n n

e

m Ze
p p

h n n

m Ze

nh


   



1


      (36) 

in the momentum space. A similar area can be defined 
when the roles of e  and e  are reversed. In this case 
we obtain the phase-space area equal to  

p r

 1 1

1 1
π .

2 2
e e e e
n n n np p r r    h          (37) 

Here the thickness of the belt is  
2 2

1 2

2π 2π1 1
=

1
e e e e
n n

m Ze m Ze
p p

h n n hn   


2

  (38) 

and the belt length is proportional to  

 
2

2
1 2

1
π .

2 4π
e e

n n
e

h
r r n

m Ze             (39) 

The results obtained in (34) and (37) are: 1) close to 
; 2) they differ only by a factor of 2. h
A similar evaluation can be done for the phase space 

areas composed of the electron energies and the time 
periods of the rotational motion about the nucleus; see 
(21) and (22). We obtain for one electron state the areas  

  1 2
1 2

1 3
= 3 = ,

2 22

e e
n ne e

n n

E E
T T n h h

n





     (40) 

3
1

1 3

2
= =

2 2

e e
e e n n
n n

T T n
E E h

n





 ,h         (41) 

because for a large n we find:  
3

2
1 2 2 4

3
4π

e e
n n

e

h
T T n

m Z e   ,            (42) 

 
3 3

1 2 2 4

1
,

2 4π
e e

n n
e

n h
T T

m Z e              (43) 

2 2 4

1 3 2

2π2
,e e e

n n

m Z e
E E

n h             (44) 

 
2 2 4

1 2 2

2π1 1
.

2
e e e
n n

m Z e
E E

n h          (45) 

The areas calculated in (40) and (41) are: 1) close to 
; 2) differ only by a factor of h 3 2 . Evidently, the area 

(40) is a kind of the belt having its length extended in the 
energy space and the belt thickness is in the period-of- 
time space, whereas (41) represents the belt of reversed 
shape properties. 

Because of a similar character of the electron motion 
in the Bohr-Sommerfeld atom and the planetary motion 
in the solar system, we expect similar phase-space prop-
erties for both kinds of the motion. An essential differ-
ence is here that the electron has the same mass on any 
orbit , but this does not apply to the planetary orbits. 
Therefore a more realistic comparison should concern the 
case when momenta expressions entering the examined 
areas are replaced by velocities, and—consequently—the 
energies of the moving bodies are divided by the orbiting 
mass. For electrons we obtain on any orbit n 

n

=
e

e n
n

e

p
v

m
                  (46) 

for the velocity, and 

1
=

2

e
epot n
n

e

E
V

m
               (47) 

for the reduced energy. Because of the virial theorem, the 
expression (47) is equal to a half of the absolute average 
value of the potential acting on a moving electron. In 
effect of the substitutions (46) and (47) we obtain the 
following belt areas for the electron case: 

  1 1

1
= π =

2
e e e e

n n n n
e

h
A r r v v

m   ,         (19a) 

  1 1

1 1
= π =

2 2
e e e e
n n n n

e

h
B v v r r

m   ,        (22a) 

   1 1

1 1 3
= =

2 2 2
e e epot epot

n n n n
e

h
C T T V V

m   ,   (25a) 

 1 1

1 1
= =

2 2
epot epot e e

n n n n
e

h
D V V T T

m   .



    (26a) 

Section 5 examines similar expressions calculated for 
the planetary and satellitary orbits. 

5. Belt Areas in the Phase-Space Calculated 
for Planets and Satellites 

In the first step let us examine the equivalence of the belt 
areas in the position-momentum space and areas in the 
energy-time period space without the mass reduction for 
the body momentum and energy performed below [see 
(56) and (57)]. In this case we have 

    1 1

1
, = π

2n n n nA R P R R P P         (48) 
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similar to (19a), Sommerfeld atom. The factor of 1/2 entering the formu-

lae (48)-(51) provides us with the arithmetical mean of 
the corresponding parameters defining the belt lengths. 
The belt areas (48)-(51) are calculated in Tables 1 and 2 
together with the ratios    , ,B R P A R P  and  
   , ,D T E C T E  which roughly satisfy the relations: 

   1 1

1
, = π

2n n n nB R P P P R R          (49) 

similar to (22a),  

    1 1

1
, =

2n n n nC T E T T E E          (50) 
 
 

 
 

, ,
2

, ,

B R P D T E

A R P C T E
             (52) 

similar to (25a), and 

   1 1

1
, =

2n n n nD T E E E T T   The input data in Tables 1 and 2 are taken from [5,6] 
and Table 3. For the same planetary and satellitary pairs 
another ratio equal to 

,         (51) 

similar to (26a) calculated for an electron in the Bohr-  
 
Table 1. Belt areas between the neighbouring planet orbits calculated (in Js) for the momentum-position and energy-time 
phase spaces and their ratios; for A(R,P) and B(R,P) see Equations. (48) and (49); for C(T,E) and D(T,E) see, respectively, (50) 
and (51). The entering data are based on [5,6]. 

Planets Pair  ,A R P   ,B R P  
B

A
  ,C T E   ,D T E  

D

C
 

Venus-Mercury 410.149 10  410.403 10  2.70  410.199 10  410.351 10  1.77  

Earth-Venus 410.227 10  400.300 10  0.13  410.342 10  400.841 10  0.25  

Mars-Earth 410.237 10  410.962 10  4.07  410.394 10  411.120 10  2.84  

Jupiter-Mars 440.215 10  440.391 10  1.82  440.255 10  440.351 10  1.37  

Saturn-Jupiter 440.308 10  440.669 10  2.17  440.523 10  440.883 10  1.69  

Uranus-Saturn 440.138 10  440.330 10  2.40  440.245 10  440.438 10  1.79  

Neptune-Uranus 430.293 10  420.396 10  0.13  430.449 10  430.196 10  0.44  

Pluto-Neptune 430.116 10  430.900 10  7.77  430.198 10  430.982 10  4.97  

 
Table 2. Belt areas between the neighbouring satellite orbits calculated (in Js) for the momentum-position and energy-time 
phase spaces and their ratios; for the symbols meaning see (48)-(51). The entering data are based on [5,6] and Table 3. 

Satellites Pair  ,A R P   ,B R P  
B

A
  ,C T E   ,D T E  

D

C
 

Deimos-Phobos 270.516 10  270.920 10  1.78  270.968 10  271.374 10  1.42  

Europa-Io 360.867 10  361.507 10  1.74  370.138 10  370.202 10  1.46  

Ganymede-Europa 370.144 10  370.260 10  1.81  370.209 10  370.195 10  0.94  

Callisto-Ganymede 370.319 10  370.341 10  1.07  370.513 10  370.534 10  1.04  

Enceladus-Mimas 330.130 10  330.188 10  1.45  330.195 10  330.126 10  0.64  

Tethys-Enceladus 330.852 10  336.400 10  7.51  340.122 10  340.600 10  4.93  

Dione-Tethys 340.246 10  340.205 10  0.83  340.372 10  340.086 10  0.23  

Rhea-Dione 340.746 10  341.505 10  2.02  350.110 10  350.115 10  1.05  

Titan-Rhea 360.844 10  362.009 10  2.38  370.108 10  370.177 10  1.64  

Iapetus-Titan 370.279 10  370.561 10  2.01  370.577 10  370.859 10  1.49  

Ariel-Miranda 330.764 10  340.348 10  4.55  340.107 10  340.318 10  2.98  

Umbriel-Ariel 340.158 10  340.108 10  0.69  340.241 10  340.192 10  0.80  

Titania-Umbriel 340.498 10  340.746 10  1.50  340.727 10  340.515 10  0.71  

Oberon-Titania 340.506 10  340.559 10  1.10  340.773 10  340.825 10  1.07  
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Table 3. Corrected data for one of the satellites of Saturn and two satelites of Uranus; see [5] and [6]. The period Tn is given 
in sidereal days (1 sidereal day = 86400 s); Rn is the mean distance of the satellite from planet center (in 103 m); Msn is the 
satellite mass (in kg); En is the satellite energy (in J); Pn is the satellite momentum (in kg·ms–1). 

n  Satelite of Saturn Rn Tn Msn nE  Pn 

7 Iapetus 3561000  79.33  211.88 10  290.1001 10  250.6138 10  

n  Satelite of Uranus Rn Tn Msn nE  Pn 

4 Titania 436300  18.704  213.48 10  290.2311 10  260.1269 10  

5 Oberon 583400  13.463  212.92 10  290.1450 10  260.0920 10  

 

   
   

, ,
= 1

, ,

C T E D T E

A R P B R P






.5          (53) 

is calculated in Table 4. 
In the next step, we examine the relations between the 

phase-space areas when the mass reduction of the body 
momentum and energy mentioned at the end of Section 4 
is done. 

The planetary mass =pn nM M , or the satellite mass 
=sn nM M  enter both sides of Equation (16). The reduc- 

tion of this mass gives instead of (16):  

π
= n nn n

n n

E TP R

M M
              (54) 

or 

1
π =

2
pot

n n n nv R V T              (55) 

where 

2π
= =n n

n
n n

R P
v

T M
              (56) 

is the velocity of a circulating celestial body and  

1
=

2
npot

n
n

E
V

M
               (57) 

is the absolute value of the average potential of that body. 

This is so because 
1

2

pot
nV  in (57) multiplied by nM   

and differentiated with respect to the distance n  equals 
to a half of the gravitational force acting between the 
motion center and the orbiting body. 

R

A substitution of (56) and (57) instead of n  and P

nE  entering (48)-(53) [see a similar operation done for 
the atomic case in (46), (47) and the formulae (19a), 
(22a), (25a) and (26a)] gives:  

    1
1

1

1
, = π ,

2
n n

n n
n n

P P
A R v R R

M M





 
 

 
      (58) 

  

    1
1

1

1
, =

2
n npot

n n
n n

E E
C T V T T

M M





 
 

 
,     (60) 

   1
1

1

1
, = .       (61) 

2
n npot

n n
n n

E E
D T V T T

M M





 

Expressions  

1
1

1

= , =n
n n

n n

P P
v v

M M





n            (62) 

are the velocities of the bodies on the orbits n and 1n  , 
whereas 

1
1

1

1 1
= , =

2 2
pot potn

n n
n n

E
V V

M M





nE
        (63) 

represent the average body potentials on these orbits. 
The ratios obtained for the hydrogen-like atom on the 

basis of (19a), (22a), (25a) and (26a) are:  

= 2; = 2 3; = 1; = 1 3;

= 1 2; = 3 2.

A B A C A D B C

B D C D
   (64) 

These ratios can be compared with similar ratios ob- 
tained for planets and satellites. We find (see Tables 5 
and 6) that    , ,A R v B R v  is very close to 2 and the 
ratio    , ,pot potC T V D T V  is very close to 3/2. The  
remaining ratios of (64), viz.    , , potA R v C T V ,  

   , , potA R v D T V ,    , , potB R v C T V  and  

   , , potB R v D T V  are presented in Tables 7 and 8. 
They are plainly close to the corresponding ratios (64). 
This agreement is evident especially in the case of planets; 
see Table 7. 

In the case of satellites the strongest deviations of the 
observed data from the ratios (64) are obtained for the 
pairs of Deimos-Phobos and Iapetus-Titan (see Table 8). 

Another ratio, similar to that calculated in (53) for the 
areas (48)-(51), can be calculated for the areas (58)-(61). 
This is  

   
   
, ,

= .
, ,

pot potC T V D T V

A R v B R v





         (65) 

1
1

1

1
, = π ,

2
n n

n n
n n

P P
B R v R R

M M





        (59) 
Its values for different planetary and satellitary pairs    
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Table 4. Ratios between the averaged belt areas calculated for planets and satellites. Column first: the ratios of energy-time 
and momentum-position phase spaces calculated according to the Formula (53). Column second: the ratios of potential-time 
and velocity-position phase spaces calculated according to (65). The ratios η  and  approach a similar ratio calculated 
for the atomic electron orbits in (66). 

χ

Planets Pair     Satellites Pair     

 Equation (53) Equation (65)  Equation (53) Equation (65) 

Venus-Mercury 1.00 1.82 Deimos-Phobos 1.63 1.90 

Earth-Venus 1.66 1.69 Europa-Io 1.43 1.72 

Mars-Earth 1.26 1.72 Ganymede-Europa 1.00 1.73 

Jupiter-Mars 1.00 2.10 Callisto-Ganymede 1.59 1.76 

Saturn-Jupiter 1.44 1.77 Enceladus-Callisto 1.01 1.67 

Uranus-Saturn 1.46 1.81 Tethys-Enceladus 1.00 1.68 

Neptune-Uranus 1.94 1.73 Dione-Tethys 1.01 1.68 

Pluto-Neptune 1.09 1.68 Rhea-Dione 1.00 1.70 

   Titan-Rhea 1.00 1.87 

   Iapetus-Titan 1.71 1.99 

   Ariel-Miranda 1.00 1.70 

   Umbriel-Ariel 1.63 1.71 

   Titania-Umbriel 1.00 1.74 

   Oberon-Titania 1.50 1.69 

 
Table 5. Belt areas between the neighbouring planet orbits calculated (in Jkg–1s) for the velocity-position and potential-time 
phase spaces; for A(R,v) and B(R,v) see Equations (58) and (59); for C(T,Vpot) and D(T,Vpot) see, respectively, (60) and (61). 
The input data are equal to those applied in calculating Table 1. The ratios A/B and C/D have their counterparts in the data 
of the Bohr-Sommerfeld theory given in (64). These are A/B = 2 and C/D = 3/2. 

Planets Pair  ,A R v   ,B R v  
A

B
  , potC T V   , potD T V  

C

D
 

Venus-Mercury 160.659 10  160.321 10  2.05 161.045 10  160.736 10  1.42 

Earth-Venus 160.421 10  160.212 10  1.99 160.641 10  160.429 10  1.49 

Mars-Earth 160.659 10  160.338 10  1.95 161.021 10  160.692 10  1.48 

Jupiter-Mars 170.321 10  170.174 10  1.85 170.593 10  170.447 10  1.33 

Saturn-Jupiter 170.231 10  170.118 10  1.95 170.366 10  170.252 10  1.45 

Uranus-Saturn 170.373 10  170.192 10  1.95 170.600 10  170.420 10  1.43 

Neptune-Uranus 170.313 10  170.158 10  1.98 170.483 10  170.330 10  1.46 

Pluto-Neptune 170.210 10  170.122 10  1.72 170.342 10  170.218 10  1.57 

 
are listed in Table 4. On the basis of calculations done in 
the Bohr-Sommerfeld theory of the hydrogen-like atom 
the values of   given by (53) and those of   given 
by (65) should approach the same value 

1 3 2
= = = = 5 3

1 1 2
at at C D

A B
   

 
;        (66) 

see (19a), (22a), (25a) and (26a) at the end of Section 4. 

6. Discussion 

The aim of the present paper was to detect, and check, 
some regularities which can be obtained for the frag-
ments of the phase-space areas defined by parameters 
characteristic for the motion of celestial bodies in the 
solar system. In this search we were guided by similar 
phase-space properties deriv d for the electron motion in e 
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Table 6. Belt areas between the neighbouring satellite orbits calculated (in Jkg–1s) for the velocity-position and potential-time 
phase spaces; for A(R,v) and B(R,v) see Equations (58) and (59); for C(T,Vpot) and D(T,Vpot) see, respectively, (60) and (61). 
The input data are equal to those applied in calculating Table 2. The ratios A/B and C/D have their counterparts in the data 
of the Bohr-Sommerfeld theory given in (64). These are A/B = 2 and C/D = 3/2. 

Satellites Pair  ,A R v   ,B R v  
A

B
  , potC T V   , potD T V  

C

D
 

Deimos-Phobos 110.776 10  110.404 10  1.92 120.130 10  120.094 10  1.39 

Europa-Io 140.122 10  140.062 10  0.91 140.188 10  140.128 10  1.47 

Ganymede-Europa 140.154 10  140.078 10  1.97 140.239 10  140.163 10  1.47 

Callisto-Ganymede 140.243 10  140.124 10  1.95 140.382 10  140.263 10  1.46 

Enceladus-Mimas 130.221 10  130.115 10  1.92 130.336 10  130.223 10  1.51 

Tethys-Enceladus 130.215 10  130.106 10  2.02 130.322 10  130.218 10  1.49 

Dione-Tethys 130.275 10  130.142 10  1.94 130.421 10  130.280 10  1.50 

Rhea-Dione 130.436 10  130.218 10  2.00 130.664 10  130.449 10  1.48 

Titan-Rhea 140.153 10  140.080 10  1.92 140.255 10  140.181 10  1.41 

Iapetus-Titan 140.325 10  140.173 10  1.87 140.571 10  140.420 10  1.36 

Ariel-Miranda 130.117 10  130.059 10  1.97 130.179 10  130.121 10  1.48 

Umbriel-Ariel 130.120 10  130.060 10  1.99 130.183 10  130.124 10  1.48 

Titania-Umbriel 130.222 10  130.112 10  1.98 130.345 10  130.236 10  1.46 

Oberon-Titania 130.157 10  130.079 10  1.98 130.239 10  130.160 10  1.49 

 
Table 7. The ratios        pot potA R,v C T,V , A R,v D T,V ,    potB R,v C T,V  and    potB R,v D T,V  calculated for the 

belt areas of the velocity-position and potential-time spaces for planets. These ratios, as well as those calculated in Table 5, 
approach the ratios of the phase-space areas obtained from the electron orbits in the Bohr-Sommerfeld atom; see (64). 

Planets Pair 
 
 

,

, pot

A R v

C T V
 

 
 

,

, pot

A R v

D T V
 

 
 

,

, pot

B R v

C T V
 

 
 

,

, pot

B R v

D T V
 

Venus-Mercury 0.63 0.90 0.31 0.44 

Earth-Venus 0.66 0.98 0.33 0.49 

Mars-Earth 0.65 0.95 0.33 0.49 

Jupiter-Mars 0.54 0.72 0.29 0.40 

Saturn-Jupiter 0.63 0.92 0.32 0.47 

Uranus-Saturn 0.62 0.89 0.32 0.46 

Neptune-Uranus 0.65 0.95 0.33 0.48 

Pluto-Neptune 0.61 0.96 0.36 0.56 

 
the Bohr-Sommerfeld atom. The calculations applied the 
data calculated from [5] and those listed in Tables 1 and 
2 in [6]. However, several printing errors were discov-
ered in Table 2 of the last reference for the data of Iape-
tus, the satellite of Saturn, and Titania and Oberon, the 
satellites of Uranus. The corrected data are given in Ta-
ble 3 of the present paper. 

For planets the belt areas defined in the momentum- 

position and energy-time phase spaces exhibit their ratios 
   , ,B R P A R P  and    , ,D T E C T E [see (48)-(51)] 

considerably different from unity only for Earth-Venus, 
Mars-Earth, Neptune-Uranus, and Pluto-Neptune pairs; 
see Table 1. Similar belts for the phase-space areas de-
fined for the neighbouring orbits of the satellites (Table 
2) show the ratios    , ,B R P A R P  and  
   , ,D T E C T E  still closer to unity than in the planet    
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Table 8. The ratios        pot potA R,v C T,V , A R,v D T,V ,    potB R,v C T,V  and    potB R,v D T,V  calculated for the 

belt areas of the velocity-position and potential-time spaces for satellites. These ratios, as well as those calculated in Table 6, 
approach the ratios of the phase-space areas obtained from the electron orbits in the Bohr-Sommerfeld atom; see (64). 

Satellites Pair 
 
 

,

, pot

A R v

C T V
 

 
 

,

, pot

A R v

D T V
 

 
 

,

, pot

B R v

C T V
 

 
 

,

, pot

B R v

D T V
 

Deimos-Phobos 0.60 0.83 0.31 0.43 

Europa-Io 0.65 0.95 0.33 0.48 

Ganymede-Europa 0.64 0.94 0.33 0.48 

Callisto-Ganymede 0.64 0.92 0.32 0.47 

Enceladus-Mimas 0.66 0.99 0.34 0.52 

Tethys-Enceladus 0.67 0.99 0.33 0.49 

Dione-Tethys 0.65 0.98 0.34 0.51 

Rhea-Dione 0.66 0.97 0.33 0.49 

Titan-Rhea 0.60 0.85 0.31 0.44 

Iapetus-Titan 0.57 0.77 0.30 0.41 

Ariel-Miranda 0.65 0.97 0.33 0.49 

Umbriel-Ariel 0.67 0.99 0.34 0.50 

Titania-Umbriel 0.64 0.94 0.33 0.48 

Oberon-Titania 0.66 0.98 0.33 0.49 

 
case. The only strong deviations from unity are exhibited 
for the satellite pairs of Thetys-Enceladus, Dione-Thetys 
and Ariel-Miranda. 

Some properties concerning the belt areas in the phase- 
space and their ratios can be deduced in an analytic way. 
For example, an approximate equivalence between  
 , A R v  and  , potC T V

 ,
 [see (58) and (60)] can be at- 

tained on condition A R v  is multiplied by the factor 
of 3/2. For, from (58) and (62) we obtain:  

  1 1

2

3 1
π

2 2
3 2π

= π = 3π
2

n n n nR R v v

R R
R R

T T

  

 
          (67) 

where  

1= nR R R  ,n                  (68) 

 1

2π 1
= .             (69) 

2n n

R
v v v
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Similarly, from (60) and (63):  

  1 1

1

1
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1 1 1
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2 2 2 2
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n n n n

s
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M

R
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where  is the gravitational constant. Here  

1= nT T T                   (71) 

1

1 1 1 1
.

2 n nR R R

 
 

 
               (72) 

From the Kepler’s law (see e.g. [4])  
2

2 4π
n

s

T
M




3
nR                 (73) 

We obtain by differentiation the relation:  
2

24π
2 3

s

T T R R
M

 


             (74) 

valid approximately for any n. A substitution of (74) into 
(70) gives  

2 2

2

1 1 4π 3
=

2 2 2

= 3π ,

s s
s

R
M T M

R R M

R
R

T

R
T

 



 


     (75) 

which is identical to (67). Hence, the ratio between 
 ,A R v  and  , potC T V  [see (58) and (60)] should be 

approximately equal to  

 
 

, 2
,

3, pot

A R v

C T V
            (76) 
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which is the result obtained also for A C  in the atom 
on the basis of (19a) and (25a). In calculations we took 
into account the fact that the average 

pot
V  entering (63) 

are not much different from the actual potV  because of 
a quasi-circular character of the orbit possessed by a 
moving body. 

Other ratios than 2/3 given in (76) can be deduced be- 
tween the areas (58), (59) and (60), (61). These ratios are 
identical to the ratios between the belt areas (34), (37), 
(40) and (41) [or (19a), (22a), (25a) and (26a)] obtained 
for the Bohr-Sommerfeld hydrogen atom; see (64). In 
Tables 7 and 8 we calculate these ratios for the planetary 
and satellitary systems. 

A characteristic point is that the ratios calculated in 
Tables 7 and 8 are only feebly dependent on the choice 
of the planetary or satellitary pair. In this sense these 
ratios have an almost constant character similar to that 
postulated at the end of Section 1. 

In particular, the average deviations of the ratios in 
Tables 7 and 8 from the ratios calculated in (64) are re-
spectively:  

 Table

= 0.06; = 0.04;
A C A C

A C


      (77) 

 Table

= 0.09; = 0.07;
A D A D

A D


      (78) 

 Table

= 0.03; = 0.02;
B C B C

B C


      (79) 

 Table

= 0.05; = 0.05;
B D B D

B D


      (80) 

The first numbers calculated in (77)-(80) concern the 
data taken from Table 7, the second numbers concern the 
data taken from Table 8. 
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ABSTRACT 

Dark matter has been introduced to explain substantial mass deficits noted at different astronomical scales, in galaxies, 
groups of galaxies, clusters, superclusters and even across the full horizon. Dark matter does not interact with baryonic 
matter except gravitationally, and therefore its effects are sensed only on the largest scales. Although it is still unknown 
whether dark matter consists of particles or of a field or has some other nature, it has a rich phenomenology. This re- 
view summarizes all the astrophysical and cosmological probes that have produced overwhelming evidence for its exis- 
tence. The breadth of the subject does not permit details on the observational methods (the reference list then helps), 
thus the review is intended to be useful mainly to cosmologists searching to model dark matter. 
 
Keywords: pacs{95.35.+d, 98.65.-r, 98.62.-g, 98.80.-k, 98.90.+s} 

1. Introduction 

Apparently the matter content of the Universe is domi- 
nated by an unknown form of dark matter (DM) without 
interactions with ordinary baryonic matter, perhaps not 
even with itself. It only interacts via the gravitational 
field, manifesting its effects on astrophysical and cos- 
mological scales. The purpose of this review is to sum- 
marize the phenomenology of all such effects, that can 
serve as probes of dark matter. Regardless of the ultimate, 
correct explanation of its particle nature or field nature, 
theory needs to address all these effects. 

This review does not cover the historical development, 
except by glimpses, because the rapid development of 
observational means tends to render all discoveries older 
than a decade unimportant. 

Beginning from the first controversial conclusions 
from the motion of stars near the Galactic disk on miss- 
ing matter in the Galactic disk (Section 2), and that of 
Fritz Zwicky in 1933 [1] of missing matter in the Coma 
cluster (Section 3), we describe the kinematics of virially 
bound systems (Section 3) and rotating spiral galaxies 
(Section 4). An increasingly important method to deter- 
mine the weights of galaxies, clusters and gravitational 
fields at large, independently of electromagnetic radia- 
tion, is lensing, strong as well as weak (Section 5). Next 
follows a discussion of dark matter in elliptical galaxies 
(Section 6) and mass-to-light ratios which probe dark 
matter in all systems, notably in dwarf spheroidals (Sec- 
tion 7). Different ways to measure missing mass in groups 
and clusters derive from the comparison of visible light 
and X-rays (Section 8). Mass autocorrelation functions 

relate galaxy masses to dark halo masses (Section 9). 
In radiation the most important tools are the tempera- 

ture and polarization anisotropies in the Cosmic Micro- 
wave Background (CMB) (Section 10), which give infor- 
mation on the mean density of both dark and baryonic 
matter as well as on the geometry of the Universe. The 
large scale structures of matter exhibit similar fluctua- 
tions evident in the Baryonic Acoustic Oscillations (BAO) 
(Section 11). The amplitude of the temperature variations 
in the CMB prove, that galaxies could not have formed in 
a purely baryonic Universe (Section 12). Simulations of 
large scale structures also show that DM must be present 
(Section 13). The best quantitative estimates of the den- 
sity of DM come from overall parametric fits to cosmo- 
logical models, notably the Cold Dark Matter model 
“ CDM” with a cosmological constant , of CMB da- 
ta, BAO data, and redshifts of supernovae of type Ia 
(SNe Ia) (Section 14). A particularly impressive testi- 
mony comes from merging clusters (Section 15). We 
conclude this review with a brief summary (Section 16). 



2. Stars near the Galactic Disk 

In 1922 the Dutch astronomer Jacobus Kapteyn [2] stud- 
ied the vertical motions of all known stars near the 
Galactic plane and used these data to calculate the acce- 
leration of matter. This amounts to treating the stars as 
members of a “star atmosphere”, a statistical ensemble in 
which the density of stars and their velocity dispersion 
defines a “temperature” from which one obtains the gra- 
vitational potential. This is analogous to how one obtains 
the gravitational potential of the Earth from a study of  
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the atmosphere. Kapteyn found that the spatial density is 
sufficient to explain the vertical motions. 

Later in the same year the British astronomer James 
Jeans [3] reanalyzed Kapteyn’s data and found a mass 
deficit: to each bright star two dark stars had to be pre- 
sent. The result contradicted grossly the expectations: if 
the potential provided by the known stars was not suffi- 
cient to keep the stars bound to the Galactic disk, the Ga- 
laxy should rapidly be losing stars. Since the Galaxy ap- 
peared to be stable there had to be some missing matter 
near the Galactic plane. 

In 1932 the Dutch astronomer Jan Hendrik Oort [4] re- 
analyzed the vertical motions and came to the same con- 
clusion as Jeans. There was indeed a mass deficit which 
Oort proposed to indicate the presence of some dark mat- 
ter in our Galaxy. The possibility that this missing matter 
would be nonbaryonic could not even be thought of at 
that time. Note that the first neutral baryon, the neutron, 
was discovered by James Chadwick [5] only in the same 
year, in 1932. 

However, it is nowadays considered, that this does not 
prove the existence of DM in the disk. The potential in 
which the stars are moving is not only due to the disk, 
but rather to the totality of matter in the Galaxy which is 
dominated by the Galactic halo. The advent of much 
more precise data in 1998 led Holmberg & Flynn [6] to 
conclude that no DM was present in the disk. 

Oort determined the mass of the Galaxy to be  1110

sun , and thought that the nonluminous component was 
mainly gas. Still in 1969 he thought that intergalactic gas 
made up a large fraction of the mass of the universe [7]. 
The general recognition of the missing matter as a pos- 
sibly new type of non-baryonic DM dates to the early 
eighties. 

M

3. Virially Bound Systems 

The planets move around the Sun along their orbits with 
orbital velocities balanced by the total gravity of the 
Solar system. Similarly, stars move in galaxies in orbits 
with orbital velocities  determined by the gravitational 
field of the galaxy, or they move with velocity dispersion 

v

 . Galaxies in turn move with velocity dispersion   
under the influence of the gravitational field of their en- 
vironment, which may be a galaxy group, a cluster or a 
supercluster. In the simplest dynamical framework one 
treats massive systems (galaxies, groups and clusters) as 
statistically steady, spherical, self-gravitating systems of 
N objects with average mass m and average velocity v or 
velocity dispersion  . The total kinetic energy E of 
such a system is then (we now use   rather than v) 

  2= 1 2 .E Nm             (1) 

If the average separation is r, the potential energy of 
 1 2N N   pairings is 

    2= 1 2 1U N N Gm  .r        (2) 

The virial theorem states that for such a system  

= 2E U .                 (3) 

The total dynamic mass  can then be estimated 
from 

dynM
  and   r

2= = 2dyn .M Nm r G         (4) 

This can also be written 

 2 ,dynM L IR            (5) 

where I is a surface luminosity, R is a scale, and 

dynM L  is the mass-to-light ratio. Choosing the scale to 
be the half light radius e , this implies a relationship 
between the observed central velocity dispersion 0

R
 , 

eI  and  called the Fundamental Plane. of the form  eR

   0 .
a b

eR I e            (6) 

The virial theorem predicts the values ,  
for the coefficients. This relationship is found in ellipti- 
cals [8,9] and in some other types of stellar populations, 
but with somewhat different coefficients. 

= 2a = 1b

3.1. Halo Density Profiles 

The shapes of DM halos in galaxies and clusters need to 
be simulated or fitted by empirical formulae. Mostly the 
shape is taken to be spherically symmetric so that the 
total gravitating mass profile  M r  depends on three 
parameters: the mass proportion in stars, the halo mass 
and the length scale. A frequently used radial density 
profile parametrization is  

     3

0= 1DM s sr r r r r
  

,
      (7) 

where 0  is a normalization constant and 0 3 2  . 
Standard choices are = 1  for the Navarro-Frenk- 
White profile (NFW) [10], and 3 2   for the profile 
of Moore et al. [11], both cusped at . = 0r

Another parametrization is the Einasto profile ([12] 
and earlier references therein)  

    1
= exp 1

n

DM e n er d r r    ,      (8) 

where the term n  is a function of n such that ed   is 
the density at e , which defines a volume containing 
half of the total mass. At  the density is then finite 
and cored. 

r
= 0r

The Burkert profile [13] has a constant density core  

      2

0= 1 1DM s sr r r r r  ,    
  (9) 

which fitted dwarf galaxy halos well in 1995, but no 
longer does so, see Section 7. 
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Some clusters are not well fitted by any spherical ap- 
proximation. The halo may exhibit a strong ellipticity or 
triaxiality in which case none of the above profiles is 
good. 

The dependence of the physical size of clusters on the 
mass, characterized by the mass concentration index 

vir sc r r , has been studied in CDM simulations [14]. 
At intermediate radii c is a crucial quantity in deter- 
mining the density shape. 



3.2. The Coma Cluster 

Historically, the first observation of dark matter in an 
object at a cosmological distance was made by Fritz 
Zwicky in 1933 [1]. While measuring radial velocity 
dispersions of member galaxies in the Coma cluster (that 
contains some 1000 galaxies), and the cluster radius from 
the volume they occupy, Zwicky was the first to use the 
virial theorem to infer the existence of unseen matter. He 
found to his surprise that the dispersions were almost a 
factor of ten larger than expected from the summed mass 
of all visually observed galaxies in the Coma. He con- 
cluded that in order to hold galaxies together the cluster 
must contain huge amounts of some non-luminous matter. 
From the dispersions he concluded that the average mass 
of galaxies within the cluster was about 160 times greater 
than expected from their luminosity (a value revised 
today), and he proposed that most of the missing matter 
was dark. 

Zwicky’s suggestion was not taken seriously at first by 
the astronomical community which Zwicky felt as hostile 
and prejudicial. Clearly, there was no candidate for the 
dark matter because gas radiating X-rays and dust radi- 
ating in the infrared could not yet be observed, and non- 
baryonic matter was unthinkable. Only some forty years 
later when studies of motions of stars within galaxies 
also implied the presence of a large halo of unseen matter 
extending beyond the visible stars, dark matter became a 
serious possibility. 

Since that time, modern observations have revised our 
understanding of the composition of clusters. Luminous 
stars represent a very small fraction of a cluster mass; in 
addition there is a baryonic, hot intracluster medium 
(ICM) visible in the X-ray spectrum. Rich clusters typi- 
cally have more mass in hot gas than in stars; in the 
largest virial systems like the Coma the composition is 
about 85% DM, 14% ICM, and only 1% stars [15]. 

In modern applications of the virial theorem one also 
needs to model and parametrize the radial distributions of 
the ICM and the dark matter densities. In the outskirts of 
galaxy clusters the virial radius roughly separates bound 
galaxies from galaxies which may either be infalling or 
unbound. The virial radius virr  is conventionally de- 
fined as the radius within which the mean density is 200 
times the background density. 

Matter accretion is in general quite well described 
within the approximation of the Spherical Collapse Mo- 
del. According to this model, the velocity of the infall 
motion and the matter overdensity are related. Mass pro- 
file estimation is thus possible once the infall pattern of 
galaxies is known [16]. 

In Figure 1 the Coma profile is fitted [15] with Equa- 
tion (7) with = 0  which describes a centrally finite 
profile which is almost flat. The separation of different 
components in the core is not well done with Equation (7) 
because the Coma has a binary center like many other 
clusters [17]. 

3.3. The AC 114 Cluster 

Dark matter is usually dissected from baryons in lensing 
analyses by first fitting the lensing features to obtain a 
map of the total matter distribution and then subtracting 
the gas mass fraction as inferred from X-ray observations 
[19,20]. The total mass map can then be obtained with 
parametric models in which the contribution from cluster- 
sized DM halos is considered together with the main 
galactic DM halos [21]. Mass in stars and in stellar rem- 
nants is estimated converting galaxy luminosity to mass 
assuming suitable stellar mass to light ratios. 

One may go one step further by exploiting a parame- 
tric model which has three kinds of components: cluster- 
sized DM halos, galaxy-sized (dark plus stellar) matter 
halos, and a cluster-sized gas distribution [17,18]. As an 
example we show the results of such an analysis of the 
dynamically active cluster AC 114 in Figure 2. 

In systems of merging clusters DM may become spa- 
tially segregated from baryonic matter and thus obser- 
vable. We shall meet several such cases in Section 15. 

3.4. The Local Group 

The Local Group is a very small virial system, dominated 
by two large galaxies, the M31 or Andromeda galaxy, 
and the Milky Way. The M31 exhibits blueshift, falling 
in towards us. Evidently our Galaxy and M31 form a 
bound system together with all or most of the minor 
galaxies in the Local Group. The Local Group extends to 
about 3 Mpc and the velocity dispersions of its members 
is about 200 km·s–1. 

In this group the two large galaxies dominate the dy- 
namics, so that it is not meaningful to define a statisti- 
cally average pairwise separation between galaxies, nor 
an average mass nor an average orbital velocity. The to- 
tal kinetic energy E is still given by the sum of all the 
group members, and the potential energy U by the sum of 
all the galaxy pairs, but here the pair formed by the M31 
and the Milky Way dominates, and the pairings of the 
smaller members with each other are negligible. 

An interesting recent claim is, that the mass estimate  

Copyright © 2012 SciRes.                                                                                 JMP 



M. ROOS 1155

 

Figure 1. Density profile of matter components enclosed 
within a given radius r in the Coma cluster, versus r/rvir. 
From E. L. Lokas and G. A. Mamon [15]. 
 

 

Figure 2. Density profile of matter components in the clus- 
ter AC 114, enclosed within a given projected radius. From 
M. Sereno et al. [18]. 
 
of the Local Group is also affected by the accelerated 
expansion, the “dark energy”. A. D. Chernin et al. [22] 
have shown that the potential energy U is reduced in the 
force field of dark energy, so that the virial theorem for N 
masses mi with baryocentric radius vectors ri takes the 
form  

  2= 1 2E U  ,U             (10) 

where U is defined as in Equation (3), and  

  2
2 = 4π 3  vU   i im r          (11) 

is a correction which reduces the potential energy due to 
the background dark energy density v . In the Local 
Group this correction to the mass appears to be quite 
substantial, of the order of 30% - 50%. 

The dynamical mass of the local group is  
solar masses whereas the total visible mass of the Galaxy 

+ M31 is only  solar masses. Thus there is a 
large amount of dark matter missing. 

123.2 3.7 10 

112 10

.08 0.02

3.5. The local Universe 

In a large volume beyond the local group, Tully in 1984 
[23] measured the velocities of 2367 galaxies with radial 
velocities below 3000 km·s–1. He found that the mass 
density parameter (which is normalized to the critical 
mass) in this “Local Universe” was , in clear 
conflict with the global value,  
(as we shall see in Section 14). 

= 0.08m
, = 0.2m global 7 0.02 

More recently Karachentsev [24] has extended this 
analysis out to a volume of a diameter of 96 Mpc, con- 
taining 11,000 galaxies appearing single, in pairs, in trip- 
lets and in groups. Most of them belong to the Local 
Supercluster and constitute  of the mass of Virgo. 
The radial velocities are  km·s–1. These gala- 
xies can be treated as a virial system with average den- 
sity ,m local

< 15%
< 3500v

= 0  , again surprisingly small com- 
pared to the global density. Karachentsev quotes three 
proposed explanations for this mass deficit. 
 Dark matter in the systems of galaxies extends far 

beyond their virial radius, so that the total mass of a 
group or cluster is 3 - 4 times larger than the virial 
estimate. However, this contradicts other existing 
data. 

 The diameter of the considered region of the Local 
universe, 90 Mpc, does not correspond to the true 
scale of the “homogeneity cell”; our Galaxy may be 
located in- side a giant void sized about 100 - 500 
Mpc, where the mean density of matter is 3 to 4 times 
lower than the global value. However, the location of 
our Galaxy is characterized by an excess, rather than 
by a deficiency of local density at all scales up to 45 
Mpc. 

 Most of the dark matter in the Universe, or about two 
thirds of it, is not associated with groups and clusters 
of galaxies, but distributed in the space between them 
in the form of massive dark clumps or as a smooth 
“ocean”. It is as yet difficult to evaluate this proposal. 

Clearly the physics in the Local Universe does not 
prove the existence of dark matter, rather it brings in new 
problems. 

4. Rotation Curves of Spiral Galaxies 

Spiral galaxies are stable gravitationally bound systems 
in which visible matter is composed of stars and inter- 
stellar gas. Most of the observable matter is in a rela- 
tively thin disc, where stars and gas rotate around the ga- 
lactic center on nearly circular orbits. The galaxy kine- 
matics is measured by the Doppler shift of well-known 
emission lines of particular tracers of the gravitational 
potential: HI, CO and Hα. 

Copyright © 2012 SciRes.                                                                                 JMP 



M. ROOS 

Copyright © 2012 SciRes.                                                                                 JMP 

1156 

If the circular velocity at radius r is v in a rotating 
galaxy with mass M(r) inside r, the condition for stability 
is that the centrifugal acceleration v r  should equal the 
gravitational pull   2GM r r , and the radial depen- 
dence of v would then be expected to follow Kepler’s 
law  

The rotation curve of most galaxies can be fitted by 
the superposition of contributions from the stellar and 
gaseous disks, sometimes a bulge, and the dark halo, 
modeled by a quasi-isothermal sphere. The inner part is 
difficult to model because the density of stars is high, 
rendering observations of individual star velocities diffi- 
cult. Thus the fits are not unique, the relative contribu- 
tions of disk and dark matter halo is model-dependent, 
and it is sometimes not even sure whether galactic disks 
do contain dark matter. Typically, dark matter constitutes 
about half of the total mass. 

 2 =v GM r r             (12) 

The surprising result for spiral galaxy rotation curves 
is, that the velocity does not follow Kepler’s inverse-root 
law, but stays rather constant after attaining a maximum. 
The most obvious solution to this is that the galaxies are 
embedded in extensive, diffuse halos of dark matter If 
the mass M(r) enclosed inside the radius r, is propor- 
tional to r it follows that  v r   constant. 

In Figure 3 we show the rotation curves fitted for 
eleven well-measured galaxies [25] of increasing halo 
mass. One notes, that the central dark halo component is 
indeed much smaller than the luminous disk component.  

 

 

Figure 3. Best disk—halo fits to the universal rotation curve (dotted line is disk, dashed line is halo). Each object is iden- 
tified by the halo virial mass, increasing downwards. From P. Salucci et al. [25]. 
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At large radii, however, the need for a DM halo is ob- 
vious. On galactic scales, the contribution of DM gene- 
rally dominates the total mass. Note the contribution of 
the baryonic component, negligible for light masses but 
increasingly important in the larger structures. 

The mass discrepancy emerges also as a disagreement 
between light and mass distributions: light does not trace 
mass, the ratio  

   d d d dM r L r          (13) 

is not constant, but increases with radius [26]. 
Gentile et al. [27] have shown that cusped profiles are 

in clear conflict with data on spiral galaxies. Central den- 
sities are rather flat, scaling approximately as  

2 3
0 luminousr  . The best-fit disk + NFW halo mass model 

fits the rotation curves poorly, it implies an implausibly 
low stellar mass-to-light ratio and an unphysically high 
halo mass. Clearly the actual profiles are of very uncer- 
tain origin. 

One notes in Figure 3 that the shape of the rotation 
curve depends on the halo virial mass so that the dis- 
tribution of gravitating matter, unlike luminous matter, is 
luminosity dependent. The old idea that the rotation 
curve stays constant after attaining a maximum is thus a 
simplification of the real situation. The rotation velocity 
can be expressed by a Universal Rotation Curve [25]. All 
spiral galaxies lie on a curve in the 4-dimensional space 
of luminosity, core radius, halo central density and 
fraction of DM, see Figure 4. 

Our Galaxy is complicated because of what appears to 
be a noticeable density dip at 9 kpc and a smaller dip at 3 
kpc, as is seen in Figure 5 [28]. To fit the measured 
rotation curve one needs at least three contributing com- 
ponents: a central bulge, the star disk + gas, and a DM 
halo [28-30]. For small radii there is a choice of empi- 
rical rotation curves, and no DM component appears to 
be needed until radii beyond 15 kpc. 

5. Strong and Weak Lensing 

A consequence of the Strong Equivalence Principle (SEP) 
is that a photon in a gravitational field moves as if it 
possessed mass, and light rays therefore bend around gra- 
vitating masses. Thus celestial bodies can serve as gra- 
vitational lenses probing the gravitational field, whether 
baryonic or dark without distinction. 

Since photons are neither emitted nor absorbed in the 
process of gravitational light deflection, the surface 
brightness of lensed sources remains unchanged. Chang- 
ing the size of the cross-section of a light bundle only 
changes the flux observed from a source and magnifies it 
at fixed surface-brightness level. If the mass of the lens- 
ing object is very small, one will merely observe a mag- 
nification of the brightness of the lensed object an effect 
called microlensing. Microlensing of distant quasars by  

 

Figure 4. Upper: The 4-dimensional space of luminosity, core 
radius, halo central density and fraction of DM. Under: The 
smooth surface of spiral galaxy rotation curves in the space 
of normalized radius R/Roptical, magnitude M and rotation 
velocity V in km·s–1. P. Salucci priv. comm. and ref. [25]. 
 

 

Figure 5. Decomposition of the rotation curve of the Milky 
Way into the components bulge, stellar disk + interstellar 
gas, DM halo (the red curves from left to right). From Y. 
Sofue et al. [28]. 
 
compact lensing objects (stars, planets) has also been 
observed and used for estimating the mass distribution of 
the lens-quasar systems. 

In Strong Lensing the photons move along geodesics 
in a strong gravitational potential which distorts space as 
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well as time, causing larger deflection angles and requir- 
ing the full theory of General Relativity. The images in 
the observer plane can then become quite complicated 
because there may be more than one null geodesic con- 
necting source and observer; it may not even be possible 
to find a unique mapping onto the source plane cf Figure 
6. Strong lensing is a tool for testing the distribution of 
mass in the lens rather than purely a tool for testing Ge- 
neral Relativity. An illustration is seen in Figure 7 where 
the lens is an elliptical galaxy [32]. 

At cosmological distances one may observe lensing by 
composed objects such as galaxy groups which are en- 
sembles of “point-like”, individual galaxies. Lensing ef- 
fects are very model-dependent, so to learn the true mag- 
nification effect one needs very detailed information on 
the structure of the lens. 

Weak Lensing refers to deflection through a small an- 
gle when the light ray can be treated as a straight line 
(Figure 6), and the deflection as if it occurred discon- 
tinuously at the point of closest approach (the thin-lens 
approximation in optics). One then only invokes SEP to 
account for the distortion of clock rates. 

The large-scale distribution of matter in the Universe 
is inhomogeneous in every direction, so one can expect 
that everything we observe is displaced and distorted by 
weak lensing. Since the tidal gravitational field and the 
deflection angles depend neither on the nature of the 
matter nor on its physical state, light deflection probes 
the total projected mass distribution. Lensing in infrared 
light offers an additional advantage of being able to sense 
distant background galaxies, since their number density 
is higher than in the optical range. 

Background galaxies would be ideal tracers of distor- 
tions if they were intrinsically circular, because lensing 
transforms circular sources into ellipses. Any measured 
ellipticity would then directly reflect the action of the 
gravitational tidal field of the interposed lensing matter, 
and the statistical properties of the distortions would 
reflect the properties of the matter distribution. But many 
galaxies are actually intrinsically elliptical, and the elli- 
pses are randomly oriented. This introduces noise into 
the inference of the tidal field from observed ellipticities. 
A useful feature in the sky is a fine-grained pattern of 
faint and distant blue galaxies appearing as a “wall paper”. 
This makes statistical weak-lensing studies possible, be- 
cause it allows the detection of the coherent distortions 
imprinted by gravitational lensing on the images of the 
galaxy population. 

Thus weak lensing has become an important technique 
to map non-luminous matter. A reconstruction of one of 
the largest and most detailed weak lensing surveys 
undertaken with the Hubble Space Telescope is shown in 
Figure 8 [33]. This map covers a large enough area to 
see extended filamentary structures. 

 

Figure 6. Wave fronts and light rays in the presence of a 
cluster perturbation. From N. Straumann [31]. 
 

 

Figure 7. This image resulted from color-subtraction of a 
lensing singular isothermal elliptical galaxy. The strongly 
lensed object forms two prominent arcs A, B and a less 
extended third image C. From R. J. Smith et al. [32]. 
 

A very large review on lensing by R. Massey et al. [34] 
can be recommended. We show several examples of len- 
sing by clusters in Section 15. 

6. Elliptical Galaxies 

Elliptical galaxies are quite compact objects which 
mostly do not rotate so their mass cannot be derived from 
rotation curves. The total dynamical mass is then the 
virial mass as derived from the velocity dispersions of 
stars and the anisotropies of their orbits. However, to 
disentangle the total mass profile into its dark and its 
stellar components is not straightforward, because the 
dynamical mass decomposition of dispersions is not 
unique. The luminous matter in the form of visible stars 
is a crucial quantity, indispensable to infer the dark com- 
ponent. When available one also makes use of strong and  
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Figure 8. Map of the dark matter distribution in the 2- 
square degree COSMOS field: the linear blue scale on top 
shows the gravitational lensing magnification κ, which is 
proportional to the projected mass along the line of sight. 
From R. Massey et al. [33]. 
 
weak lensing data, and of the X-ray properties of the 
emitting hot gas. The gravity is then balanced by pre- 
ssure gradients as given by Jeans’ Equation. 

Inside the half light radius e  the contribution of the 
dark matter halo to the central velocity dispersion is often 
very small,  km·s–1, so that the dark matter profile 
is intrinsically unresolvable. The outer mass profile is 
compatible with NFW, Equation (7), and with Burkert, 
Equation (9), as well. Important information on the mass 
distribution can be obtained from the Fundamental Plane, 
Equation (6). which yields the coefficients , 

. Note that this is in some tension with the Virial 
Theorem, perhaps due to variations in the central dis- 
persions, 

R

< 100

= 1.8a
= 0.8b

0 , of the stellar populations. 
O. Tiret et al. [36] concluded from a study of 23 giant 

elliptical galaxies with central velocity dispersions  
km·s–1, that the mass within 5 - 10 kpc is dominated by 
the stars, not by DM. On the average the dark matter 
component contributes less than 5% to the total velocity 
dispersions. 

330

The ELIXR survey is a volume-limited (≤110 Mpc) 
study by P. J. Humphrey et al. [35], of optically selected, 
isolated, L* elliptical galaxies in particular the NGC 1521, 
for which X-ray data from Chandra and XMM exist. The 
isolation condition selects the appropriate galaxy halo 
and reduces the influence of a possible group-scale or 
cluster-scale halo. 

Most of the baryons are in a morphologically relaxed 
hot gas halo detectable out to  kpc, that is well 
described by hydrostatic models. The baryons and the 
dark matter conspire to produce a total mass density pro- 

file that can be well-approximated by a power law, 

tot

200

r    over a wide range (as has been noted before, 
see references in [35,36]). 

The fitting method involves solving the equation of 
hydrostatic equilibrium to compute temperature and den- 
sity profile models, given parametrized mass and entropy 
profiles. The models are then projected onto the sky and 
fitted to the projected temperature and density profiles. A 
fit ignoring DM was poor, but inclusion of DM improved 
the fit highly significantly: DM was required at 8.2 . 
We show this fit in Figure 9. In several studies [36,37], 
for most of the radii the dark matter contribution is very 
small although statistically significant. 

7. Mass to Luminosity Ratios and Dwarf 
Spheroidals 

The mass-to-light ratio of an astronomical object is de- 
fined as M L . Stellar populations exhibit values 

= 1 10 
= 2.5 7

 in solar units, in the solar neighborhood 
  , in the Galactic disk  from C. 
Flynn et al. [38]. 

= 1.0 1.7 

Dwarf spheroidal galaxies (dSph) are the smallest 
stellar systems containing dark matter and exhibit very 
high M/L ratios, = 10 100  . In Andromeda IX  = 
93 + 120/–50, in Draco = 330 125  . The dwarf sphe- 
roidals have radii of 100  pc and central velocity dis- 
persions 10  km·s–1 which is larger than expected for 
self-gravitating, equilibrium stellar populations. The ge- 
nerally accepted picture has been, that dwarf galaxies 
have slowly rising rotation curves and are dominated by 
dark matter at all radii. 

However, R. A. Swaters et al. [39] have reported ob- 
 

 

Figure 9. Radial mass profile of the elliptical galaxy NGC 
1521 from a model calculation (not fitted to the measured 
points shown). The solid black line indicates the total 
enclosed mass (1σ errors in grey), the dashed red line is the 
stellar mass, the dotted blue line is the dark matter, and the 
dash-dot magenta line is the gas mass contribution. From P. 
J. Humphrey et al. [35]. 
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servations of H I rotation curves for a sample of 73 dwarf 
galaxies, among which eight galaxies have sufficiently 
extended rotation curves to permit reliable determination 
of the core radius and the central density. They found that 
dark matter only becomes important at radii larger than 
three or four disk scale lengths. Their conclusion is, that 
the stellar disk can explain the mass distribution over the 
optical parts of the galaxy, and dark matter only be- 
comes relevant at large radii. However, the required 
stellar mass-to-light ratios are high, up to 15 in the R- 
band. 

Comparing the properties of dwarf galaxies in both the 
core and outskirts of the Perseus Cluster, Penny and 
Conselice [40] found a clear correlation between mass- 
to-light ratio and the luminosity of the dwarfs, such that 
the faintest dwarfs require the largest fractions of dark 
matter to remain bound. This is to be expected, as the 
fainter a galaxy is, the less luminous mass it will contain, 
therefore the higher its dark matter content must be to 
prevent its disruption. Dwarfs are more easily influenced 
by their environment than more massive galaxies. 

The distance to the Perseus Cluster prevents an easy 
determination of , so S. J. Penny and C. J. Conselice 
[40] instead determined the dark matter content of the 
dwarfs by calculating the minimum mass needed in order 
to prevent tidal disruption by the cluster potential, using 
their sizes, the projected distance from the cluster center 
to each dwarf and the mass of the cluster interior. Three 
of 15 dwarfs turned out to have mass-to-light ratios 
smaller than 3, indicating that they do not require dark 
matter. 



Ultra-compact dwarf galaxies (UCDs) are stellar 
systems with masses of around 107 - 108 Msun and half 
mass radii of 10 - 100 pc. A remarkable properties of 
UCDs is that their dynamical mass-to-light ratios are on 
average about twice as large as those of globular clusters 
of comparable metallicity, and also tend to be larger than 
what one would expect based on simple stellar evolution 
models. UCDs appear to contain very little or no dark 
matter.  

H. Baumgardt and S. Mieske [41] have presented colli- 
sional N-body simulations which study the coevolution 
of a system composed of stars and dark matter. They find 
that DM gets removed from the central regions of such 
systems due to dynamical friction and mass segregation 
of stars. The friction timescale is significantly shorter 
than a Hubble time for typical globular clusters, while 
most UCDs have friction times much longer than a 
Hubble time. Therefore, a significant dark matter fraction 
remains within the half-mass radius of present-day UCDs, 
making dark matter a viable explanation for their ele- 
vated mass-to-light ratios. 

A different type of systems are the ultra-faint dwarf 
galaxies (UFDs). When interpreted as steady state objects 

in virial equilibrium by V. Belokurov [42], would be the 
most DM dominated objects known in the Universe. 
Their half-light radii range from 70 pc to 320 pc. 

A special case is the ultra-faint dwarf disk galaxy 
Segue 1 studied by M. Xiang-Gruess et al. [43] which 
has a baryon mass of only about 1000 solar masses. One 
interpretation is that this is a thin non-rotating stellar disk 
not accompanied by a gas disk, embedded in an axisym- 
metric DM halo and with a ratio 200halo bf M M  . 
But if the disk rotates, f could be as high as 2000. If 
Segue 1 also has a magnetized gas disk, the dark matter 
halo has to confine the effective pressure in the stellar 
disk and the magnetic Lorentz force in the gas disk as 
well as possible rotation. Then f could be very large [43]. 

8. Small Galaxy Groups Emitting X-Rays 

There are examples of groups formed by a small number 
of galaxies which are enveloped in a large cloud of hot 
gas (ICM), visible by its X-ray emission. One may 
assume that the electron density distribution associated 
with the X-ray brightness is in hydrostatic equilibrium, 
and one can extract the ICM radial density profiles by 
fits. 

The amount of matter in the form of hot gas can be 
deduced from the intensity of this radiation. Adding the 
gas mass to the observed luminous matter, the total 
amount of baryonic matter, bM , can be estimated, see M. 
Markevitch et al. [44] and C. De Boni and G. Bertin [45]. 
In clusters studied, the gas fraction increases with the 
distance from the center; the dark matter appears more 
concentrated than the visible matter. 

The temperature of the gas depends on the strength of 
the gravitational field, from which the total amount of 
gravitating matter, grav , in the system can be deduced. 
In many such small galaxy groups one finds 

M

grav bM M  
, testifying to a dark halo present. An accurate 

estimate of grav  requires that also dark energy is taken 
into account, because it reduces the strength of the 
gravitational potential. There are sometimes doubts whe- 
ther all galaxies appearing near these groups are physical 
members. If not, they will artificially increase the velo- 
city scatter and thus lead to larger virial masses. 

3
M

On the scale of large clusters of galaxies like the Coma, 
it is generally observed that DM represents about 85% of 
the total mass and that the visible matter is mostly in the 
form of a hot ICM.  

9. Mass Autocorrelation Functions 

If galaxy formation is a local process, then on large 
scales galaxies must trace mass. This requires the study 
of how galaxies populate DM halos. In simulations one 
attempts to track galaxy and DM halo evolution across 
cosmic time in a physically consistent way, providing 
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positions, velocities, star formation histories and other 
physical properties for the galaxy populations of interest. 

Guo et al. [46] use abundance matching arguments to 
derive an accurate relation between galaxy stellar mass 
and DM halo mass. They combine a stellar mass function 
based on spectroscopic observations with a precise halo/ 
subhalo mass function obtained from simulations. Assu- 
ming this stellar mass-halo mass relation to be unique 
and monotonic, they compare it with direct observational 
estimates of the mean mass of halos surrounding galaxies 
of given stellar mass inferred from gravitational lensing 
and satellite galaxy dynamics data, and use it to populate 
halos in simulations. The stellar mass-halo mass relation 
is shown in Figure 10. 

The implied spatial clustering of stellar mass turns out 
to be in remarkably good agreement with a direct and 
precise measurement. By comparing the galaxy auto- 
correlation function with the total mass autocorrelation 
function, as averaged over the Local Supercluster (LSC) 
volume, one concludes that a large amount of matter in 
the LSC is dark. 

A similar study is that of Boyarsky et al. [47] who find 
a universal relation between DM column density and DM 
halo mass, satisfied by matter distributions at all obser- 
vable scales in halo sizes from 108 to 1016 Msun, as shown 
in Figure 11. Such a universal property is difficult to ex- 
plain without dark matter. 

10. Cosmic Microwave Background (CMB) 

The tight coupling between radiation and matter density 
before decoupling caused the primordial adiabatic pertur- 
bations to oscillate in phase. Beginning from the time of 
last scattering, the receding horizon has been revealing 
these frozen density perturbations, setting up a pattern of 
standing acoustic waves in the baryon—photon fluid. 
After decoupling, this pattern is visible today as tempe- 
rature anisotropies with a certain regularity across the 
sky. 

The primordial photons are polarized by the aniso- 
tropic Thomson scattering process, but as long as the 
photons continue to meet free electrons their polarization 
is washed out, and no net polarization is produced. At a 
photon’s last scattering however, the induced polariza- 
tion remains and the subsequently free-streaming photon 
possesses a quadrupole moment. 

Temperature and polarization fluctuations are analyzed 
in terms of multipole components or powers. The result- 
ing distribution of powers versus multipole , or multi- 
pole moment 


= 2πk  , is the power spectrum which 

exhibits conspicuous Doppler peaks. In Figure 12 we 
display the radiation temperature (TT) and temperature— 
E-polarization correlation (TE) power spectra from the 
7-year data of WMAP as functions of multipole moments 
[49]. The spectra can then be compared to theory, and 

 

Figure 10. Dark matter halo mass Mhalo as a function of 
stellar mass M*. The thick black curve is the prediction 
from abundance matching assuming no dispersion in the 
relation between the two masses. Red and green dashed 
curves assume some dispersion in logM*. The dashed black 
curve is the satellite fraction as a function of stellar mass, as 
labeled on the axis at the right-hand side of the plot. From 
Qi Guo et al. [46]. 
 

 

Figure 11. Dark matter column density vs. dark matter halo 
mass in solar units. From A. Boyarsky et al. [47]. 
 
theoretical parameters determined. Many experiments 
have determined the power spectra, so a wealth of data 
exists. 

Baryonic matter feels attractive self-gravity and is 
pressure-supported, whereas dark matter only feels attra- 
ctive self-gravity, but is pressureless. Thus the Doppler 
peaks in the CMBR power spectrum testify about bar- 
yonic and dark matter, whereas the troughs testify about 
rarefaction caused by the baryonic pressure. The position 
of the first peak determines . Combining the TT 
data with determinations of the Hubble constant h, the 
WMAP team can determine the total mass density para- 
meter 

2
mh

d=m b m   . The ratio of amplitudes of the 
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Figure 12. The CMB radiation temperature (TT) and tem- 
perature-polarization (TE) power spectra from the seven- 
year WMAP 94 GHz maps show anisotropies which can be 
analyzed by power spectra as functions of multipole mo- 
ments. The solid line shows the best-fit prediction for the 
flat ΛCDM model. From D. Larson et al. [49]. 
 
second-to-first Doppler peaks determines the baryonic 
density parameter to be  and the 
dark matter component to be 

= 0.0449 0.0028b 
d = 0.222 0.02m 6   [49], 

thus .  = 0.267m
Power spectra at higher multipole moments have been 

measured with the Atacama Cosmology Telescope (ACT) 
[50] at 148 GHz and 218 GHz, as well as the cross- 
frequency spectrum between these two channels. and 
found to be in agreement with the 7-year WMAP 94 GHz 
maps in the common range . The ACT 
has also been able to measure the lensing of the CMB 
signal at a significance of 

400 1000 

2.8 , which slightly smooths 
out the acoustic peaks, Figure 13. 

In a fit of the flat CDM model to the data the dark 
matter density parameter comes out slightly higher than 
WMAP and the baryonic density slightly lower so the 
total density parameter for WMAP and ACT added is 

 [51].  



= 0.276 0.016m 
Information on the TE correlations comes from several 

measurements, among them WMAP [49], and on the 
E-mode polarization power spectrum alone (EE) from the 
QUAD collaboration [52], Figure 14. 

The results show two surprises: Firstly, since 1m  , 
a large component  is missing, of unknown 
nature, and termed dark energy. The second surprise is 
that ordinary baryonic matter is only a small fraction of 
the total matter budget. The remainder is then dark mat- 
ter, of unknown composition. Of the 4.5% of baryons in 

0.74 

 

Figure 13. The ACT 148 GHz power spectrum multiplied 
by l4 is shown for lensed (orange curve) and unlensed mo- 
dels (green curve). From S. Das et al. [50]. 
 
the Universe only about 1% is stars. 

11. Baryonic Acoustic Oscillations (BAO) 

A cornerstone of cosmology is the Copernican principle, 
that matter in the Universe is distributed homogeneously, 
if only on the largest scales of superclusters separated by 
voids. On smaller scales we observe inhomogeneities in 
the forms of galaxies, galaxy groups, and clusters. The 
common approach to this situation is to turn to non- 
relativistic hydrodynamics and treat matter in the Uni- 
verse as an adiabatic, viscous, non-static fluid, in which 
random fluctuations around the mean density appear, 
manifested by compressions in some regions and rare- 
factions in other. The origin of these density fluctuations 
was the tight coupling established before decoupling be- 
tween radiation and charged matter density, causing them 
to oscillate in phase. An ordinary fluid is dominated by 
the material pressure, but in the fluid of our Universe 
three effects are competing: gravitational attraction, den- 
sity dilution due to the Hubble flow, and radiation pre- 
ssure felt by charged particles only. 

The inflationary fluctuations crossed the post-infla- 
tionary Hubble radius, to come back into vision with a 
wavelength corresponding to the size of the Hubble ra- 
dius at that moment. At time eq  the overdensities began 
to amplify and grow into larger inhomogeneities. In over- 
dense regions where the gravitational forces dominate, 
matter contracts locally and attracts surrounding matter, 
becoming increasingly unstable until it eventually colla- 
pses into a gravitationally bound object. In regions where 
the pressure forces dominate, the fluctuations move with 
constant amplitude as sound waves in the fluid, transport- 
ing energy from one region of space to another. 

t

Inflationary models predict that the primordial mass 
density fluctuations should be adiabatic, Gaussian, and 
exhibit the same scale invariance as the CMB fluctu- 
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Figure 14. The E-mode polarization power spectrum (EE) 
from the CMB observations of the QUaD collaboration et al. 
[52]. 
 
ations. The baryonic acoustic oscillations can be treated 
similarly to CMB, they are specified by the dimen- 
sionless mass autocorrelation function which is the 
Fourier transform of the power spectrum of a spherical 
harmonic expansion. The power spectrum is shown in 
Figure 15 [53]. 

As the Universe approached decoupling, the photon 
mean free path increased and radiation could diffuse 
from overdense regions into underdense ones, thereby 
smoothing out any inhomogeneities in the plasma. The 
situation changed dramatically at recombination, at time 
380,000 yr after Big Bang, when all the free electrons 
suddenly disappeared, captured into atomic Bohr orbits, 
and the radiation pressure almost vanished. Now the bar- 
yon acoustic waves and the CMB continued to oscillate 
independently, but adiabatically, and the density pertur- 
bations which had entered the Hubble radius since then 
could grow with full vigor into baryonic structures. 

The scale of BAO depends on m  and on the Hubble 
constant, h, so one needs information on h to break the 
degeneracy. The result is then . In the ratio 



m  0.26

b m   the h-dependence cancels out, so one can also 
quantify the amount of DM on very large scales by 

= 0.18 0.04b m   . 

12. Galaxy Formation in Purely Baryonic 
Matter? 

We have seen in Section 10 that the baryonic density pa- 
rameter, b , is very small. The critical density crit   is 
determined by the expansion speed of the Universe, and 
the mean baryonic density of the Universe (stars, inter- 
stellar and intergalactic gas) is only  [49]. = 0.045b

The question arises whether the galaxies could have 
formed from primordial density fluctuations in a purely 
baryonic medium. We have also noted, that the fluctu- 
ations in CMB and BAO maintain adiabaticity. The 
amplitude of the primordial baryon density fluctuations 

 
0.1            0.2 

   k/h Mpc–1 

Figure 15. BAO in power spectra calculated from (a) the 
combined SDSS and 2dFGRS main galaxies; (b) the SDSS 
DR5 LRG sample; and (c) the combination of these two 
samples (solid symbols with 1σ errors). The data are corre- 
lated and the errors are calculated from the diagonal terms 
in the covariance matrix. A Standard ΛCDM distance— 
redshift relation was assumed to calculate the power 
spectra with Ωm = 0.25, ΩΛ = 0.75. From W. J. Percival et al. 
[53]. 
 
would have needed to be very large in order to form the 
observed number of galaxies. But then the amplitude of 
the CMB fluctuations would also have been very large, 
leading to intolerably large CMB anisotropies today. 
Thus galaxy formation in purely baryonic matter is ruled 
out by this argument alone. 

Thus one concludes, that the galaxies could only have 
been formed in the presence of gravitating dark matter 
which started to fluctuate early, unhindered by radiation 
pressure. This conclusion is further strengthened in the 
next Section. 

13. Large Scale Structures Simulated 

In the ΛCDM paradigm, the nonlinear growth of DM 
structure is a well-posed problem where both the initial 
conditions and the evolution equations are known (at 
least when the effects of the baryons can be neglected). 

The Aquarius Project [54] is a Virgo Consortium pro- 
gram to carry out high-resolution DM simulations of 
Milky-Way—sized halos in the ΛCDM cosmology. This 
project seeks clues to the formation of galaxies and to the 
nature of the dark matter by designing strategies for ex- 
ploring the formation of our Galaxy and its luminous and 
dark satellites. 

The galaxy population on scales from 50 kpc to the 
size of the observable Universe has been predicted by 
hierarchical ΛCDM scenarios, and compared directly 
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with a wide array of observations. So far, the ΛCDM pa- 
radigm has passed these tests successfully, particularly 
those that consider the large-scale matter distribution and 
has led to the discovery of a universal internal structure 
for DM halos. As was noted in Section 12, the observed 
structure of galaxies, clusters and superclusters, as illu- 
strated by Figure 16, could not have formed in a bar- 
yonic medium devoid of dark matter. 

Given this success, it is important to test ΛCDM pre- 
dictions also on smaller scales, not least because these 
are sensitive to the nature of the dark matter. Indeed, a 
number of serious challenges to the paradigm have em- 
erged on the scale of individual galaxies and their central 
structure. In particular, the abundance of small DM 
subhalos predicted within CDM halos is much larger 
than the number of known satellite galaxies surrounding 
the Milky Way (M. Boylan-Konchin et al. [48] and re- 
ferences therein). 

14. Dark Matter from Overall Fits 

In Section 10 we have seen that the WMAP 7-year CMB 
data together with the Hubble constant value testify 
about the existence of DM [49,51]. In Section 11 we 
addressed the BAO data [53] with the same conclusion. 
In overall fits one combines these with supernova data 
(SN Ia) which offer a constraint nearly orthogonal to that 
of CMB in the m -plane. The Union compilation 
of 307 selected SN Ia includes the recent large samples 
of SNe Ia from the Supernova Legacy Survey, the 
ESSENCE Survey, the older data sets, as well as the 
recently extended data set of distant supernovae observed 
with HST. M. Kowalski et al. [55] present the latest re- 
sults from this compilation and discuss the cosmolo- 
gical constraints and its combination with CMB and 
BAO measurements. The CMB constraint is close to the 
line m , whereas the supernova constraint is 
close to the line . The BAO data 
constrain , but hardly at all . This is shown in 
Figure 17. 

 

= 1
1.6 

 

m
= 0.2m



Defining the vacuum energy density parameter by 

m , a flat Universe corresponds to 
. For a non-flat  Universe with a cos- 

mological constant responsible for dark energy, a simu- 
ltaneous fit to the data sets gives  

= 1k  
= 0k CDM

= 0.285 0.020 0.019 0.011,

= 0.009 0.009 0.002 0.010 0.003 ,
m

k

   

     
  (14) 

where the first error is statistical and the second error 
systematic. Clearly one notes that the Universe is con- 
sistent with being flat. Subtracting  from 

 one obtains the density parameter for DM, 
. Assuming flatness, M. Kowalski et al. [55] 

find . This compares well 

= 0.045b
= 0.285m

0.24dm 
= 0m .274 0.016 0.013  

 

Figure 16. The left panel shows the projected dark matter 
density at z = 0 in a slice of thickness 13.7 Mpc through the 
full box (137 Mpc on a side) of the 9003 parent simulation. 
The right panel show this halo resimulated at a different 
numerical resolution. The image brightness is proportional 
to the logarithm of the squared DM density projected along 
the line-of-sight. The circles mark r50, the radius within 
which the mean density is 50 times the background density. 
From V. Springel et al. [54]. 
 

 

Figure 17. 68.3%, 95.4% and 99.7% confidence level 
contours on ΩΛ and Ωm obtained from CMB, BAO and the 
Union SN set, as well as their combination (assuming w = 
–1). Note the straight line corresponding to a flat Universe 
with ΩΛ + Ωm = 1. From M. Kowalski et al. [55]. 
 
with the combined 7-year WMAP data and the ACT data, 

= 0.276 0.016m   [51]. If one fits different models 
having more free parameters, one gets slightly different 
results, but all within these 1  errors. 
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15. Merging Galaxy Clusters 

In isolated galaxies and galaxy clusters all matter com- 
ponents contributing to the common gravitational po- 
tential are more or less centrally-symmetrically coin- 
cident. This makes the dissection of DM from the bar- 
yonic components difficult and dependent on parametri- 
zation, as we have discussed in Section 3. In merging 
galaxy clusters however, the separate distributions of ga- 
laxies, intracluster gas and DM may become spatially 
segregated permitting separate observations. The visually 
observable galaxies behave as collisionless particles, the 
baryonic intracluster plasma is fluid-like, experiences 
ram pressure and emits X-rays, but non-interacting DM 
does not feel that pressure, it only makes itself felt by its 
contribution to the common gravitational potential. 

Major cluster mergers are the most energetic events in 
the Universe since the Big Bang. Shock fronts in the 
intracluster gas are the key observational tools in the stu- 
dy of these systems. When a subcluster traverses a larger 
cluster it cannot be treated as a solid body with constant 
mass moving at constant velocity. During its passage 
through the gravitational potential of the main cluster it is 
shrinking over time, stripped of gas envelope and dece- 
lerating. Depending on the ratio of the cluster masses, the 
gas forms a bow shock in front of the main cluster, and 
this can even be reversed at the time when the potentials 
coincide. 

We shall now meet several examples of galaxy cluster 
mergers where the presence of DM could be inferred 
from the separation of the gravitational potential from the 
position of the radiating plasma.  

15.1. The Bullet Cluster 1E0657-558 

The exceptionally hot and X-ray luminous galaxy cluster 
1E0657-558, the Bullet cluster at redshift , 
was discovered by Tucker et al. in 1995 [56] in Chandra 
X-ray data. Its structure as a merger of a  Msun 
subcluster with a main  Msun cluster was de- 
monstrated by Markevitch et al. [57,58] and Clowe et al. 
[59,60]. This was presented as the first clear example of 
a bow shock in a heated intracluster plasma. 

= 0.296z

14102.3
142.8 10

With the advent of high-resolution lensing Brada  et 
al. [61,62] developed a technique combining multiple 
strongly-lensed Hubble Space Telescope multi-color ima- 
ges of identified galaxies, with weakly lensed and ellip- 
tically distorted background sources. The reconstructed 
gravitational potential does not trace the X-ray plasma 
distribution which is the dominant baryonic mass com- 
ponent, but rather approximately traces the distribution 
of bright cluster member galaxies, cf Figure 18. 

c


The center of the total mass is offset from the center of 
the baryonic mass peaks, proving that the majority of the 

matter in the system is unseen. In front of the bullet 
cluster which has traversed the larger one about 100 Myr 
ago with a relative velocity of 4500 km·s–1, a bow shock 
is evident in the X-rays. The main cluster peak and the 
distinct subcluster mass concentration are both clearly 
offset from the location of the X-ray gas [62]. 

A recent analysis of this system [72] confirms the re-
sults of references [59,60,62], and in addition finds that 
dark matter forms three distinct clumps. 

15.2. The Galaxy Cluster Pair MACS 
J0025.4-1222 

Another merging system with similar characteristics but 
with lower spatial resolution has been reported by 
Brada  et al. [19], the post-merging galaxy cluster pair 
MACS J0025.4-1222, also called the Baby Bullet. It has 
an apparently simple geometry, consisting of two large 
subclusters of similar richness, about  Msun, 
both at redshift , colliding in approximately 
the plane of the sky. Multiple images due to strong 
lensing of four distinct components could be identified. 
The combined strong and weak lensing analysis follows 
the method in ref. [62]. 

c


142.5 10
= 0.586z

The two distinct mass peaks are clearly offset by 4  
from the main baryonic component, which is the ra- 
diating hot gas observed by Chandra. The relative merg- 
ing velocity is estimated to be 2000 km·s–1. In Figure 19 
we show linearly spaced surface mass density contours 
and X-ray brightness contours. The majority of the mass 
is spatially coincident with the identified galaxies which 
implies, that the cluster must be dominated by a rela- 
tively collisionless form of dark matter. 

 

 

Figure 18. The merging cluster 1E0657-558. On the right is 
the smaller Bullet cluster which has traversed the larger 
cluster. The colors indicate the X-ray temperature of the 
plasma: blue is coolest and white is hottest. The green con- 
tours are the weak lensing reconstruction of the gravi- 
tational potential of the cluster. From D. Clowe et al. [59]. 
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Figure 19. The color composite of the cluster MACS 
J0025.4-1222. Overlaid in red contours is the surface mass 
density (linearly spaced) from the combined weak and 
strong lensing mass reconstruction. The X-ray brightness 
contours (also linearly spaced) are overlaid in yellow and 
the I-band light is overlaid in white. The measured peak 
positions and error bars for the total mass of the two cluster 
components are shown as cyan crosses. From M. Brada  
et al. [19]. 

c


15.3. The Merging System A1758 

A much more complicated merging system is A1758 at 
redshift , analyzed by the same team as above, 
B. Ragozzine et al. [63], and consisting of four clusters 
undergoing two separate mergers. The weak lensing mass 
peaks of the two northern clusters A1758N are separated 
at the 2.5

= 0.279z

  level, whereas the two southern clusters are 
not well separated and have a disturbed X-ray mor- 
phology. There is no evidence for a merger between 
A1758N and A1758S in the X-ray signature and they 
have a projected separation of 2.0 Mpc. Note however 
the SZ results from the Arcminute Microkelvin Imager 
(AMI) in Cambridge (UK) on this system [64,65], which 
sees a hint of a signal between the A1758N and A1758S. 

A1758N introduces a new geometry that is different 
from the previously discussed mergers: one weak lensing 
peak overlaps an X-ray peak, while the other weak lens- 
ing peak is clearly separated from the X-ray component, 
cf Figure 20. 

Since no strong lensing has yet been confirmed, con- 
clusions about cluster masses and DM would have to 
wait for better lensing data. 

15.4. The Merging Cluster Abell 2146 

Chandra observations of the cluster Abell 2146 at a red- 
shift of  have revealed two shock fronts, H. R. 
Russell et al. [64]. The X-ray morphology suggests a 
recent merger where a subcluster containing a dense core 
has passed through the center of a second cluster, the 
remnant of which appears as the concentration of gas to 

= 0.234z

 

Figure 20. The A1758N merger from B. Ragozzine et al. [63]. 
The blue contours represent the weak lensing mass recon- 
struction made from a background galaxy density of 24.0 
galaxies/arcmin2. The outer blue contour begins at surface 
mass density κ = 0.07 and each contour increases in steps of 
0.045 up to κ = 0.34. The red contours follow the X-ray gas 
mass obtained in the Chandra exposure. The NW cluster's 
BCG aligns with the X-ray gas and the weak lensing peak. 
The SE cluster’s BCG and weak lensing peak are well se- 
parated from the X-ray gas, which has a bright peak near 
the midpoint of the two weak lensing peaks. 
 
the NW. The strongly peaked core has just emerged from 
the primary core, and is trailing material that has been  
ram pressure stripped in the gravitational potential. This 
material appears as a warmer stream of gas behind the 
subcluster core, and trails back to the hottest region of 
the disrupted main cluster. 

Four steep surface brightness edges can be defined: 
two in the SE sector in front of the subcluster core and 
another two in the NW sector, cf. Figure 21. The inter- 
pretation is [64] that an upstream shock is generated as 
the gravitational potential minimum fluctuates rapidly 
during the core passage, reaching an extreme minimum 
when the two cluster cores coalesce. This causes a signi- 
ficant amount of the outer cluster gas to flow inwards. 
When the subcluster core exits the main core the gra- 
vitational potential rapidly returns to its premerger level 
and expels much of the newly arrived gas which in turn 
collides with the residual infall, forming an inward 
traveling shock front. Behind the subcluster, the ambient 
cluster gas that was pushed aside during its passage will 
fall back and produce tail shocks. 

Since no weak lensing analysis is available as yet, no- 
thing can be said about the possible role of collisionless 
dark matter. 

15.5. The Merging Cluster Abell 2744 

Newly acquired data with the Advanced Camera for 
Surveys on the Hubble Space Telescope, HST, shows that 
the cluster Abell 2744 is a complicated merger between 
three or four separate bodies, as analyzed by J. Merten et 
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Figure 21. Left: Projected emission measure per unit area map for the merging cluster Abell 2146. Center: Projected tem- 
perature map. Right: Projected “pressure” map produced by multiplying the emission measure and temperature maps. From 
H. R. Russell et al. [64]. 
 
al. [65]. The position and mass distribution of the 
Southern core have been tightly constrained by the strong 
lensing of 11 background galaxies producing 31 multiple 
images. The N and NW clumps lack such images from 
strong lensing, indicating that they are less massive. 
There is also weak lensing information from HST, VLT, 
and Subaru available. 

 

The joint gravitational lensing analysis combines all 
the strongly lensed multiply-imaged systems and their 
redshifts with weak lensing shear catalogues from all 
three telescopes to reconstruct the cluster’s lensing po- 
tential, shown in Figure 22. The Core, NW and W 
clumps are clear detections in the surface-mass density 
distribution with 11 , 4.9   and 3.8  significance over 
background, respectively. Somewhat fainter with 2.3  

icance is the N structure, but it clearly coincides 
with a prominent X-ray substructure found by M. S. 
Owers et al. [66]. 

signif

Figure 22. The surface-mass density contours of the merg- 
ing cluster Abell 2744 are shown in cyan and the X-ray 
luminosity contours in magenta. The peak positions of the 
Southern core, the N, NW, and W clumps are indicated by 
the green likelihood contours. The small red circles show 
the positions of the local overdensities in the gas dis- 
tribution, associated with each DM clump. The white rulers 
show the separation between DM peaks and the bright 
cluster galaxies and local gas peaks. From J. Merten et al. 
[65]. 

To determine the geometric configuration of the colli- 
sion, the location of shock fronts and velocities, densities 
and temperatures in the intracluster medium, all existing 
X-ray data from Chandra [66] were included and rea- 
nalyzed. Overlaying the lensing mass reconstruction and 
the luminosity contours of the emission in Figure 23 
shows an extremely complex picture of separations be- 
tween the dark matter and baryonic components. 

 In the core region which is the most massive structure 
within the merging system, there is no large separation 
between the distributions of total mass and baryons. The 
separation of the peaks in the lensing and X-ray maps is 
similar to that in the Bullet cluster [58] and Baby Bullet 
[19]. The Northern mass substructure is  times 
lighter than the Core, and the X-ray emission lags behind 
the dark matter to the South. 

2.6

massive and there might also be a second peak in the 
more Western area of the NW mass clump. However, it 
is difficult to ascertain whether this is a single, separate 
DM structure and to derive decisive separation between 
DM, X-ray luminous gas and bright cluster member gala- 
xies. The X-ray peak to the Northwest of the NW2 mass 
peak appears to be an X-ray feature with no associated 
matter or galaxies, a “ghost” clump. The substructure in the Northwest is the second most 



M. ROOS 1168 

 

 

Figure 23. The proposed merger scenario of the cluster 
Abell 2744 in time-ordered sequence. The NE-SW sub- 
clusters merge first (1) with the core, followed very soon (2) 
by the second merger, in the SE-NW direction. The gas 
slingshots (3) away to its present position at the extreme 
NW. In (4) we see the present setup. From J. Merten et al. 
[65]. 
 

One possible interpretation [65] of the complex merg- 
ing scenario that has taken place in Abell 2744 is a near 
simultaneous double merger  Gyr ago. first 
in the NE-SW direction, cf. Figure 23. The Western 
clump probably passed closest through the main cluster, 
as it had its ICM ram-pressure stripped completely. The 
second merger, in the SE-NW direction, could even have 
consisted of two small clumps falling into the core, 
attracted by the core and the Northern and Western clumps. 
After a first core passage, gas initially trails its associated 
DM but, while the dark matter slows down,the gas sling- 
shots past it due to a combination of low rampressure 
stripping and adiabatic expansion and cooling [66], end- 
ing up as the “ghost” clump. This scenario still requires 
further observations as well as verification via numerical 
simulations. 

0.12 0.15

15.6. “El Gordo”, the Fat Cluster ACT-CL 
J0102-4915 

The Atacama Cosmology Telescope has presented pro- 
perties for an exceptionally massive merging cluster, the 
ACT-CL J0102-4915 nicknamed El Gordo at redshift 

. It was discovered by Marriage et al. [67] se- 
lected by its bright Sunyaev-Zel’dovich (SZ) effect, 
confirmed optically and through its Chandra X-ray data 
[68]. It is the most significant SZ cluster detection to date 

by nearly a factor of two, with an SZ decrement com- 
parable to the Bullet cluster 1E0657-558 [62]. 

= 0.87z

As can be seen from Figure 24, the galaxy distribution 
is double peaked, whereas the peak in the X-ray emission 
lies between the density peaks. The X-ray peak forms a 
relatively cool bullet of low entropy gas like in the 
1E0657-558. The steep fall-off in the X-ray surface 
brightness towards the SE, as well as the “wake” in the 
main cluster gas toward the NW, indicate that the bullet 
is apparently moving toward the SE. The SZ and X-ray 
peaks are offset similar to that reported for the bullet-like 
cluster Abell 2146 [64]. 

In the absence of a weak lensing mass reconstruction, 
the galaxy distribution can only be used as a proxy for 
the total mass distribution. Thus to conclude that an off- 
set between baryonic and DM has been demonstrated is 
yet premature. 

15.7. The Cluster Merger DLSCL J0916.2+2951 

A newly discovered [71] major cluster merger at z = 0.53 
is DLSCL J0916.2+2951, in which the collisional cluster 
gas has become clearly dissociated from the collisionless 
galaxies and dark matter. The cluster was identified using 
optical and weak-lensing observations as part of the 
Deep Lens Survey. Follow-up observations with Keck, 
Subaru, Hubble Space Telescope, and Chandra show that 
the cluster is a dissociative merger which constrain the 
DM self-interaction cross-section to σ/m (DM) ≤ 7 cm2/g. 
The system is observed at least 0.7 ± 0.2 Gyr since first 
pass-through, thus providing a picture of cluster mergers 
2 - 5 times further progressed than similar systems ob- 
served to date. 

16. Comments and Conclusions 

What we have termed “dark matter” is generic for ob- 
served gravitational effects on all scales: galaxies, small 
and large galaxy groups, clusters and superclusters, CMB 
anisotropies over the full horizon, baryonic oscillations 
over large scales, and cosmic shear in the large-scale 
matter distribution. The correct explanation or nature of 
dark matter is not known, whether it implies unconven- 
tional particles or modifications to gravitational theory. 
but gravitational effects have convincingly proved its 
existence in some form. 

The few per cent of the mass of the Universe found as 
baryonic matter in stars and dust clouds is well accounted 
for by nucleosynthesis. If there exist particles which were 
very slow at time eq  when galaxy formation started, 
they could be candidates for cold dark matter. They must  

t

have become non-relativistic much earlier than the lep- 
tons, and then decoupled from the hot plasma. 

Whenever laboratory searches discover a new particle, 
it must pass several tests in order to be considered a 

Copyright © 2012 SciRes.                                                                                 JMP 
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Figure 24. Isopleth contours in yellow of the number den- 
sity of galaxies in the cluster ATC-CL J0102-4915. The white 
contours show the X-ray emission. From F. Menenteau et al. 
[68]. 
 
viable DM candidate: it must be neutral, compatible with 
constraints on self-interactions (essentially collisionless), 
consistent with Big Bang nucleosynthesis, and match the 
appropriate relic density. It must be consistent with direct 
DM searches and gamma-ray constraints, it must leave 
stellar evolution unchanged, and be compatible with oth- 
er astrophysical bounds. 

The total dynamical mass of an astronomical system is 
derivable from the velocity dispersions or the rotation 
velocities of its components via the use of the Virial 
Theorem or Kepler’s law, respectively. A most important 
probe is strong gravitational lensing which measures the 
total mass, but also weak lensing, the oscillations in the 
Cosmic Microwave Background and in the ambient 
baryonic medium. Probes separating dark matter from 
total matter require in addition observations of visible 
light, infrared radiation, X-rays, the Sunyaev-Zel’dovich 
effect, and supernovae. Depending on the system under 
study there are many ways to combine these tools using 
empirical halo models, simulating stellar population mo- 
dels and galaxy formation models, comparing mass-to- 
light ratios and mass autocorrelation functions. The most 
remarkable systems are merging galaxy clusters which, 
by their motion, separate non-collisional dark matter 
from optically visible galaxies and hot, radiating gas. 

Regardless of the nature of dark matter, all theories 
attempting to explain it share the burden to explain the 
gravitational effects described in here. Thus there re- 
mains much to be done. 
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ABSTRACT 

Based on the Veneziano ghost theory of QCD, we estimate the cosmological constant Λ, which is related to the vacuum 
energy density,  , by = 8πG . In the recent Veneziano ghost theory   is given by the absolute value of the 

product of the local quark condensate and quark current mass: 
2

< 0 : :| 0 >f
q

N H
c m qq

m




= | . By solving Dyson- 

Schwinger Equations for a dressed quark propagator, we found the local quark condensate  3
0 : : 0 235 MeVqq  , 

the generally accepted value. The quark current mass is  4.0 Mev. This gives the same result for qm    as found 

by previous authors, which is somewhat larger than the observed value. However, when we make use of the nonlocal 

quark condensate,      0 : 0 : 0 = 0 : : 0q x q g x qq , with g(x) estimated from our previous work, we find Λ is in a 

good agreement with the observations. 
 
Keywords: Cosmological Constant Λ; Veneziano Ghost Theory of QCD; Local Quark Vacuum Condensate; Nonlocal 

Quark Condensate; Quantum Chromodynamics-QCD 

1. The Cosmological Constant Λ and the 
QCD Veneziano Ghost Theory 

The starting point of most cosmological study is Albert 
Einstein’s Equations, which is a set of ten equations in 
Einstein’s theory of general relativity. The original Ein- 
stein field equations can be written as the form [1]  

1
= 8π

2
R Rg GT           (1) 

in units of , where G is the gravitational 
constant (

= = 1c
= 6.7087(10) 39 210 GeVG  

 , = 0,R   

 

, sometime called 
Newton’s constant),  is the Ricci 
tensor, R is the trace of Ricci tensor (it is like the radius 
of curvature of space-time), 

,3

g x  represents the me- 
tric tensor, which is a function of position x in spacetime. 

T   is the energy-momentum tensor, which describes 
the distribution of matter and energy. Equation (1) des- 
cribes a non-static universe. However, Einstein believed, 
at that time, that our universe should be static. In order to 
get a static universe, in 1917 Einstein introduced a new 
term, g , in Equation (1) to balance the attractive 
force of gravity, giving his modified equation  

1
= 8π .

2
R Rg g GT          (2) 

The   in Equation (2) is the so-called cosmological 
constant, which is a dimensional parameter with units of 
lengt  2

h


. Indeed, Equation (2) allows a static universe 
[2], called Einstein’s universe, which is one of the so- 
lution [3] of Friedmann’s simplified form of Einstein’s 
equation with a   term. However, almost one hundred 
years ago the observations of redshifts of galaxies led to 
Hubbles Law [4] and the interpretation that the universe 
is expanding. This led Einstein to declare his static cos- 
mological model, and especially the introduction of the 
  term to his original field equation theory, his “biggest 
blunder”. 

*This work was supported in part by National Natural Science Founda-
tion of China (10647002), Guangxi Science Foundation for Young Re-
searchers under contract No. 0991009, and Guangxi Education Depar-
tment with grant No.200807MS112, Department of Science and Tech-
nology of Guangxi under funds No. 2011GXNSFA018140, Department 
of Guangxi Education for the Excellent Scholars of Higher Education, 
2011-54, Doctoral Science Foundation of Guangxi University of Tech-
nology, 11Z16, and in part by the Pittsburgh Foundation. Note that the term g  in Equation (2) corresponds 
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to adding a vacuum term to T

 T va

, 

=c g .            (3) 

Therefore, the cosmological constant  is related to 
the vacuum energy density, 


  by [3]  

= 8π .G              (4) 

The vacuum energy density, called dark energy den- 
sity, and a model with  representing dark energy were 
reintroduced about three decades ago. See Ref. [5] for a 
review of the physics and cosmology of , with refe- 
rences to the many models that have been published. To 
explain our uniform and flat universe via inflation a cos- 
mological constant was added to the Friedmann equation 
[6]. From studies of radiation from the early universe, the 
Cosmic Microwave Background Radiation (CMBR), by 
a number of projects, including WMAP [7], the inflation 
scenerio was verified, and it was shown that about 73% 
of the total energy in the universe is dark energy. As 
clearly shown by Friedmann’s equation with a cosmolo- 
gical constant, dark energy corresponds to negative pre- 
ssure, or anti-gravity. This was confirmed by studies of 
distant type 1a supernovae [8,9], which showed an acce- 
leration of the expansion of the universe, and was con- 
sistent with dark energy being 73% of the energy in the 
universe. Also, dark energy causes distant galaxies to 
accelerate away from us, in contrast to the tendency of 
ordinary forms of energy to slow down the recession of 
distant objects. See Ref. [5] for other of the many refe- 
rences to CMBR, supernovae, galaxy and other studies of 
dark energy. 





The existence of a non-zero vacuum energy would, in 
principle, have an effect on gravitational physics on all 
scales. The value of  in our present universe is not 
well known, and it is an empirical issue which will ulti- 
mately be settled by observation. A precise determination 
of this number ( ) or 



  will be one of the primary 
goals of observational cosmology in the near future. Re- 
cently the possiblity of determining the cosmological 
constant by observations has been discussed [10]. 

A major outstanding problem is that most quantum 
field theories predict a huge cosmological constant   
from the energy of the quantum vacuum. This conclusion 
also follows from dimensional analysis and effective 
field theory down to the Planck scale, by which we 
would expect a cosmological constant of the order of 

4
plM  ( plM  is the Planck mass with 1 2=plM G

energy expected from zero -point fluctuations and scalar 
potential, 3110= 2 10 erg cm ,theory   and the observed 
value, 310= 2 10 erg cmobserve 

  , a discrepancy of a 
factor of  This is the largest discrepancy—the 
worst theoretical prediction in the history of physics. At 
the same time, some supersymmetric theories require a 
cosmological constant that is exactly zero. Therefore, we 
face a big difficulty in understanding the observational 

. This problem has been referred to as the long- 
standing cosmological constant problem. 

12010 .

observe

Vacuum energy is predicted to be created in cosmolo- 
gical phase transitions. In the standard model of particle 
physics with the temperature (T) of the universe as a 
function of time (t), there are two important phase tran- 
sitions. At t 1110  seconds, with T  140 GeV the 
universe undergoes the electroweak phase transition 
(EWPT), with the vacuum expectation value of the Higgs  



field, 0 : : 0Higgs , going from zero to a finite value  

corresponding to a Higgs mass  140 GeV. At t  510  
seconds, with T  150 MeV, the universe undergoes 
the QCD phase transition (QCDPT), when a universe 
consisting of a dense quark-gluon plasma becomes our 
current universe with hadrons. The latent heat for this 
phase transition is the quark condensate, 



0 : : 0qq , 
also a vacuum energy, which is an essential part of the 
present work. 

First we review the work of F. R. Urban, A. R. Zhit- 
nitsky [11,12], which is based on the QCD Veneziano 
ghost theory [13-16] In this model the cosmological va- 
cuum energy density   can be expressed in terms of 
QCD parameters for  light flavors as follows 
[10,11]  

= 2fN

   
2

= 0 : 0 0f
q

HN
c m q q

m




: 0 ,    (5) 

where mq is the current quark mass and .= QCD gravc c c . 
The first factor  is a dimensionless coefficient with 
value of QCDc  [10,11], which is entirely of QCD 
origin and is related to the definition of QCD on a 
specific finite compact manifold such as a torus,  

QCDc
1

2 f q

QCD

N m qq
c

Lm




  with  being the size of the  L

=  
. The Planck energy is thought to be the 

energy where conventional physical theories break down 
and a new theory of quantum gravity is required ). We 
know that the measured value is on the order of 

,or , or 

1910 G

2

1.22

3510

eV

s 10 47 4GeV 32910 g cm , or about 
 in reduced planck units (12010

plM ). That is, there is a 
large difference between the magnitude of the vacuum  

manifold and m  the mass of   meson. A precise 
computation of QCDc  has been calculated in a 
conventional lattice QCD approach by studying corre- 
ctions of order 1 s  to the vacuum energy [10,11]. Note 
that QCD  depends on the manifold where the theory is 
defined. The second factor 

c

grav  has a purely gravita- 
tional origin and is defined as the relation between the 
size L of the manifold we live in, and the Hubble 
constant H, 

c

  1
H. 0grav=L c


. One can define this size of 

the manifold as 1
0H17L   where  

4200 1= 2.1H h  GeV  and  (= 0.71h 0H , Hubble 
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constant today). Therefore, one can explicitly obtain an 
estimate for the linear length  of the torus, and then 
obtain the value of 

L

.grav .

In Section 2 we briefly review our previous calculation 
of the quark condensate [17] using Dyson-Schwinger 
equations (DSEs) [18,19], and discuss the quark current 
mass q , which are needed to calculate 

c  with . = 0.0588gravc

m  , as shown 
in Equation (5). Since our values for the local quark 
condensate    0 : 0 : 00q q  and the current quark 
mass are approximately the same as in Ref. [10,11] we 
find the same value for 



 as in that work, with a 
factor 6 discrepancy when compared to the observed 
vacuum energy density. In Section 3 we use a nonlocal 
quark condensate, based on earlier research, and find 
good agreement between  and . 
Finally, we give our Summary and concluding remarks in 
Section 4. 

nonlocal theory


 

observed

2. Local Quark Condensate, Current Quark 
Mass, ρΛ 

In this section we review our previous work on the quark 
condensate, the current quark mass, and the resulting va- 
lue for the cosmological constant/vacuum energy density. 

2.1. The Local Quark Condensate 

The quark propagator is defined by  

 ( )ab
qS x

 x

= 0 0 0 ,a bT q x q      (6) 

where  ( ) is a quark field with color a (b), 
and T is the time-ordering operator. The nonperturbative 
part of the quark propagator is given by  

 aq x bq

 

       1
= 0 : : 0 0 : 0 : 0 .

12

NP
qS x

q x x q x q   0q 
(7) 

For short distances, the Taylor expansion of the scalar  

part,    0 : 0 : 0q x q , of  can be written as   NP
qS x

( see, e.g., Refs.[17,20] ) 

       

     
2

0 : 0 : 0 = 0 : 0 0 : 0

0 : 0 0 0 : 0 .
4 s

q x q q q

x
q ig G q    

   (8) 

In Equation (8) the vacuum expectation values in the 
expansion are the local quark condensate, the quark- 
gluon mixed condensate, and so forth. 

The Dyson-Schwinger Equations [18,19] were used to 
derive the local quark condensate in Ref. [17]. See this 
reference for details and a discussion of approximations. 
Note that as shown in Equation (8), the quark-gluon 
mixed condensate provides the small-x dependence of the 
nonlocal    0 : 0 : 0q x q  quark condensate. How- 

ever, for the present work this small-x expansion is not 
useful, and we shall use a known expression for the 
nonlocality, described below. Therefore we only give the 
results for the local quark condensate. Also note that the 
vacuum condensates can act as a medium [21,22], which 
influences the properties of particles propagating through 
it. 

Using the solutions of DSEs with three different sets 
of the quark-quark interaction parameters (see Ref.[17]) 
leads to our theoretical predictions for the local quark 
vacuum condensate listed in Table 1.  

Set 1 results are consistent with many other calcula- 
tions, such as QCD sum rules [23-25], Lattice QCD 
[26-28] and Instanton model predictions [29-31]. These 
numerical results will be used to calculate   in the 
Subsection 2.3 below. 

2.2. The Current Mass of Light Quarks 

As we have seen from Equation (5) to predict   we 
need to know the basic quark current mass q . Since 
one cannot produce a beam of quarks, it is difficult to 
determine the quark masses. Using various models the 
effective quark masses have been estimated, but we need 
the current quark masses of the light u and d quark. 
Estimates of these masses and references can be foud in 
the Particle Data Physics booklet [32]. They are 

m

1.7 < < 3.3 MeV

4.1 < < 5.8 MeVe .
u

d

m

m
           (9) 

From this we estimate that the current quark mass is 

4.0 MeVqm                (10) 

2.3. Cosmological Constant Λ with 
   : :0 0 0 0q q  and mq 

From Equation (2), = 8πG , the vacuum energy 
density, while  , is given in Equation (5) as  

   
2

= 0 : 0 0f
q

HN
c m q q

m




: 0  (11) 

Since our values for mq and    0 : 0 0 : 0q q  are 
the standard ones, we find the same value for   as in 
 
Table 1. Predictions of local quark condensate in QCD 

vacuum, : :0 0
f

μ
qq  with f standing for quark flavor and 

μ denotes renormalization point, μ2 = 10 GeV2. 

Set no. of quark 
interactions ,

0 : : 0
u d

qq  for u and d quarks 

Set 1   3 3
0.0130 GeV 235 MeV    

Set 2    3 3
0.0078 GeV 198 MeV   

Set 3    3 3
0.0027 GeV 139 MeV   
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Ref.[11] 

 433.6 10 eV ,theory 
  



         (12) 

while the value observed [33] is  

 432.3 10 eV .observed 
         (13) 

Although the theoretical and observed values are 
similar, they still differ by 

6.0theory observed     

3. Cosmological Constant Λ with Nonlocal 
Quark Condensate 

As mentioned above, the expression 

       

     
2

0 : 0 : 0 = 0 : 0 0 : 0

0 : 0 0 0 : 0
4 s

q x q q q

x
q ig G q    

 

does not work except for very small x. Therefore we shall 
use the nonlocal quark condensate derived from the 
quark distribution function (see Refs.[34,35]). Using the 
form in Ref.[35],  

         20 : 0 : 0 = 0 : 0 0 : 0 ,q x q g x q q   (14) 

with 

 
 22 2

1
= .         (15) 

1 8
g x

x

The value of 2  estimated in Ref.[36] is 
. Using 2 20.8 GeV  1 QCD  as the length scale, or 

 2
V2 = 1 0.2 Gex , one obtains 

  2

1 1
1 = =

6.252.25QCDg  .     (16) 

From this we obtain 

       1
0 : 0 : 0 = 0 : 0 0 : 0 ,

6.25
q x q q q  (17) 

and 

 

 

43

43

1
3.6 10 eV

6

= 2.3 10 eV

nonlocal theory

observed


















  (18) 

Therefore, using the modification of the quark conden- 
sate via the nonlocal condensate, one obtains excellent 
agreement between the theoretical and observed cosmo- 
logical constants. 

4. Summary and Concluding Remarks 

The cosmological constant  is an important physical 

dified the field equations of his general theory of rela- 
tivity to obtain a stationary universe. The constant has 
recently been used to explain the observed accelerated 
expansion of the universe, but its observational value is 
about 120 orders of magnitude smaller than the one 
theoretically computed in the framework of the currently 
accepted quantum field theories. Namely, quantum field 
theory predicted that vacuum energy density, 


quantity, which was introduced by A. Einstein who mo- 

 , is of 
the order of 4

plM , with 19= 1.22 10 GeVplM  , ich is 
about 120 order  of mag  observed 

value of  43= 2.3 10 eVobserved  . This difference is  

 wh
e

, us

s



d cosm

nitude larger than th

constant

eory of QCD

 

e ological 

ing a 
lo

the so call  problem, the worst 
problem of fine-tuning in physics. 

Based on the Veneziano ghost th
cal quark condensate, we obtained the same result for 

  as in Refs[11,12], about a factor of 6 larger than 
observed . However,     0 : 0 0 : 0q q  is just an appro-  

 to ximation    0 : q x the nonlocal quark  0 : 0q . Using 

condensate          0 : 0 : 0q x q

the theoretical and observed values 

= 0 : 0 0 : 0g x q q   

we find that of  

are approximately equal. 
The cosmological constant is a poten mpor- 

ta

might doubt the correctness of the Veneziano 
Q

  tially i
nt contributor to the dynamical history of the universe. 

Unlike ordinary matter, which can clump together or dis- 
perse as it evolves, the vacuum energy is a property of 
spacetime itself, and is expectd to be the same every- 
where. If the cosmological costant is the valid model of 
dark energy, a sufficiently large cosmological constant 
will cause galaxies and supernovae to accelerate away 
from us, as has been observed, in contrast to the tendency 
of ordinary forms of energy to slow down the recession 
of distant objects. The value of   in our present uni- 
verse is not well known. A precise determination of this 
constant will be one of the primary goals of both theore- 
tical cosmology and observational cosmology in the near 
future. 

One 
CD ghost theory that we used in this work, since it is an 

analogue of two-dimensional theory based on the Schw- 
inger model [18,19], replacing the vector gauge field by 
two scalar fields. These scalar fields have positive and 
negative norms and cancel with each other, leaving no 
trace in the physical subspace. They have small contribu- 
tion to the vacuum energy in the curved space. It is 
known that the QCD ghost must be an intrinsically vector 
field in order for the  1U  problem to be consistently 
resolved within the fra rk of QCD. It seems to be 
necessary to examine if the Veneziano mechanism works 
in terms of the vector ghost fields instead of the scalar 
fields used here. However, Ohta and others in Refs. 
[36-38] have discussed the same problem in more rea- 
listic four dimensional models, and show that the QCD  

mewo
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ghost produces vacuum energy density   proportional 
to the Hubble parameter which has a ximately the  

right magnitude  433 10 eV . 

ppro

There is now idconsiderable ev ence that the universe
be

 
gan as fireball in the cosmological vacuum, the so- 

called “Big Bang”, with extremely high temperature and 
high energy density. One knows that the quark conden- 
sate is vastly changed by the QCD phase transition, and 
this implies that there is a tempreature (T) dependence of 

   0 : 0 : 0q x q  and  .   is probably dependent 
and mo ent  p  of virtual particles 

which produce vacuum condensate as mentioned above. 
We can predict the   dependence on temperature T 
and momentum p  by solving the temperature depen- 
dent Dyson-Schw ger Equations. In this case, 

on temperature T m

 

um
s, 

in   is a 
function of T and p . Such a new study could sh  the 
behavior of the  uring the evolution of the universe. 
This work is und  its way and should be complete soon. 

ow
 d

er
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ABSTRACT 

NASA spacecrafts has suffered from three anomalies. The Pioneers spacecrafts were decelerated, and their spin when 
not disturbed, was declining. On the other hand, fly-bys for gravity assists, appeared with extra speeds, relative to infin-
ity. The Pioneers and fly-by anomalies are given now exact general relativistic full general solutions, in a rotating ex-
panding Universe. We cite new evidence on the rotation of the Universe. Our solution seems to be the only one that 
solves the three anomalies. 
 
Keywords: Relativistic Cosmology; Pioneers Anomaly 

1. Introduction 

Detailed description of the subjects treated in this paper 
may be found in the two books recently published by 
Berman in 2012 [1,2]). Additional paper references are 
Berman in 2007 [3]; in 2011 [4,5]; in 2012 [6]) and with 
co-authors Costa, (Berman and Costa in 2012 [7]) and 
with Gomide {Berman and Gomide in 2012 [8] and [9]- 
(version of the year 2010)} and book form as a Chapter 
in an edited book [10], by Berman and Gomide. 

Anderson et al., in 2008 [11], and Lämmerzahl et al., 
in 2006 [12], have alerted the scientific community about 
the fly-by anomaly: during Earth gravity assists, space- 
craft has suffered from an extra-energization, characte- 
rized by a positive extra speed, such that, measured “at 
infinity”, the hyperbolic orbiting object presented an 
empirically calculated V V  around  A formula 
was supplied, 

610 .

2
=

V

V c

R
           (1.1) 

where  , R and c stand for the angular speed and radius 
of the central mass, and the speed of light in vacuo. T. L. 
Wilson, from NASA, (Houston) and H.-J. Blome (Aa- 
chen), delivered a lecture in Montreal, on July 17, 2008, 
and called the attention to the fact that the most trusted 
cause for both this anomaly, and the Pioneers, would be 
“rotational dynamics” (Wilson and Blome, in 2008 [13]). 
One of us, had, by that time, published results on the 
Pioneers Anomaly, through the rotation of the Universe 
(Berman, in 2007 [3]). Now, we shall address the three 
anomalies. 

The Pioneers Anomaly is the deceleration of about 
 cm·s–2 suffered by NASA space-probes travel- 

ling towards outer space. It has no acceptable explana- 
tion within local Physics, but if we resort to Cosmology, 
it could be explained by the rotation of the Universe. Be 
cautious, because there is no center or axis of rotation. 
We are speaking either of a Machian or a General Rela- 
tivistic cosmological vorticity. It could apply to each ob- 
served point in the Universe, observed by any observer. 
Another explanation, would be that our Universe obeys a 
variable speed of light Relativistic Cosmology, without 
vorticities. However, we shall see later that both models 
are equivalent. Thermal emission cannot be invoked, for 
it should also decelerate elliptical orbiters, but the de- 
celeration only affects hyperbolic motion. It does not ex- 
plain fly-bys, either. A secondary Pioneers anomaly re- 
fers to spinning down of the spacecraft, when they were 
not disturbed. Again, thermal emission cannot explain it. 

89 10 

In previous papers (Berman and Gomide in 2010, up- 
dated for this Journal in 2012 [9]; in 2012 [10]), by con- 
sidering an exact but particular solution of Einsteins field 
equations for an expanding and rotating metric, found, by 
estimating the deceleration parameter of the present 
Universe, as 1 2q   , that the Universe appeared to 
possess a field of decelerations coinciding approximately 
with the Pioneers anomalous value (Anderson et al. in 
2002 [14]). We now shall consider the condition for an 
exact match with the Pioneers deceleration,with a large 
class of solutions in General Relativity. Sections 5 and 6, 
treat the second Pioneers anomaly, and the fly-by. In 
Section 7, an alternative cosmological model will be 
presented, following an idea by Godlowski et al. in 2004 
[15], which allows us to work with a non-modified RWs 
metric. 

The key result for all these subjects, is that hyperbolic 
motion, extends towards infinity, and, thus, qualify for 
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cosmological alternatives, and boundary conditions. The 
fly-bys, and the Pioneers, are in hyperbolic trajectories, 
when the anomalies appear, so that Cosmology needs to 
be invoked. 

Ni in 2008 [37] and 2009 [38], has reported observa- 
tions on a possible rotation of the polarization of the cos- 
mic background radiation, around 0.1 radians. As such 
radiation was originated at the inception of the Universe, 
we tried to estimate a possible angular speed or vorticity, 
by dividing 0.1 radians by the age of the Universe , 
obtaining about 10–19 rad·s–1. Compatible results were 
obtained by Chechin in 2010 [33], Su and Chu in 2009 
[41], Godlowski in 2011 [35] and Chechin in 2012 [34]. 

The numerical result is very close to the theoretical es- 
timate, by Berman in 2007 [3], 

18 1= = 3 10 rad sc R            (1.2) 

where c, R represent the speed of light in vacuum, and 
the radius of the causally related Universe. 

When one introduces a metric temporal coefficient g00 
which is not constant, the new metric includes rotational 
effects. The metric has a rotation of the tri-space (iden- 
tical with RWs tri-space) around the orthogonal time axis. 
This will be our framework, except for Section 7. 

2. On the Four Kinds of Rotation in 
Relativistic Cosmology 

The purpose of this Section is basically to focus on new 
rotational formulations in Relativistic Cosmology, the 
first, due to Berman [1-10]; based on a seminal me- tric 
that was proposed by Gomide and Uehara [36] when the 
purpose of those two authors was something else, un- 
related to rotation, and the second, was an idea by God- 
lovski et al. [15], developed in several articles by Ber- 
man (see for instance papers [2,4] and books [1,2]. 

Consider the metric line-element: 
2d = d ds g x x 

              (2.1) 

If the observer is at rest, 

 d = 0 = 1, 2,3ix i  

while, 
0d = dx t                     (2.2) 

This last equality defines a proper time; we called cos- 
mic time, in Cosmology. 

From the geodesics’ equations, we shall have: 
2

002

d d d
=

d dd

i
ix x x

s ss

 

  i        (2.3) 

We then find: 

0 = 0ij ig
g

t




             (2.4) 

This defines a Gaussian coordinate system, which in 

general implies that: 

0 = 0ig

t




                (2.5) 

We must now reset our clocks, so that, the above con- 
dition is universal (valid for all the particles in the Uni- 
verse), and then our metric will assume the form: 

 2 2d = d , d di j
ijs t g x t x x     (2.6) 

If we further impose that, in the origin of time, we 
have: 

 0 = 0 = 0ig t             (2.7) 

then by (2.5), we shall have: 

 0 = 0ig t               (2.8) 

The above defines a Gaussian normal coordinate sys- 
tem. 

For a commoving observer, in a freely falling perfect 
fluid, the quadrivelocity u  will obey: 

= 0iu                (2.9)  

while, if we normalize the quadrivelocity, we find, from 
the condition: 

= 1g u u 
            (2.10) 

that, 
0

00 = 1g u              (2.11) 

Though later we shall discuss the case  00 00= 1g g t  , 
it is usually imposed: 

0
00 = =g u 1            (2.12) 

When dealing with Robertson-Walker’s metric, this is 
the usual procedure. By this means, we have a tri-space, 
orthogonal to the time axis. 

Gaussian coordinate systems, in fact, imply that, with 

0 , there are no rotations in the metric, and in each 
point we may define a locally inertial reference system. 

= 0ig

Gaussian normal coordinates were called “synchron- 
ous”; in an arbitrary spacetime, when we pick a spacelike  
hypersurface 0 , and we eject geodesic lines orthogonal 
to it, with constant coordinates 

S
1 2,x x  and 3x , while 

0
0x t t  , where 0  on 0 , then t is the proper 

time, whose origin is  on  (see MTW in 1973 
[16]). 

= 0t
= 0t

S

0S

In the above treatment, cosmic time is “absolute”, so 
that the measure of the age of the Universe, according to 
this “time”, is not subject to a relative nature. 

Now, we might ask whether the tri-space, orthogonal 
to the time axis, could rotate relative to this axis. Berman 
in 2008 [17,18], has exactly defined this original idea, by 
identifying this rotation, which is different from all 
others, as will shall show bellow, with a time-varying 
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metric coefficient  00g t . In the next Section, we relate 
the angular speed of the tri-space, relative to the time 
axis, with  00g t  by means of, 

00

00

1
=

2

g

g



            (2.13) 

In the above, we still may have a perfect fluid model. 
Book treatments can be found in Berman [1,2]. 

Other type of rotation, is Raychaudhuri’s vorticity [19- 
21], which is attached to non-perfect fluids (see, for in- 
stance, Berman in 2007 [19]). A third type of rotation, is 
what we usually call rotation of the metric, and is defined 
by non-diagonal terms, in the metric. For instance, Kerr’s 
metric [22-24]. 

A fourth kind of rotation, is also attached to a perfect 
fluid model, like Berman’s one: it is the Godlowski et al. 
in 2004 [15] idea, which is developed in Section 7 below. 
See also Berman [1,2,4-7]. 

3. Field Equations for 
Gomide-Uehara-R.W.-Metric 

Consider first a temporal metric coefficient which de- 
pends only on t. The line element becomes:  

 
 

 
2

2 2
0022

d = d d
1 4

R t 2s g t t
kr

   


  (3.1) 

The field equations, in General Relativity Theory (GRT) 
become: 

2
00 003 = 3R g R 


   

 
 2 kg     (3.2) 

and, 

00
00 006 = 3 2 3R g p R g Rg 


     

 
    (3.3) 

Local inertial processes are observed through proper 
time, so that the four-force is given by: 

  00 00
2
00

d 1
= =

d 2

g
F mu mg x mx

g
   


 

 
 


      (3.4) 

Of course, when 00 , the above equations repro- 
duce conventional Robertson-Walker’s field equations. 

= 1g

In order to understand Equation (3.4) , it is convenient 
to relate the rest-mass m, to an inertial mass iM , with: 

00

=i

m
M

g
              (3.5) 

It can be seen that Mi represents the inertia of a particle, 
when observed along cosmic time, i.e., coordinate time. 
In this case, we observe that we have two acceleration 
terms, which we call, 

1 =a x                 (3.6) 

and, 

2
00

1
=

2
a x

g
    00g           (3.7) 

The first acceleration is linear; the second, resembles 
rotational motion, and depends on 00g  and its time- 
derivative. 

If we consider 2a  a centripetal acceleration, we con- 
clude that the angular speed   is given by, 

00

00

1
=

2

g

g


 

 


               (3.8) 

The case where 00g  depends also on , r   and   
was considered also by Berman in 2008 [18] and does 
not differ qualitatively from the present analysis, so that, 
we refer the reader to that paper. 

4. The Exact Solution to the Pioneers 
Anomaly 

Consider the possible solution for the rotating case. We 
equate (1.2) and (3.8). We try a power-law solution for R, 
and find, 

1 1

00 =
mtg Ae


 (A = constant). 

The scale-factor assumes a power-law, as in constant 
deceleration parameter models (Berman in 1983 [25]; and 
Gomide in 1988 [26]) 

 1=
m

R mDt              (4.1) 

where, m, D = constants, and, 

= 1 >m q  0              (4.2) 

where q is the deceleration parameter. We may choose q 
as needed to fit the observational data. 

We find, 

  1
=H mt


 

If we now solve for energy-density of matter, and cos- 
mic pressure, for a perfect fluid, the best way to present 
the calculation, and the most simple, is showing the mat- 
ter energy-density   and the  -or gravitational densi- 
ty parameter, to be defined below. We find 

 
2

1 1 2

2

3
= 3

m mtt
e k mDt

m A




   
   

  2 1
1 1

2

6 1 3
= 3 2 =

m
mtm t t

p e
m A

 
 

 
       

    
 

For the present Universe, the infinite time limit makes 
the above densities become zero. 

It is possible to define, 
2

00

3
=grav

H

g



  (negative energy-density of the gravita- 

tional field) 
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Now, let us obtain the gravitational energy of the field, 

 

 

2
3

00

4 4 3

1 32

3
= = 4 3 π

=
2

grav grav

m

m

H
E V R

g

c R

Gm A mD








 
  






     (4.3) 

5. The Second Pioneers Anomaly 

The universal angular acceleration, is given by 

2 2= = =u cH R c R          (5.1) 

The spins of the Pioneers were telemetered, and as a 
surprise, it shows that the on-board measurements yield a 
decreasing angular speed, when the space-probes were 
not disturbed. Turyshev and Toth in 2010 [27], published 
the graphs (Figures 2.16 and 2.17 in their paper), from 
which it is clear that there is an angular deceleration of 
about 0.1 RPM per three years, or, 

2101.2 10 rad s              (5.2) 

As the diameter of the space-probes is about 10 meters, 
the linear acceleration is practically the Pioneers anoma- 
lous deceleration value ,in this case,  cm·s–2. 
The present solution of the second anomaly, confirms our 
first anomaly explanation. 

86 10 

I have elsewhere pointed out that we are in face of an 
angular acceleration frame-dragging field, for it is our 
result (5.1) above, for the Universe, that causes the result 
(5.2), through the general formula, 

=
cH

l
               (5.3) 

where l is the linear magnitude of the localized body suf- 
fering the angular acceleration frame-dragging. For sub- 
atomic matter, this angular acceleration can become im- 
portant. 

6. The Solution of the Fly-By Anomaly 

Consider a two-body problem, relative to an inertial sys- 
tem. The additional speed, measured at infinity, relative 
to the total speed, measured at infinity, is proportional to 
twice the tangential speed of the earth, e e , divided by 
the total speed  taken care of the Universe 
angular speed. In fact, we write 

w R
V wR  c

 

6

=

2
= 3 10

e e e e

e e

V R V RV

V c
R

c

 

 

  

 
       (6.1) 

The trick, is that infinity, in a rotating Universe, like 
ours, has a precise meaning, through the angular speed 

Formula (1.2). 

7. The Godlowski et al. Rotation 

We, now, shall follow an idea by Godlowski et al. in 
2004 [15], and supply another General Relativistic model, 
of an expanding and rotating Universe. Their idea, is that 
the homogeneous and isotropic models, may still rotate 
relative to the local gyroscope, by means of a simple re- 
placement, in the Friedman-RWs equations, of the kine- 
tic term, by the addition of a rotational kinetic one. 

Einsteins field equations, for a perfect fluid with per- 
fect gas equation of state, and RWs metric, are two ones. 
The first, is an energy-density equation, the second is a 
definition of cosmic pressure, which can be substituted 
by energy momentum conservation. But, upon writing 
the  term, we shall add an extra rotational term, 
namely , in order to account for rotation. If we 
keep (3.1), the field equations become, for a flat Uni- 
verse 

2R
 2

R

26 =H                (7.1) 

with 

=p                   (7.2) 

and 

= 3 2 1H            (7.3) 

The usual solution, with Bermans constant decelera- 
tion parameter models, render (Berman in 1983 [25]; and 
Gomide in 1988 [26]), 

 1=
m

R mDt              (7.4) 

  1
=H mt


               (7.5) 

 2 2= = 1R qH R m H R        (7.6) 

Notice that we may have a negative deceleration para- 
meter, implying that the Universe accelerates, probably 
due to a positive cosmological “constant”, but, never- 
theless, it is subjected to a negative rotational decele- 
ration, a kind of centripetal one, that acts on each ob- 
served point of the Universe, relative to each observer, 
given by relation (1.2), so that, 

2= = cpR qH R qa         (7.7) 

We now supply the necessary relations among the con- 
stants, so that the above equations be observed, namely, 

 
0 0

3 6
= 2 1 =

2
m 


 

 
 

2
0= t                 (7.8) 
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2
0= t                (7.9) 

8. Final Comments 

If we calculate the centripetal acceleration corresponding 
to the above angular speed (1.2), we find, for the present 
Universe, with  cm and  cm/s, 2810R  103.10c 

282= 9 10 cm scpa R         (8.1) 

Our model of Section 4 has been automatically calcu- 
lated alike with (1.2) and (8.1). This value matches the 
observed experimentally deceleration of the NASA Pion- 
eers’ space-probes. Equation (3.3) shows that one can 
have a positive cosmological lambda term accelerating 
the Universe, i.e.,  along with a centripetal dece- 
leration that is felt by any observer, relative any observed 
point, given by (8.1). Berman and Gomide, in 2010, up- 
date for this Journal in 2012 [9], had obtained a Machian 
General Relativistic solution, though particular. We call 
it Machian, because it parallels the semirelativistic Ma- 
chian solution by Berman in 2007 [3]. 

0R 

A cosmologist has made very important criticisms on 
our work. First, he says why do not the planets in the 
solar system show the calculated deceleration on the 
Pioneers? The reason is that elliptical orbits are closed, 
and localized. You do not feel the expansion of the 
universe in the sizes of the orbits either. In General Re- 
lativity books, authors make this explicit. You do not 
include Hubbles expansion in Schwarzschilds metric. But, 
those space probes that undergo hyperbolic motion, 
which orbits extend towards infinity, they acquire cos- 
mological characteristics, like, the given P.A. decelera- 
tion. Second objection, there are important papers (Rie- 
vers and Lämmerzahl in 2011 [28]; Francisco et al. in 
2011 [29]; Cuesta in 2011 [30]) which resolve the P.A. 
with non-gravitational Physics. Our answer, that is OK, 
we have now alternative explanations. However, in the 
Introduction of this paper, we have responded why ther- 
mal emission is no good an explanation because it does 
not explain the other two anomalies neither why the 
elliptical orbiters did not suffer the same deceleration; as 
to Cuesta in 2011 [30] he also has no explanation for the 
other two anomalies. This does not preclude ours. Third, 
cosmological reasons were discarded, including rotation 
of the Universe. The problem is that those discarded cos- 
mologies, did not employ the correct metric. For in- 
stance, they discarded rotation by examining Godel mo- 
del, which is non expanding, and with a strange metric. 
The two kinds of rotating and expanding metrics we em- 
ploy now, were not discarded or discussed by the authors 
cited by this cosmologist. Then, the final question, is 
how come that a well respected author, dismissed plane- 
tary Coriolis forces induced by rotation of distant masses,  

by means of the constraints in the solar system. The an- 
swer is the same above, and also that one needs to con- 
sider Machs Principle on one side, and the theoretical  
meaning of vorticities, because one is not speaking in a 
center or an axis of rotation or so. When we say, in Cos- 
mology, that the Universe rotates, we mean that there is a 
field of vorticities, just that. The whole idea is that Cos- 
mology does not enter the Solar System except for non- 
closed orbits that extend to outer space. For the Gomide 
Uehara RWs metric, it is the tri-space that rotates relative 
to the orthogonal time-axis. 

Another cosmologist pointed out a different “problem”. 
He was discussing the prior paper, to the present one 
(Berman and Gomide in 2010, updated in 2012 for this 
Journal [9]). He objects, that the angular speed formula 
of ours, is coordinate dependent. Now, when you choose 
a specific metric, you do it thinking about the kind of 
problem you have to tackle. After you choose the con- 
venient metric, you forget tensor calculus, and you work 
with coordinate-dependent relations. They work only for 
the given metric, of course. It must be stressed once more, 
what has been discussed in several prior papers by these 
authors, or by Berman alone, that the point most impor- 
tant that is taken into consideration remains the zero-total 
energy of the Universe, whose pioneer pseudo-tensor 
calculation has been made in an unpublished Master of 
Science Thesis by Berman, in 1981 [31], which was ad- 
vised by the second author of this paper and became the 
seminal zero-energy calculation on the Universe’s ener- 
gy. 

The solutions of Section 4, and Section 7, are in fact a 
large class of solutions, for they embrace any possible 
deceleration parameter value, or, any power-law scale- 
factor. Our solution with the rotation of the Universe, is 
the only unified explanation that applies to the three 
NASA anomalies. 

As stated in the Abstract of this paper, detailed des- 
cription of the subjects treated here, may be found in the 
two books recently published by Berman in 2012 [1] and 
[2]. Additional paper references are Berman in 2007 [3]; 
in 2011 [4,5] and in 2012 [2]) and with co-authors Costa, 
(Berman and Costa, in 2010 updated for this Journal in 
2012 [7]) and with Gomide (Berman and Gomide, in 
2010, updated in 2012 [9]; in 2011, updated in 2012 for 
this Journal, in the present paper [8,9]). 
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ABSTRACT 

The phenomenon of the cosmological acceleration discovered in 1998 is usually explained as a manifestation of a hy-
pothetical field called dark energy which is believed to contain more than 70% of the energy of the Universe. This ex-
planation is based on the assumption that empty space-time background should be flat and hence a nonzero curvature of 
the background is a manifestation of a hidden matter. We argue that quantum theory should proceed not from space- 
time background but from a symmetry algebra. Then the cosmological acceleration can be easily and naturally ex-
plained from first principles of quantum theory without involving empty space-time background, dark energy and other 
artificial notions. We do not assume that the reader is an expert in the given field and the content of the paper can be 
understood by a wide audience of physicists. 
 
Keywords: Quantum Theory; De Sitter Invariance; Cosmological Constant 

1. Introduction 

The discovery of the cosmological acceleration (see e.g. 
Refs. [1,2]) has ignited a vast discussion on how this 
phenomenon should be interpreted. The results of the 
observations are usually represented in terms of the pa-
rameter which is called the cosmological constant (CC) 
and denoted by Λ. The meaning of this quantity will be 
discussed below. According to Refs. [3,4], the observa-
tional data on the value of Λ define it with the accuracy 
better than 5%. Therefore the possibilities that Λ = 0 or 
Λ < 0 are practically excluded. 

The fact that Λ > 0 is usually explained as a manifes-
tation of a hypothetical field called dark energy. The ex-
planation has its roots in the well known debate between 
Einstein and de Sitter and one of the problems in the de-
bate was whether the curved empty space-time back-
ground has a physical meaning or not. This problem is 
discussed in a vast literature and it encounters serious 
difficulties known as the CC problem or dark energy 
problem. The arguments leading to dark energy are dis-
cussed in detail in Section 2. On the other hand, in Sec-
tion 3 we argue that quantum theory should start not 
from the choice of the space-time background but from 
the choice of a symmetry algebra. Then the cosmological 
acceleration can be easily and naturally explained from 
first principles of quantum theory without involving 
empty space-time background, dark energy and other ar- 
tificial notions. 

We do not assume that the reader is familiar with the 
Einstein equations and de Sitter symmetry. We tried to 
make the presentation of the material as simple as possi-
ble and we believe that the content of the paper can be 
understood by a wide audience of physicists. 

2. Arguments Leading to Dark Energy 

The majority of works dealing with the CC problem pro-
ceed from the assumption that the gravitational constant 
G is the fundamental physical quantity, the goal of the 
theory is to express Λ in terms of G and to explain why 
Λ is so small. For this reason we first discuss whether 
indeed G can be treated as a fundamental constant and 
whether the theory should explain the value of Λ . 

The quantity G defines the gravitational force in the 
Newton law of gravity. Numerous experimental data 
show that this law works with a very high accuracy. 
However, this only means that G is a good phenomeno- 
logical parameter. At the level of the Newton law one 
cannot prove that G is the exact constant which does not 
change with time, does not depend on masses, distances 
etc. 

General Relativity (GR) is a classical (i.e. non-quan- 
tum) theory based on the minimum action principle. We 
will not assume that the reader is familiar with the Ein-
stein equations. The only features of these equations 
which are important for our discussion are the following. 
The left-hand-side of these equations contain quantities 
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describing the properties of space-time—the Ricci tensor 
R , the metric tensor g

1, 2,3
 and the tensor of the scalar 

curvature c , while the right-hand-side 
contains stress energy tensor of matter 

R  , = 0,  
T . The Einstein 

equations derived from the minimum action principle 
read  

 41
= 8π

2 cR g R G c T           (1) 

Therefore G is the coefficient of proportionality be- 
tween the left-hand-side and rihgt-hand-side. General Re- 
lativity cannot calculate G or give a theoretical explana- 
tion why this value should be as it is. A problem arises 
whether the quantity G should be treated as a fundamen- 
tal or phenomenological constant. For example, the quant- 
ity c is usually treated as fundamental and then the 
problem of calculating c does not arise. One can say that 
the value of c is as it is simply because we wish to meas-
ure time in seconds and distances in meters. One might 
think that the quantity G can be treated analogously and 
its value is as it is simply because we wish to measure 
masses in kilograms and distances in meters (in the spirit 
of Planck units). However, treating G as a fundamental 
constant can be justified only if there are strong reasons 
to believe that the Lagrangian of GR is the only possible 
Lagrangian. Let us consider whether this is the case. 

The Lagrangian of GR should be invariant under gen-
eral coordinate transformations and the simplest way to 
satisfy this requirement is a choice when it is propor- 
tional to c . In this case the Newton gravitational law is 
recovered in the nonrelativistic approximation and the 
theory is successful in explaining several well-known 
phenomena. However, the argument that this choice is 
simple and agrees with the data, cannot be treated as a 
fundamental requirement. Another reason for choosing 
the linear case is that here equations of motions are of the 
second order while in quadratic, cubic cases etc. they will 
be of higher orders. However, this reason also cannot be 
treated as fundamental. It has been argued in the litera-
ture that GR is a low energy approximation of a theory 
where equations of motion contain higher order deriva-
tives. In particular, a rather popular approach is when the 
Lagrangian contains a function 

R

 cf R  which should be 
defined from additional considerations. In that case the 
constant G in the Lagrangian is not the same as the stan-
dard gravitational constant. It is believed that the nature 
of gravity will be understood in the future quantum the-
ory of gravity but efforts to construct this theory has not 
been successful yet. Hence there are no solid reasons to 
treat G as a fundamental constant. 

Special Relativity works with Minkowski space, which 
is also called the space of events. It is very important to 
note that Minkowski space has a physical meaning only 
as a space of events for real bodies. In particular, the 

notion of empty space has no physical meaning since it 
contradicts the physical principle that a definition of a 
physical quantity is a description of how this quantity 
should be measured. In particular, one can discuss how 
coordinates of real bodies can be measured but there is 
no way to measure coordinates of the empty space which 
exists only in our imagination. 

Physicists consider others spaces of events, for exam- 
ple de Sitter (dS) space. It is a set of points characterized 
by five coordinates  , , , ,t x y z u

2 2 2 =
 which satisfy the res- 

triction 2 2 2x y z  u t R   where R is some pa- 
rameter, we work in units where  and hence time 

 has the same dimension as the spacial coordinates 
= 1c

t
 ,, ,x y z u . The dS space is invariant under the action of 
the dS group, which contains only conventional and hy-
perbolic rotations. Therefore the action of the dS group 
on dS space does not depend on R at all and, instead of 
the quantities  , ,z u, ,t x y  satisfying the above restric-
tion, one can characterize points on the dS space by di- 
mensionless quantities  

 0 1 2 3 4= , = , = , = , =t R x R y R z R u R      

satisfying the restriction . 2 2 2 2 2
1 2 3 4 0 = 1       

An analogy of this situation follows. Suppose that a 
one-dimensional man lives on a circumference in the xy 
plane with the center in the origin and radius R. The man 
does not know that in the two-dimensional world the cir- 
cumference is described by the coordinates  ,x y  sa- 
tisfying 2 2 = 2x y R  since he has no information about 
x ,  and R. However he can measure distances and 
describe the geometry of his one-dimensional world in 
terms of a dimensionless parameter 

y

 0,2π . 
Consider a vicinity of the North pole of dS space as-

suming that the pole has the coordinates . If 
we consider only such points of dS space that u is close 
to R and all the values of 

 0,0,0,0, R

 , , ,t x y z  are much less than 
R then in this vicinity, geometry is very close to that of 
Minkowski space. The dimension of the quantities 
 , , ,t x y z  in this vicinity depends on the dimension in 
which R is measured. The curvature of dS space in terms 
of  , z, ,t x y  is 2= 3 R . Then the experimental re- 
sults [1-3] say that R is of order 1026 m. This discussion 
shows that in dS theory Λ is not present at all; it appears 
only when one wishes to parametrize dS space by di-
mensionful coordinates. Hence the question of why Λ is 
as it is, is not fundamental since the answer is: because 
we want to measure distances in meters. In particular, 
there is no guaranty that Λ will not change with time. 

When the Lagrangian is linear in , the most general 
Einstein equations are not (1) but  

cR

 41
= 8π

2 cR g R g G c T          (2) 

As follows from this expression, in GR the curvature 
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and the metric depend on the presence of matter. In the 
formal limit, when matter disappears, solutions of Equa- 
tion (2) are Minkowski space when , dS space 
when  and anti-de Sitter (AdS) space when 

= 0
> 0 < 0 . 

In this connection the following extremely important 
question arises. As discussed above, these spaces have a 
physical meaning only as spaces of events for real bodies. 
At the same time, in GR those spaces arise as solutions 
of the Einstein equations when matter is absent. In other 
words, those spaces arise only as empty spaces. Of 
course, in mathematics one can consider different spaces 
without thinking about the physical meaning of empty 
space. But in physics the notion of empty space has no 
meaning. We believe that these remarks show that the 
formal limit of GR when matter disappears is unphysical. 

In textbooks on gravity written before 1998 (when the 
cosmological acceleration was discovered) it is often 
claimed that Λ is not needed since its presence contra-
dicts the philosophy of GR: matter creates curvature of 
space-time, so in the absence of matter space-time should 
be flat (i.e. Minkowski) while empty dS space is not flat. 
As noted above, such a philosophy has no physical 
meaning since the notion of empty space is unphysical. 
That’s why the discovery of the fact that  has 
ignited many discussions. The most popular approach is 
as follows. One can move the term with Λ in Equation (2) 
from the left-hand side to the right-hand one:  

0 

 41
= 8π

2 cR g R G c T g           (3) 

Then the term with Λ is treated as the stress-energy 
tensor of a hidden matter which is called dark energy: 
 48π =DEG c T g  . With the observed value of Λ 
this dark energy contains approximately 75% of the en-
ergy of the Universe. In this approach G is treated as a 
fundamental constant and one might try to express Λ in 
terms of G. The existing quantum theory of gravity can-
not perform this calculation unambiguously since the 
theory contains strong divergences. With a reasonable 
cutoff parameter, the result for Λ is such that in units 
where ,  is of order unity. This result is 
expected from dimensionful considerations since in these 
units, the dimension of G is  while the dimen- 
sion of Λ is 



= = 1c G

2length
2length1 . However, this value of Λ is 

greater than the observed one by 122 orders of magnitude. 
This problem is called the CC problem or dark energy 
problem. 

Several authors criticized this approach from the fol-
lowing considerations. GR without the contribution of Λ 
has been confirmed with a good accuracy in experiments 
in the Solar System. If Λ is as small as it has been ob-
served then it can have a significant effect only at cos-
mological distances while for experiments in the Solar 
System the role of such a small value is negligible. The 

authors of Ref. [5] titled “Why All These Prejudices 
Against a Constant?”, note that even in a special case 
  =c cf R R , the most general form of the Einstein 

equations is as in Equation (2) and so it is not clear why 
we should think that only a special case (1) is allowed. If 
we accept the theory containing a phenomenological 
constant G which is taken from the outside then why 
can’t we accept a theory containing two independent 
phenomenological constants? 

It is also well known since the 1930s that on quantum 
level space-time coordinates are not measurable (see e.g. 
Ref. [6]). Hence on quantum level space-time cannot be 
described by differential geometry. There exist many 
papers the authors of which propose their solutions of the 
CC problem. In the next section we give simple argu-
ments showing that the CC problem does not exist and 
the cosmological acceleration can be easily and naturally 
explained from first principles of quantum theory. 

3. Quantum Approach to Cosmological 
Acceleration 

The usual approach to dS symmetry on quantum level is 
as follows. Since classical dS space is invariant under the 
action of the dS group, in dS quantum theory operators of 
dS angular momenta  

 , = 0,1,2,3,4; =ab ab baM a b M M  

should satisfy the commutation relations of the dS al- 
gebra 

 
,

=

ab cd

ac bd bd ac ad bc bc ad

M M

i M M M M   

  

   
   (4) 

where ab  is the diagonal metric tensor such that  
. This approach is in 

the spirit of the well-known Klein’s Erlangen program in 
mathematics. 

00 22 33 44= = =     11= =  1

However, as we argue in Refs. [7,8], quantum theory 
should not be based on classical space-time background 
and the approach should be the opposite. Each system is 
described by a set of independent operators. By defini-
tion, the rules how these operators commute with each 
other define the symmetry algebra. In particular, by defi-
nition, dS symmetry on quantum level means that the 
operators commute according to Equation (4). In semi-
classical approximation, quantum theory can recover re- 
sults obtained by classical one with dS space (see below). 
In that case dS space is meaningful only as a space of 
events for real particles but not as an empty space-time 
background. 

The anti-de Sitter (AdS) symmetry on quantum level 
can be defined analogously but the value of 44  in 
Equation (4) is 1 instead of –1. Poincare symmetry is a 
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special case of dS or AdS symmetry obtained as follows. 
If R is a parameter with the dimension length and the 
energy-momentum operator P  is defiend as  

4=P M R   then in the formal limit  one gets 
commutation relations of the Poincare algebra from Equa- 
tion (4). It is clear that on quantum level dS and AdS 
theories can be constructed without parameters having 
the dimension of length. Such parameters may be used if 
one wishes to interpret the results in classical approxima-
tion or in Poincare limit but they are not fundamental. In 
particular, neither Λ nor G can be fundamental in agree-
ment with the discussion in the preceding section. 

R 

The next step in our construction is the definition of 
elementary particle. Although theory of elementary par-
ticles exists for a rather long period of time, there is no 
commonly accepted definition of elementary particle in 
this theory. In Refs. [7,8] we argue that, in the spirit of 
Wigner’s approach to Poincare symmetry, a general defi-
nition, not depending on the choice of the classical back-
ground and on whether we consider a local or nonlocal 
theory, is that a particle is elementary if the set of its 
wave functions is the space of an irreducible representa-
tion (IR) of the symmetry algebra in the given theory. 
The meaning of IR is that the linear space of all possible 
wave functions cannot be decomposed into a sum of 
spaces where the operators act independently. Hence the 
term “irreducible” can be treated as a mathematical sy- 
nonym of “elementary”. There exists a wide literature 
describing how IRs of the dS, AdS and Poincare algebra 
can be constructed. Such a construction can be used not 
only for describing elementary particles but even for de-
scribing the motion of a macroscopic body as a whole. 
For example, when we consider a system of two macro-
scopic bodies such that the distance between them is 
much greater than their sizes, it suffices to describe each 
body as a whole by using the IR with the corresponding 
mass. 

The following important remarks are in order. In Quan- 
tum Field Theory, Lagrangians and Minkowski space 
play only an auxiliary role for constructing the operators 
 ,P M    for systems of interacting fields. Hence if we 
consider only systems of free particles, neither Lagran-
gian nor Minkowski space is needed. Analogous remarks 
are valid in dS theory. In particular, for describing sys-
tems of free particles, neither Lagrangian nor dS space is 
needed. 

The above notions are sufficient for describing sys- 
tems of free particles in Poincare, dS and AdS quantum 
theories. In particular, in semiclassical approximation 
one can calculate the relative acceleration of two free 
particles in such theories. One might think that since the 
particles are free, their relative acceleration will be zero. 
This is true in Poincare invariant theory but in the dS and 
AdS cases the relative acceleration is not zero. The cal-  

culation of the relative acceleration involves the follow-
ing steps. 

At the starting point we have no space-time and no 
dimensionful parameters. The only information we have 
is how wave functions describing particles under consid-
eration are constructed and how the operators abM  act 
on such wave functions. This is the maximum possible 
information in quantum theory. 

The next step is that we introduce a parameter R with 
the dimension length and instead of the dS operators 

4M   work with the energy operator 40=E M R  and 
the momentum operator P such that 4=k kP M R   
 , 2,3= 1k . Then we define classical time  as a para- 
meter describing the evolution according to the Schroed- 
inger equation and define the position operator 

t

jr  of 
particle j  = 1, 2j  such that it acts on wave functions  

 j p  of particle j in momentum representation as  

ji  p  (as in standard quantum mechanics). 
A standard quantum-mechanical calculation, which is 

described in detail in Refs. [7,9-11] (where we discussed 
different properties of dS quantum theory), shows that in 
the dS case the classical relative acceleration  of two 
free particles is 

a
2= ca r 3  where  is the classical 

vector of the relative distance between the particles and 
r

2= 3 R . From the formal point of view, the result is 
the same as in GR on dS space. However, our result has 
been obtained by using only standard quantum-mechani- 
cal notions while dS space, its metric, connection etc. 
have not been involved at all. The derivation clearly de- 
monstrates that R is not a fundamental quantity but 
simply a parameter defining the scale of classical space- 
time coordinates  ,tr  (in agreement with the remarks 
in the preceding section). 

4. Conclusion 

In Section 2 we argue that neither G nor Λ can be 
fundamental and the notion of empty space-time back-
ground is not physical. Hence the discussion on whether 
the empty space-time background can be curved or not 
does not have a physical meaning. In Section 3 we argue 
that quantum theory should start not from the choice of 
the empty space-time background but from the choice of 
a symmetry algebra. In view of this approach, space-time 
coordinates have a physical meaning only on classical 
level when they are applied for describing real bodies but 
not for describing the empty space-time background. In 
this approach the data of Refs. [1-3] that , should 
be interpreted not such that the space-time background is 
dS space but that the dS algebra is more pertinent than 
the Poincare or AdS ones. As shown in our Ref. [8] and 
references therein, this opens a radically new approach to 
gravity where the quantity G is not taken from the out-
side but (in principle) can be calculated. The above dis-

> 0
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cussion shows that the phenomenon of cosmological ac-
celeration can be easily and naturally explained from first 
principles of quantum theory without involving space- 
time background, dark energy and other artificial notions. 
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ABSTRACT 

Based on the gravitational theory, fundamental data, and comprehensible suppositions, an evolution model of the uni-
verse was proposed. The universe exists in explosion and constringency mobile equilibrium state. The critical sizes of 
celestial bodies were calculated in their evolution process. 
 
Keywords: Black Hole; Evolution; Universe; Gravitation; Entropy 

1. Introduction 

As the theoretical ratiocination (Einstein’s theory of rela-
tivity) and the cumulating of the more and more obtained 
data or phenomena from astronomic observation of the 
celestial bodies, people began to have a general impres-
sion of the universe, such as the clangorous words ex-
pressed: big bang, expanding universe, and black hole et 
al. (Ginsburg 1985). From a point of view that the mi-
crocosm decides the macrocosm, more information of the 
universe can be predicted from present knowledge of the 
elementary particles. 

In this paper, some parameters of evolution of the uni-
verse were calculated. The main thoughts were the New-
ton’s universal gravitation and the structures of matter. 

2. Preparation of Research 

2.1. Fundamental Data and Suppositions 

The gravitational constant, G, is 6.670 × 10–11 N m2·kg−2. 
The radius of hydrogen atom, a0, is 5.29 × 10−11 m. The 
mass density of atomic nucleus, ρn, was determined (Er-
dei 1976) to be 2 ×1017 kg·m−3. The mass of neutron, mn, 
is 1.67495 × 10−27 kg, radius rn, 1.2598 × 10−15 m. The 
combining energy of nucleus is 8 MeV. The gravitational 
acceleration on earth surface is 9.81 m·s−2. The sun has 
the mass of 1.989 × 1030 kg, density of 1.409 × 103 
kg·m−3, radius of 6.960 × 108 m. 

Suppositions: the combining energy of nucleus (strong 
interaction in nucleus) came from gravitation, and the 
nucleus consisted of gravitons; the combinative form 
between nucleus was its overlaps one another. 

2.2. Formula Derivation A—Gravitational 
Acceleration of a Particle from Solid Sphere 

According to Newton’s law, the gravitational force be-
tween two distant particles has the form: 

2F GmM r , and F ma . Hence, the gravitational 
acceleration, 2ra GM . 

However, to a neighboring large body (has a mass of 
M, radius of R), the radius of the body cannot be ne-
glected; its accurate result can be obtained by processing 
a mathematical integral. 

As Figure 1 expressed, a solid sphere has a radius of R, 
a homogeneous density of ρ, the particle has a mass, m, 
and has a distance, nR, from the center, the gravitational 
acceleration, a, of the particle was derived as follows: 

 
 

O y

x

R

nR

z 

m

h M 

r φ  

 

Figure 1. Sketch map of a particle (m), which with a dis-
ance, nR, from the center of the solid sphere. t   
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where, “M” is the arbitrary point in the solid sphere, “h” 
the point corresponding to “M” horizontally. “r” is the 
distance of the point “M” from original point “o”, ρ′ is 
ideally homogeneous mass density of a solid sphere, ρ 

the average one. k stands for the calibration factor of av-
erage mass density. 

For a general integral 
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For general integral 
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F(n) is a function of n. The, F – n, diagram was show- 

ed igure 2. 
the earth, the averag density ρ is 5.5153 × 

103 kg·m−3, the radius R is 6.356078 × 106 m. The gravi-
tational acceleration on earth surface was calculated (n = 
1) to be 12.68 m·s−2. However, the real value of gravita-
tional acceleration on earth is 9.81 m·s−2. It is 0.7736 
times than the calculated one. It is because of the earth 
that does not have an ideally homogeneous density used 
in above formula derivation process. The ratio can be 
used as calibration factor, k, of average density of a solid 
sphere (ρ′ = kρ. For earth, k = 0.7736; and it was sup-

posed to be fit for any other celestial bodies). 

2.3. Formula Derivation B—Self-Gravitational 
Pressure in Center of Solid Sphere 

The gravitational pressure in center from solid sphere can 
be calculated according to Equation (6). 

 in F
For e mass 

1 1d d d d 3F a m a V SRa n    , (where, 3V SnR ) 

1 3dp SRadn  

 12
1 2 0

4
d d

3
p p Gk R F n     .n        (7) 
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 1

0
dF n nThe integral, , can be calculated diagram-

matically. The diagram showed in Figure 3. 
The area beneath the curve calculated by computer 

gave the result of 0.62129. Thus, p = 0.62129 × 
4Gkρ2R2/3. Supposing the considered celestial body has 
the same value of calibration factor k of earth, then we 
obtained 

p = 0.6408Gρ2R2.             (7.1) 

2.4. Formula Derivation C—Gravitational 
Potential Energy from Solid Sphere 

The gravitational potential energy, Eg, from a solid 
sphere can be calculated. 

d .     (8) 

According to relation (6), the integral, 

 2
gd d 4g n

E E ma l mGk R F n n


      

 
1

dF n n


 , 

can be calculated diagrammatically. The diagram showed 
in Figure 4. 

The area beneath the curve calculated by computer 
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Figure 2. Diagram of function F (n). 
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gure 3. Partial d  function F (n). The variable n 
changes from zero to one. 
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Figure 4. Partial diagram of function F(n). The variable n 
changes from 1 to ∞. 
 
gave the result of 1.7193. Therefore, we have 

Eg = 1.7193 × 4GkρmR2 = 5.320GρmR2.     (8.1) 

3. Target Calculation 

3.1. Maximal Radius of Celestial Bodies 

Atoms have similar energy demand whe
compressed in nucleus forming a new atom (which has 
lower atomic number). Taking atom zinc as an example, 
when one electron of Zn is compressed in nucleus, the 
is

n one electron is 

otopic atom Cu is then formed. The energy demand, 
ΔEa, can be calculated. According to quantum theory, the 
energy of an outer electron of a atom has the form E ≈ 
−13.6Z2/n2 (in ground state). Thus, 

2 2

2 2

30
6 13.6 765 eV

Z

n
    . 13.

4ZnE  

2 2

2 2

29
13.6 13.6 715 eV

4
cu

Z
E

n
      . 

1 50 eVcu ZnE E E    . 

For an extreme hot electron of atom of hydrogen, 

ΔEa = ΔE1 + 13.6 = 63.6 eV = 1.02 × 10−

 radioactive
is decreasing

adius a , we guessed that the hydrogen 
at
nucleus. Then, the maximu  pressure, pmax,a, for com-
pressing a hydrogen atom to neutron could be derived as: 

ΔEa = FΔr = pSΔr = pSa0. 

17 J 

As the gravitational force increasing, many  
otopes formed with the atomic number . 

Considering the atom of hydrogen, that has the maximum 
compression r 0

oms would be the last element to be compressed to 
m
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where, Δr was replaced with the radius of hydrogen atom 
a0. 

The pressure comes from the gravitation of celestial 
body. Combining Equations (7.1) and (9), we have  

0.6408Gρ2R2 = 1.64 × 1013, 
then, 

6
max

1
5.07 10R

G
  . 

If a solid celestial body has the same average mass 
density of earth (5.5153), then 

6
max, 3 11

1
5.07 10

5.5153 10 6.670 10
solidR


 

    

To a hot gas celestial body, which has the same aver-
age mass density of sun (1.409), then, we have 

81.12 10 m. 

6
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4.41 10 m.

gasR


 
  

 

 11

3.2. Minimum Neutron Star 

A model of neutron star was showed in Figure 5. A neu-
tron body with the radius of R is in the center of the star. 
A general matter layer with the thickness of (n − 1)R is 
around the neutron body. 

 contains two parts. 
Equation (6) can express linearly in a short segment. 

F(n) = 1.355571n, (n = 0 → 1). 

According to Equation (7), 

29
max 5.06 10 kgm V   . 

The gravitational pressure on the surface of neutron 
body can be calculated. It
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where, ρn is the nuclear mass density, ρ the mass density 
matter. Substituting the parameters, we have 

 3 2 21n 
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1
7.589 10 d

n
R F n n  

    
1.1418 10p  

y 

z 

(n - 1)R 

x  

Figure 5. A model of neutron star. 
 

Combining Equations (9) and ( 0), we have 1
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7.1) and (13), we have 

10 .

According to Equations (6) and (11), we obtained fol-
lowing results: 

R = 11.2 m, nR = 1121 m 

R = 16 m, nR = 32 m 

R = 261 m, nR = 261.6 m 

R = 15257 m, nR = 15257 m. 

Combining Equations (
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3.3. Minimal

 the radius of a neutron star achieved its maximal 
value, as the mass continuing accumu ing, a graviton 
body began growing, the radius of neutron star then de-
cr

eutron star began to have 
the ability to draw back a photon; we call it becoming a 
body of black hole. The maximum radius of black hole 
can be calculated by imitating the process of what  
in paragraph 3.2. Just replacing ρ and ρn with the value of 
ρn

R
        (12) 

According to Equations (12) and (13), following rela-

15257m.

 Mass of Black Hole 

When
lat

eased correspondingly. When the mass of graviton 
body grew large enough, the n

done

 and ρg (showed in Equation (20)), Equation (11) be- 
came Equation (12). Where ρg is stands for the mass den-
sity of graviton. 
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tions were obtained: 

R = 0.971 m, nR = 9714 m, M = 7.679 ×1029 kg 

 = 7.679 ×1029 kg 

 m, M = 4.537 ×10  kg 

R = 4200 10  kg 

, M = 1.114×1033 kg. 

3.4. Calculation of Graviton 

Nuclear has the combining energy of about 8 MeV 
(Wichmann 1971). Deducting the influence of proton, the 
maximum combining energy of nuclear would be 9.15 
MeV, i.e., 1.47 × 10−12 J. The parameter of the radius of a 
graviton, r0, is the first needs to obtain. Depending on 
above suppositions described in Section 2.1, and the nor- 
mal gravitational potential energy formula, E = Gm1m2/r, 
substituting m1, m2 with the mass of neutron, E with the 
combining energy in nucleus, then we have  

R = 9.714 m, nR = 9714 m, M

R = 97.10 m, nR = 9710 m, M = 7.671 ×1029 kg 

R = 1154 m, nR = 9279 m, M = 6.722 ×1029 kg 

R = 4078 m, nR = 7340 29

R = 10793 m, nR = 11873 m, M = 3.672 ×1030 kg 

R = 14090 m, nR = 14908 m, M = 7.825 ×1030 kg 
324 m, nR = 42273 m, M = 1.971 ×

R = 74934 m, nR = 75084 m

, 

   
0 1 2r Gm m E

Supposing the energy demand for dest
ΔEn, is equal to its maximum combining en
have 

ΔEn = 1.47 ×10−12 J. 

Following the derivate process in Section 3.1, but re- 
placed ΔEa with ΔEn, a0 with rn, Equation (9) becomes 
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 the derivate process in Section 3.2
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t n (11) became Equation (14). 
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Combining Equations (15), (16) and (17), we have 
Equations (18) and (19). 


    


 

26 17 22.180R  

1 2
172 10 dn n
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1 3
174.1888. 2 10  

g n
        (
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26 17 22.180 10 3.4386 10 n 

1 2
17 


32 24 21.76 10 1.865 10 1n

1 2

.71.376 10 dg n n


2 10 dg n
n n  

n

   

  


        (19) 

Combining Equations (18) and (19) diagrammatically, 
we obtained 

n = 1.0190. 

R = 14090 m. 
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nR = 14358 m. 

ρg = 6.3096 × 1017 kg·m−3.                     (20) 

 
  352 1384π 1.273 10 3 5.452 10 kg.    

   (21) 

where mg is stands for the mass of a graviton. 

4.

x parts; and the process goes a circle (a → f →a). 
a) Growing of y. Preponderant 

no

 kg, 
radius, 4.41 × 108 km. 

b) Formation of neutron star. As the continuously ac-
cumulating of matter, the normal molecular celestial 
body begins to compress accompanied with 
engendered in the center. The compressing process looks 
like a process of phase variation. In the process, it will 
release large 

c) Growing of graviton star. With continuously com-
pressing, a graviton body would begin to grow 
center. The graviton star has a critical mass of 7.558 × 
1030 kg, radius of 14.9 km. 

d) Formation of black hole. When graviton star grows 
to its critical value, it becomes a mi
the mean time. It can capture photons just near its surface. 
Afterward, it gradually grows in mass with the accumu-
la

e) Explosion of black hole. When the density of black 
hole increased large enough, the distance between gravi-
tons going over a critical small value, the gravitational 
mechanism destroyed. The gravitation becomes repulsive 
force. Then, explosion occurred; the entropy increased 
sharply. Neutrons, protons, electrons, etc. particles an
afterward atoms were produced subsequently in the ex
plosion process. After explosion, this part of universe 
exists in expansion state in a unabidin

f) Constringency of partial univers
of explosion, the running matters slowed down, spread in 
wide space, mixed, and became part of cosmic dusts. 
Then, partial universe would exist in a contractive state 
in a long run. In intermediate constringency, the celestial 
bodies formed.  

5. Discussion 

When a celestial body has abundant material source in its 
surroundings, it will grow quickly and has a larger mass 
than we calculated. If the celestial body exists in process 
b, it would be a fixed star. The larger mass it has, the 
more quickly it will be compressed, and more efficiency 
the energy would release. i.e., the larger mass it owns, 
the higher brightness it will has. In th
star could burn with no existence of special fuels of nu-
clear fusion, but merely existence of normal atoms. 

will have a big black hole in its 
center. 

The universe consists of vast cosmic dusts and galax-
ies. They go along circle evolutive processes described 
above. Occasionally a limit big black ho
causing the expansion in a partial space. 
long time scale, most space contracted slowly. The uni-
verse exists in a mobile equilibrium state of explosion 
and constringency (Thomas & Hermann 1948). Those 
observed stars, which leave away at acceleratory velocity 
(Hubble 1929), might result in other reasons. It is by no 
means that the whole universe is expanding now. Re-
versely, our surrounding universe showed us its contrac-
tive views. We cannot imagine that the
Milky Galaxy is formed in an expansion pr

6. Tags 

A roughly information about graviton was derived in this 
pa

cs. Future observation of existence of new 
smaller bla parently meaningful. 
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However, in a 
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quantity of energy (lose of masses), become 
an extremely hot body and shine. A maximum neutron 
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ABSTRACT 

We consider a General Relativistic generalized RWs metric, and find a field of Universal rotational global centripetal 
acceleration, numerically coincident with the value of the Pioneers Anomalous one. Related subjects are also treated. 
The rotation defined here is different from older frameworks, because we propose a Gaussian metric, whose tri-space 
rotates relative to the time orthogonal axis, globally. 
 
Keywords: Cosmology; Einstein; Brans-Dicke; Pioneers Anomaly 

1. Introduction 

Detailed description of the subjects treated in this paper 
may be found in the two books recently published by 
Berman in 2012 [1,2]). Additional paper references are 
Berman in 2007 [3]; in 2011 [4] and [5]; in 2012 [6]) and 
with co-authors Costa, (Berman and Costa in 2012 [7]) 
and with Gomide (Berman and Gomide in 2012 [8] and 
in form as a Chapter in an edited book [9], by Berman 
and Gomide. 

The subject treated in three papers by Marcelo Samuel 
Berman in this issue, two of them co-authored by Fer- 
nando de Mello Gomide (in 2012 [1]; and the present 
paper) and one co-authored by Newton C. A. da Costa 
(in 2012 [7]) are fully covered, along with all introduc- 
tory material, in the books by Berman recently published 
(in 2012 [1,2]). Readers which are not familiar with the 
contents of the three papers in this issue of this Journal, 
may find relief by consulting those books. 

Attempts to ascribe a rotational state to the Universe, 
were carefully described by Godlowski (in 2011 [10]). 
However, he confessed that there was no theoretical 
framework, within General Relativity, to guide the obser- 
vations. In the present paper,such a mechanism is pro- 
vided. The metric to be presented, makes the tri-dimen- 
sional space, globally rotate relative to the orthogonal 
time axis. We are now proposing a novel idea, a genera- 
lized Gaussian metric, which is minimally different from 
the Robertson-Walkers one. In Berman [11], a semi-rela- 
tivistic treatment, based on the zero-total energy of the 
(rotating) Universe, made us conclude that the Pioneers 
anomalous deceleration, was a kind of peculiar centri- 
petal effect of the rotation of the Universe, that could be 
observed by any cosmological observer. In the present  
paper, we prove the alleged zero-total energy of the rota- 

ting Universe, and supply the metric for such rotation 
with expansion. We keep a perfect fluid model, unlike 
Raychaudhuri’s vorticities, and we also differ from the 
metrical rotational states, derived from non-diagonalized 
metrics. We shall find an energy-density solution, very 
similar to the Berman [11] solution. As Berman and 
Gomide (in 2012 [9]) have shown, by our framework, of 
a rotating Universe, we explain the three NASA ano- 
malies, namely, the Pioneers linear deceleration, the 
spin-down of the spacecraft when they were undisturbed, 
and the fly-by. The present paper, yields a Machian so- 
lution, while the other one supplies a large class of ge- 
neral relativistic cosmological solutions with Universal 
rotation [8]. 

Ni [12,13], has reported observations on a possible ro- 
tation of the polarization of the cosmic background ra- 
diation, around 0.1 radians. As such radiation was ori- 
ginated at the inception of the Universe, we tried to 
estimate a possible angular speed or vorticity, by divid- 
ing 0.1 radians by the age of the Universe, obtaining 
about 10–19 rad·s–1. 

The numerical result is very close to the theoretical 
estimate, by Berman (in 2007 [11]), 

18 1= 3 10 rad sc R      

where c, R represent the speed of light in vacuum, and 
the radius of the causally related Universe. 

We must remember, as Berman and Gomide [9] have 
pointed, that their calculation deals with material parti- 
cles, or, in the language of General Relativity, non-null 
geodesics. The fact that the Universe may exhibit a ro- 
tating state, can be understood by a simple fine-tuning 
argument—it would be highly improbable that the Uni- 
verse could keep since birth a state of no angular mo- 
mentum at all. 
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The value of Bermans rotation, fits with the Pioneers 
anomaly, which consists on decelerations sufferred by 
Nasa space probes in non-closed curves, extending to 
outer space. Thermal emission was cited as resolving the 
Pioneers anomaly, but it does not explain the fly-bys, like 
Berman and Gomide [9] did through the present rota- 
tional theory. Worse, thermal emission is unable to ex- 
plain why elliptical orbiters do not decelerate according- 
ly. 

About this same numerical value of the angular speed 
is predicted also in Godel’s rotational model, but it is not 
an expanding one (see Adler, Bazin and Schiffer [14]). In 
the next few years, the observational evidence may con- 
firm or not such rotation . 

Rotating metrics in General Relativity were first stud- 
ied by Islam (in 1985 [15]), but Cosmology was not 
touched upon. However, it would be necessary an extre- 
me perfect fine-tuning, in order to create the Universe 
without any angular-momentum. The primordial Quan- 
tum Universe, is characterized by dimensional combina- 
tions of the fundamental constants “c”, “h” and “G” 
respectively the speed of light in vacuo, Planck’s and 
Newton’s gravitational constants. The natural angular 
momentum of Planck’s Universe, as it is called, is, then, 
“h”. It will be shown that the angular momentum grows 
with the expanding Universe, but the corresponding an- 
gular speed decreases with the scale-factor (or radius) of 
the Universe, such being the reason for the difficulty in 
detection of this speed with present technology. Notwith- 
standing, the so-called Pioneers’ anomaly (Anderson et 
al., in 2002 [16]), which is a deceleration verified in the 
Pioneers space-probes launched by NASA more than 
thirty years ago, was attributed by Berman, to a “Ma- 
chian” ubiquitous field of centripetal accelerations, due 
to the rotation of the Universe. Berman’s calculation 
rested on the assumption that the zero-total energy of the 
Universe was a valid result for the rotating case, but the 
proof was not supplied in that paper (Berman, in 2007 
[3]). By “proof”, one thinks on the pseudotensor energy 
calculations of General Relativity—the best gravita- 
tional theory ever published. 

In his three best-sellers Hawking (in 1996 [17]; 2001 
[18]; 2003 [19]) describes inflation (Guth in 1981 [20] 
and in 1998 [21]), as an accelerated expansion of the 
Universe, immediately after the creation instant,while the 
Universe, as it expands,borrows energy from the gra- 
vitational field to create more matter. According to his 
description, the positive matter energy is exactly ba- 
lanced by the negative gravitational energy, so that the 
total energy is zero, and that when the size of the Uni- 
verse doubles, both the matter and gravitational energies 
also double, keeping the total energy zero (twice zero). 
Moreover, in the recent, next best-seller, Hawking and  
Mlodinow (in 2010) comment that if it were not for the 

gravity interaction, one could not validate a zero-energy 
Universe, and then, creation out of nothing would not 
have happened. 

There are four methods, in GRT, to create rotations. 
Non-diagonal metrics, like Kerrs, is one. The adoption of 
an imperfect fluid model, with vorticities, as in Raychau- 
dhuris equation, is second. Third, you may follow the 
Godlowski et al. (in 2004 [22]) idea, and add to the scale- 
factor s squared time derivative,  a rotational term 

 On the other hand, Berman (in 2008 [23,24]) 
has shown that Robertson-Walker’s metric, is a particular, 
non-rotating case, of a general relativistic expanding and 
rotating metric first developed by Gomide and Uehara (in 
1981 [25]). The peculiarity of the general metric is that 
instead of working with proper-time 

2R
 2

.R

 , one writes the 
field equations of General Relativity with a cosmic time t 
related by: 

 1 2

00d = dg t               (1) 

where, 

00 00= , , , g g r t             (2) 

It was seen that when one introduces a metric temporal 
coefficient 00g  which is not constant, the new metric 
includes rotational effects. In fact, we have a generalized 
Gaussian metric, because besides the fact that the tri- 
space is orthogonal to the time-axis, the spatial part of 
the metric, rotates as a whole, relative to this time axis. 
This is a new concept being introduced in the theory. 

The present paper follows the steps of the semi-rela- 
tivistic treatment by Berman (in 2007 [3]), but this time, 
it is General relativistic, and we shall find a Machian 
kind of solution. The general solution is to be found in 
Berman and Gomide (in 2012 [8]). 

In a previous paper Berman (in 2009 [26]) has cal- 
culated the energy of the Friedman-Robertson-Walker’s 
Universe, by means of pseudo-tensors, and found a zero- 
total energy. Our main task will be to show why the Uni- 
verse is a zero-total-energy entity, by means of pseudo- 
tensors, even when one chooses a variable 00g  h that 
the Universe also rotates, and then, to show how General 
Relativity predicts a universal angular speed, and a 
universal centripetal deceleration, numerically coincident 
with the observed deceleration of the Pioneers space- 
probes. The first calculation of this kind, with the Go- 
mide-Uehara generalization of RWs metric, was under- 
taken by Berman (in 1981 [27]), in his M.Sc. thesis, 
advised by the present second author, but where the ro- 
tation of the Universe was not the scope of the thesis. 

The p

suc

ioneer works of Berman (in 1981 [27]), Nathan 
Rosen (in 1994 [28]), Cooperstock and Israelit, (in 1995 
[29]), showing that the energy of the Universe is zero, by 
means of calculations involving pseudotensors, and Kill- 
ing vectors, respectively, are here given a more simple 
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approach. The energy of the (non-rotating) Robertson- 
Walker’s Universe is zero, (Berman, in 2007 [11]; and in 
2009 [26]). Berman (in 1981 [27]) was the first author to 
work, in pseudotensor calculations for the energy of Ro- 
bertson-Walker’s Universe. He made the calculations on 
which the present paper rest, and, explicitly obtained the 
zero-total energy for a closed Universe, by means of LL- 
pseudotensor, when Robertson-Walker’s metric was ge- 
neralised by the introduction of a temporal-time-varying 
metric coefficient. However, the present authors, were 
unaware, in the year 1981, of the exact significance of 
their findings. 

The zero-total-energy of the Roberston-Walker’s Uni- 
ve

e failure of non-Cartesian curvilinear 
co

nts 
ag

 shall argue below that, for the Universe, local and 
gl

2. Field Equations for the Rotating and 

Co metric coefficient which de- 

rse, and of any Machian ones, have been shown by 
many authors (Berman in 2006 [30,31]; in 2007 [11]; 
2007 [32]; 2007 [3]). It may be that the Universe might 
have originated from a vacuum quantum fluctuation. In 
support of this view, we shall show that the pseudotensor 
theory (Adler et al. in 1975 [14]) points out to a null- 
energy for a rotating Robertson-Walker’s Universe. Some 
prior work is mentioned, (in 2006 [30]; 2006 [31]; in 
2007 [11]; 2007 [32]; 2007 [3]; Rosen in 1995 [33]; 
York Jr in 1980 [34]; Cooperstock in 1994 [35]; Cooper- 
stock and Israelit in 1995 [29]; Garecki in 1995 [36]; 
Johri et al. in 1995 [37]; Feng and Duan in 1996 [38]; 
Banerjee and Sen in 1997 [39]; Radinschi in 1999 [40]; 
Cooperstock and Faraoni in 2003 [41]). See also Katz (in 
2006 [42], in 1985 [43]; Katz and Ori in 1990 [44]; Katz 
et al. in 1997 [45]). Recent developments include torsion 
models (So and Vargas in 2006 [46]), and, a paper by 
Xulu in 2000 [47]. 

The reason for th
ordinate energy calculations through pseudotensors, 

resides in that curvilinear coordinates carry non-null 
Christoffel symbols, even in Minkowski spacetime, thus 
introducing inertial or fictitious fields that are interpreted 
falsely as gravitational energy-carrying (false) fields. 

Carmeli et al. in 1990 [48] listed four argume
ainst the use of Einstein’s pseudotensor: 1) the energy 

integral defines only an affine vector; 2) no angular-mo- 
mentum is available; 3) as it depends only on the metric 
tensor and its first derivatives, it vanishes locally in a 
geodesic system; 4) due to the existence of a super-po- 
tential, which is related to the total conserved pseudo- 
quadrimomentum, by means of a divergence, then the 
values of the metric tensor, and its first derivatives, only 
matter, on a surface around the volume of the mass-sys- 
tem. 

We
obal Physics blend together. The pseudo-momentum, is 

to be taken like the linear momentum vector of Special 
Relativity, i.e., as an affine vector. In a previous paper 
(Berman in 2009 [26]), we stated that “if the Universe 
has some kind of rotation, the energy-momentum cal- 

culation refers to a co-rotating observer”. Such being the 
case, we now go ahead for the actual calculations, in- 
volving rotation. Birch (in 1982 [49] and in 1983 [50]) 
cited inconclusive experimental data on a possible rota- 
tion of the Universe, which was followed by a paper 
written by Gomide, Berman and Garcia in 1986 [51]. 

Expanding Metric 

nsider first a temporal 
pends only on t. The line element becomes: 

 
 

 
2R t2 2 2

0022
d = d d

1 4
s g t t

kr
   


      (3) 

The field equations, in General Relativity Theory (GRT) 
become: 

2 2
00 003 = 3R g R 


   

 
  kg           (4) 

and, 

00
00 006 = 3 2 3R g p R g Rg 


     

 
       (5) 

Local inertial processes are observed through proper 
time, so that the four-force is given by: 

  00 00
2
00

d 1
= =

d 2

g
F mu mg x mx

g
   


 

  
 


      (6) 

Of course, when , the above equations repro- 
du

 
W

omentum conservation equation, in 
th

00 = 1g
bertsonce conventional Ro -Walker’s field equations. 

We must mention that the idea behind Robertson-
alker’s metric is the Gaussian coordinate system. 

Though the condition 00 = 1g  is usually adopted, we 
must remember that, t lting time-coordinate is 
meant as representing proper time. If we want to use 
another coordinate time, we still keep the Gaussian co- 
ordinate properties. 

From the energy-m

he resu

e case of a uniform Universe, we must have, 

       00= = = 0 = 1, 2
i i i

p g i
x x x

 ,3
  

 (7) 

The above is necessary in the determination of cosmic 
tim

  

e, for a commoving observer. We can see that the 
hypothesis (2)—that 00g  is only time-varying—is now 
validated. 

In order to understand Equation (6), it is convenient to 
relate the rest-mass m, to an inertial mass iM , with: 

00

=i

m
M

g
            (   8) 

It can be seen that iM  
alo

represents the inertia of a 
particle, when observed ng cosmic time, i.e., coor- 
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dinate time. In this case, we observe that we have two 
acceleration terms, which we call, 

=a x1
                   (9) 

and, 

 2 0
00

1
=

2
a x

g
     0g       (10) 

The first acceleration is linear; the second, resembles 
rotational motion, and depends on 00g  and its time- 
derivative. 

If we consider 2a  a centripetal acceleration, we con- 
clude that the angular speed   is given by, 

00

00

1
=

2

g 
g



 
 

             (11) 

By comparison between the usual  —metric, and the 
field equations in the t—metric, we e led to conclude 
that the conventional energy density 

ar
  and cosmic 

pressure p are transformed into   and p , where: 

00= g 


 
 

 
           (12) 

and, 

00=p g p


 
 

 
            (13) 

We plug back into the field equations, and find, 

003 R
=

2
g

R
    

 
          (14) 

For a time-varying angular speed, considering an arc 

 

 , so that, 

  d
= =

d
t

t

               (15) 

we find, from (11), 

 2
00 = tg Ce   (C = constant)   (16) 

Returning to (14), we find, 

 23
= tR

e
C R




 
    

 


     (17) 

This completes our solution. 
The case where 00g  depends also on ,r   and   

w

3. Energy of the Rotating Evolutionary 

Ev  Science accounts (Hawking in 1996 [17]; 

as considered also Berman (in 2008 [24] nd does 
not differ qualitatively from the present analysis, so that, 
we refer the reader to that paper. 

by ) a

Universe 

en in popular
in 2001 [18] and in 2003 [19]; Hawking and Moldinow 

in 2010; and Guth in 1998 [21]), it has been generally 
accepted that the Universe has zero-total energy. The 
first such claim, seems to be due to Feynman in 1962-3 
[52]. Lately, Berman (in 2006 [30,31]) has proved this 
result by means of simple arguments involving Rober- 
tson-Walker’s metric for any value of the tri-curvature 
( 0, 1,1 ). 

tThe pseudotensor , also called Einstein’s pseudo- 
tensor, is such that, when summed with the energy-tensor 
of matter T 

 , gives the following conservation law: 

  , = 0g T t             (    18) 

In such case, the quantity 

 0 0 3T t x            (19) 

is called the general-relativistic generalization 

at 

= dP g 
of the en- 

ergy-momentum four-vector of special relativity (Adler 
et al. in 1975 [14]). 

It can be proved th P  is conserved when: 
a) 0T 

   only in a te part of space; and, fini
b) g   when we approach infinity, where 

  i wski metric tensor. 
owever, there is no reason to dou

s the Minko
H bt that, even if the 

above conditions were not fulfilled, we might eventually 
get a constant P , because the above conditions are 
sufficient, but no rictly necessary. We hint on the plau- 
sibility of other conditions, instead of a) and b) above. 

Such a case will occur, for instance, when we have t

t st

he 
in

e get exactly this result, 
be

tegral in (19) is equal to zero. 
For our generalised metric, w
cause, from Freud’s (1939) formulae, there exists a 

super-potential, (Papapetrou in 1974 [54]): 

 = ,
2

F

g    U g g g g
g


 




 

where the bars over the metric coefficients imply that 
they are multiplied by g , and such that, 

  = ,g t U 
FT 

   

thus finding, after a brief calculation, for the rotating 

The above result, with von Freud’s superpotential, 
w

au- 
Li

    

Robertson-Walker’s metric, 

= 0P  

hich yields Einstein’s pseudotensorial results, points to 
a zero-total energy Universe, even when the metric is 
endowed with a varying metric temporal coefficient . 

A similar result would be obtained from Land
fshitz pseudotensor (Papapetrou in 1974 [54]), where 

we have: 

  0 0 3= dLL LP g T t       x         (20) 

Copyright © 2012 SciRes.                                                                                 JMP 



M. S. BERMAN, F. DE M. GOMIDE 1203

where, 

  = ,g T t U  
     

and,  

= FU g U  


  

A short calculation shows that, for he rotating metric, 
too, we keep valid the result, 

Other superpotentials would also yield
results. A useful source for the main su
th

ime is (locally) flat, and a geodesic coordinate sys- 
te

alt with the energy 
l solution involves 

 t

 = 0 = 0,1,2,3LLP           (21) 

 the same zero 
perpotentials in 

e market, is the paper by Aguirregabiria et al. in 1996 
[55]. 

The equivalence principle, says that at any location, 
spacet

m may be constructed, where the Christoffel symbols 
are null. The pseudotensors are, then, at each point, null. 
But now remember that our old Cosmology requires a 
co-moving observer at each point. It is this co-motion 
that is associated with the geodesic system, and, as RWs 
metric is homogeneous and isotropic, for the co-moving 
observer, the zero-total energy density result, is repeated 
from point to point, all over spacetime. Cartesian coor- 
dinates are needed, too, because curvilinear coordinates 
are associated with fictitious or inertial forces, which 
would introduce inexistent accelerations that can be mis- 
taken additional gravitational fields (i.e., that add to the 
real energy). Choosing Cartesian coordinates is not ana- 
logous to the use of center of mass frame in New-tonian 
theory, but the null results for the spatial components of 
the pseudo-quadrimomentum show compatibility.  

4. An Alternative Derivation 

Though so many researchers have de
of the Universe, our present origina
rotation. We may paraphrase a previous calculation, pro- 
vided that we work with proper time   instead of coor- 
dinate time t (Berman in 2009 [26]). Then, the rotation of 
the Universe will be automatically i cluded. We shall 
now consider, first, why the Minkowski metric represents 
a null energy Universe. Of course, it is empty. But, why 
it has zero-valued energy? We resort to the result of 
Schwarzschilds metric, (Adler et al. in 1975 [14]), whose 
total energy is, 

n

2
2 GM

=
2

E Mc
R

  

If , the energy is zero, too. But when we write 
Schwarzschilds metric, and make the mass become zero, 
w

= 0M

e obtain Minkowski metric, so that we got the zero- 
energy result. Any flat RWs metric, can be reparame- 
trized as Minkowskis; or, for closed and open Uni- 
verses, a superposition of such cases (Cooperstock and 

Faraoni in 2003 [41]; Berman in 2006 [30,31]). 
Now, the energy of the Universe, can be calculated at 

constant time coordinate  . In particular, the result 
would be the same as when    , or, even when 

0  . Arguments for ini l null energy come from 
Tryon (in 1973 [58]), and Albro 1973 [59]). More 

y, we recall the quantum fluctuations of Alan 
Guths inflationary scenario (Guth in 1981 [20] and 1998 
[21]). Berman (see for instance [57] ), gave the Machian 
picture of the Universe, as being that of a zero energy. 
Sciamas inertia theory results also in a zero-total energy 
Universe (Sciama in 1953 [58]; Berman in 2008 [59] and 
in 2009 [61]). 

Consider the possible solution for the rotating case. 
We work with

tia
w (in 

recentl

 the  -metric, so that we keep formally 
the RWs metric in an accelerating Universe. The scale- 
factor assumes a power-law, as in constant deceleration 
parameter models (Berman in 1983 [64]; and Berman 
and Gomide in 1988 [65]), 

 1=
m

R mD               (22) 

where, m, D = constants, and, 

0

et
For a perfect fluid energy tens

d energy density 
ob

= 1

where q is the deceleration param

>m q                (23) 

er. 
or, and a perfect gas 

equation of state, cosmic pressure an
ey the following energy-momentum conservation law, 

(Berman in 2007 [10,32]), 

 = 3H p             (24) 

where, only in this Section, overdots stand for  -deri- 
vatives. Let us have, 

=p   ( =  constant larger than 1 ) 

fer d,
, 1, 

 (25) 

On solving the dif ential equation, we fin  for any 
= 0k 1 , that, 

 3 1

= 0
m







 ( 0 =   constant)    (26) 

When   
 become

 say, ag

, from (26
density s zero, and w triev
ve

ull. The

) we see that the energy 
e re e an “empty” Uni- 

rse, or, ain, the energy is zero. However, this 
energy density is for the matter portion, but nevertheless, 
as in this case, R  , all masses are infinitely far from 
each others, so that the gravitational inverse-square inter- 
action is also n  total energy density is null, and, 
so, the total energy. Notice that the energy-momentum 
conservation equation does not change even if we add a 
cosmological constant density, because we may subtract 
an equivalent amount in pressure, and Equation (24) 
remains the same. The constancy of the energy, leads us 
to consider the zero result at infinite time, also valid at 
any other instant. 

We refer to Berman (in 2006 [30,31]) for another 
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alternative proof of the zero-energy Universe. If we took 
  instead of t, these references would provide the zero 
result also for the rotational case. 

5. Pioneers Anomaly Revisited 

bove, can be ob- 
 the mere assu- 

Einstein’s field Equations (4) and (5) a
tained, when =g  constant, through00

mptions of conservation of energy (Equation (4)) and 
thermodynamical balance of energy (Equation (5)), as 
was pointed out by Barrow in 1988 [66]. The latter is 
also to be regarded as a definition of cosmic pressure, as 
the volume derivative of energy with negative sign 

 d
=

d

V
p

V

 
 

 
. 

Now, let us consider a time-varying 00g . We may 
write the energy (in fact, the “energy-d sity”)—equ- 
at

en
ion, as follows: 

2
23R

g

 


00

= 3 = constantR k 


  
 

   (27) 

The r.h.s. stands for a constant. We can regard
as the a sum of constant terms, thus finding a possible 
so

 the l.h.s. 

lution of the field equations, such that each term in the 
l.h.s. of (27) remains constant. For example, let us 
consider, 

2= R 0
                 (28) 

2
0= R                  (29) 

1
00 = 3 2g R                  (30) 

where, 0 , 0  and   are non
tion (2 akes this solution prac

ilar to the semi

n (5), we find that it is automatically satis- 
fie

-zero constants. Rela- 
tically of the Machian- 8) m

type, sim -relativistic treatment by Berman 
(in 2007 [3]). More general solutions may be found also 
in the companion paper by Berman and Gomide (2012) 
[8] published in this issue of this Journal. See also Ber- 
man (in 2011 [4,5]; in 2012 [1,2,6]; Berman and Gomide 
in 2012 [9]). 

When we plug the above solution to the cosmic pre- 
ssure Equatio

d provided that the following conditions hold, 

 0 02 = 1 3             (31) 

=p   ( =  con

and, 

stant )      (32) 

0 0= 3k              (32a)  

we found a general-relativistic 
are entitled to the our previous gener
la

As solution, so far, we 
al relativistic angu- 

r speed Formula (11), to which we plug our solution 
(30), to wit, 

= =
R H

H
HR

For the power-law solution of the last Section, 

 
 

 

1
=H

mt
 

so that, 

1=
q

t
mt

    

where we roughly estimated the present deceleration 
paramenter as 1 2 , while, the centripetal acceleration, 

2 2 8 2= 8 10 cm sa R t R         

Notice that t e result would follow from a scale- he sam
factor varying linearly with time. This is the sort of scale- 
factor associated with the Machian Universe. In fact,the 
field equations that we had (Equations (4) and (5)), were 
not enough in order to determine the exact form of the 
scale-factor, because we had an extra-unknown term, the 
temporal metric coefficient. When we advance a given 
equation of state, the original RWs field equations, with 
constant 00g , may determine the scale-factors formula. 
Just to remember, our solution is a particular one. 

This is a general relativistic result. It matches Pioneers 
anomalous deceleration. 

In an Appendix to this Section, we go ahead with the 
alternative calculation with a simple naive Special Rela- 
tivistic-Machian analysis, as had been made in Berman 
(in 2007 [3]). 

6. Final Comments and Discussion 

Someone has made very important criticis
work. First, he says why do not the planets in

ms on our 
 the solar 

system show the calculated deceleration on the Pioneers? 
The reason is that elliptical orbits are closed, and loca- 
lized. You do not feel the expansion of the universe in 
the sizes of the orbits either. In General Relativity books, 
authors make this explicit. You do not include Hubbles 
expansion in Schwarzschilds metric. But, those space 
probes that undergo hyperbolic motion, which orbits 
extend towards infinity, they acquire cosmological cha- 
racteristics, like, the given P.A. deceleration. Second 
objection, there are important papers which resolve the 
P.A. with non-gravitational Physics. The answer—that is 
OK, we have now alternative explanations. This does not 
preclude ours. Third, cosmological reasons were dis- 
carded, including rotation of the Universe. The problem 
is that those discarded cosmologies, did not employ the 
correct metric. For instance, they discarded rotation by 
examining Godel model, which is non expanding, and 
with a strange metric. The kind of metric we employ now, 
or the one that we employed in the rotational case, were 
not discarded or discussed by the authors cited by this 
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objecter. Then, the final question, is how come that a 
well respected author dismissed planetary Coriolis forces 
induced by rotation of distant masses, by means of the 
constraints in the solar system. Our answer is that, beside 
what we answered above, he needs to consider Machs 
Principle on one side, and the theoretical meaning of 
vorticities, because one is not speaking in a center or an 
axis of rotation or so. When we say, in Cosmology, that 
the Universe rotates, we mean that there is a field of 
vorticities,just that. The whole idea is that Cosmology 
does not enter the Solar System except for non-closed 
orbits that extend to outer space. We ask the reader to 
check Machs Principle, because in some formulations of 
this principle, rotation is in fact a forbidden affaire. 

Another one pointed out a different “problem”. He 
objects, that the angular speed formula of ours, is coor- 
dinate dependent. Now, when you choose a specific 
m

f the energy-momentum-pseudotensor 
ca

nitial in- 
fin

time infinite energy-density singularity. 

m

esses, by 
on

s, while Pioneers’ anomaly, for instance, deals with 
tim

left handed preference through the Universe. 

ed

mann Gui- 
 Tonasse, Antonio F. da F. 
nt incentive offered by Miss 

etric, you do it thinking about the kind of problem you 
have to tackle. After you choose the convenient metric, 
you forget tensor calculus, and you work with coor- 
dinate-dependent relations. They work only for the given 
metric, of course. 

We have obtained a zero-total energy proof for a 
rotating expanding Universe. The zero result for the spa- 
tial components o

lculation, are equivalent to the choice of a center of 
Mass reference system in Newtonian theory, likewise the 
use of comoving observers in Cosmology. It is with this 
idea in mind, that we are led to the energy calculation, 
yielding zero total energy, for the Universe, as an accep- 
table result: we are assured that we chose the correct re- 
ference system; this is a response to the criticism made 
by some scientists which argue that pseudotensor calcu- 
lations depend on the reference system, and thus, those 
calculations are devoid of physical meaning. 

Related conclusions by Berman should be consulted 
(see all Berman’s references at the end of this article). As 
a bonus, we can assure that there was not an i

ite energy density singularity, because attached to the 
zero-total energy conjecture, there is a zero-total energy- 
density result, as was pointed first by Berman elsewhere 
(Berman, for instance, see in 2012 [1,2]). The so-called 
total energy density of the Universe, which appears in 
some textbooks, corresponds only to the non-gravita- 
tional portion, and the zero-total energy density results 
when we subtract from the former, the opposite potential 
energy density. 

As Berman( in 2009 [67,68]) shows, we may say that 
the Universe is singularity-free, and was created abnihilo, 
nor there is zero-

Paraphrasing Dicke (in 1964 [69,70]), it has been 
shown the many faces of Dirac’s LNH, as many as there 
are about Mach’s Principle. In face of modern Cos- 

ology, the naif theory of Dirac is a foil for theoretical 

discussion on the foundations of this branch of Physical 
theory. The angular speed found by us, (Berman, in 2010 
[68]; in 2009 [72]), matches results by Gödel (see Adler 
et al. in 1975 [14]), Sabbata and Gasperini (in 1979 [70]), 
and Berman (in 2007 [3], and in 2008 [24,74]). 

Rotation of the Universe and zero-total energy were 
verified for Sciama’s linear theory, which has been ex- 
panded, through the analysis of radiating proc

e of the present authors (Berman in 2008 [59]; and in 
2009 [60]).There,we found Larmor’s power formula, in 
the gravitational version, leads to the correct constant 
power relation for the Machian Universe. However, we 
must remember that in local Physics, General Relativity 
deals with quadrupole radiation, while Larmor is a dipole 
formula; for the Machian Universe the resultant constant 
power is basically the same, either for our Machian 
analysis or for the Larmor and general relativistic formu- 
lae. 

Referring to rotation, it could be argued that cosmic 
microwave background radiation deals with null geo- 
desic

e-like geodesics. In favor of evidence on rotation, we 
remark neutrinos’ spin, parity violations, the asymmetry 
between matter and anti-matter, left-handed DNA-helices, 
the fact that humans and animals alike have not sym- 
metric bodies, the same happening to molluscs. And, of 
course, the results of the rotation of the polarization of 
CMBR. 

We predict that chaotic phenomena and fractals, 
rotations in galaxies and clusters, may provide clues on 
possible 

Berman and Trevisan (in 2010 [74]) have remarked 
that creation out-of-nothing seems to be supported by the 
zero-total energy calculations. Rotation was now includ- 

 in the derivation of the zero result. We could think 
that the Universes are created in pairs, the first one (ours), 
has negative spin and positive matter; the second mem- 
ber of the pair, would have negative matter and positive 
spin: for the ensemble of the two Universes, the total 
mass would always be zero; the total spin, too. The total 
energy (twice zeros) is also zero. Our framework, is the 
only one to solve the fly-by anomaly altogether, and ex- 
plains why elliptical orbiters do not decelerate. 

For more details on the subjects treated here, the ge- 
neral recomendation is to refer the reader to both books 
published recently by Berman (in 2012 [72]). 
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Appendix to the Fifth Section 

As we now have the pseudo-tensorial zero-total energy 
result, for rotation plus expansion, we might write in 
terms of elementary Physics, a possible energy of the 
Universe equation, composed of the inertial term of 
Special Relativity, 2Mc , the potential self-energy  

2

2

GM

R
 , and the cosmological “constant” energy,  

34
π

3
R


  
 
 

, and not forgetting rotational energy, 21

2
I ,  

where I stands for the moment of inertia of a “sphere” of 
radius R and mass M. The energy equation is equated to 
zero, i.e., 

2
2 34 1

0 = π
2 3 2

GM 2Mc R
R

I

     
 

   (33) 

It must be remembered that R is a time-increasing 
function, while the total-zero energy result must be time- 
invariant, so that the principle of energy conservation be 
valid. A close analysis shows that the above conditions 
can be met by solutions (28) and (29), which were de- 
rived or induced from the general relativistic equations. 
When we plug the inertia moment, 

22
=

5
I MR              (34) 

we need also to consider the following Brans-Dicke ge- 
neralised relations, 

2
= = constant

GM

c R
        (35) 

and, 

=
c

R
                  (36) 

If we calculate the centripetal acceleration corre- 
sponding to the above angular speed, we find, for the 
present Universe, with  cm and  
cm·s–2 

2810R  103.10c 

2 8= 8 10 cmcpa R     2s       (37) 

This value matches the observed experimentally dece- 
leration of the NASA Pioneers’ space-probes. 

We observe that the Machian picture above is under- 
stood to be valid for any observer in the Universe, i.e., 
the center of the “ball” coincides with any observer; the 
“Machian” centripetal acceleration should be felt by any 
observed point in the Universe subject to observation 
from any other location. 

We solve also other mystery concerning Pioneers 
anomaly. It has been verified experimentally, that those 
space-probes in closed (elliptical) orbits do not decelerate 
anomalously, but only those in hyperbolic flight. The 
solution of this other enigma is easy, according to our 
view. The elliptical orbiting trajectories are restricted to 
our local neighborhood, and do not acquire cosmological 
features, which are necessary to qualify for our Machian 
analysis, which centers on cosmological ground. But 
hyperbolic motion is not bound by the Solar system, and 
in fact those orbits extend to infinity, thus qualifying 
themselves to suffer the cosmological Machian decele- 
ration. Thermal emission may solve the first Pioneer 
anomaly, but it does not solve the spin-down, nor the 
fly-bys in gravity assists. It is not clear why, thermal 
emission did not cause decelerations in elliptical orbiters. 
Rotation of the Universe solves all the three (Berman and 
Gomide in 2012 [8]). 
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ABSTRACT 

We argue that the Robertson-Walker’s Universe is a zero-energy stable one, even though it may possess a rotational 
state besides expansion. 
 
Keywords: Roberston-Walker’s Universe; Rotation of the Universe; Stability 

1. Introduction 

The first pseudo-tensorial calculation of the energy of the 
Universe, has been made by Berman, in 1981 [1], in his 
Master of Science Thesis advised by F. M. Gomide. In 
his three best-sellers (Hawking, in 1996 [2]; in 2001 [3]; 
in 2003 [4]), Hawking describes inflation (Guth, in 1981 
[5]; in 1998 [6]), as an accelerated expansion of the Uni- 
verse, immediately after the creation instant, while the 
Universe, as it expands, borrows energy from the gravi- 
tational field to create more matter. According to his des- 
cription, the positive matter energy is exactly balanced 
by the negative gravitational energy, so that the total 
energy is zero, and that when the size of the Universe 
doubles, both the matter and gravitational energies also 
double, keeping the total energy zero (twice zero). More- 
over, in the recent, next best-seller, Hawking and Mlo- 
dinow in 2010 [7] comment that if it were not for the 
gravity interaction, one could not validate a zero-energy 
Universe, and then, creation out of nothing would not 
have happened. 

In a previous paper Berman (2009 [8]) has calculated 
the energy of the Friedman-Robertson-Walker’s Universe, 
by means of pseudo-tensors, and found a zero-total ener- 
gy. Our main task will be to show that our possibly ro- 
tating Robertson-Walkers Universe is stable, in the sense 
that it has a reparametrized metric of Minkowski’s, while 
the latter has been shown to be the ground state of energy 
level among possible universal metrics (see Witten, in 
1981 [9]). 

The zero-total-energy of the Roberston-Walker’s Uni- 
verse, and of any Machian ones, have been shown by 
many authors. It may be that the Universe might have 
originated from a vacuum quantum fluctuation. By “va- 
cuum”, we mean the spacetime of Minkowski. In support 
of this view, we shall show that the pseudotensor theory 

(Adler et al., in 1975 [10]) points out to a null-energy for 
a rotating Robertson-Walker’s Universe. Some prior work 
is mentioned: Tryon, in 1973 [11]; Berman (in 1981 [1]; 
in 2006 [12,13]; in 2007 [14,15], and [16]); Rosen (in 
1994 [17], 1995 [18]); York Jr. in 1980 [19]; Cooper- 
stock in 1994 [20]; Cooperstock and Israelit in 1995 [21]; 
Garecki in 1995 [22]; Johri et al. [23]; Feng and Duan in 
1996 [24]; Banerjee and Sen in 1997 [25]; Radinschi, in 
1999 [26]; Cooperstock and Faraoni, in (2003 [27]). See 
also Katz in 2006 [28], and 1985 [29]); Katz and Ori, in 
1990[30]; and Katz et al. 1997 [31]. Recent develop- 
ments include torsion models (So and Vargas, 2006 [32]), 
and, a paper by Xulu, in 2000 [33]. 

The reason for the failure of non-Cartesian curvilinear 
coordinate energy calculations through pseudotensors, 
resides in that curvilinear coordinates carry non-null 
Christoffel symbols, even in Minkowski spacetime, thus 
introducing inertial or fictitious fields that are interpreted 
falsely as gravitational energy-carrying (false) fields. 

2. Reparametrization of Robertson-Walker’s 
Metric 

Consider first Robertson-Walker’s metric, added by a 
temporal metric coefficient which depends only on t. The 
line element (Gomide and Uehara, 1981 [34]), becomes: 

 
 

 
2

2 2
0022

d = d d
1 4

R t 2s g t t
kr

   


    (1) 

Of course, when 00  constant, the above equations 
reproduce conventional Robertson-Walker’s field equa- 
tions. 

=g

We must mention that the idea behind Robertson- 
Walker’s metric is the Gaussian coordinate system. 
Though the condition  constant, is usually adopted, 00 =g
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we must remember that, the resulting time-coordinate is 
meant as representing proper time. If we want to use 
another coordinate time, we still keep the Gaussian coor- 
dinate properties. Berman (2008 [35]) has interpreted the 
generalized metric as representing a rotating evolutionary 
model, with angular speed given by Berman (2011 [36]; 
2011 [37]; 2012 [38-40]) and Berman and Gomide (2012 
[41-43]) 

00

00

=
2

g

g



 

Consider the following reparametrization: 
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 2
00dt g t t  2d                (5) 

In the new coordinates, the generalized RWs metric 
becomes: 

2 2 2 2 2d = d d d ds t x y z             (6) 

This is Minkowski’s metric. 

3. Energy and Stability of the 
Robertson-Walker’s Metric 

Even in popular Science accounts (Hawking, 1996 [2]; 
2001 [3]; 2003 [4]; and Moldinow, 2010 [7]; Guth, 1981 
and 1988 [5,6]), it has been generally accepted that the 
Universe has zero-total energy. The first such claim, 
seems to be due to Feynman, in years 1962-1963 [44]. 
Lately, Berman (2006 [12,13]) has proved this result by 
means of simple arguments involving Robertson-Wal- 
ker’s metric for any value of the tri-curvature ( 0, 1,1 ). 

Berman and Gomide (2012 [41-43]) has recently 
shown that the generalized Robertson-Walker’s metric 
yielded a zero-energy pseudotensorial result. The same 
authors showed that the result applied in case of a ro- 
tating and expanding Universe. 

The equivalence principle, says that at any location, 
spacetime is (locally) flat, and a geodesic coordinate sys- 
tem may be constructed, where the Christoffel symbols 
are null. The pseudotensors are, then, at each point, null. 
But now remember that our old Cosmology requires a 
co-moving observer at each point. It is this co-motion 
that is associated with the geodesic system, and, as RWs 

observer, the zero-total energy density result, is repeated 
from point to point, all over spacetime. Cartesian coor- 
dinates are needed, too, because curvilinear coordinates 
are associated with fictitious or inertial forces, which 
would introduce inexistent accelerations that can be mis- 
taken additional gravitational fields (i.e., that add to the 
real energy). Choosing Cartesian coordinates is not ana- 
logous to the use of center of mass frame in New-tonian 
theory, but the null results for the spatial components of 
the pseudo-quadrimomentum show compatibility. 

Witten in 1981 [9], proved that within a semic

metric is homogeneous and isotropic, for the co-moving 

lassical 
ap

lboim

f Witten was that Minkowski’s space 
w

ability criteria: 1) Since a 
ph

h our discussion, the rotating Robertson- 
W

4. Final Comments and Conclusions 

an (2012 

proach, Minkowski’s space was in the ground state of 
energy, which was zero-valued. He also showed that in 
Classical General Relativity, this space also was the uni- 
que space of lowest energy. This last result was obtained 
with spinor calculus, and thus could be extended to high- 
er dimensions whenever spinors existed. The proof was 
obtained through the study of the limit 0h   of a su- 
pergravity argument by Deser and Teite , in 1977 
[45], and by Grisaru, in 1978 [46], where h stands for 
Planck’s constant. 

The conclusion o
as also stable, because perturbations in the form of gra- 

vitational waves should not decrease the total energy, be- 
cause it is known that gravitational waves have positive 
energy. We now conclude that our Universe is also stable, 
due to the reparametrization above. But, first, let us deal 
with some conceptual issues. 

We have three kinds of st
ysical system shows a tendency to decay into its state 

of minimum energy, the criterion states that the system 
should not be able to collapse into a series of infinitely 
many possible negative levels of energy. There should be 
a minimum level, usually zero-valued, which is possible 
for the physical system; 2) The matter inside the system 
must not be possibly created out of nothing,or else, the 
bodies should have positive energy; 3) “Small” distur- 
bances should not alter a state of equilibrium of the sys- 
tem (it tends to return to the original equilibrium state). 
In the case of the Universe, disturbances, of course, can- 
not be external. 

According wit
alkers Universe is locally and globally stable, when- 

ever Classical Physics is concerned. Now, Berman and 
Trevisan (in 2010 [47]), have shown that Classical Ge- 
neral Relativity can be used to describe the scalefactor of 
the Universe even inside Plancks zone, provided that we 
consider that the calculated scale-factor behaviour ref- 
lects an average of otherwise uncertain values, due to 
Quantum fluctuations, as Berman and Trevisan suggested 
in several papers at Los Alamos Archives, during the last 
decade, and in 2010, when it was published paper [47]. 

Berman and Gomide (2012 [41-43]) and Berm
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[38,39]) have obtained a zero-total energy proof for a ro- 
tating expanding Universe. The zero result for the spatial 
components of the energy-momentum-pseudotensor cal- 
culation, are equivalent to the choice of a center of Mass 
reference system in Newtonian theory, likewise the use 
of comoving observers in Cosmology. It is with this idea 
in mind, that we are led to the energy calculation, yiel- 
ding zero total energy, for the Universe, as an acceptable 
result: we are assured that we chose the correct reference 
system; this is a response to the criticism made by some 
scientists which argue that pseudotensor calculations de- 
pend on the reference system, and thus, those calcula- 
tions are devoid of physical meaning. 

Related conclusions should be consulted (see all Ber- 
m

shows, we may say that the 
U

f the Universe and zero-total energy were 
ve

 
m

nomena and fractals, rota- 

tio

d that 
cr

lodinow (2010 [7]) conclude their 
bo

 conjecture related to the sta- 
bi

chaotic”, if small perturba- 
tio

 a basic result in General 
R
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Robertson-Walkers Universe, with or without rotation, is 
locally and globally stable under the three criteria. As its 
total energy is zero, we conjecture that this type of Uni- 
verse is not globally chaotic, and that the three criteria 
for stability imply that any such system cannot be glo- 
bally chaotic altogether. We remark nevertheless, that 
because Einsteins field equations are non-linear, chaos is 
not forbidden in a local sense. 

We regret that the name of
elativity Theory, is called “positive energy theorem” in- 

stead of the “non-negative energy theorem”. Experi- 
mental observational evidence on the rotation of the Uni- 
verse is dealt with, in the books by Berman (2012 [38, 
39]), and references therein. Seminal papers on rotation 
evidence were due to Paul Birch in 1982, in the well- 
known Nature . 

One of the authors (MSB) th
marães, Nelson Suga, Mauro Tonasse, Antonio F. da F. 
Teixeira, and for the important incentive offered by Miss 
Solange Lima Kaczyk,now a brand new advocate, con- 
tinued during the last five years of his research in Cos- 
mology. 
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ABSTRACT 

Cosmological Models frequently suggest the existence of physical, quantities, e.g. dark energy, we cannot yet observe 
and measure directly. Their values are obtained indirectly setting them equal to values and accuracy of the associated 
model parameters which best fit model and observation. Apparently results are so accurate that some researchers speak 
of precision cosmology. The accuracy attributed to these indirect values of the physical quantities however does not 
include the uncertainty of the model used to get them. We suggest a Confidence Level Estimator to be attached to these 
indirect measurements and apply it to current cosmological models. 
 
Keywords: Cosmological Models; Cosmological Parameters 

1. Introduction 

Models of physical systems, including Cosmological 
Models, contain a number of free parameters associated 
to an equal number of measurable, independent, physical 
quantities (“observable” in the following) which charac- 
terize the system. Comparing measured values of the 
observables and allowed values of the parameters one 
can test a model, i.e. validate, improve or falsify it [1]. 

When a model introduces new parameters associated 
to observables previously ignored or never observed, 
searching and measuring the new observables is manda-
tory. 

Some observables can be measured directly (e.g. gal-
axy redshift) or through a serie of definite, model inde-
pendent, intermediate steps (e.g. object distance by par-
rallax). Let’s call them direct measurements. 

Other observables (e.g. Dark Energy density we will 
discuss in the following), cannot yet be measured directly. 
We get their values looking to secondary observables 
linked in a way we presume we know to the primary ob-
servable we are interested in. Let’s call them indirect 
measurements. The reliability of indirect measurements 
depends therefore on the accuracy of the link model, 
preferably an “ad hoc” model, with a reduced number of 
parameters, especially made for the particular observable 
we intend to measure, but in some cases it is the Model 
itself we want to test.  

Present days cosmological models give a fair descrip-
tion of the birth and evolution of the Universe using six 
free parameters. Mostly of the associated observables are 
however measured indirectly.  

In the following we discuss first the error bars associ-

ated to direct and indirect measurements of observables, 
then introduce an estimator (Confidence Level Estimator) 
to quantify the confidence we can attach to indirect 
measurements. We then briefly review present day most 
common Cosmological Models and apply to their pa-
rameters and observables our Confidence Level Estima-
tor. 

2. Observables: Expected and Measured 
Values 

Results of independent direct measurements of an ob- 
servable X  give a serie  X  of data which, analyzed 
by classical statistical methods (see for instance [2]) give 
mean value X  and standard deviation me  of X . We 
call them measured values of X . 

When X  must be measured indirectly we collect by 
direct observation or from data in literature values of 
secondary observables associated to X , specify the 
model of the link between X  and those secondaries and 
attach to X the value of the associated model parameter 

XM  which best fits model and values of the secondary 
observables. When considering Cosmological Models the 
best fitting procedure is usually made by Montecarlo 
methods: one repeats the evaluation of XM  with a 
random choice of the Model parameters and gets a 
distribution of XM  values around a value ME , which 
optimizes the fit. We then set MX E  and attach to it a 
dispersion ex  equal to the width of the distribution of 
the XM  values around ME  which encompasses 68% 
of the values. We call them expected values. However 

ex  does not include information on how reliable is the 
model of the link between primary and secondary ob- 
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servables therefore is different from me . If we are ex- 
tremely confident in the model we can set me ex  . If 
not we must write me ex pr  where     pr  is a 
sort of systematic error which accounts for Model un- 
certainty. 

2.1. Single Parameter Model 

Let’s begin with a Model with just one parameter M. We 
call  the distribution, around  P X MX , of the directly 
measured values X of the observable and  P E  the 
distribution, around ME

 P X P E
, of the values attributed to para- 

meter M. Most often  and  are gaussian 

   2 2
me2

2

1
=  

2π

X XM

me

P X e



 

       (1) 

   2 22

2

1
=  

2π

exE EM

ex

P E e



 

         (2) 

when 

     M M me eX E x    

 P X  and  overlap marginally and the Model 
does not describe properly the physical system associated 
to the observable. 

 P E

When 

 3M M me exX E      

 P X  and  P E  begin to overlap and the Model may 
be more descriptive of the physical system. 

For models and priors1 not too far from the real world 

 M ME X                  (3) 

and differences between  and  can be en- 
tirely attributed to differences between 

 P X P E 
M
ex  and M

me , 
so we can write 

=M M M
me ex pr    

Evaluating pr  is far from obvious. We introduce 
instead 

, = 1 =
M M
pr ex

l M M M
me me

C
 
 

              (4) 

and call it Confidence Level Estimator of the observable 
associated to M. 

For direct measurements = 0pr  therefore  
always. For secondary measurements ,  be- 
cause ex me

,l MC
0 1l MC 

= 1

  . ,  suggests that Model, priors 
and observation do not conflict therefore the Model offer 
a convenient way for improving 

1l MC 

MX . When ,  
Model and priors cannot be used for improving 

0l MC 
MX  

and very probably do not offer a completely correct de- 
scription of the real world.  

More formal derivations of ,l M  are possible. In Ap- 
pendix A we propose a derivation  from the Bayes 
Theorem. 

C

,l mC

2.2. Multiparameter Model 

For a model with m  independent parameters we can 
write: 

,
=1

1
=  

m

l l M
i

C C
m
 i                (5) 

as a collective estimator of the set of Model parameters. 
It is the average of the 

, il M
, (see Equation (4)), as- 

sociated to the Model  parameters. Its value is also 
indicative of Model and priors qualities. 

C
m

Small values of Confidence Levels obtained by Eq- 
uations (4) and (5) cannot be used to falsify the Model 
used to get them. Falsification in fact occurs only when 
the two probability distributions  and  P X  P E  do 
not overlap at all. When this is the case condition (3) and 
Equations (4) and (5) do not hold anymore. 

3. Cosmological Models 

The almost serendipitous discovery of the Cosmic Micro- 
wave Background in 1964 [3]: 1) marked the end of a 
famous revised version of the Steady State Model, 
proposed in 1948 by Bondi, Gold and Hoyle [4,5], in 
spite of its capability of preserving fundamental constants 
of physics and avoiding singularities during the Universe 
expansion; 2) boosted the class of the Big Bang Models 
(e.g. [6]). Difficulties of this class of models, like the ini- 
tial singularity and the problem of “causal connections”, 
were soon solved by the inclusion of the Inflation theory 
(see for instance [7]) with the additional bonus of gaining 
the possibility of estimating the spectrum of the primor- 
dial fluctuations, necessary to explain the birth of the 
matter condensations which characterize the present day 
Universe (for a review see for instance [8]); 3) triggered 
new cosmological observation of the CMB which, in 
about thirty years, confirmed that the CMB has: a) planc- 
kian spectrum ([9-11] and references therein); b) a small 
degree of anisotropy with a characteristic angular power 
spectrum ([12-14] and references therein); c) an even 
smaller degree of linear polarization ([15-18] and refer- 
ences therein).  

So gradually the Standard Big Bang Model ([6]) 
emerged, whose more important parameters were: Hub- 
ble constant oH , Universe matter density  (in units 
of critical density 


 2= 3 8πc oH G ) and primordial 

Helium Hydrogen ratio. 
In the same years other no-CMB based cosmological 

observations went on. They: 1) provided large samples of 

1In different applications meaning and content of prior may be different
here and in the following prior will indicate just the ranges of allowed 
variability of the Model parameters. 
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high redshift Supernovae (see for instance the Supernova 
Cosmological Project [19]), used to obtain better estimates 
of matter density and upper limit to the value of the 
cosmological constant); 2) showed the existence of dark 
matter at various astrophysical sites (for a review see for 
instance [20]); 3) detected Baryon Acoustic Oscillations 
(BAO) in the ordinary matter distribution with an angular 
power spectrum similar to the angular power spectrum of 
the CMB ([21] and references therein); 4) got the dis- 
tances of objects at very large Z using new standard can- 
dles (SNIa and GRB) (e.g. [22,23] and references therein). 
Not to mention the results of numerical experiments (N- 
body simulations) on the formation and evolution of mat- 
ter condensations (e.g. [24]). 

The whole set of CMB and no-CMB observations sug- 
gests that: 1) the geometry of the Universe is euclidean 
(flat) or very close to it [25]; 2) recombination of nuclei 
and electrons at  was followed by partial rei- 
onization of the matter when stable matter condensations 
formed (e.g. [26] and references therein); 3) after dece- 
lerating, the Universe is now going through re-accele- 
ration (e.g. [27]). 

1000Z 

To account for these effects new cosmological para- 
meters were introduced: 1) b , dm  and   , the 
abundances (in unit of critical density c ) of barionic 
matter, dark matter and dark energy; 2)  , the optical 
thickness of the Universe at reionization; 3) sA  and sn , 
the amplitude and spectral index of the fluctuations; 4) 

8  an indicator of the galactic matter distribution. Add- 
ing them to the Standard Big Bang Model the Concor- 
dance or  Model emerged [28,29]. It is char- 
acterized by six independent parameters plus a number of 
derived parameters, combinations of the independent ones. 
Usually o

-CDM

H , b , dm ,    , sA  and sn , are assumed 
as free parameters. Among the derived parameters are 
age of the Universe 1univ o , critical density cT H   of 
matter-energy, Dark Energy density,  (in unit of 

c ), reionization red shift ionZ  and 8 . 
Usually observation gives combinations of the obser- 

vables associated to the above parameters. To disen- 

tangle them it is common practice to fit the Concordance 
Model to the full set of CMB and no-CMB data and 
extract the parameters values which best fit observation. 
Calculations are made by Montecarlo methods [30] using 
Markov chains to implement the stochastic procedure 
with the addition of priors which constrain the variability 
of the model parameters. Common choices are = 1  
(perfectly euclidean Universe) and = b dm     . 
By this method one gets the expectation values of the 
model parameters and their dispersion, (set equal to the 
width of the distribution of the calculated values E which 
encompasses 68% of the values) and attach them to the 
associated observables. 

The procedure, now well established, is usually re- 
peated whenever new data are added to the preexisting 
data base of observations. Very probably it will be re- 
peated when the new CMB data presently being collected 
by the Planck mission will be released [31]. Table 1 and 
Table 2 show expectation values ME  and dispersion 

M
ex  of free and derived parameters M of the Con- 

cordance Model in literature [18,32,34]. Because dif- 
ferent authors use different combinations of parameters 
and/or different units of measure, for uniformity of pre- 
sentation in Tables 1 and 2, when necessary, the listed 
quantities have been obtained transforming the data in li- 
terature (preserving the published value of the combina- 
tion). 

In the same table are listed, when available, mean 
value MX  and standard deviation M

me  of direct mea- 
surements X of the observable associated to M. 

It appears that for five, out of six, free parameters of 
the Concordance Model direct measurements of the asso- 
ciated observable are poor or not yet available. In par- 
ticular observation gives only large intervals inside which 
measured values of the density of Dark Matter and Dark 
Energy can lay. These intervals coincide with the variab- 
ility range of the parameters used in Monte Carlo studies 
of the Concordance Model [18]. The only exception is 
the Hubble constant for which accurate measurements 
now exist [33]. 

 
Table 1. -Concordance Model: expectation values, measured values and confidence level of model parameters (from 
[34,18] see text). 

-Λ CDM

Parameter/Observable  ME  Expec. Value MX  Meas. Value lC  Conf. Level 

Hubble Constant (km/sec Mpc) oH  1.3

1.470.4
  74.2 3.6  0.38 

Barionic Matter Density b  0.0456 0.0016  0.005 0.1  2< 2 10  

Dark Matter Density dm  0.227 0.0014  0.006 1  3< 2 10  

Optical Thickness at Reionization   0.087 0.0014  0.01 0.80  3< 2 10  

Scalar Fluctuations Amplitude sA  0.088 9

0.092(2.441  10 ) 
  ? ? 

Scalar Spectral Index sn  0.963 0.012  0.5 1.5  2< 2 10  
 



G. SIRONI 1219

 
Table 2. -Concordance Model: expectation values 
of derived parameters (from [18,34] see text). 

-Λ CDM

Parameter/Observable  Expected Value 

Dark Energy Density   0.015

0.0160.728
  

Reionization Red Shift ionZ  10.4 1.2  

Galactic Fluctuations Amplitude 8  0.809 0.024  

Universe Age (years) ot  9(13.75 0.11) 10  

 
The above values of M

ex  are so small that today is 
common practice to speak of Precision Cosmology (e.g. 
[35,36]) and very probably they will be further reduced 
when the Planck results will appear. A caveat is however 
necessary: generally M M

ex me   and in some cases 
M M
ex me  . So when model assumptions fail, M

ex  
might be optimistic and the stated precision of inference 
might understate the actual uncertainty of the observable. 

4. Discussion 

Analysis of cosmological observation and deduction of 
cosmological parameters in literature not always explic-
itly refers to Bayesian statistics so the language used is 
not necessarily the one which would be used by a Bayes-
ian statistician (see [37] and references therein) Bayesian 
statistics however can provide useful hints at least about: 

1) Dispersion of the priors (see for instance [38] and 
references therein). In its more common implementations 
the Concordance Model sets the very stringent limits 

. Assuming a Bayesian point of 
view there is therefore a risk that the priors on 

= b dm      1
 , b , 

dm  and   are underdispersed, undermining the va- 
lidity the analysis results. Therefore these limits probably 
have to be relaxed.  



2) Robustness of the results (see for instance [39] and 
references therein). The results so far published do not 
show evidence of oscillations of the values of the Con-
cordance Model parameters around their expectation val- 
ues, confirming that from a Bayesian point of view these 
results are robust. 

But our Confidence Level Estimators hold also outside 
the borders of Bayesian Statistics. Expression (14) has 
been in fact obtained also on empirical basis (see Equa-
tion (4)). 

So we will use our Estimators to evaluate the weight 
we can attach to observables and cosmological parame-
ters provided by the Concordance Model, no matter if the 
procedures the authors ([18,32,34] and references therein) 
used to get them are fully Bayesian or not. 

The last Column of Table 1 shows the Confidence 
Levels of the Concordance Model free parameters, cal-
culated by Equation (4) and approximation (3). For the 
whole Model, Equation (5) gives  

0.07lC   

They do not falsify the Concordance Model (the dis-
tributions of the expected values of all the parameters of 
the Concordance Model are well inside the uncertainty 
intervals of the measured values). 

However, with the exception of the Hubble constant, 
the differences ex me   of the parameters are so large 
that pr  (see Section 2) and the role played by Model 
and priors can’t be neglected. So we cannot assume the 
expectation values of some parameters of the Concor-
dance Model as representative of the values of the asso-
ciated observables, for instance when studying astro-
physical situations where dark matter, dark energy, if 
present, are important. 

This leaves open the possibility of considering other 
Models of the Universe different from the Concordance 
Model which is based on the strong double condition 

= b dm  = 1    . We can for instance keep = 1  
and relax the condition = b dm     , assuming a 
different recipe of the Universe composition, e.g. without 
or with a reduced quantity of Dark Energy, an exigency 
remarked also very recently (see for instance the com-
ments by [40]). In fact: 1) no direct evidence for the ex-
istence of Dark Energy has been so far obtained; 2)in 
literature there are models which show the possibilities 
of producing effects similar to those attributed to the 
presence of Dark Energy, through inhomogeneities of the 
matter distribution (e.g. [41]). The work on these Models 
is still in progress. We cannot yet apply to them the same 
procedure used with the Concordance Model and extract 
expectation values for their parameters. Comparison of 
their Confidence Levels with the Confidence Levels of 
Table 1 will probably become possible in the near future. 

Meanwhile, it is necessary: 1) to improve direct meas-
urements of all the observables associated to the Con-
cordance Model parameters, aiming at i i

MX E  and 
i
me ex

i   for all the parameters , and/or 2) to get in- 
dependent evidence of existence and weight of 

i

 , the 
Dark Energy density.  

The above conclusions remain also if one adds to the 
set of preexisting data results of new indirect evaluations 
of the Cosmological Parameters more recently published 
(e.g. [34,42]). Probably they will not change until new 
direct measurements or indirect measurements based on 
other independent models will appear. 

5. Conclusions 

The use of Montecarlo methods and Bayesian Statistics 
to analyze the enormous quantity of data of cosmological 
interest which are continously poured by ground and 
space observations is almost unavoidable. However Mon- 
tecarlo and Bayesian Methods are based on assumption 
(models and priors) whose statistical weight should be 
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added, but rarely is added, to the the quoted accuracies of 
the parameter expectation values. 

Researchers who currently use these methods are 
aware of that and warning has been already put forward 
(e.g. [36,43]). Unfortunately general public and profes-
sionals not involved in cosmological observations may 
be unaware of it, misinterpret the results of model simu-
lations and attribute weights above their real values to 
models. Forgetting it may stop or reduce support to stud-
ies of other models not yet excluded by observation. 

This situation is common to other fields of pure and 
applied research (e.g. unification of fundamental forces, 
string theories, elementary particle models, models of 
climate evolution and so on). The Confidence Level Es-
timator we propose can be used to avoid misunderstand-
ings and preserve possibilities of pursuing alternatives 
lines of research also in these fields. 
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Appendix A: Derivation of Cl,M from the 
Bayes Theorem 

Let’s assume (see Section 2.1): 
1)  set of “old” or preexisting, model indepen- 

dent, measurements of an observable;  
 O

2)  N  set of “new”, model dependent, measure- 
ments of parameter M associated by the model to the 
observable;  

3)  likelihood function of the “old” measure- 
ments O; 

 P O

4)  likelihood function of the “new” measure- 
ments N;  

 P N

5)  P O N  posterior conditional probability of O 
given N;  

6) P N O  conditional probability of N, given O, 
produced by Model and prior. 

These quantities are linked by the Bayes Theorem (see 
for instance [[38,44-46] and references therein) which 
reads: 

          =  P O N P N P N O P O         (6) 

We introduce 

   
 

 
 

   
 2

 *
 =  = =

 

P O N P O P O P N
R M

P N P NP N O
    (7) 

The numerical value of 

 = d ,I R M M


              (8) 

is proportional to the overlapping of  and  P O  P N , 
a measure of the correlation degree of direct and indirect 
measurements (when  and  do not over- 
lap ). Properly normalized it gives a number 

 we can assume as our confidence level 
indicator of the indirect measurements. 
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Normalization to the area 2π eq  covered by  
 g M , gives  

, = =
2π

ex
l M

meeq

I
C




             (14) 

identical to our empirical expression (4). 
When  P O  and  P N  coincide , . When = 1l MC

ex me 
<ex m

 , . ( , , excluded because 0l MC

e

> 1l MC
   (see Section 2), would imply models and 
priors which produce results worse than direct or pre- 
existing measurements). 1
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ABSTRACT 

For many years physicists have been engaged on research around the globe in fields such as the unification of gravita- 
tion and electromagnetism, and an explanation for dark matter and dark energy, etc., but so far to little avail. One is left 
with the impression that something might be fundamentally wrong with the premises underlying the doctrine of physics 
applicable today, which is preventing a solution of these problems from being found. As a possible cause, the author 
proposes that the gravitation of the photons is not so negligible that it can be completely ignored (although this assump- 
tion does not accord with the current state of physics). Departing therefore from the accepted doctrine, he assumes that 
gravitation might possess a hitherto unknown important influence on electromagnetism. This paper then examines the 
consequences of this assumption on physics. A precise analysis will lead to the insight that the gravitation of a photon is 
as dynamic as the photon itself, and therefore must be taken into account with all associated physical considerations. 
The hitherto accepted case of a static gravitation of photons, on the other hand, can be totally neglected, as it does not 
exist for photons. Of key importance is the statement that the gravitation of photons is produced by gravitational quanta, 
and thus appears in quantised form. It is therefore necessary to rethink the physics of photons. This leads to a number of 
other interesting insights, as will be borne out in the further course of this paper. In the event that the assumption of the 
influence of gravitation on electromagnetism turns out to be correct, then this would represent a major step in unravel- 
ling the still largely unknown nature of gravitation and its significance in the natural events of the microcosmos; fur- 
theron it would be an important contribution regarding a “New Physics” and a “New Cosmology”. 
 
Keywords: Photon; Gravitation; Gravitational Quanta; Speed of Light; Maxwell’s Theory 

1. Introduction 

Around the globe, physicists have long been engaged in 
research—albeit with little success—in the following 
special fields of physics: 

Unifying the theories of General Relativity and Quan- 
tum Theory; 

The nature of dark matter and dark energy;  
The discovery of gravitons and evidence for the exis- 

tence of cosmic gravitational waves. 
All this gives the impression that at least one of the 

assumptions, which underlie either the current doctrine in 
physics or today’s physical and/or cosmological model 
conceptions, must be wrong or incomplete—otherwise 
one or the other breakthroughs in these fields of physics 
would already have taken place.  

I am convinced that a “radically new physical ap- 
proach” is necessary, in order to introduce some move- 
ment into this current state of stagnation. It is clear that 
this new approach cannot completely accord with the 
conventional doctrine, otherwise everything would re- 
main unchanged. A deliberately new way of thinking is 

called for. This does not represent a faulty way of think-
ing, but is a tactical necessity. I have therefore selected 
the following strategy for this paper: 

I shall make an assumption, which is in contradiction 
with today’s accepted doctrine in physics, but in my 
opinion is best suited for discovering new physical rela- 
tionships: 

1) I shall assume that there exists a hitherto unknown 
close relationship between gravitation and electromag- 
netism; 

2) This assumption must be fully justified by physical 
arguments, which comply with today’s doctrine;  

3) In conclusion it will be determined, what the con- 
sequences of this assumption are for today’s physics—in 
particular, whether it may result in new insights. 

2. Arguments Pointing to a Possible Close 
Relationship between Gravitation and 
Electromagnetism 

Remarks concerning static and dynamic gravitation: 
Following the original creation of the cosmos consist- 
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ing only of radiation energy (electromagnetic primordial 
photon radiation and superstrong gravitational radia- 
tion), no “static gravitation” could have existed in the 
“Big Bang” phase or shortly afterwards. In the quantum 
era, gravitation was to an overwhelming extent dynamic 
in nature and can therefore only have been created by 
means of gravitational quanta! The photons’ dynamic 
gravitation remains conserved for the total lifetime of the 
photons, which are the oldest and longest elementary 
particles in existence. Their gravitation cannot be inher- 
ently static in nature. 

On the other hand, the gravitation of the baryonic 
elementary particles, which were only subsequently cre-
ated from the highly energetic, dynamic radiation energy, 
as well as the gravitation of the non-baryonic “dark mat-
ter”, is indeed static in nature. 

The physical processes occurring in the earliest phase 
of the cosmos during the quantum era, are even today 
still taking place in the photons (in qualitative terms), 
representing virtually a “remnant left over from that 
quantum era”. 

Now to the Individual Arguments 

It is possible to derive a possible physical relationship 
between the speed of light (c) and the Gravitational Con- 
stant (G) quite simply from G itself: 

Taking the gravitational constant as G = 6.67 × 10–11 

(N·m2·kg–2) in consideration as well as the fact that 1 N 
is equal to 1 (kg·m·s–2), then a physical dimension for G 
of (m3·kg–1·s–2) is arrived at. One can see, that the physi-
cal dimension of c2 (m2·s–2) is contained in this dimen-
sion of G! 

Thus the gravitational constant itself certainly has 
something in common with the speed of light. Without 
changing any of the contents, it is possible to convert the 
gravitational constant G by extrapolating c2:  
G = c2 × 742 × 10–28 (m·kg–1) = c2 × const. or  
G/c2 = 7.42 ×10–28 (m·kg–1) = const. 

This mathematical conversion merely represents an 
alternative notation of the gravitational constant G and 
therefore must also be physically valid. 

Possible consequence: The possibility of the constancy 
of the speed of light being dependent on the constancy of 
the gravitational constant G cannot therefore be excluded. 
Any change in the numerical value of G would in this 
case also imply a change in the numerical value of c2, in 
order to maintain the constancy of the ratio G/c2. As long 
as G remains a constant value, then c also remains con- 
stant and the constancy of the speed of light remains un- 
changed in the entire cosmos. Nevertheless, according to 
Special Relativity this interpretation is not permitted, 
because c would not then be an “independent” universal 
constant of nature, but dependent on G and therefore not 
a “genuine” constant of nature. According to this, the 

speed of light is only constant if G is also constant! 
The expression G/c2 = const., on the other hand, could 

well be a “genuine” constant of nature, as it occurs seve- 
ral times in physics, e.g. in association with the “Sch- 
warzschild Radius” Rs = 2 MG/c2. 

Moreover, the (for me hitherto unknown) relationship 

2
Planck Planck  l m const. m kgG c       [1] 

also applies, which similarly reinforces my notion that 
G/c2 = const. is an “original united constant of nature” 
that had applied as far back as the quantum era. There- 
fore for that quantum era, the above equation then be- 
comes 

2
super superG c cons t.  

Since in the quantum era during the state of “super-
gravitation” (Gsuper), the value of Gsuper was many orders 
of magnitude higher than G, then the speed of light (csuper) 
at that time must also have been many orders of magni- 
tude higher than c; csuper could then explain the super 
rapid expansion behaviour of the very early cosmos, as in 
this situation the extremely hot and dense cosmic radia- 
tion energy would have expanded explosively with a 
speed of csuper in the neighbouring cosmic space. 

In this manner, we would have a physical justification 
for the super rapid expansion of the cosmos in its very 
early life—in contrast to today’s usual, albeit completely 
arbitrarily constructed hypothesis of an exponentially 
generated “inflationary expansion”. 

The physical facts of the constancy of the speed of 
light independent of the energy of the photons as well as 
their wave propagation, are described in the Maxwell 
equations (refer to the internet link  
http://www.mahag.com/srt/maxwell.php, respectively  
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/maxe
q.html), which are considered one of the most solid phy- 
sical theories ever founded. However, Maxwell’s equa-
tions cannot provide any statement concerning the reason 
for the constancy of the speed of light. There is also no 
directly recognisable connection to gravitation, as the 
gravitational constant G does not explicitly occur in them. 
According to this, it would seem that electromagnetism 
and the photons do not have anything to do with gravita-
tion, as confirmed by today’s accepted doctrine in phys-
ics. However, it is unexpectedly possible to establish a 
relationship between Maxwell’s theory and gravitation 
by means of the following “detour”: 

As according to Maxwell’s so called Fifth Equation, 
the following physical relationship between the electri-
cal field constant 0, the magnetic field constant 0 and 
the speed of light c exists: 

2
0 0 1m c   , then G/c2 = const. as well as G·0·0. = 

const. can be written. This means that within Maxwell’s 
Theory, not only the speed of light, but with it also elec- 
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tromagnetism itself, is linked via its field constants 0, 0 
with the gravitational constant G. Are we to understand 
this merely as a random coincidence lacking any physical 
significance, or does this relationship in fact represent a 
very concrete relationship between these two forces of 
nature, as will be shown several times in the subsequent 
text? With regard to the relationships stated above, the 
expression G/c2 = const. may possess a far greater phy- 
sical significance than hitherto assumed. 

Gravitation is known to be the weakest of the four 
elementary forces in the universe. Therefore the (static) 
gravitational force within an atomic structure between a 
proton and an electron is weaker than the electromag- 
netic force acting between them by a factor of 10–39. For 
this reason, the gravitational force of the baryonic com- 
ponents of an atom among themselves within an atom 
can be completely ignored compared to the electromag- 
netic force between the proton and electron.  

This fact forms the basis for the assumption of physi- 
cists that the gravitational force of a photon, compared to 
its far stronger electromagnetic force, can also be com- 
pletely ignored, whereby always a static gravitation is 
assumed (but without using the word “static”, since no 
dynamic gravitation is so far known). 

Remark: The possibility of dynamic gravitation in the 
form of high-frequency gravitational radiation for pho- 
tons has not yet been considered, because taking gravity 
into account in relation to the “theory of special relati- 
vity” was never a subject of discussion. According to the 
“theory of general relativity”, only low-frequency gravi- 
tational waves in the region of approx. ca. 10–1 to 104 Hz 
are expected today in connection with spectacular cos-
mic events, although it has not yet been possible to prove 
their existence. 

The current school of thought in physics is therefore 
based on the assumption that (static) gravitation is also 
not a factor to be considered with photons or the speed of 
light and may be completely ignored, but: Static gravita- 
tion does not exist for photons! 

The gravitation of the photons cannot be of a static 
nature; it must be as dynamic as the photons themselves. 
This opens up a completely new insight into the physics 
of photons! 

In my opinion, the assumption underlying the current 
doctrine of a negligible gravitation of photons is an erro- 
neous assumption! 

The gravitation of a photon experiences the same 
speed or dynamic as the photon itself. Therefore the gra- 
vitation of a photon must appear like a high-frequency 
gravitational radiation and resonate with the same fre- 
quency as the electromagnetic radiation (it is, as it were, 
“clocked” by the latter). It remains associated with the 
photon until the photon is expended or transformed by 
performing work. It cannot rush away in order to become 

“externally” noticed; it only has a specific reaction on 
“its own” photon and as far as the outside world is con- 
cerned, it does not exist. 

Furthermore, non-baryonic relativistic mass relation- 
ships exist at the speed of light for “free” photons as is 
the case for baryonic elementary particles “bound” by 
strong forces within the atom. These two completely dif- 
ferent initial or environmental conditions are therefore 
not comparable! In contrast to the school of thought in 
physics stated above, I therefore hold the view that dy- 
namic gravitation in the form of gravitational radiation 
must definitely be taken into account with photons, par- 
ticularly as still further cosmological and physical con- 
nections exist between electromagnetism and gravitation: 

Preliminary remarks on the next point, which refer to 
the cosmos as a whole: 

“A general consequence of Einstein’s Theory of Gra- 
vitation (General Relativity) is that in a closed universe 
the total energy is always zero” [2]. “Positive energy”, 
whose essence is in the expansion (electromagnetism), 
and “negative energy”, whose essence is in the implosion 
or holding together (gravity), mutually cancel each other 
out exactly in a physically closed system. These two op- 
posite forces of nature are equally strong in a physically 
closed system, therefore a stable state of equilibrium 
exists between them and the total energy is zero. The 
cosmos as a whole is a physically closed system. Thus in 
the Big Bang the sentence is not violated by the conser- 
vation of energy. 

At the same time (here we mean within the first Planck 
time of 10–43 secs) as the appearance of the expansionary 
radiation energy (of the primordial photon radiation) in 
the Big Bang, gravity also appeared in order to act as its 
“stabilising counter-force”. As the contribution of gravity 
to the total energy according to Einstein is negative, the 
sum of the two components is then zero. From this it 
follows necessarily, that: 

At no time did or does energy exist without gravitation; 
therefore, exactly as is the case with the primordial pho-
ton radiation, all its subsequent radiations and energy 
forms must be affected by gravitation!!!  

Thus right at the beginning of the history of cosmic 
creation there exists a close connection between the pri-
mordial electrodynamic photon radiation and its dynamic 
gravitation e.g. gravitational radiation, whereby the two 
dynamic forces are of equal strength, but have an oppo-
site effect on each other. Had gravity not appeared within 
the first Planck time as cosmic energy, but only a short 
time later, then the total positive energy would have im-
mediately fizzled out without having any effect and the 
cosmos would not have come about. 

Preliminary remarks on point 2.5, which refer to each 
individual photon: 

The above sentence can also be applied to each indi- 
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vidual photon as the elementary fundamental component 
of the entire cosmos. Because the speed of light is con- 
stant, the forces influencing the photon must exist in 
equilibrium, with the result that no overall force influ- 
ences the photon, which would otherwise accelerate or 
decelerate. At the speed of light the total energy of a 
photon is zero, therefore in this respect each photon cor- 
responds to a “physically closed system”. 

The positive electromagnetic energy and the negative 
gravitational energy of each individual Photon are of 
equal strength and cancel each other out; a stable “equi- 
librium” exists between the two forces. There is no way 
for this equilibrium and hence the constancy of the speed 
of light to be achieved except by the dynamic gravitation 
of the photon. Electromagnetism is, on its own (without 
dynamic gravity), unable to produce a stable equilibrium. 
This is the evidence that each photon as a quantum of 
electromagnetic energy is connected with an equivalent 
quantum of gravitational energy. 

The photon requires the full amount of its gravitational 
energy for its stabilisation, so there is nothing left which 
could penetrate to “the outside”. Therefore it was erro- 
neously assumed that photons have nothing to do with 
gravity. Only when the photon’s electromagnetic energy 
has been expended or converted by performing work, 
does its gravitational energy appear “externally”, albeit 
as a weak static gravitational force (a factor of 10–39), as 
the dynamic drive provided by the photon has been lost. 

Furthermore, included in the established state of 
knowledge in physics is the fact that each quantum—no 
matter how small—and each form of energy (e.g. mass) 
have a gravitational effect themselves (i.e., they are “sub- 
ject to gravity”), and therefore react to an external gravi- 
tational field. Since this also applies to photons, then they 
will be deflected when passing through a gravitational 
field, either gaining or losing energy depending on whe- 
ther they are approaching or leaving the gravitational 
field—corresponding to a blue or red shift of a ray of 
light. There therefore exists an interaction between an 
external static gravitational field and the photon radiation 
passing through it. 

All six criteria (taking each one into consideration 
separately) correspond to the certain state of knowledge 
in physics and therefore allow the conclusion to be made 
that the speed of light certainly does have something to 
do with the gravitational energy of photons. This very 
new physical insight also represents the “key fundamen- 
tal prerequisite” for the explanation of dark matter. 

3. Further Effects of Gravitation on 
Electromagnetism 

Explanations of the terms used in the following section: 
The “quantum of gravitation” is always closely asso- 

ciated with its related photon; it adheres, as it were, to 

the photon, or manifests itself with its photon as well as 
interacting with it. 

This hitherto unknown “gravitation quantum” might 
therefore turn out to be the elementary particle, which 
imparts the phenomenon of gravitation and gravitational 
mass (in the event that the “Higgs mechanism” does not 
work as expected, particularly in connection with rela-
tivistic mass of photons).  

The gravitation inherent in every elementary particle 
(“intrinsic gravitation”) always relates in a specific man- 
ner to individual elementary particles including photons, 
and is, in each case, the gravitation corresponding to the 
elementary particle’s energy state, caused by its “gravi-
tation quantum”. No form of energy exists, which is not 
associated with the phenomenon of gravitation.  

The “graviton”, on the other hand, is a term reserved 
for the hypothetical (not yet proven) independent boson 
in a future quantum theory of gravitation and is the 
means of the gravitational interaction between elemen- 
tary particles. 

From the six arguments made above, it follows that 
each photon must have emerged as a quantum of elec- 
tromagnetic energy from the Big Bang with its quite spe- 
cific (photon energy equivalent) gravitational quantum, 
with which it appears together and which causes the dy- 
namic gravitation of the photon as well as its relativistic 
mass. What else could produce the photon’s dynamic 
gravitation or relativistic mass? This gravitational quan- 
tum also appears due to its intimate meshing with the 
photon or electromagnetic photon radiation like radiation 
itself, namely as specific high-frequency gravitational 
radiation bound to the photon, whose speed of propaga- 
tion is also equal to the speed of light. 

A photon without dynamic gravitation does not exist. 
Therefore each photon consists of two components linked 
to each other, one expansive electromagnetic component 
and one gravitational radiation component acting in an 
opposite manner. These two physical quantities acting in 
opposite manner are ideally united in the photon. There- 
fore there must exist exactly the same number of gravita- 
tional quanta of the photons as there are of photons 
themselves, but their existence has not yet been noticed! 
This is why gravity is even today mostly still a mystery. 

The hitherto unknown or unnoticed gravitational quan- 
tum therefore corresponds—as it were—to a “gravita- 
tional charge” of each single elementary particle, which 
for an agglomeration of elementary particles accordingly 
accumulates and produces a gravitational field, which 
cannot be compensated (in analogy to an electrical charge 
producing an electric field, which of course can be com- 
pensated).  

The energy of photons is known to increase propor- 
tionally with its frequency  in accordance with Planck’s 
equation E = h·, where h is Planck’s constant or “effect- 
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quantum”, a universal constant of nature. As electromag- 
netic radiation encompasses an extremely broad frequen- 
cy spectrum (a ratio of up to 100 - 1025), the energy of the 
photons also occupies this very wide range. Not-with-
standing this, all photons always travel in a vacuum with 
the same constant speed of light, irrespective of the en-
ergy quantum that they transport with them. Each photon 
requires its entire positive electromagnetic energy for the 
purpose of maintaining the speed of light against the 
negative stabilising opposing force of gravitation. 

The photon travelling at the speed of light does not 
have “free energy” available for any additional “external 
effect”. The only external effect it manifests is the con- 
stancy of the speed of light. 

Therefore the constant speed of light must be associ- 
ated with the wide-ranging variable relativistic mass of 
photons in such a manner that the photon rich in energy 
must be subject to the stabilising opposing force of gra- 
vity to a greater extent than the photon low in energy. 

As already determined in the above text, the constant 
speed of light can only represent a state of equilibrium 
between the expansive force of electromagnetic radiation 
imparted by the photon and the opposing force of gravi- 
tation, in each case. The greater the energy of the pho- 
tons, the greater is the stabilising opposing force of gra- 
vitation. 

The speed of light c in a vacuum is therefore constant 
299,792,458 m/secs, since this is exactly the value, at 
which a stable state of equilibrium is established between 
the dynamic gravitation of the photons and their expan- 
sive electromagnetic force, thus cancelling out the two 
opposing forces. Why the state of equilibrium should be 
achieved precisely by this value for the speed of light, 
depends in connection with G/c2 = const. on the value of 
the Gavitational Constant “G”. 

4. New Aspects Concerning Physical Events 
inside Photons 

4.1. Regulation Process within Photons 

What happens inside the photons, i.e., what physical 
process must take place, in order for the speed of light to 
be constant irrespective of the energy of the photons, 
does not emerge from the Maxwell equations and has 
presumably not hitherto been investigated. These physi- 
cal processes taking place inside the photons, which 
should be considered as the possible reason for the con- 
stancy of the speed of light, are dealt with below. The 
constancy of the speed of light itself is thus an effect of 
these internal processes. 

After careful consideration the impression emerges 
that the speed of light is regulated to the constant value 
of c by a hitherto unnoticed “influencing factor” located 
within each individual photon. There is no other way to 

explain the constancy of the speed of light, which does 
not take into account of the intensity of the energy of its 
photons. There is obviously a typical regulation process 
here at work on the photons’ constant velocity of propa- 
gation, which raises the following questions: 

How does a “physical regulatory mechanism” work, 
acting on the extremely wide-ranging energy of photons 
in such a manner that results in a constant speed of light 
for all photons? 

In particular, it is necessary to clarify whether there 
really is “an influencing factor” acting inside the photons, 
and if so, what its nature is, and how the regulation proc-
ess of a constant speed of light actually functions. That is 
one of the important objectives of this paper.  

As a “regulator” for the constancy of the speed of light 
the only candidate is thus the intrinsic gravitation of the 
photons themselves, since any change in energy of a 
photon simultaneously causes an equal change in its in- 
trinsic gravitation as well as its relativistic mass. This 
change in intrinsic gravitation affects a photon to the ex- 
tent that it is precisely the stabilising effect of gravitation 
corresponding to the existing energy state that is avail- 
able out of all the energy states possible. Therefore the 
speed of light remains constant for all possible energy 
situations of a photon. There is no other possibility to act 
in a “stabilising” manner on a photon than by this stan- 
dard physical process. 

This feedback of a photon’s stabilising intrinsic gravi- 
tation on its expansive electromagnetic force is the only 
identifiable physical cause for the constancy of the speed 
of light! 

Note repeated here again: Both the previous and the 
following considerations only apply under the assump- 
tion that the speed of light is not an independent constant 
of nature, but is dependent on the value of “G”. If it is 
true, however, that the speed of light actually is an inde- 
pendent constant of nature, as insisted upon by an essen- 
tial foundation of today’s modern physics, then neither a 
stabilising effect on the photons nor an internal control 
process is required in order to effect the constancy of the 
speed of light—in this case it is set at a fixed value pre- 
determined by its origin. 

A photon’s gravitation is a dynamic field just as much 
as its electromagnetic field, since it exhibits the charac- 
teristic of travelling together with the photon at the speed 
of light. In order for a state of equilibrium to result from 
the two dynamic forces acting on the photon, as required 
from the argument above, the gravitational field must 
exhibit behaviour precisely opposite to that of the elec-
tromagnetic field. 

Therefore the physical principles of both fields must 
be in every respect completely equivalent but opposed to 
each other. It therefore follows that the same vectorial 
Maxwellian theory also underlies the gravitational radia- 
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tion associated with the photon as the electromagnetic 
radiation, i.e. they also possess a common theoretical 
basis! 

Remark: It is highly remarkable, that the dynamic gra- 
vitation of the photons are described by the same theory 
as electrodynamics and electromagnetism, i.e., that a 
close “family relationship” exists between the two physi-
cal forces. On this basis, it can be concluded that the 
same family relationship also exists between static gra- 
vitation and electrostatics, since they are “descended” in 
each case from their dynamic quantities, as reflected in 
the similar structure of their formulae for static forces. 

In addition, Prof. K. O. Greulich [3] in a lecture on the 
occasion of the Congress of the German Physical Society 
in 2012 in Göttingen also establishes that electrostatics 
and (static) gravitation are alike from a physical per- 
spective!  

Following the same logic, the gravitational radiation 
must possess transversal characteristics exactly as the 
electromagnetic radiation does, and it must also exhibit 
the same frequency as the electromagnetic radiation, as is 
indeed the case. It is only as a consequence of these con- 
ditions that there exists no resulting force on the photon, 
which could cause it to accelerate or decelerate. There- 
fore the photon travels in a completely uniform manner 
at the constant speed of light. 

However, if the value of the gravitational constant G 
were different to the current value, then the effect of the 
photons’ intrinsic gravitation would also differ from the 
current effect and the state of equilibrium between both 
natural forces and hence the constant value of the speed 
of light would also differ from the current value. This 
was, in fact, the case in the stage of “super gravitation” 
(G = Gsuper) and had, as a consequence, a value of the 
speed of light csuper many orders of magnitude greater 
than the current value. 

The constancy of the speed of light is thus the result of 
an extremely finely-tuned interaction between the pho- 
tons’ intrinsic gravitation and their electromagnetism, 
from which it follows that at the speed of light there ex- 
ists an extremely close association between these two 
fundamental forces of nature: 

On one hand, the photons’ intrinsic gravitation limits 
the speed of expansion of electromagnetic energy (by 
establishing the state of equilibrium between the two 
forces of nature)—and thus determining the value of the 
speed of light, while, on the other hand, maintaining it at 
this constant value! 

The hitherto unknown precise “fine tuning” between 
the two opposite fundamental forces of nature within 
photons, to which we owe the whole of creation, is one 
of the greatest physical miracles of nature and has re- 
mained up to now beyond human imagination. It must be 
very difficult—as in numerous other cases—just to be- 

lieve in a random coincidence! 

4.2. The Quantum Structure of Gravitation 
inside Photons 

Since the energy of the electromagnetic radiation is pro- 
portional to its frequency, it is necessary that the energy 
of the high-frequency gravitational radiation associated 
with a photon is also proportional to its frequency, 
whereby both frequencies are identical. This is necessary 
to achieve a stable state of equilibrium at the speed of 
light between the two physical quantities, which oppose 
each other by nature. 

Therefore Planck’s equation for the energy of the elec- 
tromagnetic radiation of a photon E = h· must also ap- 
ply to the high-frequency gravitational radiation, which 
is associated with the photon and only selectively acts on 
it. It then follows that the energy of the gravitational ra- 
diation associated with each photon must similarly be 
quantised, as already mentioned on Section 2. The new 
term introduced in this paper in the above text “gravita-
tion quantum” is therefore physically justified.  

Therefore it is assumed that Planck’s equation for the 
energy of the high-frequency gravitational radiation as- 
sociated with the photon (E = h·) could also apply to 
cosmic low-frequency gravitational waves, should they 
actually exist (because two differing formulas are not 
possible for one physical phenomenon). If that were the 
case, then cosmic gravitational waves would also have 
Maxwell’s theory as a physical foundation rather than 
Einstein`s General Relativity theory. And if that were 
true, cosmic gravitational waves could not be “perturba- 
tions of space-time”, but would have to expand in exactly 
the same manner as electromagnetic waves. This may 
possibly be the reason that it had not been possible to 
detect cosmic gravitational waves up to now. 

Remark: In his book “The Structure of Physics” (Auf-
bau der Physik), C. F. von Weizsäcker [4] determined that 
all information relating to natural sciences—and par- 
ticularly energy  matter—is derived from captured (re- 
gistered) photons. Every sensory perception is associated 
—in an intermediate step as a minimum—with photons. 
In other words, there can be no perception (information) 
without the electromagnetic interaction (photons). The 
dimensionless variable “information” is therefore the 
most fundamental variable in physics. 

Due to the quantum nature of light, it further follows 
that all physical information is digital! From this C. F. 
von Weizsäcker draws the following conclusion: If the 
whole of physics is based on quantised information, then 
similarly, the whole of physics can only consist of quan- 
tised variables. (This statement of C. F. von Weizsäcker 
also confirms that the hitherto unknown term “gravita- 
tional quantum” introduced here is perfectly justifiable). 
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5. Unification of Gravitation and 
Electromagnetism 

A photon’s electromagnetic radiation forms a physical 
dualism with the gravitational radiation associated with it 
(complete equality of both components linked to each 
other) on the common basis of the same Maxwellian the-
ory. It is not therefore surprising that the equation E = 
h· applies equally both to the energy of the electromag- 
netic radiation and the high-frequency gravitational ra- 
diation associated with photons. 

Although static gravitation is the weakest of the four 
fundamental forces in the universe, it is surprising to 
discover here that: 

At the speed of light, the intrinsic gravitation of a 
photon as gravitational radiation or dynamic gravitation 
is selectively (related to its photon) just as strong as the 
electromagnetic radiation (of the photon), but acting in 
an opposing manner, so that both of these fundamental 
forces exist in a stable equilibrium and cancel each other 
out from an external perspective. Electromagnetism and 
its dynamic gravitation are perfectly united and unified in 
each photon! 

Each photon carries with it its exactly specific gravita-
tion quantum. Each photon forms an opposite interacting 
pair of forces with its gravitation quantum (precisely 
stated: they are mediators of two opposite interacting for- 
ces), which exists in a stable equilibrium precisely at the 
speed of light. 

In the micro-world of photons, their dynamic gravita- 
tion is unambiguously a force and not a geometry (other- 
wise they couldn’t get unified with electromagnetism), 
which at the speed of light precisely opposes the elec-
tromagnetic force and selectively “neutralises” it! 

Remark: In Einstein’s Theory of General Relativity 
(1915), static gravitation is not a force but a property of 
space-time under the influence of cosmic (baryonic) 
masses, which is what corresponds to the geometry of the 
cosmos. On the other hand, there is no doubt that gravi-
tation (or the force of gravity) is one of the four funda-
mental forces of the universe that causally determine the 
geometry of the cosmos and its structures. Gravitation is 
not, however, the geometry of the cosmos in itself; the 
geometry is rather an effect of the static gravitation of 
the cosmic agglomeration of masses (including the non- 
baryonic dark matter, which remained unknown until the 
1960s). If cause and effect are interchanged, then this 
can result in a mistaken perception of reality!  

If the internal relationship between the photons’ in- 
trinsic gravitation and the speed of light described in 
these pages is correct, then at the speed of light the selec- 
tive gravitational radiation of photons is only a mirror 
image and hence a facet of the electromagnetic radiation; 
thus the same vectorial Maxwellian theory applies in 
both cases! 

“Albert Einstein is supposed to have spent 20 years 
attempting to describe electromagnetic interaction and 
gravitation as two aspects of a single higher-level inter- 
action. All to no avail—because even today it is still not 
known whether it is possible to unify gravitation with 
other interactions” [5]. 

“Today’s physicists are largely convinced that gravita- 
tion plays a key role not only in cosmology but in ele- 
mentary particle physics as well (particularly applicable 
in the case of the photon), but this role is currently not 
yet properly understood” [5].  

The considerations provided in this paper may possi- 
bly be of help in the hitherto unsuccessful search for a 
theory unifying gravitation with electromagnetism, be- 
cause, at the level of photons travelling at the speed of 
light, a complete union and unification of these funda- 
mental forces of nature, reduced to the “common basis E 
= h·” take place from a physical perspective. The union 
of gravitation with electromagnetism is also already 
clearly expressed in the equation G/c2 = const. respec- 
tively G·0·0 = const. 

6. Law of Conservation of Gravitation 

A photon can never be made “gravity-free” (if this were 
possible it would no longer be a photon), because intrin- 
sic gravity is a fundamental component of each photon 
just as of any other form of energy. As is the case for the 
photon itself, its gravitation quantum does not possess 
any baryonic rest mass, it is electrically neutral and can- 
not like energy be annihilated; it remains in existence 
forever, having a virtually unlimited lifetime. It therefore 
follows that in the event of energy transformation there 
must also exist—analogous to the “Law of Conservation 
of Energy”—a “Law of Conservation of Gravitation”, 
which “expressis verbis” appears neither in my physics 
books nor in any cosmological book available to me, and 
which I have formulated as follows: 

For every transformation of energy, the gravitation 
quantum corresponding to the converted amount of en- 
ergy in each case is also transferred, so that the effect of 
the original gravitation quantum existing before the en- 
ergy transformation is conserved overall. This conserva- 
tion principle possesses the character of a law of nature, 
and it may possibly be the first time it has been men- 
tioned. 

As the cosmos at the time zero in the cosmic calendar 
contained a finite large and constant amount of energy 
(“pure” radiation energy, i.e. photons having the highest 
energy level in the history of creation), with this energy 
being subject to an ongoing transformation process, then 
the gravitation quantum appearing at the same time as— 
and associated with—this amount of energy must also be 
constant and remain conserved overall for the entire du- 
ration of existence. Therefore gravitation, as is the case 
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with energy, can be neither created nor annihilated, thus 
also pointing to the same origin as energy at the same 
instant. 

7. Conclusions 

It is possible to derive the relationship G/c2 = const. from 
the Gravitational Constant G itself; this infers that c 
would not actually be an “independent” universal con-
stant of nature, but dependent on G and therefore not a 
“genuine” constant of nature. The expression G/c2 = 
const., on the other hand, could well be both a “genuine” 
and “united” constant of nature, applicable as far back as 
the quantum era, because G/c2 = lPlanck/mPlanck =  

2
super superG c  = G·0·0 = const. (m/kg) 
The key insight derived in this paper is the fact that 

electromagnetism—and thus also photons—are associ- 
ated with a hitherto unnoticed or unknown dynamic gra- 
vitation, equally strong as electromagnetism but acting 
with opposite effect, which has to be included in all 
relevant physical considerations. This gravitation of pho- 
tons is therefore not static in nature, as previously as- 
sumed, but just as dynamic as the electromagnetic energy 
of photons. This consequently results in the now follow- 
ing new insights: 

Each photon as a quantum of electromagnetic energy 
is closely connected with an equivalent quantum of 
gravitational energy. Due to its intimate meshing with the 
photon or its associated electromagnetic photon radiation, 
this gravitational quantum itself also appears as radiation, 
namely as specific high-frequency gravitational radiation 
bound to the photon. Therefore each photon consists of 
two components linked to each other, one expansive ele- 
ctromagnetic radiation component and one gravitational 
radiation component acting in an equal and opposite man- 
ner. Therefore there must exist exactly the same number 
of gravitational quanta of the photons as of photons 
themselves. 

The speed of light c in a vacuum is therefore a con- 
stant 299,792,458 m/secs, since this is exactly the value, 
at which a stable state of equilibrium is established be- 
tween the dynamic gravitation force of the photons and 
their expansive electromagnetic force, the two opposing 
forces thus cancelling each other out and resulting in a 
total zero energy of all photons. 

The constancy of speed of light is achieved by a 
“physical regulatory mechanism”. As a “regulator” for the 
constancy of the speed of light the only candidate is thus 
the intrinsic gravitation of the photons themselves, since 
any change in energy of a photon simultaneously causes 
an equal change in its intrinsic gravitation. Therefore the 

speed of light remains constant for all possible energy 
situations of a photon. 

The physical principles of both the photon’s electro- 
magnetic radiation and its high-frequency gravitational 
radiation must be in every respect completely equivalent 
but opposed to each other. It therefore follows that the 
same vectorial Maxwellian theory also underlies both 
physical quantities, i.e. they also possess a common theo- 
retical basis!  

Planck’s equation for the energy of the electromag- 
netic radiation of a photon E = h· must also apply to the 
high-frequency gravitational radiation, which is associ- 
ated with the photon and only selectively acts on it. It 
then follows that the energy of the gravitational radiation 
associated with each photon must similarly be quantised. 

A photon’s electromagnetic radiation forms a physical 
dualism with the gravitational radiation associated with it 
on the common basis of the same Maxwellian theory. 
Electromagnetism and its dynamic gravitation are per- 
fectly united and unified in each photon! 

Analogous to the “Law of Conservation of Energy” a 
“Law of Conservation of Gravitation” must also exist. 

It should be noted that the dynamic gravitation of pho- 
tons and their conversion into static gravitation following 
the energy transformation of photons may provide a 
plausible explanation for the mysterious “dark matter” 
and “dark energy”. In view of the enormous significance 
of the “dark phenomena of the cosmos” for our world 
view from a natural science perspective, I have written a 
separate paper titled: “The hunt for dark matter and dark 
energy”. 
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ABSTRACT 

Einstein general theory of relativity (GTR) accounted well for the precession of the perihelion of planets and binary 
pulsars. While the ordinary Newton law of gravitation failed, a generalized version yields similar results. We have 
shown here that these effects can be accounted for as due to the existence of gravitomagnetism only, and not necessarily 
due to the curvature of space time. Or alternatively, gravitomagnetism is equivalent to a curved space-time. The preces-
sion of the perihelion of planets and binary pulsars may be interpreted as due to the spin of the orbiting planet (m) about 
the Sun (M). The spin (S) of planets is found to be related to their orbital angular momentum (L) by a simple formula, 

viz., 
m

S L
M

 . 

 
Keywords: General Relativity; Gravitomagnetism; Perihelion Precession of Planets and Binary Pulsars; Origin of 

Planetary Spin 

1. Introduction 

We have recently introduced gravitomagnetism as a true 
cause of the precession of the perihelion of the orbit of 
planets and binary pulsars [1]. Einstein attributed these 
effects to the curvature of space-time. The effect of gra- 
vitomagnetism, in a similar manner to electromagnetism, 
is the Larmor precession of a gravitational moment in the 
gravitomagnetic field induced by the Sun on the planets. 

Le Verrier discovered that the orbital precession of the 
planet Mercury was not quite what it should be; the el- 
lipse of its orbit precesses by some minute value than the 
predicted by the Newtonian theory of gravitation, even 
after all the effects of the other planets had been accoun- 
ted for [1]. This value amounts to 43 arcseconds per cen- 
tury. Several classical explanations were put forward, 
e.g., an interplanetary dust, an unobserved oblateness of 
the Sun, an undetected moon of Mercury, or a new planet 
named Vulcan. Others suggested that the Newton inver- 
se-square law is not correct, and accordingly proposed a 
power law with an exponent that slightly differs from 2. 
Moreover, some authors argued in favor of a velocity- 
dependent potential (see [1] and references there in). 

To resolve the above mentioned dilemmas, Einstein 
used a pseudo-Riemannian geometry to allow for the cur- 
vature of space-time that was necessary for the recon- 
ciliation of the observed gravitational phenomena. He 
concluded that the space-time should be curved in order  

to reproduce the observed physical laws of gravitation. 
Owing to Einstein’s theory of general relativity, particles 
of negligible mass travel along geodesics in the space- 
time. An exact solution to the Einstein field equations is 
the Schwarzschild metric, which corresponds to the ex- 
ternal gravitational field of a stationary, uncharged, non- 
rotating, spherically symmetric body of mass M. It is 
characterized by a length scale rs, known as the Schwarz- 
schild radius. The immediate solutions of the field equ- 
ations explained the anomalous precession of Mercury, 
and predicted the observed bending of light, which were 
later confirm experimentally [2]. 

On the other hand, the theory of electromagnetic in- 
teraction is accomplished by Maxwell. This is coined in 
the four Maxwell equations relating the electric and mag- 
netic fields to the electric charges and current. Lorentz 
then obtained the force experienced by a charged particle 
in electric and magnetic fields. Larmor has found that 
when an electron (magnetic moment) is placed in an ex- 
ternal magnetic field, the magnetic moment precess about 
the magnetic field direction. This precession is due to the 
spin of the electron. This effect is prominent in the spin- 
orbit interaction exhibited by hydrogen atom [3,4]. 

If we now consider gravitation with some scrutiny, we 
will find that, unlike electromagnetism, moving mass  
doesn’t create a magnetic-like field. Thus, Newton law of 
gravitation is not like Lorentz law of electromagnetism.  
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In this sense, gravity and electromagnetism are not ana- 
logous and can’t be utterly compared with gravitation. To 
remedy this problem, we have to look for a gravitomag- 
netism counterpart of gravity. In this way, we can say 
gravity is analogous to electricity and gravitomagnetism 
is analogous to magnetism. The question is what is the 
gravitomagnetic field? By analogy, this should be ob- 
tained by looking at Biot-Savart law that defines the 
magnetic field of a uniformly moving charged particle in 
an electric field. To complete the analogy the charge of 
the particle should correspond to the mass of the particle. 
In this way, we may call the electric charge, the electric 
mass in contrast with the gravitational mass. This fur- 
nishes the complete analogy between gravitation and elec- 
tromagnetism. 

How we then avail the electrical phenomena and rules 
in one paradigm to interpret the other? To answer this 
question, we have to trust (beforehand) the existing ana- 
logies, and base all our new interpretation of the gra- 
vitational phenomena by explaining their corresponding 
ones. In this manner, the precession of the perihelion of 
the orbit of planets and binary pulsars is obtained from 
the precession of the electron (magnetic moment) in an 
external magnetic field. Planets and binary pulsars pre- 
cess when they experience a gravitomagnetic filed (if 
any). In this case, we use the same laws holding for the 
counter (analogous) phenomenon, however. 

Moreover, the deflection of light by the Sun is ex- 
plained by using the laws governing the deflection of a 
charged particle (α-particle) by the nucleus [5]. If we 
continue in this manner, we may persuade our selves that, 
to every electromagnetic phenomenon there are gravito- 
magnetic counter-phenomena. Hence, electromagnetism 
and gravitomagnetism are same but different aspects of a 
unified origin. 

In this respect, we will find our-selves distracted to 
interpret the gravitational phenomena as due to the cur- 
vature of space-time. We are then not abide by the GTR 
to interpret our physical world. Or alternatively, we treat 
the curvature and gravitomagnetism as a same object, or 
yield the same effects. This can be trusted if we are able 
to show that the term responsible for the curvature of 
space-time in Einstein field equations is the same as the 
that resulting from the influence of gravitomagnetism. 

In this paper, we will show that the gravitomagnetism 
terms in the generalized Newton law of gravitation is the 
same as the one in the Einstein general field equations. In 
this way, we upgrade Newton law of gravitation to the 
general theory of gravitation, but with different predic- 
tions. Thus, the correct Newton law of gravitation still 
works finely, and expresses gravitational phenomena in 
accordance with observations. Hence, gravity and ele- 
ctromagnetism are governed by unified laws. In Section 

2 we present the potential that gives rise to the pre- 
cession of perihelion in the GTR. We compare this po- 
tential with that arising from the gravitomagnetic field.  

We find that the gravitomagnetic term is 
π

3
 of the  

Einstein term (GTR). Einstein attributed this term to 
curvature of space. 

Can we say that the gravitomagnetism is the cause of 
Einstein curvature? 

Do we still adopt GTR that requires advanced mathe- 
matics, as the theory of gravitation and leave the simply- 
understood Newton’s laws of gravitation aside? In effect, 
the gravitomagnetic theory (or Gravitational Lorentz 
force) is simple and can easily be handled without re- 
course to tensor (advanced mathematics) analysis to un- 
ravel gravitational phenomena. Besides, it is analogous to 
electromagnetic theory that is well understood and com- 
plies utterly with experimental facts. The idea of cur- 
vature of space is no longer adopted. Moreover, the Ein- 
stein’s dream of unification of fundamental forces in 
nature will become imminent within this framework.  

2. The General Theory of Relativity (GTR) 

Einstein attributed the gravitational phenomena, now 
known, to the effect of the curvature of space-time in- 
duced by the presence of a massive object [2]. The effe- 
ctive gravitational potential of the object of mass m mov- 
ing around a massive object of mass M takes the form [6]  

 
2 2

2 2 3
= ,

2

GMm L GML
U r

r mr c mr
        (1) 

and the force, =
U

F
r





, can be written as 

 
2 2

2 3 2

3
= ,

GMm L GML
F r

r mr mc r
  

4
      (2) 

where L is the orbital angular momentum of the mass m. 
This inverse-cubic energy term in Equation (1) causes 
elliptical orbits to precess gradually by an angle   per 
revolution [2] 

 2 2

6π
,

1

GM

c a e
 


               (3) 

where e and a are the eccentricity and semi-major axis of 
the elliptical orbit, respectively. This is known as the 
anomalous precession of the planet Mercury. 

Another prediction famously used as evidence for 
GTR, is the bending of light in a gravitational field. The 
deflection angle is given by [2] 

2

4
=

GM

c b
 ,               (4) 
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where b is the distance of closest approach of light ray to 
the massive object. Therefore, the gravitomagnetic force  

is equal to 
π

3
 of the GTR force. Whether, the gra-  

vitational phenomena are in full agreement with our 
gravitomagnetic model or with GTR is a subject of the 
present and future observations. At any rate, we are lucky 
to have two complementary paradigms explaining the 
same effect in different ways. Can we deduce that it is 
the gravitomagnetic field that curves the space and not 
the Sun mass? Or can we say that it is the curvature that 
produces the gravitomagnetism?  

3. The Generalized Newton Law of 
Gravitation 

We have shown recently that Newton law of gravitation 
can be written, as a Lorentz-like law, as [7] 

 
2

= , =g g g

v
F r m mv a

r
 E B E = ,     (5) 

where  

2
= .g

g

v

c

E
B               (6) 

Thomas introduced a factor 
1

2
 to account for the  

spin-orbit interaction in hydrogen atom [8]. Here gB  is 
measured in 1s . To convert it to rad/sec, we multiply it 
by . Hence, the gravitomagnetic force becomes  2π
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2
2

π
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mv v GM
F r a v
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The gravitomagnetic field is divergenceless, since 
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This implies that the gravitomagnetic lines curl around 
the moving mass (gravitational current) creating it. This 
may also rule out the existence of negative mass. There- 
fore, as no magnetic monopole exits; no gravitomagnetic 
monopole (antigravity) exits. Thus, the search for mag- 
netic monopole is tantamount to that of antigravity. 

The angular momentum is defined by , so 
that Equation (7) becomes  

=L mvr

 
2

2 4

π
=m

GML
F r

mc r
 .               (8) 

The second term in Equation (2) is due to the centrifu- 
gal term arising from a central force field. In polar co- 

ordinates the force is written as  

   2 ˆ ˆ= 2rma m r r e m r r e .           (9) 

For a central force the second term vanishes. It yields,  

2
=

L

mr
 , so that the first term becomes  

2

3
=r

L
ma mr

mr
 .             (10) 

Substituting Equation (10) in Equation (5) yields the 
full effective central force, owing to gravitomagnetism, 
as 

 
2 2

2 3 2

π
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GMm L GML
F r

r mr mc r
  

4
      (11) 

The corresponding potential will be  

 
2 2

2 2

π
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2 3

GMm L GML
U r

r mr mc r
  

3
 

Comparison of Equations (2) and (11) reveals that the  

gravitomagnetic force is equal to 
π

3
 of the curvature  

force. Consequently, the generalized Newton law of gra- 
vitation and the general theory of relativity produce the 
same gravitational phenomena. 

The gravitomagnetic force term, the last term in Equ- 
ation (11), can be written as  

2 2 2
2

2 4 2 3

π π
= , where, .

GML G M m GM
v

rmc r c r
   (12) 

Finally, Equation (11) can be written as  

 
2
e .

2
=

3
,ffJGMm

F r
r mr

           (13) 
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2

2 2
e .

π
= .ff

GMm
J L

c

 
 
 

        (14) 

4. Precession of Planets and Binary Pulsars 

Owing to the above equivalence between gravitomag- 
netism and GTR, we interpret the precession of the peri- 
helion of planets and binary pulsars as a Larmor-like 
precession, and not due to the GTR interpretation as due 
to the curvature of space-time. We may attribute this pre- 
cession as due to the precession of gravitational moment 
(mass) in a gravitomagnetic field induced by the massive 
objects (Sun). In electromagnetism, the Larmor prece- 
ssion is defined by [4]  

=
2

e
B

m
 ,                (15) 

while in gravitation (since gB  is in 1s  and e m ) 
it is defined as [1]  
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3 3
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where ( g  is in rad/seec) and  
2v

a
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The precession rate in Equation (16) can be written as  

2

2π
π ,g

g

GM
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where 
2π

=
r

T
v

 is the period of revolution. This corre-  

sponds to a precession angle of 

2

2π
= π rad s,g

GM

c r
  

 
 

       (19) 

that is equal to 
π

3
 of the curvature effect, and for ellipti-  

cal orbit .   21r a e 

5. Deflection of α-Particles by the Nucleus 

We would like here to interpret the deflection of light by 
the Sun gravity in an analogous way to the deflection of 
 -particles by the nucleus, without resorting to the GTR 
calculation. The deflection angle of  -particles by a 
nucleus is given by [5]  

2

4
=e

keQ

mbv
             (20) 

where Q is the nucleus charge,  the v  -particle speed, 
k Coulomb constant, and b the impact factor. The corre- 
sponding gravitational analog for the deflection of light 
will be, , , , , [9]  v c e m Q M k  G

2

4
=g

GM

bc
             (21) 

without resorting to GTR calculation. Recall that, accord- 
ing to Equivalence Principle, all particles in gravity acce- 
lerate without reference to their mass (whether massive 
or massless). Therefore, it doesn’t matter whether light 
has a mass or not. The relation in Equation (21) is the 
same as the relation obtained by GTR as in Equation (4). 
The minimum distance   particles can approach the 
nucleus is given by equating the kinetic energy and the 
Coulomb potential energy that yields the relation  

1 2
2

2
=e

kq q
b

mv
.              (22) 

In gravitation and for light scattered by the Sun gravity, 
the above relation gives ( ,  and 

)  
1q m 2q M

k G

2

2
=g

GM
b

c
.               (23) 

This is nothing but the Schwarzschild distance that no 
particle can exceed. Therefore, the complete analogy be- 
tween gravitation and electricity is thus realized. In this 
context, we have shown recently that the Larmor dipole 
radiation has a gravitational analogue [10]. Similarly, the 
same analogy exists between hydrodynamics and electro- 
magnetism [11]. 

6. The Spin of Planets 

The discovery of the spin of the electron by Goudsmit 
and Uhlenbeck in 1926 was crucial in understanding 
many physical phenomena that wouldn’t have been ex- 
plained without [12]. This spin is theoretically formu- 
lated by Dirac confirming the experimental finding. 
However, the spin of planets had been known since long 
time (1851) that was demonstrated by Foucault’s pendu- 
lum. In a recent paper we have introduced the gravito- 
magnetism produced by moving planets as the magnetic 
field produced by moving charge [1]. We then obtained 
the gravitational Ampere’s and Faraday’s laws of gravi- 
tomagnetism. The gravitomagnetic moment of a planet 
due to its orbital motion is given by [1]  

3 2

=
2L

v r

G
 .                 (24) 

For circular orbit, Equation (24) yields 

= .               (25) 
2L

M
L

m
  

 
 

In a similar manner the gravitomagnetic moment due 
to spin will be twice the above value (analogous to ele- 
ctromagnetism)  

=
2S S

M
,g S

m
  

 
 

            (26) 

where Sg  defines some gyro-gravitomagnetic ratio that 
is independent of the planet’s mass. If we assume the 
precession of planets is a spin-orbit interaction, then we 
can equate S g B  (assuming the angle to be zero) to 
the potential term arising from the gravitomagnetic force 
in Equation (11). This yields, for circular orbit,  

24π 4π
= , = .      (27) 

3 3S S

m Gm
S L S

g M g v

   
   
   

This is a very interesting equation, since it determines 
the spin of planets from their orbital angular momentum. 
With the help of the above equation, the moment of 
inertia of planets can be precisely determined. It then 
follows that the spin and the geometrical form of planets 
is a consequence of its dynamics. Consequently, the spin 
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Table 1. The predicated values for spin and moment of 
inertia owing to Equation (27) with gS = 57. Any deviation 
from known values that may appear could be attributed to 
the uncertainty in determining the radii of planets. Alter- 
natively, the angle between L and S will be of importance. 

Planet Spin (Js) Moment of inertia (kg·m2) 

Mercury 1.12E+31 8.98E+36 

Venus 3.31E+33 1.10E+40 

Earth 5.84E+33 8.02E+37 

Mars 8.32E+31 1.17E+36 

Jupiter 1.35E+39 7.69E+42 

Saturn 1.64E+38 1.00E+42 

Uranus 5.44E+36 5.43E+40 

Neptune 9.45E+36 8.12E+40 

 
angular momentum is no longer an intrinsic property of 
the planet. The energy corresponding to this interaction 
may be converted into internal energy (heat) inside the 
planet. 

Owing to Equation (27) we are entitled to say that any 
orbiting planet must spin! Thus, any gravitating object in 
curvilinear motion must spin. For consistency of the spin 
of the Earth with the present value with take . 
From this law the moment of inertia of all gravitation 
objects can be precisely determined. Table 1 shows the 
anticipated values for the spin and the corresponding 
moment of inertia of the planetary system. Equation (27) 
can be used to estimate the hidden central mass around 
which another mass orbits. It can be generally useful in 
many astrophysical applications. 

= 57Sg

7. Conclusion 

We have shown that the gravitomagnetism and the gene- 
ral theory of relativity are two theories of the same phe- 
nomenon. This entitles us to fully accept the analogy exi- 
sting between electromagnetism and gravity. Hence, ele- 
ctromagnetism and gravity are unified phenomena. The 
precession of the perihelion of planets and binary pulsars 
may be interpreted as a spin-orbit interaction of gravita- 
ting objects. The spin of a planet is directly proportional 
to its orbital angular momentum and mass weighted by 
the Sun’s mass. Alternatively, the spin is directly pro- 

portional to the square of the orbiting planet’s mass and 
inversely proportional to its velocity. 
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ABSTRACT 

Gravity data are sensitive to local vertical offsets across high-angle faults, where rocks with different densities are jux- 
taposed. Yet high densities in some Mesozoic sedimentary rocks just above the basement may smear out the subtle 
gravity signatures of basement faults. At this study the gravity data processing tends to avoid ill-described “black-box” 
techniques. The study area is situated in the Palomas site, Cuatrociénegas region, Coahuila, NE Mexico. The San Mar- 
cos Fault is at least 300 km long and has WNW-ESE trend from the central part of Nuevo León State through Coahuila, 
and finally to the eastern part of Chihuahua State. Gravimetric data shows that the lowest values of free air and Bouguer 
anomalies are in the southern part of the area, and the highest values are in the western and central part of the area. Be- 
tween these parts exists a zone of high horizontal gravity gradient. Configuration of linear elements of gravity field 
(gradient zones) delimited the San Marcos Fault in the San Marcos valley below thickness of recent sedimentary cover. 
Two density models were carried out, which showed that the Cretaceous rocks are in discordant contact with the Paleo- 
zoic rocks that can be related to the San Marcos Fault. The density was determinate using to Nettleton’s method, which 
results highlight the presence of the San Marcos Fault. Density models showed that the Quaternary sediments are in 
direct contact with the San Marcos Fault. 
 
Keywords: Earth Gravity; Newton Potential; Geophysical Prospecting; Density Models; Free Air Anomaly; Gravity 

Field Variations 

1. Introduction 

Steep, straight faults are commonly expressed as subtle 
potential-field lineaments, which can be gradient zones, 
alignments of separate local anomalies of various types 
and shapes, aligned breaks or discontinuities in the ano- 
maly pattern, and so on [1-4]. Many large magnetic and 
gravity anomalies represent the ductile, ancient, healed 
basement structures, obscuring the desirable subtle fea- 
tures [1-8]. 

Subtlety of the desirable lineaments necessitates de- 
tailed data processing, using a wide range of anomaly- 
enhancement techniques and display parameters. The final 
choice of processing steps depends on which aspects of 
the anomalies one aims to enhance, as well as on experi- 
mentation with various techniques [1,3,5,9,10]. 

Not a panacea, data processing is a necessary evil. Be- 
cause the signal and noise anomaly characteristics com-
monly overlap, complete separation between them may 
be impossible. Noise artifacts may actually be introduced 

[3]. 
Unexpected consequences and processing side-effects 

are normal. As well, it may be hard to know in advance 
which of the many anomalies are desirable. 

The processed and enhanced anomalies should ideally 
be easy to relate back to the original anomaly shapes. We 
kept the data processing to a minimum, avoided ill-des- 
cribed “black-box” techniques, and relied on mathemati- 
cally simple and intuitive procedures [3,5-11]. 

The San Marcos Fault (SMF), was defined by Charles- 
ton [12,13], and is outcropping in Central Coahuila in 
northeast Mexico correspond to one of the three major 
zones of west-northwest trending lineaments interpreted 
as basement faults that controlled the tectono-sedimen- 
tary evolution since the Triassic-Jurassic in the region 
[14,15] (Figures 1 and 2), the others structural lineaments 
are: The La Babia fault (LBF) [12,13], located in North- 
ern Coahuila; and the Mojave-Sonora Megashear (MSM) 
[14-16]. From these basement faults, only the SMF has a 
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Figure 1. Position of San Marcos Fault in northern Mexico. Modified after McKee et al., 1984 and 1990; Padilla y Sanchez, 
1986; Aranda-Gómez et al., 2005. Inset: Location of San Marcos Valley, Pinos Valley and the Palomas study area. 
 

 

Figure 2. Geological map of the study area. A-A’ and B-B’ are the 2D density models; C-C’ is the geological cross section by 
McKee et al., 1990. 
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trace well defined from stratigraphic and structural evi- 
dence, which can be followed since Potrero La Gavia, 
through San Marcos Valley (SMV), to Potrero Colorado 
and to the Sierra Mojada [17-21]. These authors men- 
tioned that SMF is distinguished by: contrasting struc- 
tural styles between the Coahuila block and the Coahuila 
folded belt; the existence of a pre-Tithonian and Neoco- 
mian major sedimentary clastic wedge related to its ac- 
tivity and deposited in the hanging wall of the fault; and 
the existence of fault contacts between Permian, Jurassic, 
and Cretaceous rocks in the SMV and Potrero Colorado 
areas (Figure 2). In areas where the SMF is buried, such 
as the Camargo volcanic field has been inferred from 
structural features in the surface [22-24].  

The SMF, LBF and the MSM play an important role to 
understand the tectonic and stratigraphic evolution of 
northeast Mexico. Several authors [14-16,23,25,26] pro- 
pose that these fault systems (SMF and LBF) were reac- 
tivated at different times. McKee et al. (1984) found evi- 
dence of movement of the San Marcos fault during the 
Jurassic, Early Cretaceous, and Tertiary. Additionally, 
Aranda-Gómez et al. (2005) suggest that SMF have been 
reactivated during the Late Pliocene-Quaternary by nor- 
mal faulting in the border of Chihuahua-Coahuila states. 
In central Coahuila not has been documented Quaternary 
activity, due to the works published have been focused 
mainly in the study of pre and syn-laramide reactivation 
of the fault. As mentioned before, the study of the SMF 
is related only with geologic information, geophysics da- 
ta not are available concerning to characterization of this 
basement fault. One goal of interest about the possible 
reactivation of the SMF at Plio-Quaternary time is the 
seismic risk associated with potential earthquakes related 
to this fault. Northeast Mexico is characterized by low 
seismicity and a lack of strong ground motion records 
[27-30]. 

Large intraplate earthquakes in the relatively stable in- 
terior regions of continents are rare in comparison with 
those that originate in plate boundary regions. However, 
these occasional events can be extremely devastating, be- 
cause cities located in continental interior regions are 
often built without seismic design criteria. Crone et al. 
(2003) mention that major intraplate earthquakes can 
cause widespread damage because the attenuation of 
seismic energy from large earthquakes is relatively low 
in plate interiors. Galván-Ramírez and Montalvo-Arrieta 
(2008) made a compilation of the historical seismicity in 
northeast Mexico; they found that some of the epicenters 
locations are overlaped or near to the traces of the major 
regional faults trending west-northwest postulated in 
northeast Mexico: LBF, SMF, and MMS. Figure 3 
shows the historic seismicity for northeast Mexico. These 
authors hypothesize that seismic activity reported for this 
region, which lies near or on the trace of these faults,  

 

      

Figure 3. Historic seismicity of northeastern Mexico and 
southern Texas (1847-2005). The open circles represent the 
epicentral location of the earthquakes studied. The solid 
and dash lines depict the three general north-northwest 
trending lineaments and faults that have been identified or 
postulated in northeast Mexico, the La Babia fault, the San 
Marcos fault, and the Mojave-Sonora megashear (MSM). 
Triangles show largest cities (Acuña; Chi: Chihuahua; Del: 
Delicias; Parral; Tor: Torreón; Mon: Monclova; Sal: Sal- 
tillo; Mty: Monterrey; Lin: Linares; N. Laredo: Nuevo La- 
redo; P. Neg: Piedras Negras; Rey: Reynosa) (Modified after 
Galván-Ramírez and Montalvo-Arrieta, 2008). 
 
could be related to reactivation of these major faults. 
However, to probe this hypothesis is necessary to install 
a seismic network to confirm or refute the presence of 
seismicity associated with these fault systems. Addition- 
ally, these authors mentioned that a possible critical sce- 
nario would represent a rupture (MW = 6.5) in the south 
segment of the San Marcos fault in Central Coahuila. 
The importance of this scenario is the settlement of three 
of the most populated centers in northeast Mexico (Mon- 
terrey, Saltillo and Monclova with a total population of 
more than six million) located in a radius less than 150 
km from the fault source. 

Some evidence of recent seismicity could be obtained 
from visual observation of deformation of latest sedi- 
ments covering fault zone. One way to identify buried 
faults systems in sedimentary valleys is by means of gra- 
vity data. The goal of this study is identifies the SMF 
zone in the SMV in central Coahuila from gravity data 
and have the first stage to identify if there is evidence of 
displacements in Quaternary sediments. To develop this,  
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we obtain for first time precision gravity data for five 
north-south trending lines across the Palomas area (Fig- 
ure 4) in SMV. 

2. Geologic Framework 

The Palomas area is located to the NW of San Marcos y 
Pinos valley and to the SE of Sierra El Granizo, between 
26˚24'N and 26˚26'N, and 101˚50'W and 101˚57'W (Fig- 
ures 2 and 4). In this area there are some isolate hills 
composed by limestone of Upper Tamaulipas Formation 
that can be associated to displacement of the SMF, we re- 
collected gravity data distributed in five profiles, and two 
of them cross the La Pasta hill (Figure 4). 

SMV is located in central Coahuila and represents an 
area where there is excellent evidence of the SMF [14,19, 
31]. 

The SMV are compose by pre-Jurassic outcrops com- 
posed by small lenses of granite rocks at NW of the val- 
ley and slates and metasandstones in fault contact with 
both Cretaceous and Jurassic rocks at northwest of the 
Las Palomas area. The Jurassic sediments composed by 
conglomeratic sandstone of Las Palomas beds and sand-
stone of the Sierra El Granizo beds are exposed along the 
foothills of the Sierra El Granizo and in the valley where 
a gradational contact with overlying Neocomian San 
Marcos Formation is exposed. Tanque Cuatro Palmas-
beds consist of nearly 100 m of fine-grained marine sedi- 
mentary rocks without conglomeratic units [14]. The 
Cretaceous sediments are defined by the San Marcos 
Formation composed by continental alluvial deposits re- 
presented by conglomeratic units of pebbles or cobbles 
of volcanic rocks with subordinate quartz, and plutonic 
fragments, overlying in a discordant contact is limestone 
of the Cupido Formation, the sedimentary sequence are 
complete by shale and marble of the La Peña Formation, 
follow by limestone of Tamaulipas Superior Formation, 
overlying by limestone, shale and banded chert of Cuesta 
del Cura Formation and interbeded shales with marble 
and gysum veins of Indidura Formation, the marine se- 
quence is overlie discordantly by Quaternary deposits [14, 
19,31]. 

3. Geophysical Data Collection and 
Reduction 

More than 150 gravity reading points grouped in 5 lines 
were carried out nearly perpendicular to the main trace of 
the SMF. Gravity stations spacing was from 15 - 20 up to 
40 - 50 meters. Gravity meter Autograv CG-5 with 0.001 
milligal (mGal) of reading resolution was used (1 Gal = 1 
cm/s2). Gravity reference station was established in the 
Central Place of Cuatrocienegas city. 

The error of measurements (RMS error) did not ex- 
ceed 5 microgal (μGal). Corrections were applied in real  

 

Figure 4. Panoramic view of the Palomas area. Geologic 
map and the distribution of gravity points over the study 
area. Modified after Arvizu Gutiérrez (2006). 
 
time for tilt errors, for long term drift, for the temperature 
of the sensor, and for earth tides. The seismic filter was 
applied too. The location of gravity stations was deter- 
mined by a GPS Magellan Platinum with a horizontal 
accuracy of 5 - 7 m. 

Elevation of the gravity reading points was measured 
with a Total Station Nikon DTM-551 with precision of 
±2 mm. The standard corrections, e.g. instrumental drift, 
latitude, elevation using new standards to reducing gra- 
vity data were applied to obtained measurements [32]. As 
a result of field data correction and processing free air 
and Bouguer gravity anomalies were obtained. Data in- 
terpretation procedures include Fourier transformation, 
wavelength filters, upward and downward continuation, 
vertical and horizontal derivates, etc. [1,5,9,11,33,34]. A 
series of maps (Figures 5(a)-(d)) and graphs (Figures 6 
and 7) show gravity anomalies interpretation technique. 
2D geological-geophysical models were elaborated (Fig- 
ures 8 and 9). 

A sea level datum NAD 83 and the standard density 
2.3 g/cm3 were used for the elevation correction. The ter- 
rain correction was calculated using the method by Ham- 
mer and was applied to each gravity station to obtain the 
complete Bouguer anomaly. 

Gamma ray measurements were carried out addition- 
ally to gravity study. Gamma ray reading points were the 
same as gravity stations. GRS-500 Differential Gamma 
Ray Spectrometer/Scintillometer was used to measure 
the gamma radiation emitted by various daughter iso- 
topes in the uranium decay series. Sample rate was se- 
lected as 10.0 seconds, and energy window was choosing 
detecting total count above 0.08 MeV. Observed count 
rates were corrected due to dead time (4 microseconds). 
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Figure 5. Gravity maps of study area: (a) Observed gravity; (b) Free air anomaly; (c) Bouguer gravity anomaly; (d) Hori-
zontal gradient of gravity. 
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Figure 6. Geophysical curves along the profile 4. These graphs show strong coincidence between observed gravity, free air 
and Bouguer anomalies, horizontal gravity gradient, and also gamma ray measurements. 
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Figure 7. Delimitation of the San Marcos Fault in San Mar- 
cos Valley on the gravity data analysis. 

4. Gravity and Gamma Ray Data Analysis 

The observed gravity map (Figure 5(a)) shows an iso- 
lated gravity high in the NE part of study area. Southeast 
of this high, an extensive gravity low is observed. The 
amplitude of gravity field between these extreme parts 
reaches 24 milligals (mGal). A high horizontal gradient 
zone (up to 0.01 mGal/m) is shown here (Figure 5(d)). 

The free air gravity map (Figure 5(b)) shows an ano- 
maly that divide two big blocks. The southern block pre- 
sent the lowest values that varying between –15.5 to 
–14.5 mGal. The northern block shows high gravity va- 
lues. Anomalies of –9.0 - 12.5 mGal are observed here. 
The Bouguer anomaly (Figure 5(c)) shows the same be- 
havior that the free air gravity, where can see two main 
areas. The complete Bouguer gravity (Figure 5(c)) va- 
lues in the southern part of the study area are in the range 
of –109 up to –112 mGal and show several weak local 
anomalies with an amplitude of ±0.2 mGal. Gravity high 
with a range of –105 up to –108 mGal is shown in the 
northern part of area. There is a relatively gravity low (up 
to –110 mGal) between two extreme parts of this positive 
zone. A strong gravity gradient zone marks a structural 
boundary between these blocks. It seems that this strong 
anomaly is related to the main trend of the fault zone in 
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Figure 8. Results of gravity surveys for the profile A-A’ (location shown in Figure 4) show residual Bouguer gravity anomaly 
and best-fit inverse density model at Palomas site, a normal buried fault is inferred.  
 

 

Figure 9. (a) Conceptual density model for the profile B-B’ (location shown in Figure 4); and (b) Generalized geologic cross 
section extending from the Sierra El Granizo northeastward to the crest of Sierra San Marcos y Pinos when is localized the 
tectonic boundary (C-C’). PF, Paleozoic flysch and wildflysch; JLP, Las Palomas beds (Late Jurassic); JSG, Sierra El 
Granizo beds (Late Jurassic); JCP, Tanque Cuatro Palmas beds (Late Jurassic); KSM, San Marcos Formation (Early Cre-
taceous); KLS, Cretaceous limestone; Tamaulipas Superior, La Peña y Cupido Formations (Late Cretaceous); QAL, Allu-
vium (Quaternary). The box shows part of the cross section that can have relation with the density model for profile 5 (Modi-
fied after McKee et al., 1990). 
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the area. The values of horizontal gravity gradient here 
are about 0.0035 - 0.004 mGal/m (Figure 6) and reach 
0.035 - 0.04 mGal/m near the main fault zone (Figure 
5(d)). The same characteristics have the gamma ray 
curves, which show a close coincidence with gravity gra- 
dient zones. For example, Figure 6 shows two extreme 
values of horizontal gradient 0.0024 mGal/m and 0.00450 
mGal/m and two gamma ray peaks (240 cps and 250 cps) 
correspond them. As general, observed and transformed 
gravity anomalies was revealed trending northwest- 
southeast across the central part of Las Palomas area. An 
extensive gravity gradient zone trends in the same direc- 
tion. This zone probably represents the San Marcos Fault, 
which crosses the area from northwest to southeast (Fig- 
ure 2).  

The gravity data suggest a complex subsurface struc- 
ture in the San Marcos Valley area. It seems that two dis- 
tinct systems of linear elements dominate in the base- 
ment as well as shallow structure (Figure 7). The first 
has a southeast direction and it coincides with the San 
Marcos Fault main direction, plotting along the general 
axe of the San Marcos Valley. The second linear system 
has a nearly perpendicular (north-northwest-south-south- 
east) direction. It seems that these faults divide the San 
Marcos Valley area to the several blocks of basement ac- 
cordingly the main structure of the San Marcos Fault 
(Figure 7). 

5. Modeling 2D of Gravity Data 

Figure 7 shows the contour of the Bouguer map and the 
main geologic features in the study area. In this figure is 
depicted the fracture arrangement that we interpreted 
from gravity data too. Two sets of fractures can be inter- 
preted from the gravity data: WNW-ESE and NNW-SSE 
(Figure 7). It is associated with the isolated calcareous 
hill (La Pasta) at center of figure, which can be correlated 
with the trace of the SMF (red discontinuous line). 

We also interpreted secondary faults that have the 
same orientation that SMF and a systems of faults or 
fractures the cut the main trending system that corre- 
sponds to conjugate faults.  

From gravity data we constructed two 2D cross sec- 
tions models for profiles A-A’ and B-B’ (Figure 4). The 
first one (A-A’) shows the model located in the sedi- 
mentary valley (Figure 8). In this figure are identified 
three units with the follow density values: Red unit with 
a density of 1.7 g/cm3 related to alluvial deposits. The 
green unit has a density value of 2.3 g/cm3 correlate with 
calcareous materials that is in a strong discontinuity or 
fault contact with the grey unit that is related to material 
with an increase in density of 2.425 g/cm3 that corre- 
spond to Paleozoic flysch. The same figure point up the 
correlation between the observed and calculate gravity 

data by the 2D model, which shows a step geometry of 
the gravitational anomaly; the interpreted source of this 
anomaly is due to the presence of the SMF. The diffe- 
rence of density for each block varies 0.125 g/cm3. The 
denser rocks are in the handing-wall of the fault. In this 
profile the anomalies can be associated to: a) basement 
up-lift or b) density contrast between rocks. These two 
circumstances can be interconnected as follows: small 
negative anomalies can be caused by increase in the 
thickness of quaternary sediments in those places where 
the rocks are less strong and less dense; we observed 
local positives anomalies that can be related to denser 
rocks denser rocks which are less weathered and thicker 
than the surrounded county rocks. 

Figure 9 depicts the profile B-B’, it cross-cut La Pasta 
hill which have a height about 40 m and where calcare- 
ous rocks are outcropped, this profile has a south-north 
direction. The observed and calculated gravity show a 
positive anomaly of 4 mGal in the La Pasta hill and a 
small negative anomaly nearby –0.5 mGal to the north 
from this hill which can be related to denser rocks (0.1 
mGal). Positive anomaly in area of the La Pasta hill re- 
flects a relative high effective density of 0.23 g/cm3 
(density of adjacent rocks is about 2.53 g/cm3). Geologi- 
cally, this anomaly can be correlated with stronger and 
denser blocks by mineralization or low grade metamor- 
phism. Negative anomaly can be caused by a thicker 
package of quaternary sediments. We identified the fol- 
lows density units (Figure 9): Red unit with a density of 
1.7 g/cm3 related to alluvial deposits, the green unit had a 
density value of 2.3 g/cm3 correlate with calcareous ma- 
terials, that is in a strong discontinuity or fault contact 
with the third unit with a density of 2.53 g/cm3, that can 
be related with the main trace of the SMF that include 
conglomeratic sandstone of the Las Palomas beds and 
Paleozoic flysch. To the north of main fault exists an- 
other fault or discontinuity that separates the fourth and 
fifth units that have density values of 2.28 g/cm3 and 2.4 
g/cm3 respectively. 

6. Discussion 

The Palomas area shows a clear evidence of the SMF 
documented by McKee et al., (1990) and Chávez-Ca- 
bello et al., (2007), in the Sierra El Granizo and La Pasta 
hill in SMV it is inferred because there are not geologic 
evidence of activity; in the Palomas area exist a isolate 
hills that can be associated with superficial expression of 
the SMF.  

Gravity profiles ware carried out perpendicular to the 
main trace of the SMF in the SMV. The Bouguer anom- 
aly shows maximum and minimum which can be used to 
define a system of fractures with a direction that can be 
correlated to the principal trending of the SMF in the 
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Sierra El Granizo and San Marcos y Pinos that have a 
NW-SE direction [14,19]; also, orthogonal faults were 
identified, this can be associated with the change of di- 
rection in the main trace of the SMF or the fault bend 
zone in the SMF. 

From gravity 2D models, we observed that there are 
contrasts of density in both models that are associated 
with displacement of the SMF. The model A-A’ (Figure 
8) shows how the limestone are in discontinuity with the 
flysch and can be associated with the main traced of the 
SMF in this area where the fault had been inferred, in 
agreement with geological data [14,19] the fracture con- 
strained with gravity data can be associate with the re- 
verse reactivation of the SMF. On the other hand the 
Quaternary sediments could be cutting by recent activity 
of the SMF, this gravity study is the first geophysical 
study in the area that contemplate the mapping and found 
evidence if the SMF had had Quaternary activity such as 
suggested by Aranda-Gómez et al., (2005) in Chihuahua 
state, and its relation with seismic risk in northeast of 
Mexico.  

The model B-B’ (Figure 9) shows some discontinue- 
ties that constrain a fault system related with the main 
fault. This model is similar to the McKee et al. (1990) 
geological cross-section from Sierra El Granizo-Sierra 
San Marcos y Pinos (profile C-C’, Figure 2). Figure 8 
shows the correlation between the gravity cross-section 
obtained in this study and the geological model by Mc- 
Kee et al. (1990). In the southern part of the gravity 
model there is a discontinuity between the second and 
third units that can be correlated with the SMF where the 
density values for de second unit (2.3 g/cm3) could be 
associate with limestone of Upper Tamaulipas which is 
in reverse fault contact with the third unit, composed by a 
mixture of Paleozoic flysch and conglomeratic sandstone 
of the Las Palomas beds. 

A second discontinuity north of the La Pasta hill in- 
volves a reverse fault with the third and fourth units, and 
correlate the Paleozoic flysch (unit fourth) and the shear 
zone composed by Las Palomas beds and the Paleozoic 
flysch [14,19]. 

A third discontinuity is formed by the fourth and fifth 
units, where the Paleozoic flysch (forth unit) is in reverse 
fault contact with an unknown material with a density 
value of 2.4 g/cm3 (fifth unit). Finally, both profiles A-A’ 
and B-B’ have a fault that is in direct contact with Qua- 
ternary sediments (first unit) of the SMV and this sedi- 
ments could be cross-cut by this fault. 

7. Conclusions 

This is the first study to detect a buried basement fault in 
the Palomas area; we used a precision gravity data to find 
density contrasts of rocks to map fractures or faults. We 

choose the Palomas area in the SMV because is around 
by Sierra El Granizo and Sierra San Marcos y Pinos in 
central Coahuila, where had been found clear geological 
evidence (stratigraphic and structural) of the San Marcos 
Fault. 

Results of this study show that the Free Air and Re- 
sidual Bouguer anomalies are separating two blocks re- 
lated with the San Marcos Fault. By other hand, the 
Bouguer anomaly is dominated by a series of faults or a 
fault zone that is interconnected by a principal fault, this 
zone has a width around of 1000 m. This fault system 
can be separated by a trending fault with a NNW-SSE 
direction that is correlated with the strike of the San 
Marcos Fault identified in the foothills of Sierra El 
Granizo; the other faults system is conjugate to the main 
system and is related to the change of direction of the 
principal fault orientation proposed by some authors.  

We presents two 2D gravity models where can define 
the San Marcos Fault, in the first profile (A-A’) only can 
identify one discontinuity that is related with the prince- 
pal fault in agreement with geological data suggest the 
presence of a reverse fault. The second model (B-B’) 
constrain a wide fault zone, this model can be compared 
with the geological cross-section published by McKee et 
al. (1990). This model show a fault zone where the lime- 
stone are outcropped (La Pasta hill), these rocks have a 
density value of 2.3 g/cm3. 

In both models, we can see that the Quaternary sedi- 
ments are in direct contact with the fault; however, it is 
not enough evidence how this fault is cutting the Qua- 
ternary sediments. Other geophysical data (e.g., resisti- 
vity, magnetic and seismic methods) can be collected in 
this area to define if the San-Marcos Fault is cutting the 
Quaternary sediments. 
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ABSTRACT 

We present a study of the so called relaxed field equations of general relativity in terms of a decomposition of the met-
ric; which is designed to deal with the notion of particles. Several known results are generalized to a coordinate free 
covariant discussion. We apply our techniques to the study of a particle up to second order. 
 
Keywords: General Relativity; Approximation Methods; Particles 

1. Introduction 

The notion of particle is fundamental to the Newtonian 
mechanics framework; in fact, this whole theoretical 
framework can be constructed in terms of the notion of 
test particles and massive particles. It is then natural to 
ask whether this notion can be translated to other frame-
works, as is general relativity. 

Within general relativity one understands Newtonian 
mechanics as the limit of weak field and slow motion. So 
we know that one can regain the notion of particle in this 
regime. Also in general relativity, the concept of test par-
ticle is a natural one, which allows to discuss several 
physically interesting situations. 

At first sight it is not at all clear that one can extend 
the notion of particles (non-test) to the realm of general 
relativity. To begin with, if one imagines a process in 
which one shrinks the sizes of an object to obtain a point 
like object, one knows that at some moment in the proc-
ess one would end up with the formation of a black hole, 
which has a characteristic size. However, the post-New- 
tonian approach to compact objects is frequently con-
structed in terms of the notion of particles; although 
post-Newtonian systems are normally required to have 
weak fields and slowly moving objects. 

It is interesting to note that the most simple black hole, 
namely the one describing a vacuum spherically sym-
metric spacetime, can be expressed in terms of the so 
called Kerr-Schild decomposition. In this way, the 
Schwarzschild black hole, whose maximal analytic ex-
tension is described in terms of the well known causal 
conformal diagrams, when expressed in the Kerr-Schild 
decomposition shows a point like description in terms of 

the flat reference metric of the Kerr-Schild form. 
This indicates that it might be possible to give a parti-

cle notion to a compact object in general relativity when 
expressed with respect to background reference metrics. 

If one intends to study the problem of a systems com-
posed of several compact objects, it appears as an ap-
pealing strategy to use approximation techniques for 
solving the field equations. Several problems are related 
to this. 

In building approximation schemes for the study of the 
field equations in general relativity it is often useful to 
recur to the relaxed form of the field equations; that we 
recall below. Also, it frequently useful to decompose the 
physical metric in terms of a background metric. In this 
work we plan to study both techniques. 

In the process of decomposing the metric a key issue is 
the notion of gauge, since in general one has more than 
one way to decompose the physical metric. In order to 
study this issue we bring the techniques used by Frie-
drich in his study of the hyperbolic nature of the gravita-
tional field equations. We will present here a generaliza-
tion of Friedrich’s results that is convenient for our dis-
cussion. 

Although we work with coordinate independent ex-
pressions, we also relate our work with the widely used 
harmonic gauge condition; and take the opportunity to 
restate Anderson’s result in a coordinate independent 
fashion. 

An approximation scheme is suggested in which the 
previous studies are taking into account. 

We apply our techniques to the problem of a single 
particle up to the second order. 
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2. The Decomposition of the Metric 

Let us express the metric abg  of the spacetime M  in 
terms of a reference metric ab , such that  

=ab ab ab.g h                     (1) 

Let a  denote the torsion free metric connection of 

ab


  and a  the torsion free metric connection of abg ; 
then one can express the covariant derivative of an arbi- 
trary vector  by  v

=b b b
a a a cv v v   ;c                (2) 

and one can prove that  

 1
= = .        (3) 

2
c cd c

ab a bd b ad d ab bag h h h      

Let us observe that 

 

 

1
= =

2
1

.
2

c cd
a b ce aeb ce a bd b ad d ab

a be b ae e ab

g g g h h h

h h h

     

    
  (4) 

The relation between  and the curvature tensor can 
be calculated from  



  , =

;

d d d d e d e
a b a b c b a c a e b c b e a c

d c d c
abc abc

v v

v R v

         

 

c

e

 (5) 

where  is the curvature of the a  connection. Then 
the Ricci tensor can be calculated from  

 

=b b b b e b
ac abc ac a b c b a c a e b c b e a cR R           ; (6) 

where  is the Ricci tensor of the connexion ac a . 

3. Auxiliary Functions or Gauge Vector 

Let us consider four independent auxiliary functions x , 
with = 0,1, 2,3 . Then let us observe that  

= =ab ab ab ab c
a b a b a b ab c .g x g x g x g x             (7) 

Then, if eI  denotes the inverse of c x , which 
exists by assumption of the independence of the set x , 
one has  

 =ab c ab ab c c
ab a b a b =g g x g x I H  I           (8) 

where we are using  

= .ab ab
a b a bH g x g x       

;c

        (9) 

Alternatively, let us define the gauge vector   c

=c H I                  (10) 

which implies  

 = =c
c ;H x     x           (11) 

so that one also has 

=ab c c
a bg   .              (12) 

These equations show the relation that exist between 
working with a coordinate system, given by the set of 
functions x , and the gauge vector ; which does not 
need any reference to coordinate systems at all. In what 
follows we will try to use the covariant approach that 
employs the use of the gauge vector . We emphasize 
that Latin indices are abstract; and therefore our expres-
sions are coordinate independent and covariant. 

c

c

Then, the Ricci tensor can be expressed by 

 

 

 

1
= 2

2
1

2

1
.

2

bd e e e
ac ac bad ec bcd ea bca ed

bd e
b d ac a ce

e d bf d e
ed a c ed a f b c

bd bd
a bcd c bad

R g h h

g h g

g g g

     

   

    

    





h

 (13) 

Let us note that if the vector field  is given by 
(12), then for any function 

c
x  one has  

 =ab ab
a b a b .g x g x x              (14) 

In the standard studies on approximations to the solu-
tion of the field equations, one frequently finds the 
choice of harmonic coordinates for the set of the x ’s; 
however, in Equation (13) one can see that only the vec-
tor field  appears, without any reference to a choice 
of auxiliary functions. Therefore one could just refer to 
the gauge vector . 

c

c

4. The Field Equations in Relaxed Covariant 
Form 

Previous to the discussion of the relaxed covariant field 
equations, we would like to refer to the work of Friedrich 
[1] and its extension to this coordinate independent dis-
cussion. 

4.1. Friedrich’s Theorem without the Use of 
Coordinates 

The field equations are 

1
= 8π .

2
bd

ac ac ac bdR T g g T    
 

       (15) 

Equation (3.22) in reference [1] can be obtained from 
(13) by expressing it in a coordinate frame and neg- 
lecting the   terms. In this way, one would obtain the 
analogous expression where all the appearance of   
derivatives are replaced by coordinate derivatives  , 
the tensors   are replaced by the Chrirstoffel symbols 
and one uses =F H  ; namely:  
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( )

1

2
1

2
1

= 8π
2

g g g F g g

T g g T

    
         

 
   


  

      

    

   
 

   (16) 

Friedrich has studied [1] this system introducing the 
notion of “coordinate gauge source’’  

= .F x  
                  (17) 

Subsequently, Friedrich studied the case in which F   
is given arbitrarily. 

Then, we can rephrase Friedrich’s theorem in the fol-
lowing form: 

Theorem 4.1 Let x  be four independent functions 
that are used as a coordinate system. If g

=

 is a 
solution of (16) together with the matter equations such 
that on the initial surface one has F x  

  , 
=F x     

   , then g  is in fact a solution of 
Einstein’s field equations.  
 This theorem can be understood in two ways. In one of 
them, we think that the four coordinates x  are given 
and then the theorem checks whether the F  ’s satisfy 
the above equations. In the other way, one think that the 
F  ’s are given and then the theorem checks whether 
there exists a coordinate system of x ’s such that the 
equations in the theorem are satisfied. 

From the fact that =H F  , one deduces, using the 
same techniques as in [1], that the generalized Friedrich’s 
theorem holds, namely, consider the four functions H   
as given a priori, then: 

Theorem 4.2 If abg  is a solution of (15), with the 
decomposition of the metric as in (1) and with the Ricci 
tensor as given by (13) with =c cH I



 ab
a b

, together with 
the matter equations such that on the initial surface one 
has = ab

a bH g x g x   
ab

  

= ab

 ,  

c c a b a bH g x g x         , where x  are  

four independent scalars, then abg  is in fact a solution 
of Einstein’s field equations.  

This result gives great freedom in the problem of find-
ing solutions of the field equations in terms of a refer-
ence metric. Suppose that one solves (15) for a given 
vector field H  . Also assume that one can solve for the 
functions x  such that =ab

a bg x H    . Then, let 
us build a flat metric   so that ; which 
in particular can be satisfied if the 

= 0xab
a bg  

x s are thought as 
Cartesian coordinates of  . In this way one would 
obtain , and so have a solution of the 
field equations. 

=
e ab

abg  eH I

It also might be of interest to researchers in numerical 
relativity, since it provides the possibility to use any co-
ordinate system; i.e., not necessarily an harmonic one. 

Instead, one could have a proposition that does not refer 
to the auxiliary functions whatsoever; namely  

Theorem 4.3 If abg  is a solution of (15), with the 
decomposition of the metric as in (1) and with the Ricci 
tensor as given by (13), together with the matter equations 
such that on the initial surface one has =c ab c

a bg  , 
 ab c=c g d d a b , then abg  is in fact a solution of 

Einstein’s field equations. 
This theorem can be understood in two ways. In one of 

them, we think that the metric ab  is given and then the 
theorem checks whether the vector  satisfies the 
above equations. In the other way, one think that the  
is given and then the theorem checks whether there exists 
a metric 

c


ab  such that the equations in the theorem are 
satisfied. 

4.2. Relaxed Covariant Form of the Field 
Equations and a Generalization of 
Friedrich’s Theorem 

Alternatively one can use the form of the field equations 
in terms of a slight different logic. 

When we use the expression of the Ricci tensor as 
given by (13) in (15), without assuming that  is c

ab c
abg  , namely 

 

 

 

1

2
1

2
2

1

2
1

8π ;
2

bd e d e
b d ac a ce ed ac ac

bd e e e
bad ec bcd ea bca ed

bf d e bd bd
ed a f b c a bcd c bad

bd
ac ac bd

g h g g

g h h h

g g

T g g T

     

    

       

    
 

 

   (18) 

we will refer to these as the relaxed field equations [2]. 
Using the standard harmonic gauge technique, one 

would say: solve the relaxed field equation in the coord- 
inate frame, with , and then require the equation  = 0H 

= 0.bd
b dg x                (19) 

In the standard approach one makes use of coordinate 
basis; therefore the previous statement would be the 
complete story. However in our case, H   has a second 
term where two covariant derivatives of x  with re-
spect to the metric   appears. At this point it is impor-
tant to notice that if we have the solutions x  from (19) 
then, on constructing   with this as a Cartesian coord- 
inate system, one would obtain . = 0H 

In some occasions it is preferable to work with a dif-
ferent set of equations. In this respect, several authors 
have indicated that actually to request Equation (19) is 
equivalent [2-4] to demand  

= 0.ab
a bcg T              (20) 

Copyright © 2012 SciRes.                                                                                 JMP 



E. GALLO, O. M. MORESCHI 1250 

When dealing with Einstein equations in the relaxed 
form, and treating the vacuum case, Equation (20) is un-
derstood as the condition that the divergence of the Ein-
stein tensor must be zero (which of course is identically 
zero in the non relaxed form). 

Let us study the relation between the divergence of the 
energy-momentum tensor and the vector . One can 
write the relaxed field Equations (18) in the usual form in 
which on the right hand side we have just the standard 
term ; and so on the left hand side, the terms 
involving  would be  

e

8π acT
e

  1
;

2
e ef

a ce ac e fg g g              (21) 

where we have used that the term  contributes 
with the term  

8π T

.ef
e fg                     (22) 

Then in taking its divergence, on the left hand side, the 
terms involving  are  e

  1
.

2
ab e ef

a a ce ac e fg g g g   









e

     (23) 

If we replace  by , the divergence of 
the left hand side would be identically zero, since the 
Einstein tensor has divergence zero. Therefore we con-
clude that the divergence of the stress energy-momentum 
tensor is 

e e ab
abg  

  
  

8π =

1
.

2

ab ab e e
a bc a b ce

de f f
bc d ef

g T g g

g g g

      


   






   (24) 

Therefore, the stress energy-momentum is conserved if 
and only if 

  
  1

= 0.
2

ab e e
a ce

de f f
bc d ef

g g

g g g

  


   






     (25) 

Working out the relations, one finds that the previous 
equation can be expressed as  

  1 1
0 = .

2 2
ab e e e e

ce a b ceg g R       

b 

  (26) 

Which coincides with Friedrich calculation. 
It follows that if one solves Equation (26) such that on 

an initial hypersurface  and , 
then the energy-momentum tensor will be conserved in 
the evolution of the system. Furthermore, one also de-
duces that: 

=b  =b b
a a 

Theorem 4.4 If, given the metric  , one solves the 
relaxed field equations for  together with the matter 

equations, which include the conservation of the energy- 
momentum tensor, such that b  and  
on an initial hypersurface, then 

h

=b 

ab

=b b
a a  

g  is a solution of 
Einstein equations.  

This is a rephrasing of Friedrich’s theorem applied to a 
decomposition of the metric and to its general relaxed 
covariant form of the field equations. 

It is interesting to remark that Anderson [3], using a 
retarded integral expression for , was able to prove the 
equivalence between the conservation of the energy- 
momentum tensor with the harmonic gauge condition. In 
relation to this let us remark that if the set of functions 

h

x  is obtained from the solutions of (19); and one uses 
them as harmonic coordinates of the metric  , then one 
deduces that . And also, if , then Carte-
sian coordinates of 

= 0c = 0c
  are harmonic coordinates of g . 

This means that we can state Anderson’s result in a coor-
dinate independent way, namely:  

Theorem 4.5 Let  be the retarded solution, with 
respect to a flat metric  of the relaxed field equations 
together with the matter equations of state, such that 

, then the conservation of the energy-momentum 
tensor implies that 

h
h

ab

= 0b
g  is a solution of Einstein 

equations.  

5. The Approximation Method and the 
Treatment of Particles 

The approximation method that we introduce below, is 
adapted to the treatment of particles; therefore, it is con-
venient to begin by treating the problem of one single 
particle in the context of linearized gravity, in order to 
clarify some of the techniques. 

5.1. The Gravitational Field from One Particle in 
Linearized Gravity 

5.1.1. The Description of a Particle 
Let us consider a massive point particle with mass A  
describing, in a flat space-time 

m
 0 , abM  , a curve C 

which in a Cartesian coordinate system ax  reads  

 = ,x z                   (27) 

with   meaning the proper time of the particle along 
. C
The unit tangent vector to , with respect to the flat 

background metric is  
C

= ,
dz

d
u





                (28) 

that is,  , = 1u u . Now, for each point  =Q z   of 
, we draw a future null cone Q  with vertex in . 

If we call 
C C Q

Px  the Minkowskian coordinates of an arbi-
trary point on the cone Q , then we can define the re-
tarded radial distance on the null cone by  

C
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 = Pr u x z 
 .             (29) 

The energy momentum tensor  of a point particle 
is proportional to a b ; where  is the mass and  
its four velocity. We are distinguishing between the unit 
tangent vector  and the four velocity vector , be-
cause in future works we would like to consider the pos-
sibility to normalize the vector  with respect to a dif-
ferent metric. In order to represent a point particle  
must also be proportional to a three dimensional delta 
function that has support on the world line of the particle. 

(0)
abT

m

v

mv v av

(0)
abT

au av

We will suppose that the particle does not have multi-
polar structure. Then, given an arbitrary Minkowskian 
frame  0 1 2 3, , , x x x x , we will express the energy mo-
mentum by  

    
   
        

 

0 0 0 1 2 3
0

0 0

1 1 2 2 3 3
0 0

0
0

= , , ,

=

.

ab

a b
A

T x z x x x

m v v

x z x z x z

u



 

     



   0

  (30) 

5.1.2. The First Order Solution 
The retarded solution, in terms of Green functions, for 
the relaxed field Equations (18) for particle A , in which 
we take  and = 0b   a flat metric, is  

 1

1
2= 4 ;

a b ab

ab A

v v
h m

r


             (31) 

so that in general  

 1 2 4
= 1 .A A

ab ab a b

m m
g v v

r r
   

 
         (32) 

In these equations we have considered the definition  

.                  (33) b
a abv v

It is interesting to realize that the exact inverse of this 
metric is 

 1

2

4
1

= .
2 21 1

A

ab ab a b

A A

m

rg v v
m m
r r

 
   
 

     (34) 

Note that one can solve for ab  for an arbitrary mo-
tion of the particle; however, the complete solution of the 
problem involves having to set also ; which in 
terms of a coordinate frame treatment is equivalent to the 
harmonic condition. Then, recalling, as mentioned pre-
viously, that Anderson has proved [3] the equivalence 
between the harmonic condition and the divergence free 
condition on the energy-momentum tensor; one deduces 
from this, that for the case of the energy-momentum ten-
sor of a particle it implies its geodesic motion. 

h

= 0b

5.2. Iterative Approximation Method 

Now we present a general iterative method to solve the 
relaxed field equations. 

First of all, let us note that given the decomposition (1) 
and defining the tensor  from  abh

=ab ac bd
cdh   ,h

,

               (35) 

where  

=ab a
bc c                     (36) 

that is ab  is the inverse of ab , one can always 
express the inverse abg  in the form  

=ab ab ab ab.g h d                (37) 

Then making the contraction  

= =ab a ab ab a
bc c bc bc cg g h h d g ;        (38) 

one finds 

=ab ad cb
dcd h h g  ;               (39) 

which can be considered an implicit equation for ; 
but it also shows explicitly that  is quadratic in terms 
of . 

abd
d

h
This suggests the natural series  

defined by  
2 3 4 5 6, , , , ,d d d d d 

 2 =ab ad cb
dcd h h   ,                 (40) 

 3 =ab ad cb cb
dcd h h h  ;             (41) 

  2= ;ab ad cb cb cb
n dc nd h h h d           (42) 

for natural numbers . It is clear that  is order 
. 

> 3n nd
 nh
However, we have seen that in the first order solution 

for a single particle, the inverse of the metric has a term 
which is conformal to the flat metric  ; which it will be 
convenient to take into account. For this reason we pro-
pose the following method of approximation where this 
issue is considered. 

The idea is to express (18) and eventually (19) in the 
form 

 =ab
a b ;f S f               (43) 

where ab  is the term proportional to ab  that is 
contained in abg ; while the general case would be to 
consider just a b

ab f    for the left hand side. This 
equation can also be expressed by  

     =ab
a b ;f s f S f             (44) 

where 

   ab ab
a b a bs f f    f           (45) 

Now one would like to solve Equation (44) by itera- 
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tions. 
Let us define the sets  jf  such that for , one 

takes , 
= 0j

= 0h x  to be harmonic functions of the metric 
  and = 1 ; and for , > 0j  jf  is the solution of  

        1= .j j jab
a b f s f S f      j  j 11 1   (46) 

using the retarded Green function. As we have seen 
above,  1  clearly arises in the first order calculation. 

The application of this method to the first order, for a 
single particle, reproduces the calculation explained in 
Subsection 5.1.2. Next we study this case at second order. 

5.3. The Second Order Solution 

Let us remark that the first order solution is stationary 
and spherically symmetric. This structure transports to 
the second order solution. 

The equation for  is  (2)
abh

        

       

        
 

2 1 1 1
(

1 1 1 1

1 1 1 1

1

1
=

2

1

2

8π .

ebd e d
b d ac ce ed a c

bf d e
ed a f b c

bd bd
a bcd c bad

ac

h g g

g g

T

     

  

    



 

     (47) 

We will call the right hand side, the tensor ; which 
has the structure  



       2 22= ;r dt r d r d    x x x



     (48) 

where we are using the three dimentional notation 
= , ,x y zx  and where  

   
 

2

32

2
= 8π ,

2 2

m
m

m r m r r
 

 
x      (49) 

 
   

2

2 2

2 4
=

2 2

m m r

m r m r r


 

 
,               (50) 

 
   

2 2 2

2 2 4

8 2 2
=

2 2

m m mr r

m r m r r


 

 
.

x

,

;C

              (51) 

Therefore one assumes for  the same form, 
namely  

 2h

       2 2(2) 2= .h A r dt B r d C r d  x x   (52) 

In this way one has  
 2
00 = ,h A                       (53) 

    22 = i
iih B x C              (54) 

 2 = i j
ijh x x                   (55) 

where the index  denote spatial coordinates. , = 1, 2,3i j

One can see then that the equations to solve are  

= 2 ,A                      (56) 

4
= 2 ,

dC
C

r dr
               (57) 

 = 2 ;B   C                (58) 

where we are using the symbol  to denote  bd
b d   . 

We can solve these equations in two ways, either using 
Green function techniques, or, recalling the stationary 
nature of the solution, just integrating the Laplace opera-
tor. For this presentation we choose the second option. 
Let us note that for any function  f r  one has that  

  2 2
2

1 d d
= =

d d

f
f r f r

r rr

        
 .


       (59) 

Therefore one can find A  by two consecutive inte- 
grations, obtaining  

  1
2

2
11 2

= 1 ln .    (60) 
24 1

m
kam rA r ka

mr r
r

       
   

 

Similarly one can see that the function  satisfies   C r

6
6

1 d d
= 2 ;

d d

C
r

r rr
   

 
           (61) 

which after integration gives  

 

   

5 5
2 5

5 5 5

2 2 5 4
1 2

3 2 2 3 4

1 2
( ) = 288 ln 1

40

2
416 7 ln 1 128 ln

8 40 352

. 16 16 12 .

m
C r r m

rm r

m
m r m r

r

kc m kc m r m r

m r m r mr

     
 

     
 

  

   




  (62) 

Then the function  B r  is given by  

 


  



5 3 2 2 3 5
2 3

5 3 2

2 3 5 5

2 2 2 3 2
1 2 1

2 5 4 3 2 4
2

1
( ) = 288 20 30

120
2

ln 1 416 20

2
130 7 ln 1 128 ln

120 120 8

40 352 1024 12 .

B r m m r m r r
m r

m
m m r

r

m
m r r m r

r

kb m r kb m r kc m

kc m r m r m r mr

  

      
 

     
 

  

   

 (63) 

Our choice for the integration constants is: , 1 =ka m

2 = 0ka , 1

181
=

15
kb m , 2

17
=

15
kb , 3

1

74
=

5
kc m  and  

2 = 0kc . This choice is made taking into consideration 
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the exact solution and the integration of the solution 
coming from a Green function approach; that we will not 
discuss here due to considerations of space. By the exact 
functions we mean the metric components of the Sch- 
warzschild spacetime in harmonic coordinates; which are 

ues of the metric components; even for very small values 
of the radial coordinate. Although this comparison has 
limited value, it is in any case remarkable that it is only 
necessary to go only to second order to obtain such a 
good approximation. 

1
=

1
exact

m
rA
m

r





6. Final Comments 
,                 (64) 

We have presented an study of an approach to the gravi-
tational field equation through the relaxed covariant form 
of them. The whole approach is intended to deal with the 
notion of compact objects. 

2

= 1 ,exact

m
B

r
  
 

              (65) 
The relaxed field equations was studied using Frie-

drich approach to the problem and we have also refer to 
Anderson’s result in the field of harmonic conditions. 2

4

1
=

1
exact

m
mrC

m r
r

  
 
 
 

.             (66) We have generalized Friedrich results to a covariant 
formulation in terms of a decomposition of the metric. 

Anderson’s result has been restated in a form that does 
not make reference to coordinate conditions. A graphical comparison with the exact functions of the 

Schwarzschild solution in harmonic coordinates are 
shown in Figure 1. 

We have presented an approximation method that can 
be applied to the notion of particles in general relativity; 
and which is successful in second order for the case of a 
solitary compact body. 

It can be observed that in second order one obtains 
anexcellent comparison of the solution with the exact val- 
 

 

Figure 1. Comparison of the functions calculated in the second iteration with the exact values.   
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It is our intention to apply these techniques to the pro- 

blem of a binary system in general relativity. 
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ABSTRACT 

What is the physical nature of gravitinos? As asked before, this question was the template of how to introduce Machian 
Physics as a way to link gravitinos in the electro weak era and gravitons as of the present. What we wish to do now is to 
ask how a flaw in the Higgs equation as brought up by Comay shows a branch off from orthodox quantum physics, 
leading to, with the Machs principle application done earlier a way to embed the beginning of the universe as a semi 
classical superstructure of which Quantum Mechanics is a subset of. We argue that this will necessitate a review of the 
Higgs equation of state for reasons stated in the manuscript. We also finally review a proprosal for another form of mass 
formation mechanism as a replacement for the Higgs mass as introduced by Glinka and Beckwith, 2012, with commen-
tary as to how suitable it may be to get a gravitino mass in fidelity to the Machian proposal introduced by Beckwith 
previously, to get linkage between electroweak era gravitinos and present day gravitons. 
 
Keywords: Machian Physics; Gravitinos; Higgs Mass Formation; Quantum Mechanics; Dirac Equation;  

Electro-Weak (EW) Era 

1. Introduction 

We will ask the question here. In an earlier document, 
the author presented an equivilence between Gravitinos 
in the electro weak era, and Gravitons today. The moti-
vation of using two types of Machs principle, one for the 
Gravitinos in the electro weak era, and then the 2nd mod-
ern day Mach’s principle, as organized by the author are 
as seen in [1]  

2 2
0

todayelectro weak Super partner Not Super Partner

electro weak

G MGM

R c R c

  



    (1) 

are really a statement of information conservation. What 
we now ask is if the Gravitino can be re stated in terms in 
fidelity to quantum mechanics, or if some other theoreti-
cal constuction must be used. The motivation for asking 
this question will be seen in examining if the Gravitino, 
as in the mass in the left hand side of Equation (1), as it 
materializes due to Comay’s [2] presentation as to de-
fects in the Higgs equation of state, is in fidelity with 
QM principles. If not, then what would replace it? 

Higgs changed HiggsH H   
                  (2) 

And 

d

d
Higgs Gravitino

Higgs changed Higgs Gravitinoi H
t




       (3) 

In fidelity with the physics evolution of 

d

d
Dirac

Dirac Diraci H
t


                   (4) 

Whereas what is observed is, instead [2] 

d

d
Higgs Gravitino

Higgs Higgs Gravitinoi H
t




        (5) 

To further elucidate this question, we will also ask if 
there is a way to encapsulate Higgs  in Equation (2) 
above in the methodology of constucting QM within a 
larger, semi classical theory. As given in the 5th Dice 
2010 work shop, as given by Elze, Gambarotta and Val-
lone [3] there is a speculated ensemble theory involving a 
“Liouville superator” 

H

̂  of  

ˆ" " "ti state state"             (6) 

The end result is, after a Fourier transform re casting 
the Equation (6) in terms of a matrix equation looking 
like  

,
,

,
,

t jk jk lm lm
l m

jk lm jl mk jl mk lm
l m

i

H H

  

   

 

    




      (7) 

We will discuss Equation (7) in a generalized incanta-
tion in APPENDIX A which will show as that the quan-
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tum mechanics type interactions require a most special-
ized potential, as either a constant, or a Harmonic poten-
tial, with others not sutiable, if we wish to extract quan-
tum mechanics from the results of Equation (7), and from 
there to comment upon candidate equations which may 
be a way to contain Higgs  as far as a generalized the-
ory which may contain QM (Dirac) type behavior. If not, 
then Equation (2) does not qualify as far as having 

H

Higgs  reduced to a quantum mechanica subset and we 
must then go to the Comay description of the Higgs 
equation used to define the creation of/evolution of the 
Gravitino as faulty physics, needing an abrupt fix to re-
duce it to the form of Equation (2) to salvage quantum 
mechanics. 

H

Appendix B brings up the relevance of the Dirac 
eqjatkl to the critique which Comay [2] brings to the 
discussion of a proper equation for a well behaved ex-
perimentally verified equation. We add an example of 
how early universe Lorentz violation is equivilent to the 
break up of the fidelity of the Higgs term, and in fact, the 
Equation (B12) presented in Appendix B is in its behav-
ior (if it were 10 orders of magnitude larger, i.e. as a 
Torsion term added in) very similar to the problem out-
lined in equation( B6) in the Higgs potential, i.e. note in 
Equation (B3) with the unwanted     term which 
blocks the Higgs equation of state from having the good 
behavior postulated by Comay [2] in his Claims 1, 2 and 
3 as given in Appendix B below. Note also that the prob-
lem as outlined in     term shows up in an even more 
glaring fashion in the incredibly complicated Lagrangian 
specified for the formation of Gravitinos in the early 
universe. We will get to that next. It is useful to compare 
these ideas with what J. Lee published recently [4]. 

2. Examining the Formation of Gravitinos in 
the Early Universe 

In [5] the density is given by, if g  is for early universe 
degrees of freedom 

2
4π

30
g T 

 
  

 
                  (8) 

With a resulting Hubble rate for the radiation era as 
written as for  H T , radiation era, as 

 
2

2π

90

g
H T   T                (9) 

The early Gravitino relic density is then given by an 
expression 
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R

mk T
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This is, in terms of re heating temperature very close 
to linear in growth due to scaling with a re heating tem-
perature RT . One obtains an approximately linear 
growth rate in terms of gravitino density with a most 
complicated Lagrangian density function which is in the 
top of Section 2.2. of [5] is so complicated that one can-
not, even in linear approximations of it get either a clas-
sical or a quantum analogy in terms easily identifiable 
terms of page 5 of this Ph.D. dissertation. We will review 
in Appendix A the DICE 2010 [3] article treatment of 
quantum mechanics in a larger non linear theory [3], and 
in Appendix B the Comay [2] treatment in terms of la-
grangian density both for the Dirac Eq, and also for the 
Higgs, and then from there make the case necessary as to 
if the Gravititino is quantum mechanical in its construc-
tion or not. 

3. Getting the Template as to Keeping 
Information Content Avaiable for 
Equation (10) Right and Its Implications 
for Equation (1) and Equation (4), and 
Equation (5). Yielding a New Expression 
of Gravitino Mass in the EW Regime? 

The Machian hypothesis and actually Equation (10) are a 
way to address a serious issue, i.e. how to keep the con-
sistency of physical law intact, in cosmological evolution 
[1]. Another significant issue is the following. How to 
reconcile the Comay hypothesis [2] and postulates, as 
given in Appendix B, and also the DICE 2010 delination 
of QM as in Appendix A either requiring a zero valued 
potential, a constant potential, or a potential with quad-
ratic flavor to delineate clear quantum mechanical be-
havior [3]. If these potential field requirements are not 
met, as given by Appendix A [3], then one has to ask if a 
Higgs mechanism in fidelity with Appendix B [2] can be 
constructed for an allegedly optimal experimental mod-
eling of mass formation.  

Equation (10), which has neither a zero valued poten-
tial, a linear or a quadratic potential is clearly NOT in 
sync with the DICE 2010 Appendix A treatments leading 
to quantum mechanics, alone [3]. 

Equation (10) does NOT have fidelity with the sort of 
Comay criteria [2] as given in Appendix B as to a poten-
tial energy which is most likely to have optimal match up 
with experimental data as cited by the Dirac equation 
results as given in the Comay article. 

g T     (10) 

Either Equation (10) signifies that there is no match up 
with the sort of evolution equation (for creation of a 
Gravitino in the electro weak era) as exemplified by the 
Dirac Equation which Comay likes so much [2], or we 
have to go to live with the results as given by Appendix 
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B, that what we are seeing in the Gravitino in the Electro 
weak era is quantum mechanics contained in a larger non 
linear theory, as Elze seem to be inferring [3] as brought 
up in Appendix A. 

4. Another Approach. How about a New 
Method for Obtaining in the Electroweak 
Era Mass without the Higgs? 

What we can look at is the Glinka-Beckwith [6] proposal 
as to a new mass formation process,which may show a 
different way to examine potential systems, as opposed 
to the either-or criteria as given by Appendix A [3] and 
Appendix B [2] below. To do so, note that the article as 
given in. 

22
2

2

k
m

cc

       
   

 
          (11) 

We can treat the k as a wave “vector”, and look at the 
term  as an energy term. Dependent upon how we 
interpret 

 
,in

 , i.e. as a per unit interpretation of energy, 
we could reconcile a treatment of a physically averaged 
out quantity of the potential energy as given in [5] is 
contained via the correct effective Lagrangian for light 
gravitinos t


 , which is Equation (2.82), page 22 of 

Pradler’s dissertation [5] for obtaining gravitino interac-
tions with ordinary matter fields. 

We can, to first order model the at in the Gravit-
ino-matter field interaction as [5] 

     
,int , a a 8 PlV i F M   

         
      
    (12) 

This Equation (12) is the potential energy term of 
Equation (2.82), page 22 of Josef Pradler’s [5] disserta-
tion, and we argue that the physics of the gravitino, as 
interacting with matter in the electro weak regime, can be 
to first order, averaged out to be an energy which can be 
then made equivilent to  of Equation (11). We argue 
then that effectively, in early universe conditions that we 
are looking at, then [6], 

  2
2

,int2

2 2
~

EW

V
m vanishingly

c c

small terms

M im


          

 
 





  (13) 

Then, if we do Equation (13) in this spirit, we can then 
go to what Glinka-Beckwith wrote [6] and look at  
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        (14) 

Terms such as 

ˆˆ ˆ yx z
pp p

i j k
c c c

 
      
 

          (15) 

vanish from Equation(14). 
Ultimately, the analysis of terms as specified in a 

gravitino-EW “matter” regime would specify the exact 
particulars as to Equation (12). We will also venture a 
first order approximate description as to why the mass of 
the Graviton in the later regime of space time, near the 
present would be so much smaller than the Gravitino.  

5. Conclusion 

Via use of the Glinka-Beckwith approximation for the 
formation of Mass, we have come up with a criteria 
where the Gravitino interaction with space-time physics 
in the electro weak, as outlined above, can be construed 
as either embedded within a larger theory than QM, as 
suggested by Elze et al. [3], or a corrected Higgs mass 
formation [2], or something else, which has to be con-
structed. As outlined by Beckwith [1] there is room to 
delineate if such a gravitino, using some of the field 
theoretic construction as given by [5] will be either clas-
sically embedded, or something else. The formalism as to 
massive graviton distortion of early universe space time, 
as given in [7], and [8] needs to be developed more fully, 
and we hope we can experimentally test if t’Hoofts sup-
position about QM [9] is falisifiable experimentally, and 
analytically, in this early universe setting, as brought up 
by the author [1]. 
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Appendix A  ˆ ˆ

t Q qi H H                (A8) 
Elze et al. DICE 2010 Summary as to Quantum 
Mechanics Embedded in a Larger Non Linear 
Classical Theory 

I.e. then we have that for the potentials represented by 
Equation (7), there is an overlap between classical and 
quantum versions of the Liouville equation as given by 
the Von Neuman equation as presented by  This discussion serves to bring up a Quantum like ver-

sion of the Liouville equation and to from there to also 
make sense of the given equation, as of the main text [3]: ˆ ˆ,ti H     


               (A9) 

ˆ" " "ti state state               (6) In so many words, we have a QM type situation guar-
anteed if Equation (A7) holds, whereas we can solve a 
more general theoretical construction in which there may 
be what is known as a super action given by  

To begin with, look at a generic Hamiltonian as given 
by 

   21
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   (A10) This Hamiltonian is incorporated in the Lioville equa-

tion of motion 
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 (A2) 
We then will be stuck with working with Equation 

(A4). 
When the super action is reduced to, with Equation 

(A7)  The upshot if a Fourier transform is taken of Equation 
(A2) above, and the space like co-ordinates of  To 

: 2

: 2

Q x y

q x y

 
 

               (A3)    
0

2 2: d
2 2

t

t

m m
S Q V Q q V             

   q  (A11) 

Equation (A1) then becomes We recover Equation (A9). 
In short, the restrictions on the potential energy, as 

given by Equation (A7) are essential for the formation of 
quantum mechanics for exact quantum mechanical Hil-
bert space operators, whereas more general cases with 
 , : 0Q q  . 

  ˆ ˆ ,t Q qi H H Q q               (A4) 

The term put in, namely  ,Q q  which retrieves if 
we have classical or quantum information, and also, note 

 21ˆ
2

H V  
              (A5) Embedd quatum mechanics into the semi classical 

equation regime, as was specified by Elze and others. 

And 
Appendix B 

   

     

, :
2

,

d Q q
Q q Q q V

dt

V Q V q q Q





        
   



       (A6) 

Problems with the Higgs Equation, Lectured 
Upon in Chongqing University, November 2011 

We summarize the main point of Comay’s article [2] in 
terms of their relationship to the Dirac equation and the 
question of what is the optimal form of a physics equa-
tion most in fidelity to experimental measurements. 

Then, 

 , : 0 , ~ ,

~

Q q V const V linear

V harmonic

   
     (A7) 

The initial points of this borrowing from Comay have 
already been made in Equation (2) to Equation (5) so we If so, then one can write 
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will be discussing the action integral intepretation which 
Comay made, which was his primary way to differentiate 
between the faulty mathematics as he saw in the Higgs 
equation and the Dirac equation. We will reproduce his 
arguments as to that intepretation in this appendix. 

  4
1 2, dS     x



          (B1) 

Here,  1 2,    is a Lagrangian density function 
which is a Lorentz scalar, so then Equation (B1) is a 
Lorentz scalar. 

The consequences that equation (B1) is a Lorentz sca-
lar lead to several claims by Comay to follow upon and 
to use. 

CLAIM 1: 
1) A relativistically consistent quantum theory may be 

derived from Lagrangian density  1 2,    which is a 
Lorentz scalar. 

2) An acceptable dimension for a Lagrangian density 
is of the form  4L  

3) A wave functional  x for both  1 2,     and 
 cannot define a composite particle if S x  is for a 

single four dimensional point in space time  
Sub claim to 3 above, and an effective re statement of 

3 is: If  x  were for a single ( not composite ) parti-
cle, then  

3*. A:  x  needs space time co-ordinates of its 
center of energy 

3*. B: One needs additional co-ordinates for describ-
ing internal structure. 

We shall then go to the next specific Comay Claim, 
namely  

CLAIM 2 
Use the following procedure to get consistency of a 

quantum (massive particle) theory with a classical (mas-
sive particle) particle theory, namely by using the fol-
lowing field equation, as given by 

0
x x

x






 


  
 

     

            (B2) 

For energy start off with the equation given by the 2nd 
order tensor, T , with 00  the energy density, and T
T  having  dimensions, with 4L

v
T g

x
x

 




  


 
  

     

          (B3) 

Sub set of CLAIM 2. In QM, the Hamiltonian is equal 
to the total energy, so we can write  as the Hamilto- 
nian density 

00T

00 Hamiltonian densityT
 



  





       (B4) 

Equation (B4) satisfies the continuity equation as 

given by 

, 0j                     (B5) 

Then either of the two happen: 
A. Hamiltionian density Hamiltonian density  may be 

used to extract Hamiltonian H so that one can write a 
Hamiltonian 

 

H  so that then the following happens: 
Energy E is an eignvalue of   

H E                   (B6) 

And the De Broglie functions hold as given by  

i E i H
t t

   
  

 
          (B7) 

So then the Hilbert space is formed using all   of 
H  (completeness of the Hilbert space, using basis from 
 ). 

OR 
B. Use expression for density to form inner product 

for inner product of   and construct an orthormal 
baisis set ( often using Gram Schmitz orthoganization) 
for othnormal basis for corresponding Hilbert space. 

Then, after B, to then look at a matrix equation given by 

  3
, ,; ; ; di j Hamiltonian density i i j j v,H x        (B8) 

Form a matrix from Equation (B8), and then diago-
nalize this matrix to get eignvalues   and ENERGY 
eignvectors . 

ClAIM 3 
Proceedures from CLAIM 1 and CLAIM 2, give the 

same eignvalues and eignvectors, SAME information.  
CLAIM 4 
The following Equations give almost the same infor-

mation, one QM, and the other CM (Quantum versus 
Classical) 

i E i H
t t

   
  

 
          (B9) 

0
x

x




x

 


  
  

     

          (B10) 

Applications of this formulation. See the Dirac Equa-
tion as given by Bjorken And Drell, [10], plus Comay 
[2]. 

This example works beautifully. Pion physics, Quark 
physics and more. There is an excellent match up with 
experiment. 

Next application, Higgs equation, so that  

 ~

Hamiltonian densityHiggs Higgs
E

H



   









   


 




Here we see then that 

      (B11) 
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i E DOESNOT i H
t t

  
 

 
    (B12) 

Specifically, for the Higgs, one has 




  , , .v uv . .Higgs g L O    T         (B13) 

Equation (B13) will then lead to a Hig
er

gs potential en-
gy looking like, in simplest form. Where we only know 

the ratio of   .  

     2† † †gsV Hig               (B14) 

And we get a vacuum state given by 

 

0

0


 
 
  

            (B15) 

For the Higgs nucleation of mass, for a Graviton, we 
ha

 

ve a huge problem, i.e. many undetermined coeffi-
cients. 

This is similar to what happens with Bjorken’s work 
[11]. 

Let  H DE  be the Hubble rate of expansion of the 
cosmos a scale factor as 

  expa t H DE 

, and set 

 t             (B17) 

Here we can re phrase ocH  
on a

as be
of expansion without torsi dded in. Also 

ing the Hubble rate 

     2 4 24π 1oc A PlH DE H M             (B18) 

If we go to the Zeldovich relationship 

   

 

1 20 24π 1A PlM  

320~ 10QCD PlM

      

 
        (B19) 

Then we get a Lorentz violating “Lagrangian” added 
on term looking like, if  

 
33

2

2π Ab 


  



10

1Pl

eV
M 

          (B20) 

5L b 
           

This Equation (B20) is a ten o
violation term, in the Potential fo
sp

       (B21) 

rders too small Lorentz 
r a Lagrangian, for 

ace-time emergence, but if it were larger, it would be 
similar in effect to the problem with the Higgs which 
Comay is outlining. Very close.  
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ABSTRACT 

Based on bipolar dynamic logic and bipolar quantum linear algebra, a causal theory of YinYang bipolar atom is intro-
duced in a completely background independent geometry that transcends spacetime. The causal theory leads to an equi-
librium-based super symmetrical quantum cosmology of negative-positive energies. It is contended that the new theory 
has opened an Eastern road toward quantum gravity with bipolar logical unifications of particle and wave, matter and 
antimatter, relativity and quantum entanglement. Information recovery after a black hole is discussed. It is shown that 
not only can the new theory be applied in physical worlds but also in logical, mental, social and biological worlds. Fal-
sifiability of the theory is discussed. 
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Information Recovery after a Black Hole; Real World Quantum Gravity 

1. Introduction 

Stephen Hawking’s black hole theory originally suggested 
that the universe would ultimately disappear in a black 
hole without information preservation. This suggestion 
was criticized for violating the 2nd law of thermodyna- 
mics. To remedy the inconsistency, Hawking proposed 
black body evaporation [2] and then particle emission [3]. 
After then he held his position for three decades. In 2004, 
he finally conceded a bet and agreed that black hole emis- 
sion does in fact preserve information. But so far it is 
unclear how to recover the information from the evapo- 
ration or particle emission and how the universe will 
evolve after a black hole. This uncertainty makes quan- 
tum theory incomplete and nihilism unavoidable. For ins- 
tance, M-theory predicts that a great many universes 
were created out of nothing [4, p. 5]. 

Equilibrium is a well-known scientific concept that 
subsumes symmetry or broken symmetry. Since equilib- 
rium is central in the 2nd law of thermodynamics—the 
paramount law of existence, energy, life, and information 
where bipolar equilibrium is a generic form, YinYang 
bipolar equilibrium-based approach to physics and sci- 
ence provides a fundamental super symmetrical alterna- 
tive for scientific unification. (Note: Equilibrium subsumes 
equilibrium, non-equilibrium and quasi-equilibrium be-
cause local non-equilibriums can form global equilibrium 
or quasi-equilibrium.) 

Atom as a basic unit of matter should follow equilib- 
rium or non-equilibrium conditions. It consists of a dense, 
central nucleus surrounded by a cloud of negatively char- 
ged electrons. The nucleus contains a mix of positively 
charged protons and electrically neutral neutrons (except 
in the case of hydrogen-1). The electrons of an atom are 
bound to the nucleus by the electromagnetic force. Like-
wise, a group of atoms can remain bound to each other, 
forming a molecule. In the case of antimatter atom, the 
cloud is formed with positively charged positrons and the 
atomic nucleus is negatively charged. 

Molecule is an electrically neutral group of at least two 
atoms held together by covalent chemical bonds. A cova- 
lent bond is a form of chemical bonding that is charac- 
terized by the sharing of pairs of electrons between atoms. 
The stable balance of attractive and repulsive forces be- 
tween atoms when they share electrons is known as co- 
valent bonding. 

An atom containing an equal number of protons and 
electrons is electrically neutral. Otherwise, it has a posi- 
tive or negative charge. A positively or negatively charged 
atom is known as an ion. An atom is classified according 
to the number of protons and neutrons in its nucleus: the 
number of protons determines the chemical element and 
the number of neutrons determines the isotope of the 
element. Figure 1 shows some examples. 

Legendary Danish physicist Niels Bohr, a father figure 
of quantum mechanics, brought YinYang into quantum 
theory for his particle-wave complementarity principle.  *The idea has been partially presented in Ref. [1]. 
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(a)           (b)           (c)           (d) 

Figure 1. (a) Matter hydrogen atom; (b) Proton of a hydro- 
gen surrounded by an electron cloud; (c) Matter helium 
atom with a nucleus (two protons and two neutrons) and 
two electrons; (d) Tiny nucleus of a helium atom is sur- 
rounded by electron cloud (Creative Commons: by User: 
Yzmo). 
 
When he was awarded the Order of the Elephant by the 
Danish government in 1947, he designed his own coat of 
arms which featured in the center a YinYang logo (or 
Taiji symbol) with the Latin motto “contraria sunt com- 
plementa” or “opposites are complementary”. 

While quantum mechanics recognized particle-wave 
complementarity it stopped short of identifying the es- 
sence of YinYang bipolar coexistence. Without bipola- 
rity any complementarity is less fundamental due to the 
missing “opposites”. On the other hand, if bipolar equi- 
librium is the most fundamental form of equilibrium, any 
multidimensional model such as string, superstring or 
M-theory cannot be most fundamental. In brief, action- 
reaction forces, particle-antiparticle pairs, negative-posi- 
tive energies, input and output, or the Yin and Yang in 
general are the most fundamental opposites of nature, but 
man and woman, space and time, particle and wave, truth 
and falsity are not exactly bipolar opposites. This could 
be the reason why Bohr believed that a causal description 
of a quantum process cannot be attained and we have to 
content ourselves with particle-wave complementary des- 
criptions [5]. It may also be the reason why modern phy- 
sics so far failed to find a definitive battleground for 
quantum gravity. 

Einstein pointed out: “For the time being we have to 
admit that we do not possess any general theoretical ba- 
sis for physics which can be regarded as its logical 
foundation.” “Physics constitutes a logical system of 
thought which is in a state of evolution, whose basis 
(principles) cannot be distilled, as it were, from experi- 
ence by an inductive method, but can only be arrived at 
by free invention.” 

In the above light, a causal theory of YinYang bipolar 
atom is introduced in this paper based on bipolar dy- 
namic logic and bipolar quantum linear algebra [6-8]. 
The theory provides a springboard to an equilibrium-ba- 
sed logical unification of particle and wave, matter and 
antimatter, relativity and quantum theory, strings and rea- 
lity as well as big bang and black hole. Information reco- 
very after a black hole is discussed. The logical, phy- 
sical, mental, biological and social implications of this 
work are formalized into a Q5 paradigm of quantum gra- 

vities [8]. 
This paper is organized into six sections. Following 

this introduction, a background review of the mathema- 
tical basis of this work is presented in Section 2. Yin-
Yang bipolar atom is presented in Section 3. Bipolar 
quantum cellular automata are introduced in Section 4. 
Section 5 presents the theory of YinYang bipolar quan- 
tum gravity. Section 6 draws a few conclusions as well as 
philosophical distinctions. 

2. YinYang Bipolar Dynamic Logic and 
Quantum Linear Algebra 

2.1. YinYang Bipolar Quantum Lattice and 
Bipolar Dynamic Logic (BDL) 

Aristotle’s causality principle became controversial in the 
18th century after David Hume challenged it from an em- 
pirical perspective. Hume argued that causation is irredu- 
cible to pure regularity. YinYang bipolar dynamic logic 
(BDL) [6,8-10] has changed this situation in a funda- 
mental way. BDL is defined on a bipolar quantum lattice 
B1 = {–1, 0}  {0, +1} = {(0,0), (0,1), (–1,0), (–1,1)} in 
YinYang bipolar geometry as shown in Figure 2. The 
four values of B1 form a bipolar set [8] which stand res- 
pectively for eternal equilibrium (0,0), non-equilibrium 
(–1,0), non-equilibrium (0,+1); equilibrium or harmony 
(–1,+1). Equation (1)-(12) in Table 1 provide the basic 
operations of BDL. The laws in Table 2 hold on BDL. 
Most interestingly, BUMP makes equilibrium-based bipo- 
lar quantum causality logically definable. 

An axiomatization of BDL (Table 3) has been proven 
sound and complete [8]. A key element in the axioma- 
tization is bipolar universal modus ponens (BUMP) (Ta- 
ble 4) which is a bipolar tautology, a non-linear bipolar 
dynamic generalization of classical modus ponens and a 
logical representation of bipolar quantum entanglement. 
Thus, BDL generalizes Boolean logic to a quantum logic 
where  and – are “balancers”;  and  are intuitive 
“oscillators”; – and – are counter-intuitive “oscilla- 
tors”; & and &– are “minimizers.” The linear, cross-pole, 
bipolar fusion, oscillation, interaction and entanglement 
properties are depicted in Figure 3. Bipolar relations and 
equilibrium relations are defined in [6,8,11,12]. 

2.2. Bipolar Quantum Linear Algebra (BQLA) 

The bipolar lattice B1 = {–1,0}  {0,1} and bipolar fuzzy 
lattice BF = [–1,0]  [0,1] can be naturally extended to the 
infinite bipolar lattice B = [–,0]  [0,+]. While B1 and 
BF are bounded complemented unit square crisp/fuzzy 
lattices, respectively, B is unbounded. (x,y),(u,v) B, 
Equations (13) and (14) define two major operations. 

Tensor Bipolar Multiplication: 

(x,y)  (u,v)  (xv+yu, xu+yv);      (13) 
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W.-R. ZHANG 1263

 

Figure 2. Hasse diagrams of B1 in YinYang bipolar geome- 
try. 
 

 

Figure 3. YinYang bipolar relativity: (a) Linear interaction; 
(b) Cross-pole non-linear interaction; (d) Oscillation; (e) 
Two entangled bipolar interactive variables. 
 
Table 1. YinYang Bipolar Dynamic Logic (BDL). (Note: 
The use |x| through this paper is for explicit bipolarity 
only). 

Bipolar Partial Ordering: (x,y)(u,v), iff |x||u| and y  v;   (1)
Complement: (x,y)(-1,1)-(x,y)(x,y)(-1-x,1-y);        (2)
Implication: (x,y)(u,v)(xu,yv)(xu), yv);        (3)
Negation: (x,y)  (y,x);                             (4)

Bipolar least upper bound (blub):  
blub((x,y),(u,v))(x,y)(u,v)(-(|x||u|),yv);                 (5)

Bipolar greatest lower bound (bglb):  
bglb((x,y),(u,v))  (x,y)(u,v)  (-(|x||u|),yv));              (6)
-blub: blub((x,y),(u,v)) (x,y)(u,v)  (–(y v),(|x||u|));      (7)
-bglb: bglb((x,y),(u,v))  (x,y)(u,v)  (– (yv), (|x||u|)));    (8)

Cross-pole greatest lower bound (cglb): 
cglb((x,y),(u,v))(x,y)(u,v)(-(|x|v||y|u|),(|x|u||y|v|)); (9)

Cross-pole least upper bound (cglb): 
club((x,y),(u,v))(x,y)(u,v)(-1,1)–((x,y)(u,v));          (10)

-cglb: cglb((x,y),(u,v))  (x,y)-(u,v)  ((x,y)(u,v));       (11)
-club: club((x,y),(u,v))(x,y)-(u,v) ((x,y) (u,v)).         (12)

 
Table 2. Bipolar laws. 

Excluded 
Middle  

(x,y) (x,y)  (-1,1); (x,y)(x,y)  (-1,1); 

No 
Contradiction 

((x,y)&(x,y))(-1,1); 
(( x,y)&( x,y))(-1,1); 

Linear Bipolar 
DeMorgan’s 
Laws 

((a,b)(c,d))  (a,b)(c,d); 
((a,b)(c,d))  (a,b)& (c,d); 
((a,b) (c,d))  (a,b) (c,d); 
 ((a,b) (c,d))  (a,b)& (c,d); 

Non-Linear 
Bipolar 
DeMorgan’s 
Laws 

((a,b) (c,d))  (a,b) (c,d);   
((a,b) (c,d))  ((a,b) (c,d); 
((a,b)- (c,d))  (a,b)- (c,d);  
((a,b)- (c,d))  (a,b)- (c,d) 

Table 3. Bipolar axiomatization 

Bipolar Linear Axioms: 
BA1: (-,+)((-,+)(-,+));  
BA2: ((-,+)((-,+)(-,+)))   
(((-,+)(-,+))((-,+)(-,+)));  
BA3: ((-,+)(-,+))(((-,+)(-,+))  (-,+));  
BA4:  (a) (-,+)&(-,+)(-,+);  

(b) (-,+)&(-,+)(-,+); 
BA5: (-,+)((-,+)((-,+)&(-,+))); 

Non-Linear Bipolar Universal Modus Ponens (BUMP) 
BR1: IF ((-,+)(-,+)), [((-,+)(-,+))&((-,+)(-,+))],  
      THEN [(-,+)(-,+)]; 

Bipolar Predicate Axioms and Rules of Inference 
BA6: x,(-(x),+(x))(-(t),+(t)); 
BA7: x,((-,+)(-,+))((-,+)x,(-,+);  
BR2-Generalization: (-,+)x,(-(x),+(x)) 

 
Table 4. Bipolar Universal Modus Ponens (BUMP). 

=(-,+), =(-,+), =(-,+), and =(-,+)  B1, 
[( ) & ()] () ()]. 

Two-fold universal instantiation: 
1) Operator instantiation:   as a universal operator can be bound to &, , 

&, , , ,  , . ( ) is designated bipolar true or (-1,+1); 
((-,+)(-,+)) is undesignated. 

2) Variable instantiation:  
      x, (-,+)(x) (-,+)(x); (-,+)(A);  (-,+)(A).   

 
Bipolar Addition: 

(x,y) + (u,v)  (x+u, y+v)       (14) 

In Equation (13),  is a cross-pole multiplication op- 
erator with the infused non-linear bipolar tensor seman- 
tics of --=+, -+=+-=1, and ++=+; + in Equation (14) is a 
linear bipolar addition or fusion operator. With the two 
basic operations, classical linear algebra is naturally ex- 
tended to BQLA with bipolar fusion, diffusion, interac- 
tion, oscillation, and quantum entanglement properties. 
These properties enable physical or biological agents to 
interact through bipolar fields such as atom-atom, cell- 
cell, heart-heart, heart-brain, brain-brain, organ-organ, 
and genome-genome bio-electromagnetic quantum fields 
as well as biochemical pathways. Thus, the bipolar pro- 
perties are suitable for equilibrium-based bipolar dy- 
namic modeling with quantum aspects where one kind of 
equilibrium or non-equilibrium can have causal effect to 
another. 

Given an input bipolar row vector matrix E = [ei] = 
[( ,i ie e  )] B, I = 1, 2, ..., k, and a bipolar connectivity 
matrix M = [mij] = [( ,ij ijm m  )], i = 1, 2, ..., k and j = 1, 
2,..., n, we have V = E  M = [Vj] = [( )]. While E 
is the input vector to a dynamic system characterized 
with the connectivity matrix M, V is the result row vector 
with n bipolar elements following Equation (15). 

,i iv v 

   
1

, ;  
k

j j j j j ij
i

V E M V v v V e m 



             (15) 

Equation (15) has the same form as in classical linear 
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algebra except for: 1) ej and mij are bipolar elements; 2) 
the multiplication operator is defined in Equation (13) on 
bipolar variables with bipolar (quantum) entanglement; 
and 3) the Σ operator is based on bipolar addition de- 
fined on bipolar variables in Equation (14). 

BQLA provides a new mathematical tool for modeling 
YinYang-n-elements with explicit bipolar equilibrium, 
quasi- or non-equilibrium representation for energy and 
stability analysis. Energies in a row matrix can be con- 
sidered as physical or biological energies of any agents 
such as quantum or cosmological negative and positive 
energies, repression and activation energies of regulator 
proteins. Energies embedded in a connectivity matrix can 
be deemed organizational energies that bind the agents 
together. The following laws hold for any physical or 
biological systems [7,8,13]. 

YinYang Bipolar Elementary Energy. Given a bipo- 
lar element ,  ,e e e 

1) ε−(e) = e– is the Yin or negative energy of e; 
2) ε+(e) = e+ is the Yang or positive energy of e; 
3) ε(e) = (ε−(e), ε+(e)) = (e–, e+) is the YinYang bipolar 

energy measure of e;  
4) The absolute total |ε|(e) = |ε−|(e) + |ε+|(e)  is the to-

tal energy of e;  
5) εimb(e)=|ε+|(e)  |ε−|(e) is the imbalance of e; 
6) EnergyBalance(e) = (|ε|(e)−|εimb(e)|)/2.0  

= min(|e−|, e+); 
7) Harmony(e) = Balance(e) = (|ε|(e) − |εimb(e)|)/|ε|(e). 
YinYang Bipolar System Energy. Given an k  n 

bipolar matrix M = [mij] = (M−,M+) = ( jj ,m   jjm   ), 
where M− is the Yin half with all the negative elements 
and M+ is the Yang half with all the positive elements,  

1)  is the negative or 

Yin energy of M; 

 
1 1 1 1

M
k n k n

ij ij
i j i j

m  

   

   

2)  is the positive or 

Yang energy of M;  

 
1 1 1 1

M
k n k n

ij ij
i j i j

m  

   

  

3) the polarized total, denoted ε(M) = (ε−(M), ε+(M)) is 
the YinYang bipolar energy of M of M; 

4) the absolute total, denoted |ε|(M) = |ε−|(M) + |ε+|(M), 
is the total energy of M; 

5) the energy subtotal for row i of M is denoted  

 *
0

M
n

i i
j

j 


  ; 

6) the energy subtotal for column j of M is denoted  

 *
0

M
k

j ij
i

 


  ; 

7 )       imb
1 1 1 1

M
k n k n

imp ij ij ij
i j i j

m m   

   

   m  i s  

the YinYang imbalance of M; 

8) balance or harmony or stability of M is defined as 
Harmony(M) = Balance(M) = Stability(M) = (|ε|(M) − 
|εimb(M)|)/|ε|(M); 

9) the average energy of M is measured as h = 
(ε−(M)/(kn), ε+(M)/(kn)) where kn = k  n is the total 
number of elements in M. 

Law 1. Elementary Energy Equilibrium Law. (x,y) 
 B = [–, 0]  [0, +] and (u,v)  BF = [–1,0]  
[0,1], we have  

a) [||(u,v)  1.0]  [||((x,y) (u,v))  ||(x,y) ]; 
b) [||(u,v)<1.0]  [||((x,y) (u,v)) < ||(x,y) ]; 
c) [||(u,v)>1.0]  [||((x,y) (u,v)) > ||(x,y) ]. 
Equilibrium/Non-Equilibrium System. A bipolar 

dynamic system S is said an equilibrium system if the 
system’s total energy ||S remains in an equilibrium state 
or d(||S)/dt = 0 without external disturbance. Otherwise 
it is said a non-equilibrium system. A non-equilibrium 
system is said a strengthening system if d(||S)/dt > 0; it 
is said a weakening system if d(||S)/dt < 0. 

Law 2. Energy Transfer Equilibrium Law. Given an 
n  n input bipolar matrix E = [eik] = [( )], 0 < i, k  
n, an n  n bipolar connectivity matrix M = [mkj] = 
[(

,ik ike e 

,kj kjm m  )], 0 < k, j  n, and V = E  M = [Vij] = [( vij
 , 

vij
 )], k, j, let |ε|(Mk*) be the k-th row energy subtotal 

and let |ε|(M*j) be the j-th column energy subtotal, we 
have, k, j, 

a) [|ε|(Mk*)  |ε|(M*j)  1.0 ]  [||(V)  ||(E)]; 
b) [|ε|(Mk*)  |ε|(M*j)  1.0 ]  [||(V) < ||(E)]; 
c) [|ε|(Mk*)  |ε|(M*j) > 1.0 ]  [||(V) > ||(E)]. 
From the above, it is clear that without YinYang bipo- 

larity, classical linear algebra cannot deal with the coex- 
istence of the Yin and the Yang of nature and their causal 
interactions in bipolar quantum entanglement. 

Law 3. Law of Energy Symmetry. Let t = 0, 1, 2,…, 
Y(t+1) = Y(t)  M(t), |ε|Y(t) be the total energy of an 
YinYang-N-Element vector Y(t), |ε|M(t) be the total en- 
ergy of the connectivity matrix M(t), |ε|Mi*(t) be the en- 
ergy subtotal of row i of M(t), |ε|M*j(t) be the energy 
subtotal of column j of M(t).  

1) Regardless of the local YinYang balance or imbal-
ance of the elements at any time point t, the system will 
remain a global energy equilibrium if, t, d(|ε|Y(t))/dt  
0, or (a)i,j, [|ε|(Mi*)  |ε|(M*j)  1.0] and (b) no external 
disturbance to the system occurs after the initial vector 
Y(0) is given. 

2) Under the same conditions of (1), if, t, |ε−(M*j)| > 
0 and |ε+(M*j))| > 0, all bipolar elements connected by M 
will eventually reach a local YinYang balance  
(–|ε|Y(t)/(2N), |ε|Y(t)/(2N)) at time t. 

Law 4. Law of Broken Symmetry (Growing). For 
the same system with Law 3, if, i, j, |ε|(Mi*)  |ε|(M*j) > 
1.0, regardless of the local YinYang balance or imba- 
lance of the elements at any time point t, the system en- 
ergy will increase and eventually reach a bipolar infinite 
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(–,) or fission state without external disturbance or we 
have,t, d(|ε|Y(t))/dt  0. 

Law 5. Law of Broken Symmetry (Weakening). For 
the same system as for Law 3, if, i, j, |ε|(Mi*)  |ε|(M*j) 
< 1.0, regardless of the local YinYang balance or imba- 
lance of the elements at any time point t, the system en- 
ergy will decrease and eventually reach a (0,0) or decay- 
ed state without external disturbance or we have, t, 
d(|ε|Y(t))/dt < 0, until |ε|Y(t) = 0. 

3. Bipolar Strings and Bipolar Atom 

3.1. YinYang Bipolar Strings 

Fundamentally different from the mainstream string the- 
ory or “theory of everything”, BDL and BQLA provide 
the logical and physical bipolar bindings for the “strings” 
of reality but retain the open-world non-linear dynamic 
property of nature tailored for open-ended exploratory 
scientific discovery. While strings are far from observable 
reality, the non-linear dynamic property of BDL and 
BQLA do not compromise the law of excluded middle—a 
unique basis for a scalable and observable alternative bi- 
polar string theory. 

Since (–1,0)  (–1,0) = (–1,0)2 = (0,1) and (–1,1)  
(–1,1) = (–1,1)2 = (–1,1), (–1,0)n defines an oscillatory 
non-equilibrium and (–1,1)n defines a non-linear dynamic 
equilibrium. Such properties provide a unifying logical 
representation for particle-wave duality. For instances, 
(P)(f) = (–1,0)n (3  1012) can denote that “particle P 
changes polarity three trillion times per second”; (P)(f) = 
(–1,1)n (3  1012) can denote that “The two poles of P in-
teract three trillion times per second.”  

As strings can be one-dimensional oscillating lines or 
points, a bipolar string can be defined as an elementary 
bipolar variable or quantum agent e = (–e,+e) and char- 
acterized as (e)(f)(m) where (e)B1 or B, f is the fre- 
quency of bipolar interaction or oscillation, and m is 
mass. If e is massless we have m = 0. The two poles of e 
as negative and positive strings are non-exclusive, recip- 
rocal, entangled, and inseparable. Thus, bipolar strings 
cannot be dichotomous and bipolar string theory is a 
non-linear dynamic unification of singularity, bipolarity, 
and particle-wave duality. 

3.2. YinYang Bipolar Atom 

Figure 4 shows a YinYang-n-element bipolar quantum 
cellular automaton (BQCA), where each link and each 
element is characterized with a bipolar value (n,p). A 
negative side n can indicate output of an element or re- 
pression of a link weight; a positive side p can indicate 
input of an element or activation of a link weight. A set 
of dynamic equations have been derived based BQLA for 
characterizing the cellular structure in Figure 4. The set  

 

Figure 4. A YinYang-n-element cellular structure. 
 
of equations can be simplified as Y(t+1) = Y(t)  M(t), 
where Y(t) is a bipolar vector at time t and M(t) a con-
nection matrix at time t. Now, our questions are: 

1) How to use a YinYang-n-element cellular structure 
to describe and unify matter and antimatter atoms? 

2) How to use a YinYang-n-element cellular structure 
to unify particle and wave? 

3) How to use a YinYang-n-element cellular structure 
to describe and unify quantum theory and relativity? 

4) How to integrate multiple YinYang-n-element cel-
lular structures together? 

5) How to use BDL, BQLA and BQCA to unify big 
bang and black hole as well as space and time? 

Dramatically, BQLA and BQCA can be used for rep- 
resenting both matter and antimatter atoms as well as 
particles and waves. Figure 5(a) shows the bipolar rep- 
resentation of a hydrogen atom. Figure 5(b) is a redrawn 
of Figure 4 by omitting connectivity. The positrons can 
be regrouped to the nucleus of a matter atom as shown in 
Figure 5(c), where the negative signs can character elec- 
trons or electron cloud. Similarly, an antimatter atom is 
shown in Figure 5(d). Thus, both matter and antimatter 
atoms can be characterized using Equation (15) in BQLA. 

It is evident from Figure 5 that YinYang bipolar atom 
has the potential to bridge a gap between black hole and 
big bang in a cyclic process model because it allows par- 
ticles and antiparticles emitted from a black hole [2,3] to 
form matter and antimatter again. While Laws 1 - 5 pro- 
vide the axiomatic conditions for energy equilibrium, 
growing, and degenerating, we introduce a new law of 
oscillation [1] in the following: 

Law 6. Law of Oscillation. Let t = 0, 1, 2, …, Y(t+1) 
= Y(t)  M(t), |ε|Y(t) be the total energy of an YinYang- 
n-element vector Y(t), |ε|M(t) be the total energy of the 
connectivity matrix M(t), if, i, j, |ε|(Mi*)(tk)  |ε|(M*j) (tk) 
> 1.0 and |ε|(Mi*)(tk+1)  |ε|(M*j) (tk+1) < 1.0, the system’s 
total energy will be alternatively increasing at time k and 
decreasing at time k + 1. 

Evidently, any particle or wave form can be repre- 
sented with Yin energy, Yang energy, or unified Yin- 
Yang form. But without YinYang, the bipolar coexis- 
tence and interaction of the two poles can’t be visualized. 
The four cases of equilibrium, growing, degeneration and 
oscillation are simulated in Figures 6-9. 
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(c)                             (d) 

Figure 5. (a) Bipolar representation of a hydrogen; (b) Bi- 
polar representation of YinYang-n-elements; (c) Matter 
atom; (d) Antimatter atom. 
 

 

Figure 6. Bipolar energy rebalancing wave forms after a 
disturbance to one element [8]. 
 

 

Figure 7. YinYang bipolar energy growing [8]. 
 

 

Figure 8. YinYang bipolar energy decreasing [8]. 

4. Bipolar Quantum Cellular Automata  

YinYang bipolar atom leads to bipolar quantum cellular 
automata (BQCA) for advancing research in cosmolo- 
gical and molecular interactions. YinYang as the basis of  

 

Figure 9. YinYang bipolar energy oscillation [8]. 
 
traditional Chinese medicine (TCM) has been in the di- 
lemma of lacking a formal logical, mathematical, physi- 
cal, and biological foundation. On the other hand, despite 
one insightful surprise after another the genome has 
yielded to biologists, the primary goal of the Human Ge- 
nome Project—to ferret out the genetic roots of common 
diseases like cancer and Alzheimer’s and then generate 
treatments—has been largely elusive. Although quantum 
mechanics provides a basis for chemistry and molecular 
biology, it so far has not found unification with Ein- 
stein’s relativity theory. This situation provides an oppor- 
tunity for YinYang to enter modern science and play a 
unifying role. For instance, given the cellular structures 
in Figure 10, we have the question: “How to model the 
integration, interaction, and equilibrium conditions?” 

Law 7 (Following Law 3). Law of Integrated En- 
ergy Symmetry. Given Figure 10, let t = 0, 1, 2, …, 
Y(t+1) = Y(t)  M(t), |ε|Y(t) be the total energy of the 
integrated BQCA vector Y(t), |ε|M(t) be the total energy 
of the integrated connectivity matrix M(t), |ε|Mi*(t) be the 
energy subtotal of row i of M(t), |ε|M*j(t) be the energy 
subtotal of column j of M(t), the integrated BQCA can 
satisfy the following two global conditions: 

1) Regardless of the local YinYang balance/imbalance 
of the subsystems at any time point t, the integrated sys- 
tem will remain a global energy equilibrium if, t, 
d(|ε|Y(t))/dt  0, or  

(a) i,j, [|ε|(Mi*)  |ε|(M*j)  1.0]; 
(b) no external disturbance or input/output to/from the 

system after the initial vector Y(0) is given; 
(c) no internal disturbance or energy creation and con- 

sumption in the system after the initial vector Y(0) is 
given. That is, all the k component BQCA satisfy the 
condition, t, d(|ε|Yk(t))/dt  0, or, equivalently, i, j, 
[|εk|(Mi*)  |εk|(M*j)  1.0]. Otherwise, there will be in- 
ternal disturbance. 

2) Under the conditions of (1), if, t, |ε−(M*j)| > 0 and 
|ε+(M*j))| > 0, all components connected by M will even- 
tually reach a local YinYang balance (–|ε|Y(t)/(2K), 
|ε|Y(t)/(2K)) at certain time point t. 

Law 8 (Following Law 4). Law of Integrated En- 
ergy Broken Symmetry (Growing). For the same inte- 
grated BQCA as for Law 7, if, (a) i, j, |ε|(Mi*)  |ε|(M*j) 
> 1.0; (b) no external disturbance after the initial vector  
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Figure 10. Integration of bipolar cellular subsystems. 
 
Y(0) is given; (c) no internal disturbance or energy crea- 
tion and consummation after the initial vector Y(0), re- 
gardless of the local YinYang balance or imbalance of its 
local component BQCAs at any time t, the system energy 
will increase and eventually reach a bipolar infinite 
(–,) or t, d(|ε|Y(t))/dt  0. 

Law 9 (Following Law 5). Law of Integrated En- 
ergy Broken Symmetry (Weakening). For the same 
system as for Law 7, if, (a) i,j, |ε|(Mi*)  |ε|(M*j) < 1.0; 
(b) no external disturbance to the system after the initial 
vector Y(0) is given; (c) no internal disturbance or en- 
ergy creation and energy consumption after the initial 
vector Y(0) is given, regardless of the local YinYang 
balance/imbalance of its local component BQCAs at any 
time t, the system energy will decrease and eventually 
reach an eternal equilibrium (–0,+0) state or, equivalently, 
t, d(|ε|Y(t))/dt < 0, until |ε|Y(t) = 0. 

Law 10 (Following Laws 3-9). Necessary and Suffi- 
cient Conditions for Collective Bipolar Adaptivity. The 
two conditions of Law 3 are necessary for collective bi-
polar adaptivity of any simple or integrated BQCA into 
equilibrium and symmetry; the two conditions are suffi- 
cient for collective bipolar adaptivity of any simple 
BQCA but not for integrated BQCAs; the two conditions 
in Law 7 are both necessary and sufficient for collective 
bipolar adaptivity of any simple BQCA or integrated 
BQCA into equilibrium and symmetry. 

5. An Eastern Road to Quantum Gravity 

5.1. Q5 Paradigm 

Since acceleration is equivalent to gravitation under gene- 
ral relativity, any physical, socioeconomic, mental, and 
biological acceleration, growth, degeneration or aging 
are qualified to be a kind of quantum gravity. It can be 
further argued that as a most fundamental scientific uni-
fication not only can quantum gravity be applied in phy- 
sical science, but also in computing science, social sci- 
ence, brain science, and life sciences as well. This argu-
ment leads to five sub-theories of a Q5 paradigm of 
quantum gravities: physical quantum gravity, logical 
quantum gravity, mental quantum gravity, biological 
quantum gravity, and social quantum gravity [8]. In the 
Q5 paradigm, the theory of physical quantum gravity is 
concerned with quantum physics; logical quantum gra- 

vity is focused on quantum computing; mental quantum 
gravity is focused on the interplay of quantum mechanics 
and brain dynamics; biological quantum gravity is focus- 
ed on life sciences; social quantum gravity spans social 
sciences.  

The Q5 paradigm may sound like a mission impossible. 
It actually follows a single undisputable observation and 
a single condition: 1) bipolar equilibrium or non-equili- 
brium is a generic form of any multidimensional equili- 
brium from which nothing can escape; 2) bipolar quan- 
tum entanglement is logically definable with BUMP that 
unifies truth, being and dynamic equilibrium with logi- 
cally definable causality. 

Roger Penrose described two mysteries of quantum 
entanglement [14, p. 591]. The first mystery is the phe- 
nomenon itself; the second one is: “Why do these ubi- 
quitous effects of entanglement not confront us at every 
turn?” Penrose remarked: “I do not believe that this sec-
ond mystery has received nearly the attention that it de-
serves.” It is contended that YinYang bipolar quantum 
entanglement provides a resolution to the first mystery 
and the Q5 paradigm provides a resolution to the second. 

Since the Yin and the Yang are two reciprocal oppo- 
site poles or energies that are completely background in- 
dependent, YinYang bipolar geometry is fundamentally 
different from Euclidian, Hilbert, and spacetime geome-
tries. With the background independent property, the new 
geometry makes quadrants irrelevant because bipolar iden- 
tity, interaction, fusion, separation, and equilibrium can 
be accounted for in it even without quadrants (Figure 
11). 

Defined in YinYang bipolar geometry, BDL and 
BUMP make quantum causality logically definable as 
equilibrium-based quantum entanglement. It simply states: 
For all bipolar equilibrium functions , , ψ, and , IF 
() & (ψ), THEN the bipolar interaction (ψ) 
implies that of (). With the emergence of space and 
time, BUMP leads to a completely background inde-
pendent theory of YinYang bipolar relativity defined by 
Equation (16) [8]. a,b,c,d,  
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 (16) 

In Equation (16), a(t1,p1), b(t1,p2), c(t2,p3), d(t2,p4) are 
any bipolar agents where a(t,p) stands for “agent a at 
time t and space p” (tx, ty, px and py can be the same or 
different points in time and space). An agent without 
time and space is assumed at any time t and space p. An 
agent at time t and space p is therefore more specific. 

The symmetrical property of YinYang bipolar geome-  
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(a)                                   (b)                                (c) 

Figure 11. Background-Independent YinYang bipolar geometry: (a) Magnitudes of Yin and Yang; (b) Growing curve; (c) 
Quadrant irrelevant property. 
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try enables information to be passed through large or 
small scale quantum entanglement with or without pass- 
ing observable energy or mass. When photon or electron 
is passed the speed is limited by the speed of light that 
has been proven in physics. Physicists have so far failed 
to experimentally verify the existence of graviton and the 
speed of gravity. If all action-reaction forces are funda- 
mentally equilibrium-based and bipolar quantum entan- 
gled in nature, gravity would be logically unified with 
quantum mechanics in the form of Equation (16) [8]. 

(17b)  

A comparison of Equations (17b) with (17a) reveals an 
equilibrium-based logical “bridge” from relativity to 
quantum mechanics—a bridge toward quantum gravity. 
Why cannot other logical and statistical systems be used 
for the above unification? The answer is that without bi- 
polarity a truth value in {0,1} or a probability p  [0,1] is 
incapable of carrying any shred of direct physical syntax 
or semantics such as equilibrium (–1,+1), non-equili- 
brium (–1,0) or (0,+1), quasi-equilibrium (–0.9, +0.9), 
eternal equilibrium (0,0) and, therefore, unable to repre- 
sent non-linear bipolar dynamic interactions such as bi- 
polar fusion, fission, oscillation, quantum entanglement, 
and annihilation. 

For instance, based on general relativity, gravity “tra- 
vels” at the speed of light and the effect of a disturbance 
to the Sun (S) could take 499 seconds to reach the Earth 
(E). Let f(S) = f(E) = (–f,f)(S) = (–f,f)(E) be the gravita- 
tional (reaction, action) forces between S and E; let time 
t be in second; let p1 and p2 be points for S and E, respec- 
tively; let (0,0) (S) be the hypothetical Sun’s vanishment 
or eternal equilibrium; we have 
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Bipolar relativity can also support causal reasoning 
with time reversal because the premise of Equation (16) 
could be a future event and the consequent a past one. 
Although time travel in physics and cosmology is highly 
speculative in nature, time reversal analysis has been pro- 
ven very useful in many other scientific, technological, 
and engineering research and development. 

(17a)  

If f() is normalized to a bipolar predicate,  can be re- 
placed with , and the binding of &, &, , , , or  
to  in Equation (17a) would lead to the vanishment of 
the Sun and then the disappearing of the Earth from its 
orbit after 499 seconds. Thus, bipolar quantum entan- 
glement and general relativity are logically unified under 
equilibrium-based YinYang bipolar relativity [8]. Here 
bipolar relativity can host space and time emergence fol- 
lowing agents’ arrivals. 

The equilibrium-based interpretation leads to a number 
unifying features for particle-wave, matter-antimatter, 
strings and atom as well as black hole and big bang. Evi- 
dently, Law 6 provides the basic condition for both 
waves and particles; YinYang bipolar atom provides the 
unification for matter and antimatter. Since Figures 5(a)- 
(d) are redrawing of a bipolar representation like Figure 
8 (different only in the number of elements), BQLA, 
BQCA, and Laws 1 - 6 all apply to the unipolar repre- 
sentations of Figures 5(c) and (d). Thus, BQCA presents 
a unifying mathematical model for matter and antimatter 
atoms as well as particles and waves. In turn, it makes 
the unification of black hole and big bang possible be- 
cause the theory allows particles and antiparticles emitted 
from a black hole [2,3] to form matter and antimatter  

Equation (17a) assumes that the speed of gravity 
equals the speed of light based on general relativity. This 
assumption is actually questionable. If we assume gravi- 
tation is a kind of large scale quantum entanglement of 
action and reaction forces, gravity could have a minimum 
lower bound of 10,000 times the speed of light [15] and 
would travel from the sun to the Earth in less than 0.0499 
second and we would have Equation (17b). 
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again. Thus, it bridges a major gap in quantum cosmo- 
logy and set the stage for another cycle of a cyclic pro- 
cess model of the universe. The unifying features are 
made possible by the complete background independent 
property of YinYang bipolar geometry (Figure 11). 

YinYang bipolar elements and sets [8] provide an al- 
ternative interpretation for strings as well. Different from 
mainstream string theory, bipolar strings are scalable and 
can be the makings of bipolar atoms (Figure 5). Thus, 
the alternative interpretation brings strings into the real 
world of matter and antimatter for the first time. 

Since action and reaction or negative and positive en- 
ergies can be electromagnetic or gravitational in nature, 
YinYang bipolar atom can serve as a basis for real world 
quantum gravity. If we treat the centrifugal and centripe- 
tal forces of a planet similarly as that of an electron (or 
positron) rotating around its nucleus, gravity can be a 
superposition on quantum interaction. In either case, sin- 
ce nothing can escape bipolar equilibrium or non-equi- 
librium, renormalization is made possible in equilibrium- 
based terms using BQLA and BQCA. 

The YinYang negative-positive energies also provide a 
possible unification for the many universes in M-theory. 
It can be argued that the multiverses have to follow the 
same equilibrium or non-equilibrium conditions of the 2nd 
law of thermodynamics and become one universe. Other- 
wise, the two energies can’t form the regulating force of 
the multiverses. Thus, the different laws followed by dif- 
ferent universes as described in The Grand Design have 
to be unified under the same 2nd law of thermodynamics.  

Different from other approaches to quantum gravity, 
the equilibrium-based approach is rooted in the real world. 
Due to YinYang bipolarity in mental health, bioinformat- 
ics, life and social sciences [6-13,17-23], physical and 
logical quantum gravity can be naturally extended to 
mental, biological and social quantum gravities [8]. Thus, 
it is contended that the new approach has opened an East- 
ern road toward quantum gravity. 

5.2. Falsifiability 

Falsifiability is a must for any viable physical theory. It 
is of course correct that bipolar quantum entanglement 
needs experimental verification. However, 1) bipolar 
atom finds its equivalent representation in classical atom 
theory (Figure 5); 2) bipolar quantum entanglement or 
BUMP is physical and logical; 3) unlike the predicted but 
unverified existence of monopoles in string theory, di-
poles are everywhere. Thus, we have: 

Postulate 1: Bipolar quantum entanglement is the 
most fundamental entanglement in quantum gravity. 

Postulate 2: YinYang bipolarity is the most funda- 
mental property of the universe. 

The two postulates are actually logically provable axi- 
oms. For Postulate 1, if a bipolar element (Figures 4 and 

5) characterizes the energy superposition of gravitational 
and quantum action-reaction, an atom would be a set of 
bipolar elements. As the total must be equal to the sum, 
without bipolar entanglement there would be no atom 
level entanglement. Postulate 2 follows Postulate 1.  

Postulate 3: YinYang bipolar atom is a bipolar set of 
quantum entangled particle and antiparticle pairs. 

Postulate 4: Gravity is fundamentally large or small 
scale bipolar quantum entanglement. 

Postulate 5: The speed of gravity is limited by the 
speed of quantum entanglement and not by that of light. 

According to Einstein, “Evolution is proceeding in the 
direction of increasing simplicity of the logical basis 
(principles).” “We must always be ready to change these 
notions—that is to say, the axiomatic basis of phys-
ics—in order to do justice to perceived facts in the most 
perfect way logically.” While string and superstring 
theories up to 11 or more dimensions failed the simplic- 
ity measure, YinYang bipolar atom and bipolar quantum 
entanglement are simple and logically comprehendible 
with definable causality in BUMP. The bipolar quantum 
interpretation coincides with MIT Professor Seth Lloyd’s 
startling thesis that the universe is itself a quantum com- 
puter [24]. According to Lloyd, the universe is all about 
quantum information processing. Once we understand 
the laws of physics completely, we will be able to use 
small-scale quantum computing to understand the uni- 
verse completely as well. Could YinYang bipolar quan- 
tum entanglement or BUMP be such a basic law? 

6. Conclusions 

Based on YinYang bipolar dynamic logic and bipolar 
quantum linear algebra, a logically definable causal the- 
ory of YinYang bipolar atom has been introduced. The 
causal theory has led to an equilibrium-based super sym- 
metrical quantum cosmology of negative-positive ener- 
gies. It is contended that the new theory has opened an 
Eastern road toward quantum gravity with bipolar logical 
unifications of matter-antimatter, particle-wave, strings 
and reality, big bang and black hole, quantum entangle- 
ment and relativity. It has been shown that not only can 
the theory be applied in physical worlds but also provides 
a Q5 paradigm of physical, logical, mental, biological 
and social quantum gravities. Furthermore, it provides a 
logically consistent cyclic process model of the universe 
with information recovery after a black hole. 

The strength of the equilibrium-based approach is its 
interpretation and unification aspects. The strength comes 
from the background-independent property of YinYang 
bipolar geometry that transcends spacetime. The strength 
would also be a weakness should YinYang be exclusive 
of spacetime geometry. Fortunately, the new geometry is 
not exclusive but inclusive. It promotes equilibrium, har- 
mony and complementarity by hosting, regulating or in- 
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tegrating background-dependent models as emerging pa- 
rameters for more challenging scientific explorations and 
unifications. 

This work is limited to qualitative simulation, interpre- 
tation and unification. A major research topic is bipolar 
quantization and space emergence. The negativepositive 
energies of an electron-positron pair under certain condi- 
tion provides a candidate bipolar unit for quantization 
with space emergence as a result of particle-antiparticle 
interaction. 

Finally, the equilibrium-based approach to quantum 
gravity is fundamentally different from other approaches 
in philosophical basis. Since all beings must exist in cer- 
tain equilibrium or non-equilibrium, a scientific reincar- 
nation of philosophy is predicted [25]. 
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ABSTRACT 

Contrary to the “end” and “death” assertions on philosophy, this paper predicts an equilibrium-based and harmony-cen- 
tered scientific reincarnation of philosophy. Logically, the reincarnation is backed by a formal system and a background 
independent geometry that transcends spacetime. Physically, it is supported by definable quantum causality and bipolar 
logical unifications of matter and antimatter, particle and wave, big bang and black hole, relativity and quantum entan- 
glement. Philosophically, it is distinguished from Western metaphysics and dialectics as well as the Dao of Laozi. It is 
named a quantum reincarnation for its central claim that YinYang bipolar quantum entanglement is the source of cau- 
sality for the Being of beings following the 2nd law of thermodynamics. Thus, it presents a modest unification of science 
and philosophy for their reciprocal interaction (Note: Equilibrium subsumes non-equilibrium and quasi—equilibrium as 
local non-equilibriums can form global equilibrium or quasi-equilibrium). 
 
Keywords: End and Death of Philosophy; Bipolar Quantum Entanglement; YinYang Bipolar Geometry; Formal 

YinYang Cosmology; Nature of Time; Quantum Reincarnation of Philosophy 

1. Introduction 

The Dao in Yi Jing claims that everything has two oppo- 
sites and all changes in nature are caused by the recip- 
rocal interactions of the two sides. The two sides are the 
Yin and the Yang of nature. Thus, Dao subsumes an 
equilibrium-based and harmony-centered super symme- 
try of negative-positive energies. The words “historically 
long standing” and “broad and profound” are often used 
to describe the Chinese philosophical thinking.  

Due to its lack of a formal logic, however, the Dao has 
never reached the status of science philosophy. This left 
room for a variety of scientific and unscientific interpre- 
tations. When French philosopher Jacques Derrida vis- 
ited Shanghai in 2001 he reiterated Hegel’s assertion that 
China has no philosophy but thoughts. In his 2004 
speech at Beijing Nobel Laureate Chen Ning Yang at- 
tributed China’s failure in becoming the cradle of modern 
science to Yi Jing. While some Chinese hailed Yang’s 
speech, many bloggers were filled with righteous indig- 
nation by his comment and spoke out against it with ex- 
citement. But few pointed out the possibility of inventing 
a unique formal YinYang logic and geometry for scien- 
tific unification. 

On the other hand, modern physics is in a different di- 
lemma. The searches for ether and monad have found no 
result; the modern quest for monopoles and strings has 
turned out no concrete findings. As a basis of string the- 
ory, monopoles and strings are too far away from reality. 
For instance, it is not clear how monopoles and strings 
can form an atom with equilibrium or non-equilibrium. 
Notably, string theory is criticized as “The Trouble with 
Physics” [2] and “Not Even Wrong” [3] by insiders. 
(Remark: When the discovery of Higgs boson is being 
hailed, the century old quest for quantum gravity still 
finds no definitive battleground). 

Whenever physics is in trouble, it needs new philoso- 
phical thinking. But philosophy or metaphysics is also in 
trouble. Despite the continuing debate on various theo- 
ries regarding being, time, and truth, philosophy is being- 
centered and truth-based. Now, philosophy is faced with 
extinction. About two centuries ago, Hegel pronounced 
its end. He claimed that his truth-based and contradiction- 
centered dialectic logic had brought philosophy to its end 
and there should be no new philosophy after him. Anglo- 
American philosophers on the whole, however, found it 
hard to put up with contradiction while seeking truth. 
Indeed, contradiction is not a scientific concept and Hegel’s 
The Science of Logic is not the logic of science as Ein- 
stein asserted later: “For the time being we have to admit 
that we do not possess any general theoretical basis for 

*This work is based on a working book (Ref. [1]). By this note, there is 
no need for further copyright clearance for the book’s publication. For 
a more thorough and complete coverage of the subject readers are 
referred to the book. 
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physics which can be regarded as its logical foundation.” 
While the end of philosophy was meant by Hegel to be 

the “top” or “apex”, some scholars went one step further 
to proclaim the death of philosophy. In The Grand De- 
sign, Hawking and Mlodinow declared [4, p. 5]: “Phi- 
losophy is dead”; “M-theory predicts that a great many 
universes were created out of nothing”; “Their creation 
does not require the intervention of some supernatural 
being or god.” When they advocated M-theory, however, 
they also promoted the concept of negative and positive 
energies [4, pp. 179-180] but stopped short of pointing 
out the unavoidable consequence that the two energies 
are respectively the Yin and Yang of nature. And when 
they proclaimed the death of philosophy, they are calling 
back a different philosophy.  

Hawking is renowned for his black hole theory. The 
theory originally suggested the universe’s disappearance 
without information preservation. It was criticized for 
violating the 2nd law of thermodynamics. To remedy the 
inconsistency, Hawking proposed black body evapora- 
tion [5] and then particle emission [6]. After then, despite 
continuing criticism, he held up his theory for three dec- 
ades. In 2004, he finally conceded. But so far it is logi- 
cally unclear how the universe’s information can be re- 
covered from emitted particles after a black hole.  

It seems that Hawking has introduced a similar para- 
dox by advocating M-theory and negative-positive ener- 
gies at the same time. If particles and antiparticles can 
survive a black hole and the two energies form the regu- 
lating force of the multiverses, YinYang bipolarity has to 
be the most fundamental property of the universe from 
which the information of the universe can be recovered 
and the multiverses have to be unified in a single equilib- 
rium-based universe. Otherwise, they would be com- 
pletely isolated and the negative-positive energies can’t 
form regulating forces of them.  

The quantum reincarnation of philosophy discussed in 
this work claims:  

1) Being and truth are not the most fundamental prop- 
erties of the universe; the most fundamental property of 
the universe should be YinYang bipolarity. 

2) The Science of Logic is not the logic of science. To 
have the logic of science, contradiction has to be re- 
placed with bipolar dynamic equilibrium. 

This paper is organized in seven sections. Section 2 
provides a background review. Section 3 presents a for- 
mal theory of YinYang bipolar cosmology. Section 4 
predicts a reincarnation of philosophy. Section 5 argues 
that science cannot replace philosophy. Section 6 dis- 
cusses the relation between equilibrium, harmony and 
Einstein’s God. Section 7 draws a few conclusions. 

2. Background 
2.1. Philosophical Divide 

Karl Popper is well-known for his positivist stance in 

science philosophy and his sharp criticism on dialectics. 
He stated: “The whole development of dialectic should be 
a warning against the dangers inherent in philosophical 
system-building. It should remind us that philosophy 
should not be made a basis for any sort of scientific sys- 
tem and that philosophers should be much more modest 
in their claims. One task which they can fulfill quite use- 
fully is the study of the critical methods of science.” 

Popper was right to criticize dialectics and to warn the 
world “that philosophers should be much more modest in 
their claims”. However, it seems that he stopped short of 
pinpointing the crux of the problem in Hegel’s dialectics. 
His stance against holism seems to be out of date due to 
the new phenomena of global warming, global economy 
and quantum entanglement. His firm support for Einstein 
against Bohr on quantum theory seems to be lopsided. 
He overlooked the importance of the mutually beneficial 
interactions between science and philosophy as well as 
the possibility of a scientific reincarnation of a modest 
philosophy just as he overlooked quantum entanglement. 
His warning “that philosophy should not be made a basis 
for any sort of scientific system” seems to be question- 
able. Otherwise, the equilibrium condition of the 2nd law 
of thermodynamics could be violated, YinYang should 
be long gone, and there should no science philosophy. 

It is contended that the equilibrium-based philosophy 
discussed in this work can be regarded a scientific rein- 
carnation. Evidently, anyone (good or bad) can claim 
having truth in his or her hand to start a contradiction, a 
conflict or even a world war by free will (as done by 
Hitler) but no one except God, if God exists, can claim 
the possession of global dynamic equilibrium that may 
well be the ultimate power for the creation, regulation 
and evolution of being and truth. Subsequently, the key 
for the reincarnation of philosophy is whether we can 
have an equilibrium-based quantum logic that is both 
scientific and philosophical and can reveal the ubiquitous 
effect of quantum entanglement with simple logically 
definable causality but contradiction-free.   

2.2. YinYang Bipolar Geometry and Bipolar 
Dynamic Logic (BDL) 

YinYang bipolar dynamic logic (BDL) [7-12] shows a 
number of distinguishing properties. First, it is a for- 
mal logic ever defined on a bipolar quantum lattice 

   1 1,0 0, 1B      in a completely background inde- 
pendent YinYang geometry of negative and positive en- 
ergies, where quadrant is made irrelevant and, therefore, 
it transcends being, truth and spacetime. This transcend- 
dence makes spacetime emergence possible—a desirable 
feature in quantum gravity (Figure 1). In B1,  0,0 , 
 0,1 ,  1,0 , and  1, 1   stand, respectively, for eter- 
nal equilibrium, non-equilibrium, non-equilibrium, equi- 
librium or harmony.  



W.-R. ZHANG 

Copyright © 2012 SciRes.                                                                                 JMP 

1274 

BDL exhibits the properties for a scientific reincarna- 
tion of philosophy. First, its non-linear dynamic property 
doesn’t compromise the law of excluded middle (LEM) 
(Figure 2) which makes BDL contradiction-free and 
leads to a sound axiomatization (Figure 3) [12]. Bipolar 
universal modus ponens (BUMP) presents an equilib- 
rium-based non-linear bipolar dynamic generalization of 
classical modus ponens (MP) and provides logically de- 
finable quantum causality for bipolar quantum entan- 
glement. Another distinguishing factor of BDL is its bi- 
polar symmetrical property. This property makes super 
symmetrical bipolar fusion, fission, oscillation, interac- 
tion and quantum entanglement possible as depicted in 
Figure 4.  

BUMP simply states that, for all bipolar equilibrium 
functions , , , and , IF    &     , then  

the bipolar interaction     implies that of    . 
With the emergence of space and time, BUMP leads to a 
theory of YinYang bipolar relativity [12] characterized 
by Equation (1). 
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In Equation (1),  1 1,a t p ,  1 2,b t p ,  2 3,c t p , 
 2 4,d t p  are any bipolar agents or celestial entity where 
 ,a t p  stands for “agent a at time t and space p  (tx, 

ty, px and py can be the same or different points in time  
 

 
(a)                         (b)                          (c) 

Figure 1. YinYang bipolar geometry and Hasse diagram of    , ,1 1 0 0 1B   . 

 

Excluded middle      , , 1,1 ;x y x y         , , 1,1 ;x y x y     

No contradiction       , & , 1,1 ;x y x y           , & , 1,1 .x y x y     

Figure 2. Bipolar laws. 
 

Bipolar Linear Axioms: 

BA1:       , , ,            ;  

BA2:                   , , , , , , ,                                ;  

BA3:             , , , , ,                        ;  

BA4:  a)      , & , ,           ;  b)      , & , ,           ; 

BA5:          , , , & ,                ;  

Bipolar Universal Modus Ponens (BUMP)  

BR1: IF     , ,       ,          , , & , ,                  ,  

THEN    , ,         ; 

Bipolar Predicate axioms and Rules of inference 

BA6:          , , ,x x x t t        ; 

BA7:          , , , , , ,x x                  ;  

BR2-Generalization:       , , ,x x x        

Figure 3. Bipolar axiomatization. 



W.-R. ZHANG 

Copyright © 2012 SciRes.                                                                                 JMP 

1275

  
or space, respectively). An agent without time or space is 
assumed at any time or space.  

2.3. Bipolar Quantum Linear Algebra (BQLA)  
and Bipolar Atom 

The bipolar lattices    1 1,0 0,1B     and  1,0FB     
 0,1  have been extended to the infinite bipolar lattice 

   ,0 0,B     . With B, BDL has been extended 
to a bipolar quantum linear algebra (BQLA) [11,12] for 
modeling the equilibrium, non-equilibrium and harmony 
properties of the negative-positive energies of Yin-
Yang-n-element bipolar quantum cellular automata and 
bipolar atoms (Figures 5 and 6).  

Interestingly, a bipolar quantum cellular automaton 
can be as small as an atom or as large as the universe or 
multiverse, where all elements have negative and posi- 
tive energies connected by a bipolar link matrix [11-16]. 
Figure 6 (adapted from [14]) provides a matter and an- 
timatter unification with the same quantum cellular struc- 
ture in Figure 5. Dynamic equations using BQLA and 
their wave forms have been presented in [11-16]. Since 
all types of action-reaction energies are fundamentally 
bipolar in nature. Not only can bipolar cellular automata 
be applied in biological world [15,16] but also be a logi- 
cal and algebraic candidate for quantum gravity [11]. 
 
 

 
(a)        (b)        (c)                 (d) 

Figure 4. Bipolar relativity: (a) Linear interaction; (b) Cross- 
pole non-linear interaction; (c) Oscillation; (d) Two entan- 
gled bipolar interactive variables. 
 

 

Figure 5. YinYang-n-element bipolar cellular automaton 
[16]. 
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Figure 6. (a) Bipolar representation of hydrogen atom; (b) 
Yin-Yang-n-elements; (c) Matter atom; (d) Antimatter atom. 
 
Moreover, it provides a basis for particles and antiparti- 
cles emitted from black holes to form matter or antimat- 
ter again to bridge a major gap in quantum cosmology.  

2.4. Bipolar Equilibrium and Harmony 

With BDL and BQLA, YinYang bipolar energy equilib- 
rium and harmony of being can be logically and mathe- 
matically unified in YinYang bipolar geometry. The 
geometry has a Yin dimension, a Yang dimension and an 
equilibrium dimension (Figure 1). Harmony is defined 
as the reciprocal interaction of two direct opposites of 
one being in quasi-equilibrium with suitable oscillation 
amplitudes and frequencies [1,11].  

3. Formal YinYang Bipolar Cosmology 

3.1. A Process Model of Space and Time 

The nature of space and time has long been a matter of 
debate in the history of philosophy. The subject focuses 
on a number of basic issues, including but not limited to 
whether or not time and space exist independently of the 
mind, whether they exist independently of one another, 
what accounts for time’s apparently unidirectional flow, 
whether time other than the present moment exist, and 
what is the nature of space and time. 

Most notably, Newtonian space provided the absolute 
frame of reference for the motion of objects; Einstein 
proposed the principle of relativity. The latter holds that 
light propagates at the same speed in all reference frames; 
no speed can exceed the speed of light; force felt by an 
observer in a given gravitational field and that felt by an 
observer in an accelerating frame of reference are indis- 
tinguishable. This led to the conclusion that the mass of 
an object warps the geometry of the spacetime surround- 
ing it, as described in Einstein’s field equations.  

The physical theory of YinYang bipolar atom suggests 
a cyclic process model of the cosmos. Since the particles 
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and antiparticles emitted from a black hole [5,6] can 
form matter and antimatter again (Figure 6), it sets the 
stage for another cycle of the cyclic process. Thus, Yin- 
Yang bipolar atom may lead to the unification of black 
hole and big bang. 

While previous theories on space and time have not 
been supported by a quantum logic, the cyclic YinYang 
dynamic process model of space and time depicted in 
Figures 7 and 8 is supported by BDL with simple logi- 
cally definable quantum causality (Note: Einstein and 
others proposed different cyclic universe models). Based 
on YinYang bipolar causality, time is not like a unidirec- 
tional river but like a go-go train on its ring-shaped rail- 
ways. One cycle of the ring is depicted in Figure 7 and 
infinite cycles of the train are depicted in Figure 8. The 
train on one ring can cross to another by a random prob- 
ability.  

As indicated in Figure 7, each cycle of the railway has 
two major stations—big bang and the black. The big 
bang station can be marked as a Yang state or  0, 1 ; 
The black hole station can be marked as a Yin state or 
 1,0 . Traditionally, time is said to start from a big 
bang and stop at a black hole. But that seems to be just 
an illusion. Interestingly, equilibrium can result from the 
fusion of the Yin and Yang as      1,0 0, 1 1, 1      . 
Here, eternal equilibrium or death state  0,0  charac-
terizes the illusive disappearance of the universe into a 
black hole. Moreover, the transition from Yin to Yang 
(or from black hole to big bang) can be characterized 
with the logical equation      2

1,0 1,0 1,0      
 0, 1 . 

Remarkably, the four different logical values  0,0  
 1,0   0, 1   1, 1   form the YinYang bipolar 
lattice (Figure 1)—a logical or mathematical structure. On 
the one hand, the lattice is defined in a completely back- 
ground independent YinYang bipolar geometry. On the  
 

 

Figure 7. A cyclic process model of space and time [1]. 
 

 

Figure 8. Infinite cycles of the time train [1]. 

other hand, it is actually a mathematical version of Yin- 
Yang 4-images. Evidently, physics and philosophy are 
brought together by the logical structure. 

The time train interpretation gives a logical account 
for time’s cyclic flow instead of unidirectional flow. Just 
like Aristotle claimed the Earth was the static and sta- 
tionary center of the universe, human beings couldn’t 
sense the curvature of a huge ring-shaped time cycle. 

Here we are focused on the equilibrium-based and 
harmony-centered philosophy. The philosophical guid- 
ance is evidently logical, systematic and rational. Since 
YinYang bipolar logic as a formal system has been 
proven a sound and complete non-linear bipolar dynamic 
generalization of truth-based thinking, truth, equilibrium, 
metaphysics and dialectics are corrected and unified into 
one philosophy. On the other hand, with logically defin- 
able quantum causality, relativity and quantum theory as 
well as philosophy and science are all brought together.  

3.2. Eastern and Western Metaphysics 

The Chinese Dao as Eastern metaphysics is defined as 
YinYang in Yi Jing. But Western metaphysics was later 
matched to the Dao; YinYang as the essence of the Dao 
was left out of the big picture by Western as well as 
Chinese modern philosophers. Two major reasons for 
this are: 1) YinYang lacked a formal logical basis for 
thousands of years; 2) being-centered and truth-based 
thinking has been proven most effective until mankind 
encountered quantum entanglement, global warming, 
global economic overheat and recession. With BDL, the 
Eastern and Western metaphysics can be distinguished 
and unified under dynamic equilibrium for dealing with 
unsolved scientific and social problems.  

Equilibrium-based philosophical thinking is central in 
both science and philosophy. Without equilibrium-based 
thinking, the being-centered and truth-based Western 
tradition can’t connect the metaphysical Being to the 
physical beings because truth as a static concept can’t 
provide the ultimate Being a dynamic definition for re- 
vealing and regulating all beings. Consequently, after 
searching for more than two thousand years, Western 
philosophers failed to give a clear definition to Being. 
With the equilibrium-based thinking, all beings are re- 
vealed and regulated by the Dao of YinYang and Being 
as well as all beings including the universe itself finally 
finds its home in dynamic equilibrium (Figure 9). 

3.3. Cosmological Predictions 

YinYang bipolar philosophy has led to the theory of bi- 
polar relativity which reveals the ubiquitous effects of 
quantum entanglement with a rich set of predictions [12]. 

Prediction 1. The bipolar axiomatization (Figure 3) is 
the most primitive (with minimal semantics) and most  
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Figure 9. A scientific unification [1]. 
 
general (domain independent) equilibrium-based axio- 
matization of physics, life sciences and socioeconomics; 
any other less primitive axiomatization with added se- 
mantics (such as space, time, mass, and energy) must 
necessarily be less general (or more domain-specific).  

Prediction 2. Let  ,     = (repression, acti- 
vation) be a bipolar predicate for the abilities of regulator 
genomic agents [17] such as YY1 [18]; let  ,     
= (repressability, activatability) be a predicate for the 
bipolar capacities of regulated agents; let  ,    and 
 ,    be any bipolar predicates; let a, b, c, d be any 
agents. YinYang bipolar quantum entanglement or 
BUMP is a fundamental law for equilibrium-based regu- 
lation of gene expression, mutation, and molecular inter- 
action in bioinformatics. a, b, c, d we have ( and  
can be bound to any logical or physical bipolar operator): 
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Prediction 3. Let  ,     = (self-negation, self- 
assertion) be a bipolar predicate for the mental equilib- 
rium measures of a patient set P at the neurophysiologic 
level; let  ,    be that of the set P at the mood or 
behavior level; let  ,     = (negative, positive) be 
a bipolar predicate for the biochemical capacities of a 
medicine set M for bipolar disorders; let  ,    = 

(un-excite, un-depress) be that for the effects of M at the 
mental level. ,  ,  a b a P   and b M ,  
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is a fundamental law of equilibrium-based brain and be- 
havior, which can be applied in nanobiomedicine for 
psychiatric mood regulation on an individual and/or a 
cohort of mental disorder patients. 

Prediction 4. Let  ,     = (negative, positive) 
be a bipolar predicate and a, b, c, d be any four antimat- 
ter and/or matter bindings or couplings, bipolar quantum 
entanglement or BUMP is an equilibrium-based funda- 
mental law for scientific discovery in astrophysics or 
particle physics.  

The next prediction is on bipolar twistor space. Roger 
Penrose introduced a twistor theory [19] but “No one yet 
knows what a quantum twistor space looks alike.” [2, p. 
244]. 

Prediction 5. YinYang bipolar geometrical space is a 
minimal but most general quantum twistor space; bipolar 
universal modus ponens (BUMP) or bipolar quantum 
entanglement is a minimal but most general quantum 
twistor; bipolar causality and bipolar relativity is a 
minimal but most general twistor theory.  

Prediction 6. Black hole is to a galaxy (or universe) as 
bipolar depression is to a dysfunctional brain; big bang is 
to a galaxy (or universe) as bipolar mania is to a dys- 
functional brain; wormhole is to a galaxy (or universe) as 
bipolar mental equilibrium is to a functional brain. 

Prediction 7. If the universe had been created by a big 
bang, the big bang must have been caused by the equilib- 
rium or non-equilibrium of negative and positive ener- 
gies of the cosmos. 

Prediction 8. YinYang bipolar relativity is the sim- 
plest mathematically conceivable cosmological order—a 
non-linear bipolar dynamic fusion of 1) a unipolar truth- 
based explicate order and 2) an equilibrium-based impli- 
cate order with bipolar quantum entanglement that regu- 
lates the evolution of the explicit order.  

Prediction 9. When observable mass or energy is 
propagated through bipolar relativity or causality the 
speed of the propagation is limited by the speed of light 
(e.g. the propagation of photon or electron); when infor- 
mation is propagated without passing observable mass or 
energy the speed of the propagation is not limited by the 
speed of light but by the “speed” of equilibrium-based 
quantum non-local connection or bipolar quantum entan- 
glement.   

Prediction 10. YinYang bipolar quantum entangle- 
ment is the source of causality for the Being of beings. 
All physical, social, mental, biological action and reac- 
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tion are fundamentally different forms of bipolar quan- 
tum entanglement in large or small scales.  

Falsifiability is a must for scientific predictions. It may 
be argued that YinYang bipolar quantum entanglement 
needs experimental verification or falsification. That is, 
of course, correct. However, YinYang bipolar quantum 
entanglement or BUMP is logical. Unlike the predicted 
existence of monopoles in string theory, dipoles are 
proven physical reality. Furthermore, from Figure 6, it is 
evident that without bipolar quantum entanglement there 
would be no atom-atom quantum entanglement. Thus, we 
can assert that YinYang bipolar quantum entanglement is 
the most fundamental form of any quantum entanglement 
[11,12].  

4. Quantum Reincarnation of Philosophy 

4.1. Meaning of Reincarnation 

Seeking the ultimate truth from the universe is not easy 
because the universe is not completely truthful and the 
ultimate Being of beings is unreachable with the truth- 
based approach. A key element in Leibniz truth-based 
metaphysics is a kind of soul-like monad through which 
it is said God ordained harmony into the universe. But 
Leibniz did not figure out why being is there but noth- 
ingness is not and he could not avoid the trap of nihilism.  

While Hegel failed to provide a formal logic to back 
up his truth-based and contradiction-centered dialectics, 
he named his system The Science of Logic and described 
it verbally without forms. Nevertheless, he claimed he 
brought philosophy to the end with a circle. His circle, 
however, has no logically definable causality and his 
science of logic is not the logic of science.   

While Steven Hawking advocated negative-positive 
energies he did not see the potential of YinYang bipolar 
dynamic equilibrium as a unifying philosophical basis. 
When he needed a new philosophy, he declared the death 
of philosophy. 

Is philosophy really ended by Hegel? Evidently that is 
not true because, even if the truth-based, being- or con- 
tradiction-centered Western metaphysics were really 
ended, Eastern equilibrium-based and harmony-centered 
metaphysics is still in hibernation. As a key concept in Yi 
Jing and a doctrine of Daoism, Buddhism and Confu- 
cianism, harmony is advocated in both of the East and 
the West by friends and adversaries. For instances, fol- 
lowing Confucianism, President Hu Jintao of China ad-
vocates social harmony; following Buddhism, Dalai 
Lama, the spiritual leader of Tibet in exile, advocates 
religious harmony for which he was awarded 2012 
Templeton Prize; legendary German mathematician, lo- 
gician, philosopher and sinologist Leibniz advocated 
harmony ordained by God through monad; Einstein be- 
lieved a nature God “who reveals himself in the orderly 

harmony of what exists”; all democratic systems are 
formed with checks and balances for social stability or 
harmony.  

Evidently, regardless of their proper or improper in- 
terpretations and usage, equilibrium and harmony are the 
ultimate desire of human civilization. Since any being 
must exist in and be revealed by dynamic equilibrium, 
the essence of being is not truth as Aristotle and Heideg- 
ger once claimed but equilibrium and harmony whose 
bipolarity provides the defining property.  

Indeed, even after the whole world is unified into a 
single democratic society, mankind will still need equi- 
librium and harmony. Notably, contrary to Sir Karl Pop- 
per’s stance against holism in the 20th century, Prince 
Charles has become a strongest advocate for holism and 
nature-man harmony in the 21st century. The prince 
starts with these alarming words for his 2010 book titled 
Harmony [20, p. 3]: “This is a call to revolution. The 
Earth is under threat. It cannot cope with all that we 
demand of it. It is losing its balance and we humans are 
causing this to happen.”  

The prince has challenged the readers to reconsider the 
assumptions that determine how we live, and how we 
might change in seeking a more durable future for hu- 
mankind. For the first time, he shows how the solutions 
to problems like climate change lie not only in technol- 
ogy but in our ability to change the way we view the 
modern world. In brief, we need new philosophical 
thinking to deal with the problem. 

Is philosophy really dead? Evidently that is not true. 
When Hawking declared the death of philosophy, his 
many universes are still truth-based and being-centered. 
Since being and nothingness share the same philosophi- 
cal root, Hawking like Leibniz cannot avoid nihilism. 
That led to his assertion “a great many universes were 
created out of nothing.” Moreover, the negative and 
positive energies or the Yin and Yang seem to be un- 
avoidable for the regulation and unification of the mul- 
tiverses. 

To be fair, Western science and philosophy are not to 
blame for overlooking the Yin and Yang of nature. Chi- 
nese philosophy itself is to blame because, for thousands 
of years, it failed to provide a formal logical and geomet- 
ric foundation to back up its cosmological claims, that 
also prompted Chen Ning Yang to blame Yi Jing for the 
failure of China to become the cradle of modern science. 

Although philosophy perhaps will never end or die, it 
is a fact that no new philosophy was born since Hegel. 
Due to the widely accepted end or death, now we have to 
talk about its reincarnation.  

4.2. Overcome Metaphysics 

When Heidegger tried to overcome Aristotle’s “being 
qua being” metaphysics he could not figure out what is 
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the ultimate Being that reveals all beings. His search 
once reached the Dao [21,22] but he returned empty 
handed because he didn’t understand what Yi Jing claimed 
“One Yin and one Yang are called the Dao.” He intended 
to escape Western nihilism but in the end was trapped in 
an Eastern version of nihilism: “The Dao that can be told 
is not the eternal Dao; the name that can be named is not 
the eternal name.” Although the word of Laozi has been 
oft-quoted and widely loved, it is actually an obliteration 
of YinYang, a retreat from Yi Jing, and a mystification of 
the Dao. Should Laozi be correct, Einstein’s grand unifi- 
cation would be meaningless.   

To Heidegger, even though philosophy deviated from 
its primordial state, it still thinks. But, according to him, 
science does not think. Similarly, to Him logic does not 
think either. In his writings Heidegger often denounced 
logic in a sarcastic tone. According to him, in logical 
reasoning, the laws of thought are replaced by the laws of 
logical expression. He claimed that logic was invented by 
teachers and not by philosophers. In his observation, 
Leibniz, Cant and Hegel—the three greatest German 
thinkers—had tried to avoid the old logical tradition but, 
unfortunately, they often became sacrifices of it. He 
claimed that thought was still stipulated by proposition in 
Hegelian dialectics and logic was completely framed into 
technology. He called the logic-only thinkers the lowest 
point of thinking (cf. [23]).  

Unfortunately, Heidegger himself failed to overcome 
metaphysics. When he denounced science and logic, he 
stopped short of going beyond truth-based thinking. He 
did not realize that the crux of the problem is not science 
but exactly the truth-based reasoning that dominated hu- 
man’s positive thinking. Since truth is unipolar and static, 
it can’t provide logically definable causality and the dy- 
namics for the ultimate metaphysical Being to reveal all 
beings.  

If you are not for truth you would be called a liar. Be- 
sides Richard Rorty (1931-2007) few dared to go beyond 
truth. In front of truth, even Heidegger had to surrender. 
Ironically, when Heidegger tried to overcome Aristotle’s 
metaphysics, he reasserted truth as the essence of being 
following Aristotle. He evidently didn’t realize that be- 
yond truth there is still equilibrium—the only dynamic 
concept that can regulate the mighty universe including 
all the beings and truths in it. Moreover, since equilib- 
rium is central in the 2nd law of thermodynamics, it is 
scientific and could be the Being of revealing.  

4.3. Possibility of Scientific Reincarnation 

In the money-driven technology-dominated modern world, 
it is extremely difficult to talk about a reincarnation of 
philosophy. In a typical modern university, philosophy 
curriculum has been replaced with truth-based logic 
teaching. But Karl Popper claimed that we can never 

prove something true, we can only show that it is false. 
He deemed it the current state of science and physics, 
which is founded on uncertain induction from empirical 
facts rather than certain logical deduction from principles 
which correctly describe reality. However, Popper’s em- 
pirical positivist view didn’t go beyond truth-based 
thinking because any empirical certainty factor or prob- 
ability is a degree of truth. As a realist, Popper took Ein- 
stein’s side and firmly opposed Niels Bohr’s interpreta- 
tion of quantum entanglement. He overlooked the possi- 
bility of logically definable causality. Without causality 
any scientific view is incomplete. In contrast, Einstein 
believed that a logical axiomatization of physics is possi- 
ble and famously stated: “Evolution is proceeding in the 
direction of increasing simplicity of the logical basis 
(principles)”; “We must always be ready to change these 
notions—that is to say, the axiomatic basis of physics—in 
order to do justice to perceived facts in the most perfect 
way logically”; “Pure thought can grasp reality, as the 
ancients dreamed”; “Nature is the realization of the sim- 
plest conceivable mathematical ideas.”  

Now, the phenomenon of quantum entanglement has 
been repeatedly demonstrated through experiments. Even 
though Einstein was right on a possible axiomatization of 
physics, it is now believed by many that Bohr came out 
the winner of the historical Einstein-Bohr debate on quan- 
tum entanglement—a new phenomenon that entails new 
philosophical thinking. 

Remarkably, Hawking and Mlodinow opposed Ein- 
stein and Popper’s quantum realism. They stated [4, p. 
44]: “Though realism may be a tempting viewpoint, ···, 
what we know about modern physics makes it a difficult 
one to defend.” They also quoted quantum physics: “For 
example, according to the principles of quantum physics, 
which is an accurate description of nature, a particle has 
neither a definite position nor a definite velocity unless 
and until those quantities are measured by an observer.” 
They concluded: “In fact, in some cases individual ob- 
jects don’t even have an independent existence but rather 
exist only as part of an ensemble of many.”  

What Hawking and Mlodinow are saying is that, in the 
quantum world, a being A may not be A or A  A be- 
cause its identity may depend on B or C. Logically 
speaking, the identity law A = A, the most fundamental 
law in Western philosophy and science, is shattered by 
quantum mechanics. Truth-based logical tradition, how- 
ever, can’t make any sense from this quantum phenome- 
non other than characterizing it as a contradiction.  

Niels Bohr was the first one to bring YinYang into the 
center of quantum mechanics for particle-wave comple- 
mentarity. When he was awarded the Order of the Ele- 
phant in 1947, he designed his own coat of arms which 
featured a YinYang logo (or Taiji symbol) in the center 
with the Latin motto “contraria sunt complementa” or 
“opposites are complementary”.  
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Now we need to revisit the primordial meaning of 
YinYang complementarity. Such a revisit reveals that 
YinYang complementarity can be between any two sides 
of one subject. However, the essence of YinYang is that 
the two sides should be opposite but reciprocal poles or 
energies. While Bohr’s particle-wave complementarity is 
central in quantum theory, atomic physics and chemistry, 
particle-wave as well as man-woman, space-time and 
truth-falsity are not direct opposites in the most funda- 
mental way. Instead, particle-antiparticle and action- 
reaction forces are the most fundamental opposites of 
nature. Without the most fundamental bipolar opposites 
any complementarity is less fundamental. That could be 
why Bohr deemed quantum causality unattainable [24]. 
Dramatically, bipolar quantum causality is logically de- 
finable (Equation (1)). 

Based on de Broglie’s work, Einstein’s former associ- 
ate David Bohm proposed a causal interpretation of 
quantum mechanics [25]. Central in Bohm’s interpreta- 
tion is a wave function. Bohm’s causal interpretation was 
not well received at the beginning. It was branded as 
“meta-physical” and “ideological” (cf. [26], p. 340). Ein- 
stein had initially encouraged Bohm on his work. Without 
a deep philosophical basis and a new logic, Bohm’s wave 
function was later dismissed by Einstein as “too cheap”.  

With BDL, the shattered identity law A  A is refor- 
mulated as BUMP or bipolar quantum entanglement that 
provides logically definable quantum causality. It states: 
Equilibrium variables A and B are bipolar quantum en- 
tangled if A is bipolar equivalent to B or A  B in bipo- 
lar geometry. With bipolar quantum entanglement, it is 
natural for A and B not to have independent existence as: 

1) YinYang bipolar geometry is equilibrium-based that 
transcends spacetime, being, and truth; 

2) Any being A may exist in the same bipolar equilib- 
rium or entanglement with another being B in another 
side of the universe; 

3) The negative-positive energies of nature are bipolar 
quantum entangled from which nothing can escape. 

Dramatically, a contradiction in the truth-based space- 
time geometry has become a sound new law in equilib- 
rium-based YinYang bipolar geometry. The new law 
provides logically definable causality for the first time 
ever based on bipolar equilibrium, non-equilibrium, sym- 
metry and non-symmetry. It has made bipolar quantum 
gravity hopeful and ubiquitous logically, physically, bio- 
logically, socially and mentally [1,7-18,27-32]. 

4.4. Equilibrium and Harmony vs Fire and War  

Someone may quote Heraclitus and argue against Yin- 
Yang equilibrium and harmony. Heraclitus famously 
claimed that everything is in a state of flux, nothing stays 
still; fire is the most fundamental element and war is fa- 

ther of all, king of all. He believed that fire gave rise to 
everything. He regarded soul a mixture of fire and water, 
with fire being the noble part and water the ignoble part. 
He believed that worldly pleasures made the soul “moist” 
and a soul should, therefore, be purified to a “dry” state.  

Following Hegel’s suggestion, Heraclitus is widely 
recognized as the founding father of dialectical thinking. 
His prominence is partly due to the view that his predic- 
tion of fire being the most fundamental element of eve- 
rything is corroborated by the big bang theory or even 
verified by particle-antiparticle annihilation.  

Although Heraclitus is right in claiming a forever 
changing world, a re-examination of his fire-based phi- 
losophy can reveal its unscientific nature as we have:  

1) Modern science has proven that fire is not the most 
fundamental element and thus Heraclitus’ prediction has 
been falsified; 

2) Fire is subject to equilibrium condition of the 2nd 
law of thermodynamics; the big bang has to be caused by 
dynamic equilibrium or non-equilibrium where fire is 
effect but not cause; 

3) YinYang bipolarity survived the big bang and can 
also survive a black hole due to particle or antiparticle 
emission from a black hole; 

4) With logically definable causality, bipolar dynamic 
equilibrium has to be more fundamental than fire. 

Mentally speaking, it is misleading to say that soul is a 
mixture of fire and water, with fire being the noble part 
and water the ignoble. Here the founding father of dia- 
lectics seemed to have once fallen into a being-centered 
metaphysical dichotomy. Regardless of good or bad, the 
balance of self-negation and self-assertion abilities of a 
person is a key for mental equilibrium. Without mental 
equilibrium, there would be no healthy genetic mutation, 
no mind, no being, and no truth. 

Socially speaking, although war and fire are occasion- 
ally unavoidable, the advancement of humanity is mainly 
due to (mankind should also strive for) bipolar reciprocal 
and peaceful development in equilibrium, complementar- 
ity, and harmony, not mainly due to war and fire. This is 
a fundamental difference between the Eastern YinYang 
and the Western dialectics. In another word, war and fire 
cannot escape global equilibrium. It is needless to say 
that peace and harmony are not for war and fire, but war 
and fire are for peace and harmony. Interestingly, Zhuang 
Zi (4th century BCE) said: Fish thrive in water, man 
thrives in the Dao; Heidegger sighed: For a long time 
now, all too long, thinking (like a fish) has been stranded 
on dry land. 

5. Science Cannot Replace Philosophy 

5.1. Being, Truth, Equilibrium and Harmony 

Aristotle’s “being qua being” has been central in science 
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as well as in philosophy. Following the metaphysical 
doctrine, ancient people assumed that the Earth was a 
static and stationary being centered in the universe; God 
was an exemplary being who created everything; air, 
water, fire, earth and ether were the fundamental beings 
of the universe; mental disorder like bipolar disorder or 
schizophrenia were caused by some ghostly beings.  

Nevertheless, under the guidance of being-centered 
philosophy, truth-based Western science and technology 
have made glorious achievements. It brought mankind 
wealth and health. It improved the peoples’ living stan- 
dards in many countries. Unfortunately, the glory is as- 
sociated with side effects. Global warming is believed by 
many a deadly one threatening the very existence of 
mankind. Therefore, the problem is the being-centered 
and truth-based positive thinking itself.  

Until this day, modern science is still strictly following 
the “being qua being” doctrine. For instance, the many 
decade searches for quantum gravity resulted in strings 
and superstrings—imaginary fundamental beings. Despite 
the sharp criticisms such as “The Trouble with Physics” 
and “Not Even Wrong” in physics as well as “ended” or 
“dead” in philosophy, science is still being-centered and 
truth-based. Even some scientists who proclaimed “phi- 
losophy is dead” failed to realize that the multiverses in 
M-theory are still under the guidance of the “dead” phi- 
losophy.  

Einstein asserted that “Physics constitutes a logical 
system of thought.” and “the axiomatic basis of theoreti- 
cal physics cannot be extracted from experience but must 
be freely invented”. Presumably, the light at the end of 
the quantum tunnel is not likely to come nearer until 
someone grasps the reality with pure thought to invent a 
philosophically different new logic with definable cau- 
sality. Is that possible at all? Einstein thought so. He as- 
serted that “nature is the realization of the simplest con- 
ceivable mathematical ideas”; “pure thought can grasp 
reality”.  

Why can’t science be equilibrium-based? The answer 
is simple: equilibrium is not “being qua being”. Even 
though no being can exist beyond equilibrium or non- 
equilibrium, even though the truth-based philosophical 
tradition has been proven inadequate for furthering sci- 
entific explorations, even though philosophy as meta- 
physics has been proclaimed “ended” or “dead,” even 
though equilibrium is central in the 2nd law of thermody- 
namics, the truth-based and being-centered philosophical 
thinking is and will still be the only major guiding light 
as well as a major barrier of science until the reincarna- 
tion of an alternative or complementary philosophy. 

5.2. M-Theory and Philosophy 

Hawking and Mlodinow argued in their book The Grand 

Design [4] that, because philosophy has not kept up with 
developments in modern science, particularly physics, as 
a result, scientists have become the bearers of the torch in 
humans’ quest for knowledge. Therefore, they claim: 
“philosophy is dead.” 

When they made their above argument, they evidently 
overlooked the chilly fact that modern physics is now in 
urgent need for the guidance of new philosophical think- 
ing. If string theory is not testable how could the M-the- 
ory of superstrings be testable? If no geometry can go 
beyond spacetime, how could an M-theory of multiverses 
be scientific? If Einstein believed “evolution is proceed- 
ing in the direction of increasing simplicity of the logical 
basis (principles)” for physics, how could an M-theory 
with eleven or more dimensions be simple? Where is the 
definitive battleground of quantum gravity? How is 
quantum entanglement related to the real world? Where 
is the simple logical foundation that provides logically 
definable causality? Where is the deeper theory that can 
transcend spacetime, relativity, quantum mechanics and 
the multiverses?  

As a matter of fact, the science of The Grand Design 
did not avoid the guidance of philosophical thinking. For 
instance, on Page 154 of the book the authors wrote cau- 
tiously: “Though it may sound like philosophy, the weak 
anthropic principle can be used to make scientific pre- 
diction.” On Page 162, they unconsciously wrote: “It 
cannot be so easily explained, and has far deeper physi- 
cal and philosophical implications.” Evidently, when the 
authors needed to recall philosophy back into physics 
they forgot that they already pronounced its death on 
Page 5 of the same book.  

Consequently, leaving God alone, The Grand Design 
stopped short of answering two deeper questions: 

1) Do the multiverses in M-theory need to follow the 
same equilibrium condition of the 2nd law of thermody- 
namics?  

2) Can all the truth-based and being-centered mul- 
tiverses be unified under a single equilibrium-based and 
harmony-centered universe?  

5.3. Can Science Replace Philosophy?   

When new philosophical thinking is badly needed as an 
alternative guidance for science, especially physics, it 
seems that science has no way to replace philosophy: 

1) Without new philosophical thinking we cannot have 
significant scientific invention. 

2) Sometimes philosophy leads to new scientific dis- 
coveries; sometimes new scientific discoveries lead to 
new philosophical thinking.  

3) Existing philosophical thinking is inadequate for 
solving unanswered scientific problems.  

4) The truth-based and being-centered intensive searches 



W.-R. ZHANG 

Copyright © 2012 SciRes.                                                                                 JMP 

1282 

for ether, strings and monopoles have got no concrete 
result so far but dipoles are everywhere.   

5) Physicists so far failed to apply string theory in the 
real world to reveal the ubiquitous effect of quantum 
entanglement. New philosophical thinking is needed for 
a new formal logical and mathematical system. BDL is 
the first step forward. 

6) Even if the God pillar of metaphysics were indeed 
broken, it does not mean Western philosophy as meta- 
physics is completely dead because the truth-based logi- 
cal reasoning of metaphysics continues to be a major 
pillar of modern science and even equilibrium can be 
regarded as holistic truth. 

7) Although evolution has been proven true in biology, 
we still need to find out what is the driving power of 
mutation, natural selection and evolution. Could it be 
dynamic equilibrium or non-equilibrium?  

8) Even if the truth-based and being-centered Western 
philosophy were really dead, the Eastern equilibrium- 
based and harmony-centered YinYang philosophy is still 
underdeveloped. 

9) YinYang bipolar quantum entanglement can be an 
equilibrium-based ubiquitous regulating power of space- 
time, being, truth, science and philosophy. 

10) Particle-antiparticle bipolarity can survive big 
bang and black hole, but all beings and truths are subject 
to observation and limited to certain spacetime. 

Evidently, philosophy like science will never end or 
die as long as mankind is faced with unsolved problems. 
What it may do is hibernation followed by reincarnation 
or awakening. Thus, science can’t replace philosophy. 

6. Harmony and Einstein’s God 

This paper is about scientific reincarnation of philosophy, 
not theology. It should be remarked, however, that 
Spinoza (1632-1677) defined God as nature. Spinoza’s 
God provided a living natural God. On the other hand, 
Leibniz claimed that things cause one another because 
God ordained a pre-established divine harmony among 
everything in the universe. Clearly, equilibrium, harmony 
and Spinoza’s God are related. 

Einstein combined the above views and famously 
stated: “I believe in Spinoza’s God who reveals himself in 
the orderly harmony of what exists, not in a God who 
concerns himself with the fates and actions of human 
beings.” Einstein also said: “Everyone who is seriously 
involved in the pursuit of science becomes convinced a 
spirit is manifest in the laws of the Universe—a spirit 
vastly superior to that of man, and one in the face of 
which we with our modest powers must feel humble. In 
this way the pursuit of science leads to a religious feeling 
of a special sort, which is indeed quite different from the 
religiosity of someone more naive.”  

Now, with YinYang bipolar relativity and bipolar 
quantum entanglement, equilibrium-based harmony can 
be logically and mathematically defined and revealed. 
Logically speaking, theology might need to follow Ein- 
stein and elevate God from the heaven of being and truth 
to the heaven of nature’s equilibrium and harmony. Such 
an elevation would position God on a unifying higher 
ground above science and philosophy. That seems 
necessary for the returning of divinity to the technology- 
dominated Godless society. Otherwise, we human beings 
as a curious species may always wonder whether God as 
an exemplar being has to be subject to equilibrium or 
harmony such as mental equilibrium or harmony?  

7. Conclusions 

A brief review on the end and death assertions of phi- 
losophy has been presented. YinYang bipolar dynamic 
logic (BDL) has been introduced as an equilibrium-based 
logic of science (vs The Science of Logic). The logic is 
then used for an equilibrium-based cosmological inter- 
pretation and unification of matter, antimatter, space, 
time, big bang and black hole, relativity and quantum 
mechanics. With the new interpretation, a scientific rein- 
carnation of philosophy has been predicted. Due to its 
central claim that YinYang bipolar quantum entangle- 
ment is the source of causality for the Being of beings, 
the reincarnation is named a quantum reincarnation. 

The possibility and unavoidability of the reincarnation 
has been discussed. Symbolically speaking, if contradic- 
tion in Western dialectics is replaced with bipolar equi- 
librium, Being in Western metaphysics is replaced with 
harmony, and God is elevated from the heaven of being 
and truth to the heaven of nature’s equilibrium and har- 
mony, the science of logic by Hegel can be replaced with 
BDL—an equilibrium-based logic of science. Hegel’s 
circle can then be replaced with the Taiji symbol (Figure 
10), where the non-isomorphic coexistence of the Yin 
and the Yang of nature has been proven by dipoles and 
CP-violation. An immediate consequence is the falsifica- 
tion of Hegel’s assertion of the end of philosophy.  

Another consequence is that the negative and positive 
energies of the many universes in M-theory have to fol- 
low the same equilibrium condition of the 2nd law of 
thermodynamics and become one universe. This tells us 
that science can’t replace philosophy. Subsequently, the 
different laws followed by the multiverses as described  
 

 

Figure 10. From Hegelian circle to YinYang logo. 
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in The Grand Design have to be unified under the same 
equilibrium or non-equilibrium condition. Thus, the re- 
incarnation discussed in this work presents a modest uni- 
fication of science and philosophy within equilibrium 
based YinYang bipolar geometry. 

Although the reincarnation of philosophy is a modest 
result originated from YinYang bipolar quantum entan- 
glement, its social implication could be profound and far 
reaching. Hopefully, the reincarnation would bring phi- 
losophy from the unbalanced ground where Thales once 
set his feet 2500 year ago to the firmer and balanced 
ground where mankind will set feet in the next 1000 
years. Thales should have avoided his embarrassing fall 
into a well and being mocked by a servant girl. Now 
mankind should maintain nature-man harmony to avoid 
potential falls. Indeed, even after the world is unified into 
a single democratic society, mankind will still need so- 
cial, natural, and nature-man equilibrium and harmony. 

The Grand Design is concluded with these words [4, p. 
181]: “M-theory is the unified theory Einstein was hop- 
ing to find. The fact that we human beings—who are 
ourselves mere collections of fundamental particles of 
nature—have been able to come close to an understand- 
ing of the laws governing us and our universe is a great 
triumph. But perhaps the true miracle is that abstract 
considerations of logic lead to a unique theory that pre- 
dicts and describes a vast universe full of the amazing 
variety that we see. If the theory is confirmed by obser- 
vation, it will be the successful conclusion of a search 
going back more than 3000 years. We will have found the 
grand design.” 

In contrast to the above assertions, the author con- 
cludes this paper with a balanced set of words: “It might 
be questionable whether M-theory is indeed the unified 
theory Einstein was hoping to find unless the multiverses 
are unified into a single one under equilibrium or 
non-equilibrium following the 2nd law of thermodynamics. 
The fact that we human beings—who are ourselves mere 
collections of negative-positive particles of nature with 
self-negation and self-assertion bipolar mental equilib- 
rium or disorder—have revealed the bipolar nature of 
the laws governing us and our universe is an overlooked 
great discovery. But the true miracle is perhaps that 
YinYang bipolar dynamic logic has led us to an equilib- 
rium based and harmony-centered unification of science 
and philosophy. If the unification is accepted as an al- 
ternative guiding light for mutually beneficial reciprocal 
interaction, it may enhance our mental equilibrium, so- 
cial stability, nature-man harmony, and one day lead us 
to the unified theory Einstein was hoping to find. Other- 
wise, the vast universe full of the amazing variety that we 
see is likely to be forever a mystery world with God or- 
dained equilibrium and harmony.” [1]. 
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ABSTRACT 

This document is due to reviewing an article by Maydanyuk and Olkhovsky, of a Nova Science conpendium as of “The 
big bang, theory assumptions and Problems”, as of 2012, which uses the Wheeler De Witt equation as an evolution 
equation assuming a closed universe. Having the value of k, not as the closed universe, but nearly zero of a nearly flat 
universe, which leads to serious problems of interpretation of what initial conditions are. These problems of interpreta-
tions of initial conditions tie in with difficulties in using QM as an initial driver of inflation. And argue in favor of using 
a different procedure as far as forming a wave function of the universe initially. The author wishes to thank Abhay 
Ashtekar for his well thought out criticism but asserts that limitations in space-time geometry largely due to when  is 
formed from semi classical reasoning, i.e. Maxwell’s equation involving a close boundary value regime between Oc-
tonionic geometry and flat space non Octonionic geometry is a datum which Abhay Ashekhar may wish to consider in 
his quantum bounce model and in loop quantum gravity in the future. 



 
Keywords: Wheeler De Witt Equation; Planck’s Constant; Wavefunction of the Universe; Octonionic Geometry; 

Quantum Mechanics 

1. Introduction 

What we are looking at, in Maydanyuk and Olkhovsky 
[1], is a way to define the initial Wheeler De Witt equa-
tion, not as what they did, for a closed universe, but to 
get to the actual nearly flat space Euclidian universe 
conditions which suggest that quantum mechanics will 
not work well as to initial conditions, and that a different 
procedure than what was done for closed universe condi-
tions [1] needs to be considered for the start of cosmo-
logical evolution. Note that the difficulty in initial condi-
tions has startling similarities as to the problem with 
gravitions having mass as noted by Maggiorie [2] which 
specifically delineated for non zero graviton mass, where 

 and  that  Traceuv
uv uvh h h   Trace uvT T  

2
graviton3 2m h T               (1) 

As noted by Maggiore, one gets into serious analytical 
difficulties from the beginning, with (1) and the reader is 
invited to look at his massive Graviton section [2] which 
delineates some of the problems. In a similar manner, the 
closed universe analysis done in [1] encounters serious 
problems in initial conditions if we used flat space in the 
onset which sheds light upon the vulnerabilities of quan-

tum mechanics in forming appropriate initial conditions, 
which we will comment upon and offer a solution for.  

2. Looking at the Way to Form a Wheeler De 
Witt Equation via a Nearly Flat Space 
Model 

The author is quite aware of work discussed with him in 
conferences, noticiably Rencontres De Moriond, in the 
experimental gravity conference, which alledges that 
from the initial conditions that inflation mandated almost 
completely flat space. For the sake of argument in this 
work, we will work with flat space, and will commence a 
derivation which shows serious issues with the Wheeler 
De Witt analysis of Quantum space time offered in [1] 
which works passably well in a closed universe condi-
tion. 

To do this, we will reproduce, using instead of k = 1 
(closed universe), ~ 0k   

k 

, and use that to reproduce 
the Wheeler De Witt argument and wave functions in [1], 
designating what we think are serious initial condition 
problems inherient in the nearly flat space 
conditions, so as to look at first the mini super space 
Langrangian. This document is due to reviewing an arti-

~ 0  
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cle by Maydanyuk and Olkhovsky, of a Nova Science 
conpendium as of “The big bang, theory assumptions and 
Problems”, as of 2012, which uses the Wheeler De Witt 
equation as an evolution equation assuming a closed 
universe. Having the value of k, not as the closed uni-
verse, but nearly zero of a nearly flat universe, which 
leads to serious problems of interpretation of what initial 
conditions are. These problems of interpretations of ini-
tial conditions tie in with difficulties in using QM as an 
initial driver of inflation. And argue in favor of using a 
different proceedure as far as forming a wave function of 
the universe initially, which is written in [1] as for a mini 
superspace lagrangian  

     
     

2

2

, 3 8π ~ 0

3 8π 8π 3

L a a a G a k

a G G a a





      

  

  

1

     (2) 

A Chapylgin gas equation of state was used, in work-
ing with Equation (2) using 0    so that 

Chapyglin Chapyglinp A                 (3) 

And, in conditions which specify A   and  

DustB   

    3 1
Chapyglin Dust0

a A B a 
        (4) 

and a general density equation we will write up as 

     1/1
3 1 4

Dust Radiationa a
   
 

   a    (5) 

The end result as given is that [3] one has a S.E. with a 
wavefunction   a

     
2

Radiation2 V a a E a
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The difficulty in the change of variables comes next 
and is attributed to k   . Set , and 
then the Equation (7) becomes, instead, if 

28π 1G M  

radiation radiation12E   

   
  

2

1/3
3 14

Dust

36

 12

V a k a

a a




 



 


   

   
    (8) 

This potential is almost identitcal to what was done in 
[1] but the term k    is what creates initial conditions 
which simply do not work out and are to be commented 
upon directly. If one does an expansion of Equation (8) 
as given above by q a

 Chapyglin 0 1V q V V  q                (9) 

 0 ChapyglinV V a a  ; 

  
    

3 1
1 D

/1
3 1

Dust

72 12 4

 

V k a a
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ust

 (10) 

Then Equation (6) becomes, with a wave func-
tion of the universe for 

 q
q a a   

   
2

0 radiation 12

d
0

d
V E V q q

q


 
      
 

    (11) 

The following change of variables is where the prob-
lem in the Planckian regime becomes acute. i.e. set  

0 1
2/3 2/3

1 1

V V
q

V V
                 (12) 

Then, Equation (11) become an Airy style differential 
equation with 

   
2

2

d
0

d

 
  


               (13) 

The following change of variables is where the prob-
lem in the Planckian regime becomes acute. Equation (13) 
above becomes undefinable, in the Planck regime of space 
time due to working with  

 radiation 0
2/3Planck regime

~
~ 0

E



  



  

V
         (14) 

In this case, the 33~ 10    centimeters is so small, 
that it is next to impossible to define Equation (14) , with 
a solution as given in [1] via 

  T       ; 

 
max 3

0

exp ( ) d
3

i f
    

 


     
 

       (15) 

If we do a power series expansion of the function 
 f  , [1] asserts that Equation (15) becomes propor-

tional to an airy function with    ;Ai z Bi z , provided 

0 1 1f0;f   . 

3. Criticism of the Above Methodology by 
Abhay Ashtekar 

We introduce several criticisms of the above methodol-
ogy leading to what was said about Equation (14) by Ab- 
hay Ashtekar, in private communication with the author 
[4]. 

“There are several technical problems. For instance, 
the substitution from (11)-(13), introducing (12), seems 
to overlook the fact that the new variable xi in (12) de- a   then by [1]  
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pends on q or a not just by the explicit factor but also via 
the potentials. And even if there is a coefficient dividing 
by a small epsilon (related to k), this value is not zero and 
there is no problem with well-defined equations. One 
would simply make a poor choice of variables in which 
some coefficients are unnaturally large (After all, a flat 
universe with k = 0 has a well-defined formulation)”. 

4. The Author’s Answer to Abhay Ashtekar 

First of all the author wishes to thank Abhay Astekar for 
his direct communications to correct what he perceived 
as sloppy thinking. The first place to start is to look at 
(12) above again, and to ask what is possibly driving 
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Recall Equation (11) 
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This presumably would happen when q a a  , and 
then we would be really looking at  
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The transition from the left to the right hand side in 
Equation (20) above is tandem to what was said by Beck- 
with [5,6] as to formation of Planck’s constant. 

5. Criticism of Forming Wave Function of 
Equation (15) if an Airy Function, with 
Using Equation (14) 

We assert that in the Planck regime of space time, that 
Equation (14) is in reality undefinable due to the de-
nominator of at or below 10 ^ - 33 centime-
ters of space time. The value of this parameter is so small, 

in fact, that what really needs to be addressed, to make 
any sense out of how small Equation (14) really is, is the 
following observation. Namely in looking at an evolution 
of a Wheeler De Witt equation of space time, that we can 
define a spatial evolution, via expansion of the scale fac-
tor a, as in Equation (11), but we have to put in by hand 
the initial time step i.e. the exact same problem shows up 
in Loop quantum gravity. In the case of scale factor 

~ 0k   

 a t , the spatial evolution is amendable by QM, but 
there is no idea as to how to get about putting in “by 
hand” the initial time step, which we presume would be a 
Planck time interval. 

6. So If a Domain Wall Enters the Picture, 
Then What Does This Do to Structure 
Formation and also Plank’s Constant? 

In [5] we are stuck with how a semi classical argument 
can be used to construct Table 1 above. In particular, we 
look at how Planck’s constant is derived, as in the elec-
troweak regime of space time, namely that given the 
prime in both Equations (16) and (17) is for a total de-
rivative [7,8] 

 y
y y

A
E A t

t
 


    


x          (18) 

Similarly [15] 

 y
y y

A
E A t

t
 


    


x          (19) 

The A field so given would be part of the Maxwell’s 
equations given by [7] as, when    represents a D’Al- 
bertain operator, that in a vacuum, one would have for an 
A field [7,8] 

  0A                  (20) 

And for a scalar field   

  0                  (21) 

Following this line of thought we then would have an 
energy density given by, if 0  is the early universe per- 
meability [7] 

   2 2 2 20
02 y z yE B A t x

               (22) 

 
Table 1. Organizing WdW evolution. 

Time Interval Consequences Dynamical Consequencs Does QM/WdW Apply? 

Just before Electroweak Era 
Form  from early E & M fields, and use Maxwell’s Equations with  
necessary to implement boundary conditions created from change  
from Octonionic geometry to flat space 


NO 

Electro-Weak Era   kept constant due to Machian relations YES 

Post Electro-Weak Era to Today   kept constant due to Machian relations YES Wave Function of Universe
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We integrate (20) over a specified E and M boundary, 

so that, then we can write the following condition namely 
[7,8]. 

 
    2

d d d

d do y

t x y z

dA t x t x y z



 



   




    (23) 

(21) would be integrated over the boundary regime 
from the transition from the Octonionic regime of space 
time, to the non Octonionic regime, assuming an abrupt 
transition occurs, and we can write, the volume integral 
as representing [7,8] 

gravitational energyE                 (24) 

Our contention for the rest of this paper, is that Mach’s 
principle will be necessary as an information storage 
container so as to keep the following, i.e. having no var- 
iation in the Planck’s parameter after its formation from 
electrodynamics considerations as in (21) and (22). Then 
by applying [7,8] 

  Apply Machs Relations
t     (Constant value)   (25) 

7. Conclusions. We Need to Reconsider the 
Role of Quantum Gravity Models at the 
Onset of Inflation 

We are stuck in all Quantum gravity models as of putting 
in an initial time step “by hand” so to speak which raises 
fundamental issues of what would form an initial time 
step in Quantum gravity. How the transtion from the left 
to the right hand side of Equation (17) occurs is crucial 
and it comes about because of a transition from Octo- 
nionic geometry to quantum accessible and analyzable 
flat space geometry. The key equation to understand is 
Equation (17) which delineates how one can have Equa-
tion (11), Equation (16), and Equation (17) happen. This 
indeterminate nature of time, itself, at the onset of Quan-
tum gravity models of space time may be seen as a fun-
damental defect killing off all initial QM influences at 
the start of inflation. The other way to look at the role of 
an undefined initial starting point for time, which we put 
in by “hand” is that the special nature of time itself may 
be if experimentally verified, via observations, the best 
hope we have of falsifiable measurements of t’Hoofts 
conjecture [9,10] that quantum mechanics is embedded 
within a classical physics frame work which we have yet 
to fully develop. To do that would also, if the Gravition 
exists with initial measurements, such as given by 

22 1 2
graviton relativistic

8
graviton

graviton

4.4 10 h eV c

2.8 10 meters

m

m c
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Perhaps lead to signals from early universe gravita- 
tional waves which may confirm or falsify the role of 
quantum mechanics in initial univese conditions. As well 
as the role that set as a working approximation [6]. 

 
2 2

2 2
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S b
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v k G

v k G T

  

 



       
   (27) 

Affects the formation of baryonic matter fluctuations, 
which may play a role in the formation of Table 1. 
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ABSTRACT 

Finding the origin of Hawking radiation has been a puzzle to researchers. Using a loop quantum gravity description of a 
black hole slice, a density matrix is defined using coherent states for space-times with apparent horizons. Evolving the 
density matrix using a semi-classical Hamiltonian in the frame of an observer outside the horizon gives the origin of 
Hawking radiation. 
 
Keywords: Black Hole Physics; Quantum Gravity; Hawking Radiation; Loop Quantum Gravity; Coherent States 

1. Introduction 

A new theory is expected to take over at Planck distances 
as “quantum effects” of gravity start dominating. One of 
the promising approaches to the theory of quantum grav-
ity is the theory of Loop Quantum Gravity (LQG), which 
is by formulation non-perturbative and background in-
dependent [1-3]. LQG has a well defined kinematical 
Hilbert space, and though the Hamiltonian constraint 
remains unsolved, the theory allows for a semiclassical 
sector of the theory. This includes “coherent states” [4,5] 
which are peaked at classical phase space elements. Us-
ing these as a starting point, I defined in a series of pa-
pers [6-8] coherent states for the Schwarzschild space- 
time, and derived an origin of entropy using quantum 
mechanical definition of entropy from density matrices. 
The exact entropy is a function of the graph used to ob-
tain the LQG phase space variables [9]. The zeroeth or-
der term is proportional to the area of the horizon signi-
fying a universality of the Bekenstein-Hawking entropy. 
The proportionality constant and the correction terms 
bring out the details of the graph [8]. 

In this paper we take this new way of finding the ori-
gin of entropy a step further by evolving the spatial slice 
in time [10], and observing the evolution of the density 
matrix in the process. This state as of now does not sat-
isfy the Hamiltonian constraint, but one is allowed to 
take an arbitrary initial state, or a wavepacket with ap-
propriate properties, representing a macroscopic con-
figuration. The evolution discussed in this paper is semi-
classical, i.e. no attempt is made to use the full Hamilto-
nian. 

The quasilocal energy (QLE) of an outside observer, 
defined in [11] is used as the Hamiltonian to evolve the 
system. As the time clicks in the observers clock, the 

Hamiltonian evolves the coherent state such that the area 
of the horizon remains the same as predicted by classical 
physics. However, classically forbidden regions become 
accessible quantum mechanically, and vertices of the 
graph hidden behind the horizon in one slice emerge out-
side the horizon in the next slice. This gives a net change 
in area, and the mass deficit is emitted from the black 
hole. This evolution is not unitary, and the quasi-local 
energy which is used to evolve the slice is not mapped to 
a Hermitian operator. When matter is coupled to the gra- 
vitational system, a net flux emerges causing a decay of 
the horizon. 

In Section 2 we introduce the formalism by describing 
the coherent state, the black hole time slice, the apparent 
horizon equation, and the density matrix. Section 3 de-
scribes the time evolution of the system and gives a 
derivation of the change in entropy. In Section 4 we give 
a description of a matter current emergent from behind 
the horizon. Finally in the concluding section we in- 
clude a discussion about the implications of the non- 
Hermitian evolution. 

2. The Coherent State in LQG 

For gravity, finding the canonical variables which de-
scribe the physical phase space is an odd task as there is 
no unique time. Nevertheless a fiducial time coordinate 
can be chosen, which breaks the manifest diffeomorphism 
invariance, restored in the Hilbert space of states by im-
posing constraints. 

The constant time slices are described by the intrinsic 
metric ab  and the extrinsic curvature abq K  (a,b = 1,2,3). 
The theory can be formulated in terms of the square root 
of the metric, the triads I

ae  defined thus: 
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=I I
a b abe e q                  (1) 

where I  represents the internal index for the rotation 
group SO(3) of the tangent space and . The 
internal group is taken to be SU(2), as this is locally 
isomorphic to SO(3). The theory is then defined in terms 
of the “spin connection”  and the triads. 
However, a redefinition of the variables in terms of tan- 
gent space densitised triads 

, = 1, 2,3a b

a bKe e=I IJK b
a J

I
aE  and a corresponding 

gauge connection I
aA  where I represents the SU(2) in- 

dex simplifies the quantisation considerably. 

 1
= = detI I Ib a

a a ab I
a
IA K e E e e


       (2) 

( I
ae  are the usual triads, abK  is the extrinsic curvature, 
I
a  the associated spin connection,   the one parame-

ter ambiguity which remains named as the Immirzi pa-
rameter). The quantisation of the Poisson algebra of these 
variables is done by smearing the connection along one 
dimensional edges e  o length ef    a graph of   to 
get holonomies  eh he triads are smeared in a set 
of 2-surface decomposition of the three dimensional spa-
tial slice to get the corresponding momentum 

A . T

I
eP . e 

algebra is then represented in a kinematic “Hilbert space”, 
in which the physical constraints have been “formally” 
realised [12]. Once the phase space variables have been 
identified, one can write a coherent state for these [4] i.e. 
minimum uncertainty states peaked at classical values of 

,

Th

I
e eh P . In analog  the harmonic oscillator coherent 

states, where the coherent state is a function of the com-
plexified phase space element 

y hwit

x ip , the SU(2) cohe
ent states are peaked at the complexified phase space ele- 
ment 

r-

2=
I IiT P

e eg e h . These eg  are thus elements in the 
complexification of SU(2) as 2I IiT Pe  ( IT  being the ge- 

 ma ices of SU(2)) is a Hermitian matrix and eh  
is the unitary SU(2) mat . Whether these are physical 
coherent states, or have appropriate behavior under the 
action of the constraints has to be examined carefully 
[13]. The coherent state in the momentum representation 
for one edge is defined to be 

nerator tr
rix

     1 2>= π >tj jt
e j e

jmn

g e g jm   n      (3) 

In the above eg  is a complexified classical phase  

space element 
c 2 cI I l

eiT P l
ee h , (the cI l

eP  and the  re-  cl
eh

present classical momenta and holonomy obtained by 
embedding the edge in the classical metric). The >jmn   
are the usual basis spin network states given by  π j mn

h ,  

which is the jth representation of the SU(2) element e . 
Similarly,  dimensional representations 
of the  matrix e

h
  2 1 2 1j j  
2


2 g  are denoted as 

mn
. The 

j is the quantum number of the SU(2) Casimir operator in 
that representation, and  represent azimuthal quan- 

tum numbers which run from . The coherent state 
is precisely peaked with maximum probability at the  
for the variable e  as well as the classical momentum 

 π j eg

,m n

..j j
cl
eh

h
cI l

eP  for the variable I
eP . The fluctuations about the 

classical value are controlled by the parameter t (the 
semiclassicality parameter). This parameter is given by 

2
pl a  where pl  is Planck’s constant and a a dimen-

sional constant which characterises the system. The co-
herent state for an entire slice can be obtained by taking 
the tensor product of the coherent state for each edge 
which form a graph  , 

=
e

.t
e                  (4) 

In [7] the eg  was evaluated for the Schwarzschild 
black hole by embedding a graph on a spatial slice with 
zero intrinsic curvature. The particular graph which was 
used had the edges along the coordinate lines of a sphere. 
This simplistic graph, was very useful in obtaining the 
description of the space-time in terms of discretised ho- 
lonomy and momenta. A particularly interesting conse-
quence of this was that the phase space variables were 
finite and well defined even at the singularity. 

Given that the area of a surface in gravity is measured 
as the integral of the square root of the metric over the 
surface, the area operator can be written simply as  
ˆ = ˆ ˆI I

e eA P P . The expectation value of the area operator  

in the coherent state emerges as [9] 

1

2
ˆ =A j 

 
t  
             (5) 

Thus we are considering a semiclassical state, which 
is a state such that expectation values of operators are 
closest to their classical values. The information of the 
classical phase space variables are encoded in the 
complexified SU(2) elements labeled as eg . The fluctua- 
tions over the classical values are controlled by the semi- 
classical parameter t. 

The density matrix which describes the entire black 
hole slice is obtained as 

Total = ><              (6) 

where >  is the coherent state wavefunction for the 
entire slice, a tensor product of coherent state for each 
edge. 

2.1. Apparent Horizons 

We concentrate on the coherent state near the apparent 
horizon contained in the spatial slice. We find that moti-
vated from the apparent horizon equation the graph 
across the horizon can be taken to be populated by radial 
edges, linking vertices outside and inside the horizon. 
One then traces over the coherent state within the horizon. 
Initially we take a particular time slicing of the black 
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hole, which has the spatial slices with zero intrinsic cur-
vature [7]. One such metric which has the time slices as 
flat is the Lemaitre metric 

 

  

2
2 2

2 3

4 3
2 3 2 22

d
d = d

3

2

3
 d dsin

2

g

g

R
s

R
r

R r





.   

 
 

 
  

     

    (7) 

The , (in units of c = 1) and in the = 2gr GM =  
constant slices one can define the induced metric in terms 
of a “r” coordinate defined as  

  1 3
d = d 3 2 g cr R r R     

( = c  ) on the slice. One gets the metric of the three 
slice to be 

2 2 2 2 22
3d = d d d .sins r r             (8) 

The entire curvature of the space-time metric is con-  

tained in the extrinsic curvature or 
1

=
2

K g    ten-  

sor of the =  constant slices. Now if there exists an 
apparent horizon somewhere in the above spatial slice, 
then that is located as a solution to the equation 

= 0a a b
a abS K S S K              (9) 

where , (  denote the spatial indices) is 
the normal to the horizon, ab

aS ( , = 1, 2,3)a b
K  the extrinsic curvature 

in the induced coordinates of the slice, and  the trace 
of the extrinsic curvature. If the horizon is chosen to be 
the 2-sphere, then in the coordinates of (8), 

K

 1,0,0aS , 
the apparent horizon equation as a function of the metric 
reduces to: 

 1 =rr
rr r rK q K q K q   

        0    (10) 

Note that the first term of the equation disappears trivi-
ally as  for any point in the spatial slice. Even at 
the operator level the  can be set to the identity 
operator in the first approximation, as 

1 = rrq
rrq

2=
r re e  

(  being the volume operator) upto normalisations, and 
in the spherically symmetric metric 

r re e

rrq P P V
V̂

=V P   (upto dis- 
cretisation constants). Thus the operators in the numera- 
tor and denominator cancel and the normalisation con- 
spire, leaving . To understand the rest of the 
equation in terms of the holonomy and momentum vari-
ables of LQG, which are classically measured in the 
same metric as (8), we use the following regularisation 

ˆ =rrq I

               , = , =I I I IK e K q e e                     (11) 

      1
, Tr ,I I

e ee N T h h V
    
 

(N is a constant, a function of the edge lengths and the 
area bits of the discretisation) and V is the volume op-
erator. 

 
11

= TI I
e

e
eK r h T h




  





 
  

        (13) 

Here   has been used as a parameter to identify the 
I
aK  operator, and this is mainly a trick. In the continuum 

limit 

   d

0= limit e =
a

aA xaI I
e a a ee a

h A I A T
I     (14) 

As the gauge connection is a function of the Immirzi 
parameter due to (2), the expectation value of this opera-
tor in a coherent state will be a function of the Immirzi 
parameter. By taking the derivative wrt to the Immirzi 
parameter we are giving the same status to the parameter 
as is given to “dimension” in a dimensional regularisa-
tion of Feynman diagrams. We let the parameter vary by 
an infinitesimal amount from its value in the particular 
quantisation sector, take the derivative, and put its 
original value in the final answer for the I

aK  operator. 
The Formula (13) is facilitated by the fact that the de- 
pendence of I

aA  on the   is linear. One way to check 
whether this gives the proper answer is to take a solved 
quantum mechanical system and use a similar method 
there. The most useful example is the Harmonic Oscilla-
tor Hamiltonian, which can be written as 

2
2 21

=
2 2

p
H m x

m
               (15) 

The ground state is a coherent state, so we take that as 
an example. We define the operator 

2
2

2
=

H
x

m 



                 (16) 

Thus 

2
2 2

2 2
= = =

2 2

H
x

m m


m 

   
    
 

    (17) 

The regularisation (13) is thus an allowed approxi- 
mation. 

The terms involving the Christoffel connections like 

r

  include derivatives in the regularised version, the 

derivatives appear as difference of triads across two ver-
tices. Thus 

      1 2

1
=

r

J J J
r I I

e

e e e v e v e v  
  

  1      (18) 

As a result of this if we impose restrictions on the 
Christoffel connections and one of the vertices 1  is 
within the horizon, whereas 2  is outside the horizon, 
there will be correlations across the horizon. 

v
v




         (12) 
If one evaluates the expectation value of the apparent 
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horizon equation using the regularised variables in the 
coherent states, then one would obtain 

   

 

2 1 1/2 1 1 2

1

1 1 2

2

1

1

4 Tr Tr

    Tr

    Tr = 0

J J
e e e e e

v

J
e e

v

I I
e e e v

P T h V h T h V h

T h V h

N h T h P

    

 

 





  


 





 



    

2v




(19) 

(  is a constant). N 

2.2. Density Matrix 

The density matrix is obtained as 

Total = ><               (20) 

where >  is the coherent state wavefunction for the 
entire slice, a tensor product of coherent state for each 
edge. 

But given this, we concentrate in a “local” region to 
see the behavior of the horizon 

Total outside local inside=                (21) 

where local  covers a band of vertices surrounding the 
horizon one set on a sphere at radius 2

rg e  and one 
set on a sphere at radius 

r 
2

rg e  within the horizon, 
as described in [9], and in the figure enclosed. This local 
density matrix and the correlations due to the apparent 
horizon equation (19) was used to derive entropy [6]. 
This entropy counts the number of ways to induce the 
horizon area using the spin networks, though the con-
straints have not been appropriately imposed as was ob-
tained using a Chern-Simons theory in [14]. However, 
the entropy calculation using the coherent states provides 
a tracing mechanism, and a method to obtain correlations 
across the horizon which are gravitational in origin. We 
will henceforth deal with 

r 

local , but we will drop the 
local label for brevity. 
 

 

3. Time Evolution 

In physical systems, the Hamiltonian generates time evo- 
lution, but in General Theory of Relativity, the Hamilto-
nian is a constraint and generates diffeomorphisms in the 
time direction. So the question is, what is physical time, 
and if that exists, what would be the operator evolving 
the system in that direction? In case of space-times with 
time like Killing vectors, notion of time can be identified 
with the Killing direction, and a notion of “quasilocal 
energy” (QLE) defined using the same. The QLE then 
generates translations in the Killing time. In case of the 
Schwarzschild space-time, the QLE has been defined in 
[11]. We build the Hamiltonian which evolves the hori-
zon from one time slice to the next by appropriately re- 
gularising the QLE. Note the “Killing time” and QLE are 
classical concepts, and thus regularising QLE gives us a 
“semiclassical” Hamiltonian. 

3.1. Change in Entropy 

Before we get into the analysis of what QLE evolution 
means, we take a simple system made up of two subsys-
tems, and examine the consequences of a Hamiltonian 
evolution. Let the density matrix be defined for a system 
whose states are given in the tensor product Hilbert space 

1 2H H  and given by 

>= d > >ij
ij

i j             (22) 

where >i  is the basis in 1H  and >j  is the basis in 

2H  and dij  are the non-factorisable coefficients of the 
wavefunction in this basis. Let us label the wavefunction 
at time  to be given by the coefficients . The 
density matrix is 

= 0t 0dij

0 0* 0= d d > >< <i j ij
iji j

i j j i  
 

         (23) 

The reduced density matrix if one traces over 2H  is: 

0 0* 0
2Tr = d d ><i j ij

ii j

i i 


          (24) 

We now evolve the system using a Hamiltonian which 
has the matrix elements >| >< |<iji jH i j j i    , we assu- 
me that the Hamiltonian does not factorise, that is there 
exists interaction terms between the two Hilbert spaces. 
The evolution equation is: 

= ,i H  



              (25) 

which in this particular basis gives the density matrix 
elements at a infinitesimally nearby slice to be 

 * 0* 0 0 0* 0 0*d d = d d d d d di j ij i j ij ijkl kl i j ij kl kli j
kl

i
H H         

    


(26) 
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Thus we evolve the “unreduced” density matrix and 
then trace over the 2H  in the evolved slice. The reduc- 
ed density matrix in the evolved slice is: 

 

* 0* 0

0 0* 0 0*

d d = d d

d d d d .

i j ij i j ij
j j

ijkl kl i j ij kl kli j
klj

i
H H

 



 

 

 
  



 

 

  (27) 

This gives: 

0=
i

A  


              (28) 

where A represents the commutator. Clearly the entropy 
in the evolved slice evaluated as 

 BH = Tr lnS    

can be found as 

0 0
BH BH= Tr ln Tr

i
S S A A        

0 0 1    (29) 

Given the definition of iiA , one gets 
0=ii ijkl klij ijkl klij

jkl

A H H   0          (30) 

In case both the Hamiltonian and the density operator 
are Hermitian, one obtains 

 0= 2 ImTrjj
j

A H              (31) 

This is clearly calculable, and gives the change in en-
tropy BH . The S 0ln   term yields corrections, and we 
ignore it in the first approximation. 

3.2. The Hamiltonian 

To trace the origin of Horizon fluctuations, we must take 
an observer who is stationed outside the horizon, or in 
other words is not a freely falling observer. The quasilo-
cal energy is defined using a “surface” integral of the 
extrinsic curvature with which the surface is embedded 
in three space. In our case, we take the bounding surface 
to be the horizon and the quasilocal energy is given by 
the surface term [11,15]. 

21
= dH x k
 

               (32) 

where  is the extrinsic curvature with which the 2- 
surface, which in this case is the horizon  is embed-
ded in the spatial 3-slices, and 

k
2S

  is the determinant of 
the two metric   defined on the 2-surface. This 
“quasilocal energy” is measured with reference to a 
background metric. Thus = oH H  H . We concentrate 
on the physics observed in an observer stationed at a r = 
constant sphere. 

The metric in static  observer’s frame is = constr

 2 2 2 2 2 22d = d d dsins f t r .           (33) 

The = 1 gf r r  where gr  is the Schwarzschild ra- 
dius. If we take n  to be the space-like vector, normal 
to the 2-surface, then the extrinsic curvature is given by: 

=k  n    

n

               (34) 

and the trace is obviously 

=k 
                 (35) 

In the special slicing of the of the stationary observer 
the normal to the horizon 2-surface is given by  

  0, ,0,0f r . However, we built the coherent state on 
the Lemaitre slice. The Lemaitre and the Schwarzschild 
observer’s coordinates are related by the following coor-
dinate transformations, 

 d = d d
g

r
r R

r
  

 1
d = d d =

1
grt f R f

f r
  


        (36) 

The r = const cylinder of the Schwarzschild coordinate 
corresponds to d = dR   of the Lemaitre coordinates, 
and for these d = dt  . Thus unit translation in the t co-
ordinate coincides with unit translation in the   co- 
ordinate. Further, the intersection of the r = constant cy- 
linder with a t = constant surface coincides with the in- 
tersection of r = constant and the   = constant surface. 
Thus in the initial slice, the QLE Hamiltonian can be 
written as 

 

0

1
= d d

2

gg
H g g g g f r

r r

H

 
  


      



 (37) 

The reference frames’ quasilocal energy is a number, it 
just defines the zero point Hamiltonian. Thus, we replace 
the classical expressions by operators evaluated at the   
= constant slice. In the first approximation we simply 
take the  f r  as classical  

1 = 2 =
rg e gr r r  , 

as this arises due to the coordinate transformation and the 
norm of the vector r  in the previous frame. In the re- 
writing of (37) in regularised LQG variables the Ha- 
miltonian appears rather complicated. 

n

One can rewrite these in a much simpler form, using 
the apparent horizon equation. Since the Hamiltonian is 
an integral over the horizon, the variables will satisfy the 
apparent horizon Equation (10) upto quantum fluctua-
tions. Thus the Hamiltonian operator is then re-written as 

horizon = d d I I I IH g g K e K e 
   

  


       (38) 
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where we have used the classical apparent horizon equa- 
tion (10) (with ). = 1rrq

 

1
Horizon

1

= T
2

. .

I
e e

ve e

Ca
e IH r h T h P

s

h c

  
 

 
 

 

 
 

  

 
     (39) 

where  consists of some dimensionless constants eC s


 
is the 2-dimensional area bit over which IE  is smeared, 

 is a dimensionfull constant which appears to get the 

e I

a
P


 dimension less. e

  is the length for the angular 
edge e  over which the gauge connection is integrated 
to obtain the holonomy. The sum over 1  is the set of 
vertices immediately outside the horizon. The (39) can 
then be lifted to an operator. 

v

This regularised expression for QLE is for the horizon 
2-surface only and would not apply for any other sphe- 
rical surface in the Schwarzschild space-time. 

3.3. U(1) Case 

Let us take the U(1) case to make the calculations easier 
and observe the action of the QLE Hamiltonian on the 
evolution of the coherent state. The spin network states 
are replaced by >= nn e  , 0 < < 2π , n is an integer 
and the coherent states are: 

     
2 2

= e e
tn in ipt n

e
n

g e e e  
         (40) 

= e ein ip
n eg e     is the complexified phase space element 

in the “n-th” representation. 
The QLE operator also takes the simplified form 

1
(1) 1

Horizon

ˆ1 1ˆ ˆ ˆˆ ˆ=
2 2

U e
e e e e

h
eH C h h p C p h   

 


   

 
  (41) 

The prefactors have been clubbed into . C
In the calculation of the matrix elements, we drop the 

label of the edges  for the Hamiltonian. e

(1) (1)
Horizon H

ˆ =U m U
orizonm H n e H e    dn          (42) 

This calculation can be done by putting an assumption 
that the 1 2=   . In this 1 2,   are completely 
independent of  . It is an allowed assumption, and 
identifies the   dependence of the operator matrix 
elements, which are otherwise “hidden”. The calculation 
however introduces an arbitrariness in the formula, which 
can be fixed by requiring that the expectation value of 
the Hamiltonian agrees with the classical QLE [10]. 
However, in this paper we use the “annihilation” opera-
tors defined in [16]. 

This is done by observing that the U(1) coherent states 
are eigenstates of an annihilation operator defined thus: 

ˆ/2 ˆˆ ˆ= >=pt e
e e e eg e e h g g

The holonomy operator can thus be written as 
ˆ/2ˆ ˆ= pt e

eh e e g
e              (44) 

And the derivative wrt Immirzi parameter of the ho- 
lonomy which appears in the definition of the Hamilto-
nian replaced by 

ˆ ˆ2

ˆ2

ˆ ˆˆ
ˆ=

ˆ
ˆ ˆ=

p pte ee e
e

pt p ee
e e

h gp
e e g e

g
e p e g e

  
  




 

 

  
     

 
  

   (45) 

The dependence of the operator  on the Immirzi 
parameter is known (2), and thus we could evaluate the 
derivative  

p

       = 1 =e ep p p  e        

The term 

 0 U(1)
HorizonTr H               (46) 

is then computable. Let us take the first term of (41) and 
find (46). As 0 = ><   , (46) gives simply (we drop 
the “e” label for brevity) 

U(1) 1
Horizon

ˆ ˆ ˆ† 2 2

ˆ ˆ*

ˆ2

1 ˆ ˆ ˆ=
2

                            . .

ˆ1
ˆ ˆ ˆ ˆ=

2

     . .

1
ˆ ˆ=

2

ˆ
ˆ     

     . .

t p t p p

t p p

p

H C h h p

h c

g
C g e e e p e g e p

h c

C e g e p e p g

g
e p

h c

     


 

  


 

  

  






    

  








    




 




 
 







 

We then concentrate on the 2nd term of the above 

  

 

ˆ2

ˆ2

ˆ2

ˆ
ˆ

ˆ
ˆ= d

ˆ= d

p

p

p

g
e p

g
e g

g
g e

  


p

p

     


     











   


 




 

    (47) 

where we have used the fact that coherent states resolve 
unity. It can be shown that the expectation value of the 
operators in the  collapses the integral to 0t  =g g  
point [16]. Thus one obtains from the above >         (43) 
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 0 (1)
Horizon

2 * 2

Tr

1
= .

2

=

U

t p

H

g
C e p g e p h c

C p



 





     



.     (48) 

which is real, and thus 

BH = 0S                 (49) 

this is actually the classical QLE as it should be from 
.  0

HorizonTr H
This is obvious, as the way the Hamiltonian is defined, 

this is simply a function of the Hilbert space outside the 
horizon, and the matrix elements of this will not yield 
anything new. We approximated the horizon sphere by 
summing over 1  vertices immediately outside the ho-
rizon. We could do the same by summing over 2  ver- 
tices immediately within the horizon. For the Lemaitre 
slice, the metric is smooth at the horizon, and one can 
take the “quantum operators” evaluated at the vertex 2 . 
In this case however, as the region is within the classical 
horizon, the norm of the Killing vector is negative, and 

has components which are imaginary. The 

v
v

v

rn     .  

Thus Horizon 11 2 2
=

2 v vv v
H H H 

   . In the evaluation  

QLE, the energy would emerge c

1

of the orrect in the 
0er

   limit as 0   The regularised Hamiltonian 
rmitian, an volution equation is is not He d the e

†= H H
  

           


   (50) 

And thus the operator which appears in the change of 
entropy equation is 

0 0 ?
BH = TrS H H

     
        (51) 

BH =S C p
 








            (52) 

The “rate of change” of entropy is thus 

BH 2=
p

C
S p

l






              (53) 

we extracted the  from  C  to get 2
pl

, bu

 and rewrote 

entropy t, to see if this 
is

3.4. SU(2) Case 

easily reduced to the U(1) case in the 

 

the rest of the consta ts as C
Thus there is a net chang n 

n . 
 ie

 Hawking radiation, we have to couple matter to the 
system. 

The SU(2) case is 
actual calculation due to the gauge fixing. This is 
achieved by making the following observations: To re-
tain the metric as in the same form as the classical metric,

we impose the conditions at the operator level 

= 0P P
a be e                (54) 

such that the corresponding metric has only the diagonal 
terms as non-zero. With these additional “constraints” on 
the operators, we can put the 

a

I
eP  such that each has 

only one component surviving, let’s say 3=I I
e eP P
 

 . 
This also makes the holonomy restricted to the , 
as the gauge connection 

U(1) case
I
eA


 gets restricted to the = 3I  
and other directions can be ut to zero. Thus we can  
the holonomy to be diagonal. If the holonomy matrix is 
off-diagonal the U(1) projection still works out to be the 
same 

p  take

0
=

0
e

e
h

e





 
 


 


             (55) 

The operator is then obtained as 

1= Tr I e
e

h
H h T 


  

  
 



1 3= Tr e
e

h
h T 


  

  
 

3= eP





                  (56) 

This is same as the U(1) Hamiltonian (upto normalisa-
tions). The spin network states also project on to U(1) 
subgroup, thus giving us the same techniques to use in 
the calculation of the U(1) states as for this one. To ob- 
serve this, the non-zero elements for the holonomy matrix 

=
a b 

h
b a  

                (57) 

in the j-th representation is given by: 

         
     

! ! !
π =

! !

 

j mn
l

j n l j m l m n l l

j m j m j n j n
h

j m l j n l m n l l

a a b b     

   

     




!

! !   (58) 

Clearly in the particular case we are considering, the 

eleme
= 0 , and m, n = –j and j. Thus the two non-zero 

nts are 
b

   2 2π = π =j j
j jjj j j

h e h e 
 

       (59) 

The sum over j in the with the co- 
he

 0
HorizonTr H  

us reduces to trent state defined in (3) th he U(1) case 
in the computation of the change in entropy. Thus the 
rate of change in entropy of a classically spherically sym- 
metric black hole is given by 

BH 2=
ee

e e
vp

C
S P

l


 


 

 


P

 
  

   



      (60) 
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 =

e

eh e  

 


.where the classical holonomies  If we plug  

in the actual values, we get this to be 

BH 2

2
= d

C
S A

l v g
vp

r
       (61)       

where d vA  the area element at vertex v  
itation

on the sphere. 
This ch  in entropy is totally grav al in origin, 
and seems to signify the emergence of “
within the horizon. 

ct, i e

ange
geometry” from 

In fa f we some over the area, we g t the  

BH 2

8π
= g

p

S r
l


   (if we set = 1C  ), which would  

be the change in entropy when the radius of the horizon 
changes by =gr  ! 

4. Outgoing Flux of Radiation 

ime, the horizon fluctuates and the area de-
 Adding matter to 
assical gravity has 

In the previous section we found that as the system 
evolves in t
creases. But is this Hawking radiation?
a “coherent state” description of semicl
been discussed [17]. Thus, given a massless scalar field 
Lagrangian coupled to gravity, whose Hamiltonian is 
given by 

 
2

23
sc

π
= d ,H x

q


 
  

  
          (62) 

the “gravity” in the Hamiltonian can be regularised in 
terms of the , I

e eh P  
 The integral 

operators in the coherent state for-
malism. over the three vo
verted to a sum over the vertices dotting the region. Thus 

lume gets con-

 sc = , ,v I
v e e

v

H H h P V            (63) 

This Hamiltonian is an operator, and one evaluates an 
expectation value of the Hamiltonian in the reduced den-
sity matrix of the initial slice, to find th
ior of the scalar field as observed by an observer outside 
th

e classical behav-

e horizon. Thus 

 sTr cH                  (64) 

This Hamiltonian and the density matrix are then both 
evolved according to the time-like observers frame. One 
gets 

 sc
sc= ,i H H


             (65) 

This gives 

H

   
   

sc sc

2

sc

Tr Tr

= Tr , ,

H H

H H H

     



 

 

  

     
 

        (66) 



he order terms are zero 

for this. However, allowing for the non-unitary evolution 
using the non-Hermitian Hamiltonian, the 

It is very clear thus that t   

  terms sur- 
vive. In fact the terms are 

 

 

†
sc

†
sc sc

Tr

Tr

H H H

HH H H

  

 

   

   





        (67) 

The first term is remarkab  
giving rise to entropy change teams up w
tion value of the scalar Hamiltonian. Th
yields corrections, so we igno a-
tion.

le, it shows that the term
it

re it in the first approxim

h the expecta-
e second term 

 The exact details of the computation have to be ob-
tained using the coherent state of the matter and gravity 
coupled system [17,18]. If one simple takes the matter + 
gravity system in a tensor product form, and one has 
matter quanta of energy   sitting at one vertex, then 
the first term would give new matter in the evolved slice 
as BHS  . The “rate” of particle creation thus has the 
form 2 HT  where HT  is the Hawking temperature 
for the signs ( )   and negative (positive)  . 

Thus from the above it seems 
1) One has found emission of matter quanta from a 

black but from a “semiclassical” description rooted 
in a theory of antum gravity, beyond quantum fields in 
curved space-

 hole 
 qu

5.

 
unction 

al slice, peaked with m um prob-
e-variables. W  then evolved 

time. 
2) The results indicate a non-unitary evolution which 

allows space to emerge from within the horizon. 
3) The emission is perceived by a static or an acceler-

ating observer as anticipated, and the non-unitary flow 
might be due to the semiclassical approximations. A 
quantum evolution using the quantum Hamiltonian might 
still be unitary. 

The above derivation seems to be a “quantum gravity” 
description of the tunneling mechanism for describing 
Hawking radiation [19]. However, the results are pre-
liminary and further investigation has to be done. 

 Conclusion 

In this paper we showed a method to obtain the origin of 
Hawking radiation using a coherent state description of a
black hole space-time. We took a quantum wavef
defined on an initi
ability at classical phase spac

axim
e

the slice using a Hamiltonian, which is the “quasilocal 
energy” at the horizon. This QLE evolved the system in 
the time and the entropy was shown to change, indicating 
a change in black hole mass and hence an emergence of 
interesting non-unitary dynamics. One of course has to 
investigate further to see what is the endpoint of this time 
evolution. The time flow indicates one might have to 
formulate quantum theory of gravity rooted in irreversi-
ble physics. The presence of additional degrees of free-
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dom in the form of “graphs” also indicates that the clas-
sical phase space might not be described by deterministic 
physics, but by distributions, a manifestation of micro-
scopic irreversible physics in complex systems. 
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ABSTRACT 

A derivation of the centrifugal force from an effective vector formulation of gravitation is attempted. The centrifugal 
force appears to be due to a relativistic effect of the counter-rotating Universe. Gravitomagnetic energy effects, a mil-
lion times stronger than the self-energy effects responsible for curvature in the GR language, would thus produce the 
centrifugal acceleration. The Machian picture, already successful in the case of the Coriolis force, gets an additional 
circumstantial support. 
 
Keywords: Centrifugal Force; Mach’s Principle 

1. Introduction 

In spite of centennial speculations [1,2], a satisfactory, at 
least semiquantitative, solution of the problem of relative 
rotational motion is, in our opinion, still lacking. 

Is the rotation of, say, the earth with respect to the rest 
of the Universe equivalent to a counter rotation of the 
latter? 

Further arguments in favor of this logically stringent 
position have been put forward more recently by Sciama 
[3], who however has not gone farther than stressing the 
analogy of gravitomagnetic with magnetic forces, thus 
making plausible such an origin in the case of the Corio-
lis force. 

This has been proven by us in [4]. 
General relativity (GR) does not address the problem 

at all, since in its privileged frame of reference (“the pre- 
cession takes place with respect to the inertial frame, 
which is generally believed to be defined by the distant 
extragalactic nebulae, the so called “fixed stars” [5]) no 
mention is made of the rest of the Universe. 

According to [6] also “Ironically, though GR was in- 
tended to be based on relational concepts, contrary to its 
name it still contains absolute elements. This is already 
expressed in the calculation of the advance of Mercury’s 
perihelion, which is referred to a coordinate system.” 

The aim of the present paper is to extend the consid-
erations already used in [4] to account for the Coriolis 
force, to predict unavoidably the form of the centrifugal 
force and to show that its coefficient is, within the pre- 
sent Universe estimates, compatible with the canonical 
value. 

The essential points will be: 
1) the proportionality between the gravitomagnetic 

field of a rotating mass distribution and its angular velo- 
city and their dimensional equivalence;  

2) the expression of the gravitomagnetic energy den- 
sity; 

3) the kinematical relation among quantities in inertial 
and rotating frames by which the centrifugal acceleration 
can be linked to the gravitomagnetic field (our final equa- 
tion). 

2. The Centrifugal Force from the Counter 
Rotating Universe 

In two recent works of ours [4,7], a set of effective vector 
equations for low velocity weak field gravitation has 
been derived from special relativity and shown to predict 
in simple terms the quadrupole gravitational radiation as 
well as geodetic precession, frame dragging and the gra- 
vitational clock effect. 

Numerous NR reductions of GR for the same condi- 
tions have been recently appeared [11-15] confirming the 
soundness of such an approach. 

Most important, in respect to the matter we are add- 
ressing here, the Coriolis force (since the equivalence 
principle is explicitly used we will speak indifferently of 
force and acceleration) has been shown to play a crucial 
role in the abovementioned stationary processes and the 
role of the (rest of the) Universe to be crucial in explain-
ing the observed effects.  

Indeed the gravitomagnetic (GM) force of a rotating 
mass M at a distance R on a test mass m reads 

2 2

2
2GM

GM GM
m m

c R c R

       
  

F v ω v



   (1) 

which can be compared to the expression for the Coriolis 
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force 

2Cor m F v              (2) 

Thus, when applied to the Universe, if 

2
1U

U

GM

c R
                  (3) 

and this relation compares favourably with present day 
estimates as well as with other theoretical considerations 
[9,10] , it follows that  

Cor GMF F                (4) 

The relevant point in this argument is that in the rela- 
tive rotation, the magnetic field generated by distant lay- 
ers of matter goes as 1/R i.e. the same behaviour of ra- 
diation, rather than the usual 1/R2 of Newtonian forces. 
Therefore a relative more important role even of distant 
stars is a matter of fact. 

Thus the physical origin of the Coriolis force seems to 
get a semiquantitative confirmation. 

Let us pass over to the centrifugal force with some ad-
ditional remarks. 

Now whereas a gravitomagnetic origin of a Coriolis 
force might seem reasonable (effect of counterrotating 
masses on a moving one), at first sight it might seem 
puzzling the effect of the same counterrotating masses on 
a mass in its rest frame. As it has been pedagogically 
underlined in [7] however a mass at rest experiences a 
force from the relativistic effects (i.e. O(v2/c2)) of mov- 
ing ones (even if this is customarily expressed as mag- 
netic force). 

And indeed the relativistic origin of the effect is evi-  

dent from the proportionality coefficient 
2

GM

c R
! 

The essential point in the previous considerations is 
that a rotating matter distribution produces a gravito- 
magnetic field h proportional to the angular velocity of 
rotation ω 

h                   (5) 

the proportionality coefficient depending of course on the 
geometry (loop, spherical shell, etc.). In other words a 
gravitomagnetic field produced by moving masses is 
dimensionally equivalent to an angular velocity. 

This has a profound physical meaning. We know that 
the T ≠ 0 cosmic background radiation, essentially coin- 
cident with the fixed stars system, represents the privi-
leged inertial reference frame. However in terms of rela- 
tive motion the fact that the rotation of the Universe, as 
seen from us, be determined by the properties of the 
other masses (MU and RU) renders physical what seemed 
just a kinematical affair. 

Therefore if the previous relation between h and ω 
holds true, just a two-fold application of the kinematical 

relation for operators 

 
 

 

d

d dI Rt t

  
    
  
  

 d 




       (6) 

(where the suffixes refer respectively to the inertial (I) 
and rotating (R) frames) yields for the acceleration of the 
radius vector r the additional centrifugal acceleration. 

Let us give some additional arguments. 
Consider a symmetric spherical rotating shell. 
Its mass (energy and mass are used indifferently) den- 

sity reads [7] 
21

4π 2h

h

G
                (7) 

The Coriolis force has been accounted for by a gravi- 
tomagnetic field where for the contribution of the Uni- 
verse the same expression obtained for a mass loop (the 

orbiting earth) where 
2

2GM

c R
h   has been used. On  

the contrary if one considers spherical symmetry, in the 
interior the constant gravitomagnetic field (see e.g. [8]) is 

2

4

3

GM

c R
h  . If we use the value 2 which reproduces  

the Coriolis force, then from the expression of the field  

energy 
34π

3
hr

U



r

 one gets 

2

3C m   F r            (8) 

a centrifugal force due to the negative energy density. 
This result is noteworthy in many respects. 
First the centrifugal force is a relativistic effect! 
Second, the correct dimensional requirement for the 

acceleration comes from a (subtle?) interplay between 
the expression for the mass density and that for the field, 
which makes the desired ω2 factor unavoidable. More- 
over the gravitational constant G only enters through the 
standard weak field formula in brackets.  

The coefficients, upon whose evaluation many criti- 
cisms might apply, is remarkably close to one. 

In this respect let us once more underline how even 
two drastically different density expressions like ρ ≈ con- 
stant and ρ ≈ 1/r2 which implements the black hole pos- 
sibility, yield for the self energy the two very close coef- 
ficients 3/5 and 1 respectively. Thus even if our evalua- 
tion of the total Universe contribution by simply substi- 
tuting its values is surely questionable, the semiquantita- 
tive agreement can hardly be regarded as fortuitous. 

The reason why only gravitomagnetic forces act is ob- 
vious: within a symmetric spherical shell the static gra- 
vitoelectric effects cancel out because of the symmetry, 
whereas the magnetic ones, constant in R, are different 
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from zero and along ω. diction, in addition to the Coriolis, also of the “fictitious” 
centrifugal force as “real ones”! The fact that no retardation for magnetic terms is pre- 

sent, depends on our choice of the gauge, as explained in 
[7], see also [16]. 4. Acknowledgements 

It is a pleasure to thank C. Bonati, G. Cicogna and G. 
Morchio for a critical reading of the manuscript and for 
helpful comments. 

3. Conclusions 

The fact that only relative rotations have a physical sig- 
nificance has thus been substantiated, both as regards the 
expression of the centrifugal force as well as its actual 
value. 
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ABSTRACT 

A stationary axially symmetric exterior electrovacuum solution of the Einstein-Maxwell field equations was obtained. 
An interior solution for rotating charged dust with vanishing Lorentz force was also obtained. The two spacetimes are 
separated by a boundary which is a surface layer with surface stress-energy tensor and surface electric 4-current. The 
layer is the spherical surface bounding the charged matter. It was further shown, that all the exterior physical quantities 
vanished at the asymptotic spatial infinity where spacetime was shown to be flat. There are two different sets of junc- 
tion conditions: the electromagnetic junction conditions, which were expressed in the traditional 3-dimensional form of 
classical electromagnetic theory; and the considerably more complicated gravitational junction conditions. It was shown 
that both—the electromagnetic and gravitational junction conditions—were satisfied. The mass, charge and angular 
momentum were determined from the metric. Exact analytical formulae for the dipole moment and gyromagnetic ratio 
were also derived. The conditions, under which the latter formulae gave Blackett’s empirical result for rotating stars, 
were investigated. 
 
Keywords: Gravitation; Exact Solutions; Einstein-Maxwell Equations; Rotation; Charged Dust 

1. Introduction 

There are difficulties in finding exact solutions of the 
Einstein or of the Einstein-Maxwell field equations for a 
volume distribution of rotating bounded matter [1]. Such 
solutions should consist of an interior filled with matter 
and an asymptotically flat vacuum or electrovacuum ex- 
terior, these being separated by a surface on which ap- 
propriate boundary conditions should be satisfied. The 
main aim of this work is to obtain an exterior and mat- 
ching interior solution of the Einstein-Maxwell field 
equations with finite bounded rotating charged matter as 
a source of the spacetime. Due to the rotation, the boun- 
dary will actually be an oblate spheroid, but it is assumed 
that it is a spherical surface with equation r = a. The 
main objective and emphasis after all, is to see how far 
the attempt at finding a solution can be taken—a solu- 
tion with finite bounded rotating matter as a source of the 
spacetime. The additional complication of spheroidal co- 
or-dinates is avoided, in a problem which is already enor- 
mously complicated. 

Most of the equations and expressions for the various 
physical quantities are difficult to derive and they require 
involved and lengthy analysis. It is not therefore possible 
or desirable to include these calculations in the paper, but 
directions in which to proceed are indicated. 

2. The Einstein-Maxwell Field Equations 

Consider electrically charged pressure-free matter (char- 
ged dust) bounded by the hypersurface r = a and rotating 
with constant angular velocity about the polar axis 

0   under zero Lorentz force. It is assumed that the 
current is carried by the dust. The transformed expression 
(2.1) in [2] for the Weyl-Lewis-Papapetrou metric for a 
stationary axially symmetric spacetime V is 

 
 

2 2 2 2

1 2 2 2 2 2

d d d

sin d 2 d d d

s e r r

F r K K t F

 

  

  

    t
  (1) 

where we have taken the signature of the spacetime met- 
ric tensor g  to be 2.  It is implicit in the form (1) 
of the metric that we have assumed, without loss of gene- 
rality, that 2 2r 2sinKLF    and so the component 

33g  of g  is 33 .g L   We shall use units c = G = 1 
where  is the vacuum speed of light and G the Newto- 
nian gravitational constant. Unless otherwise specified, 
we shall adopt the convention in which Roman indices 
take the values 1, 2, 3 for the space coordinates

c

 , ,r  

3,4

 
which are spherical polar coordinates co-moving with the 
dust, and Greek indices take the values    for 
the spacetime coordinates 

1, 2,
 , ,r t,  . Semicolons and 

commas indicate covariant and partial derivatives respec- 
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tively, and the suffixes r and θ denote partial differentia- 
tion with respect to r and θ. All the functions are as- 
sumed to depend on r and θ only, or they are constant. 

The results to be used in this work may be found in a 
number of different publications [2,3] but we shall use [2] 
where all the necessary equations have been collected 
together and written in terms of the cylindrical polar co- 
ordinates and time  , , ,z t  . We shall transform those 
equations in [2] that are required here, to the spherical 
polar coordinates and time  , , ,r t   with  

 1 22 2 , tan ,   ,r z z         cosz r  ,  

sinr   and .t t  
The contravariant and covariant forms u  and u  

of the 4-velocity are 

 1 2 1 2 3 4
4       .u F u F w 

         (2) 

The electric 4-current J  , the electromagnetic 4-po- 
tential A  and the Faraday tensor F , are 

3 4
3 4

, ,

 +

 .

J u

A A A

F A A

 

  

   





 




 

          (3) 

where   is the electric charge density. The Einstein- 
Maxwell field equations for charged dust are 

8πG T 
                   (4) 

 
, , ,

,

0     

1
4π .

F F F

g F
g

     

J



  

 


      (5) 

Here, G
  is the Einstein tensor 

:
1

2
G R  

   R               (6) 

where R
  is the Ricci tensor of the spacetime defined 

by its fully covariant form as 

, ,:R      
                   (7) 

with 
  the Christoffel symbols of the second kind 

based on the metric of V in Equation (1), R g R
  is 

the spacetime scalar curvature invariant and g is the de- 
terminant of .g  The total stress-energy tensor T 

  is  

T M E  
                   (8) 

where 

M u u 
                (9) 

1 1

4π 4
E F F F   
     

 
F     (10) 

are, respectively, the matter and electromagnetic stress- 
energy tensors and   is the mass density. 

Instead of expressing the electromagnetic field equa- 
tions in 4-dimensional form as in Equations (5), we shall 
use the Maxwell form (Maxwell’s equations), because 
we can make direct comparisons with the results from 
classical electromagnetic theory. The electric and mag- 
netic intensities and corresponding inductions in 3-vector 
form, are [4,5] 

4
4       , 

1 1
=       

2 2

a a
a a

kp a akp
a akp kp

E F D F F

H F e F B e F

    

  

E D

H B
 (11) 

where akp akpe    ,  akp
akpe     are the com- 

pletely antisymmetric permutation tensors,  
g F   ,   being the determinant of the spa- 

tial metric tensor ab  which is given by  

ab ab a bg     with 4a ag F  , and akp  is the 
Levi-Civita symbol. It is easy to show that 

3 2 2= sinF r  . 
The transformed equations (2.14) and (2.13) of [2] 

may be written as  

2 2 3 *2 *2
4

2 2
4 4 3

4π sin

r r r r

r e J K A F A3

3K A r K A F A r F A



  


 

   

    

3

3
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   (12) 

2 2 4 *2 *2
4

2 2
4 4 3

4π sin

r r r r
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L A r L A K A r K A



  


 

    

    

   (13) 

where the operators 2  and  are defined by *2
2 2

2
2 2 2 2

1 2 cot

r rr r r




  
    

  


    14) 

2 2
*2

2 2 2 2

1 cot
.

r r r




 
   

 


       (15) 

Equations (12) and (13) are the detailed form of the 
source-containing Maxwell equations given in the second 
of (5). 

The non-zero components of the Ricci tensor obtained 
from the transformed Equations (2.16)-(2.21) of [2] are: 

22
3 4 2
3 4 2 2

22
*2 2

2 2 2

2 2 2

1 1

2

sin

2

sin

r

r

r r

FF
R R e F

F F r

wF
w w w
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F wFw
F w
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  (16) 

1
1 2 2

2 2 2

2 2 2

cot1

2

2
      + 

sin

rr

r r r

R e
r r

F F F w

rFF r

    




    



  



        (17) 
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2
2 2 2

2 2 2

2 2 2 4 2

cot21
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2 cot
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sin
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rrR e
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F F F w

r F r F r
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2

     
   

   (22) 

The entire Riemannian spacetime V, will be separated 
into the following 4-dimensional manifolds: the hyper- 
surface  with equation  r a  separates V into the 
interior  and exterior 0V r   a  V a r     
spacetimes. We shall use the + and – signs to denote 
quantities in V  and V  whenever it is necessary to 
do so. Quantities without the + or – indicators, may be 
associated either with  or with V . 



V



 

3. The Exterior Solution 

In accordance with the formalism in [2], we first form the 
complex function 

i                   (23) 

where   and   are harmonic functions. With a star 
denoting complex conjugation, the metric functions F   
and   are then given by 

   1 * 2expF 2  
      .   (24) 

If we denote the real and imaginary parts of 1  by 
  and  , then 

2 2 2 2
       .

  
   

  
 

       (25) 

We now choose the functions   and   as follows: 
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(27) 

where  and ,  b m   are constants whose significance 
will emerge later. From now on we shall omit writing the 
argument cos  of the Legendre polynomials and we 
shall write, for example, 2 1n  instead of P   2 1 cosnP  . 
We note the significant fact that at = π 2 , 2 1 0;nP    
this enables us to set  ,r   0  at = π 2  a r    
as in (27). 

The function :w K F
   and the electromagnetic 4- 

potential 3
3 4A A A 4

        in the exterior are obtained 
from 

 2

2 sin       

2 sin

r

r r

w

w r





 

  







 
       (28) 

  1

3 sinr rA w F   
         (29) 

  1 2
3 sinrA w F r   

       (30) 

4A b                       (31) 

where an arbitrary constant in 4A  was set equal to  
in order to satisfy the continuity condition of 4

b
.A  Note 

that the full expression for r  in the first of (28) is w

 2sinrw        , but by (26), 0  . 
From Equations (24) and (28)-(31), we obtain the fol- 

lowing expressions for     1
,F

  exp , ,w  3A   

and 4A : 
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It is a little difficult to solve the two equations in (28) 
to find  in (33). It is even more difficult to solve the 
two Equations (29)-(30) to find 3

w

A  in (34) and com-
plete details of the calculation are not given. Whenever 
there are two signs in a term, the upper sign gives the 
expression in 0 π 2   and the lower sign the ex-
pression in π 2 π,   as in Equation (32). 

The function B defined by 

 

 

    0 < π 2

   0                 = π 2

    π 2 < π

C a

B
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      (36) 

has Legendre polynomial expansion of the form 

 

2 1 2 1
1

1

2 1 2 1
1

    

4 1
d

2

n n
n

n n

B A P

n
A BP x x



 


 




   
 




    (37) 

where 2 2  It therefore follows from 
(27), that . The function in (36) satisfies 
the conditions for such an expansion [6] and we have for 
the odd coefficients  

0  1, 2,nA n   
 ,  0a  

2 1nA 
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1 4 1 2 2 !
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With  by Equations (24) and (26), the 
metric function F+ at  becomes  

 ,a  

 

0,
r a

 2 2 21, 1 .F a b C a     It will be shown in Sec- 
tion 4, that  everywhere in the interior. In 
order to satisfy the junction condition at  therefore, 
we must have 

 F r  , 1

 
r a

2 2, 1 1F a 
,

b C a

r 
. It is easily 

seen that, as    2 1 2, 1 bF r   , which is 
a constant. If we take this to be equal to 1, we obtain 

 and collecting these relationships toge- 
ther we have 

2 1b  2 1
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2
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1
1 1     

2
 .
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The third of Equation (39) is the result of substituting 
the second of these equations into the first, bearing in 
mind the second of Equation (26) for . r a

For the calculations that follow the functions X and Y  
fined by  de

n
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2 1 2 1
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X A na r P


 
 



        (40) 

   2 22 1
2 2 2

1

2 2 1
4 1

n nn
n

n

A
Y n n a r P

n







 
 nP

r

  (41) 

will be required. We express ,  r   and   as 

2 2
=      =    .

sinr r

bm b m bY
bX

r r 
  


      (42) 

The components of G
  are therefore calculated using 

the exterior functions (32)-(35) with Equations (16)-(22) 
and, whenever necessary, bearing in mind the first of 
Equation (39). The calculations give the following non- 
zero components: 
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      (47) 

Here, E


  are the nonzero components of the elec- 
tromagnetic energy tensor. The components of E


  

were obtained from (10) the third of (3) for F , the 
exterior electromagnetic potentials in (34) and (35). 
Equation (22) gives 0R   in  and so by (6), V 

G R 
   whether    is equal to   or not. Another 

consequence of the result , is that the matter en-
ergy tensor 

0R
M 

  will be null as should be the case in the 
electrovac V  . 

The sourceless Maxwell equations in the first of (5) 
give 41, 42, 0rF F

  
3

 and . By the third 
of (3) and with 

23, 31, 0rF F 
  

A  and 4A

0
 given by (34) and (35), 

these become 3, 3,r rA A 
    4, 4,rA A ,  which  r   0
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are trivially satisfied. The source-containing Maxwell 
Equations (12) and (13) with 3A  and 4A

0
 given by 

Equations (34) and (35) will give  and 3J  4 0J   
and so the 4-current is null in the electrovac V  . 

4. The Interior Solution 

In accordance with the results of [2], the functions 
,  F    and 4A  are constant which we shall take as 

4   1  0 1F A  b          (48) 

The functions K   and 3A  satisfy an equation of the 
form  with  given by (15). This implies 
that 

*2 0   *2
K   for example, is obtained from  

 1 cor sin rK r sin s        (49) 

where   is a harmonic function, which therefore satis-
fies Laplace’s equation  with  given by 
(14).  

2  0 2

We choose   as  

2
2 1

n
nD r

K

2nP

a

1n







             (50) 

where the constants  are determined from the 
junction condition 
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 K a ,,   . We use Equa- 
tion (49) for K   with   given by (50) to find 
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We can further show that 
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Finally, after a little manipulation, the above expres- 
sion for K   becomes  
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The junction condition for the continuity of K implies 
that on  ,r a    a,K a K ,   . Using the expres- 
sion (33) for w+ and bearing in mind that  , 1 ,F a   
we have    , w a,K a    . It therefore follows from 
(33) and (51), that the constants  are given by 2nD 
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The functions Z and U defined by  
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will be required to simplify the components of the Ein- 
stein tensor. 

The components of G


  are calculated using the in- 
terior functions (48) and (52) with Equations (16)-(22) 
and, whenever necessary, bearing in mind the first of 
Equation (39). The calculations give the following non- 
zero components: 
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Here, E


  and M 


  are the nonzero components 
of the electromagnetic and mass energy tensors respec- 
tively. The components of E


  were obtained from (10) 

the third of (3) for F , the interior functions in (48) and 
(52). The components of M 


  were obtained from 

Equations (3) and (9) together with the interior functions 
(48) and (52). Equations (55)-(59) state that Einstein’s 
Field Equations are satisfied in V . The sourceless 
Maxwell equations in the first of (5) give  

23, 31,r



0
 F F  . By the third of (3) and with 3A  given 

in Equation (52), this becomes 3 , 3,r r  which 
is trivially satisfied. The source-containing Maxwell 
Equations (12) and (13) with 

0 A A
  

4A  and 3A as in (48) and 
(52) respectively, will give 
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It is easily seen that 
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4 4 2 2

8π 8π 2
sin

U Z
M b

r r



   

   
 

. 

It follows from this and Equation (60) that 2     
or, in dimensional units, 2 G    . 

If N is any function in V, we write 

     
   

   
0

0

: , ,

, : lim ,

: lim ,,

N N a N a

N a N a

N aN a




  

  

 

 









 

 

 

      (61) 

where the second and third of Equation (61), represent 
the values of  on the V  and V  sides of .N     

It follows from Equations (32)-(35), (48) and (52) that 
 and 0g     0.A   The functions g  and A  

are therefore continuous across  but one degree of 
smoothness is lost because the first order partial r-deri- 
vatives of these functions are discontinuous on 

,

.  It 
follows that the ordinary junction conditions requiring 
the continuity of the directional derivatives of these func- 
tions normal to  cannot be applied. The discontinue- 
ties of these normal derivatives will generate a surface 
layer on  with surface stress-energy tensor and sur- 
face 4-current and a more complicated set of junction 
conditions will apply. The Equations (12) and (13) for 

,



3J  and 4J  will give rise to expressions with factors of 
delta-functions and first order partial r-derivatives which 
are discontinuous on  We shall denote these terms by 
Gothic symbols, and we find from (12) and (13) that 
these are  

.

   

2 2 3

4 3 3

4π sin

r r r

r e

KA F A A r a



      

J
    (62) 

   

2 2 4

4 3 3

4π sin

r r r

r e

LA K A A r a



       

J


   (63) 

where 3 4, A A   and 3 , A are given in (34), (35) and (52) 
respectively. To obtain the surface 4-current s and 4s , 
we form the integrals of 3J  and 4J  with respect to 
proper distance measured perpendicularly through   
from  r a    to r a    and then find the limits as 

0.   There are no sign indicators with the metric 
functions ,  K F  and  in (62) and (63) because their 
values in both,  and V , are required in these inte- 
grations, where the only nonzero contributions will arise 
from the delta-function parts  and  of 

L
V  

3J 4J 3J  and 
4J  in Equations (62) and (63). With  the unit vector 

in the 
ˆ  φ

  direction, this gives 

   
3

3
2 2

ˆ , ,  ˆ
2π sin

b
s Y a bZ a

a
 


  s φ  φ  

      
3

4
2 2 2

, , ,
4π 2π sin

bm b
w a Y a bZ a

a a
  


   s  

The electromagnetic junction conditions are  

 

      

4

3

2 2 2

ˆ 4π

2b
+ , ,

sin

bm
w a Y a bZ a

a a
,  




 

  

D n s

 

      
32 ˆˆ = 4π , ,

sin

b
Y a bZ a 


  H s n θ  

where  is the unit normal to the sphere and  is the 
unit vector in the 

n̂ θ̂
  direction. In these equations, the 

contravariant component  of 1D D  and the covariant 
component 2H  of H  from the second and third of 
Equation (11) were used. 

The Equations (16)-(22) for R
  and  will give 

rise to terms with factors of delta-functions and first or- 
der partial r-derivatives which are discontinuous on 

,R

 . 
Denoting these terms by Gothic symbols, the Einstein 

tensor 
G  and the associated matter stress-energy ten- 

sor 
M  are connected through the field equations, and 

so on   we have  

1
         8

2
    
    G := R - R G =- M    (64) 

Bearing in mind that  exp F   and that in ,V   
 exp 1,F   

1
1R

2
2R

 we display below the components 
 and  as examples:  

 1 2
1 2

1

2 rr a F    R R . 

The surface stress-energy tensor S 
  is expressed in 

terms of the limits as 0   of the integrals of 
2e 

M  with respect to r from r a    to r a    
and with 

M  given in Equations (64). The junction 
conditions on   are [2,7] 

 

1 (3) 2
1

1
2 1 2; ;2

1
2; 2 1

2

8π

0.

b a
a b

b
b

b b b
a a a

b
b

G R k k

G n k k

S k k

S T n



k   

 

   
   

        (65) 

Here,  is the extrinsic curvature tensor of abk   de- 
fined by ;ab a bk n  , where the covariant differentiation 
is connected with the metric of  Since .V 0   on   
this gives ,1k g 2ab ab . 

The hypersurface scalar curvature invariant of   is 
 where the Ricci tensor  is given 

by 

   3 3: ab
abR R g  3

abR

 3
, , ,d d n d d n

ab ad b ab d ad bn ab dnR         

d
ab  being the Christoffel symbols of the second kind 

based on the metric of  . With these, all the elements in 
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the junction conditions (65) may be calculated and these 
conditions may be shown to be valid. 

5. Mass, Charge, Angular Momentum and 
the Magnetic Dipole Moment 

The mass, charge and angular momentum are defined by 
their imprints on the spacetime geometry far from the 
source. To obtain the gravitational mass and electric 
charge therefore, we expand the exterior metric function 
F   up to the term 2 23m r .  Bearing in mind the first 
of (39), we then obtain from (32)  

 

2 2

2 2

1 2
1 1

3m m m
F

r rC r r


        

 
.     (66) 

We may transform F+  in (66) to the RNF  of the 
Reissner-Nordstrom solution, by the transformation  

r r m= -  giving
2

2

2
1RN

m q
F

r r
= - +  with  

[8], or in physical units, 

q m=

2 2

4 2

m

r2

2
1RN

Gm G
F

c r c
= - +  with  

q G= m . This expression therefore implies that the 
gravitational mass is  and the electric charge is  
and these are connected by [8]  

m q

q G= m                (67) 

If we now expand K+  to ( )O 1 r  we have  
2 2 2

12 sinb A a
K

r

q+ =         (68) 

where 1A  is obtained from (38) by setting  
which will then give, bearing in mind (39)  

1,n =

( )
1

3 3
.

2 2

C a
A

b

l l
= =          (69) 

If J  is the total angular momentum, we have [9] 
22 sinJ

K
r

q+ =             (70) 

From (68) and (70), we then obtain 2 2
1J b a A=  and 

on using (69), this gives 

23
.

2
J b al=               (71) 

The dipole field is the part of the magnetic field Η  
whose physical components rH  and Hq  contain the 
factors  and  respectively. Since 
only the  power is required, we only need the  
mode of the third of the expressions in (11) for 

3 cosr q-

3r-

3r- sin q
1=n

Η . We 
find that these components are 

( )

( )

3 2 2
1

3

3 2 2
1

3

2 1 cos
 

1 sin
 

r

b A a
H

r

b A a
H

rq

l q

l q

-
=

-
=

.       (72) 

With these, the magnetic dipole moment is therefore, 
 and on using (69), this gives (3 2 2

1 1P b A a l= - )

(3 2 2
1

3
1

2
P b A a l= - )         (73) 

From (71) and (73), we deduce that the gyromagnetic 
ratio is  

( 21
P

b
J

l= - ).              (74) 

In physical units Equations (71), (73), (74) and the 
third of (39), become  

3
23

2

c
J b a

G
l

æ ö÷ç ÷= ç ÷ç ÷çè ø
             (75) 

( )
2

2 2 23
1

2

c
P b a

G
l l= -       (76) 

( )2= 1
P

b
G

J c
l-             (77) 

2
2

2 2
2

Gm Gm

ac ac
l

æ ö÷ç= + ÷ç ÷çè ø
          (78) 

It may be shown that the units of J  and  are P
[ ] 2 1J M L T-=  and [ ] 1 2 5 2 1T-P M L=  respectively, 
which are the units of angular momentum and magnetic 
dipole moment. We also find from the second of (26) and 
the second of (39) that 

( )
( )2

1
1     

Gm
C a b

C aac
= + =      (79) 

We stress the fact that all the above formulae are for 
an electrically charged sphere whose mass m and charge 
q are related by Equation (67). We note from (75) and 
(76) that the angular momentum J and dipole moment P 
depend on  but also in a somewhat more subtle way, 
on the mass to radius ratio through the quantities  and 

. The analytical Formula (77) may be applied to a 
number of different objects. We note that there exists a 
formula for the gyromagnetic ratio of stars known as 
Blackett’s empirical Formulas [10-12], which reads 

2a
l

b

P G

J c
b=             (80) 

where  is a constant of the order of  unity so that  
(80) becomes  

b

.
P G

J c

æ ö÷ç ÷ç= ÷ç ÷÷çè ø
           (81) 

Blackett suggested that an explanation of this relation 
“must be sought in a new fundamental property of matter 
not contained within the structure of present day physical 
theory.” We note in this connection that the factor 
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 G c , occurs in both our analytical Formula (77) and 
in Blackett’s empirical Formula (80). The explanation for 
the presence of this factor in the analytical Formula (77) 
however is implicit in its derivation. Furthermore, the 
coefficient of  G c  in this formula is , and 
in Blackett’s Formula (80), it is a constant equal to 1, or 
approximately equal to 1. The quantity  with 

 and b  given by (78) and (79) respectively, is ex- 
pected to vary from star to star, but  in Blackett’s 
Formula (80) is a constant equal to 1 for all stars, an as- 
sertion that seems improbable. In the context of our solu- 
tion, it is difficult to see why different objects which can 
be as diverse as the Earth and the Sun, will conform to 
such a requirement as implied by Blackett’s empirical 
Formula (81). Although the “new physics” idea was sub- 
sequently abandoned, it is nevertheless of interest to in- 
vestigate further under what circumstances, if any, our 
exact analytical Formula (77) reduces to Blackett’s em- 
pirical Formula (81). 

( 21b l-

( 21b l-

)

)
l

b

In order to gain an insight into the relation between the 
analytical Formula (77) and Blackett’s empirical Formu- 
la (81), we shall consider three cases with different nu- 
merical values for the radius  and gravitational mass 

 of the sphere. We shall then proceed to calculate the 
corresponding quantities in , ,  and 

a

2l
m

l b P J  in 
(78), (79) and (77): 

33 10

2 6 3

1.989 10 g   6.9599 10 cm

4.243406362 10   2.059953 10

0.999997878   0.999993635

m a

P G
b

J c

l l- -

= ´ = ´

= ´ = ´

= =

 (82) 

33 11

2 6

4.33602 10 g  1.4337394 10 cm 

4.493 10    2.119669786493 10

0.999997755 0.999727877

m a

P
b

J c

l l- 3

G

= ´ = ´

= ´ = ´

= =

-  (83) 

27 8

2 9

5.976 10 g  6.3675 10 cm 

1.393554681 10  3.733034531 10

0.999999999 0.999999998 .

m a

P G
b

J c

l l-

= ´ = ´

= ´ = ´

= =

5-  (84) 

The above masses and radii were deliberately chosen 
to be numerically equal to those of the Sun, 78 Virginis 
and the Earth. These correspond to the three astronomical 
objects that are quoted in the literature by later authors in 
connection with Blackett’s empirical Formula (80) [10]. 
It is seen from the numerical results in (82)-(84), that in 
the case of our electrically charged spheres, the coeffi- 
cient of G c  is very nearly equal to1 in every case. 
We must conclude that in situations where the ratio m a  
is such that  is approximately equal to 1, our 
analytical Formula (77) will give Blackett’s empirical 

Formula (81). These reductions however, are only possi- 
ble in the cases where, . Thus, if we con- 
sider a typical neutron star as a fourth case we have 

( 21b l- )

1( )21b l- =

33 6

2

1.4 2.7846 10 g  10 cm 

0.4562170327    0.6754384003  

 0.959011213    0.521493962

sm M a

P G
b

J c

l l

= = ´ =

= =

= =

  (85) 

where SM  is the mass of the Sun. 
It is seen that P J G c¹  and this is because 

. In the context of our equa- 
tions, we found the precise condition under which our 
analytical Formula (77) will give Blackett’s empirical 
Formula (81). Again, in the context of our equations, this 
provides a full explanation why Blackett’s formula is 
sometimes valid and why this occurs only for a range of 
objects. Our formula for the gyromagnetic ratio 

( )21 0.521493962 1b l- = ¹

P J  is 
not empirical, but an exact analytical formula which is a 
consequence of the equations derived from the exact 
global solution of the Einstein-Maxwell field equations 
found here. It does not require any new fundamental 
properties of matter or any new physics and it is valid for 
all values of the ratio m a . 

We note that Wilson [12,13] observed that in the case 
of the Earth and the Sun, the Formula (80) can be ac- 
counted for, if we assume that a rotating mass  has 
the same effect as a rotating electrical charge  where 

 and q  are connected by Equation (67). It is a little 
puzzling that our electrically charged spheres charged as 
they are in accordance with Equation (67), seem to echo 
the above observation by Wilson. In our case however, 

 and  are connected by Equation (67) in reality. 
The quantity of charge required is quite small. As noted 
by Bonnor [8], if the mass  and charge  are related 
by Equation (67), then if in a sphere of neutral hydrogen 
one atom in 1018 had lost its electron, this would be suf- 
ficient. 

m
q

m

m q

m q

6. Discussion and Conclusions 

Exact exterior and interior solutions of the Einstein- 
Maxwell field equations for rigidly rotating pressure-free 
matter were obtained. The exterior and interior space- 
times are separated by a boundary which is a surface 
layer with surface stress-energy tensor and surface elec- 
tric 4-current. 

Perhaps one of the most important aspects of this work 
is that the source of spacetime, is rotating charged matter 
bounded by a closed surface. As far as we know, a global 
solution with a volume distribution of finite bounded 
rotating matter as a source of the spacetime, does not 
exist in the literature, although flat disk solutions do in- 
deed exist [1]. Another important outcome of this work is 
the derivation of analytical formulae for the angular mo- 
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mentum, dipole moment and gyromagnetic ratio of a ro- 
tating sphere based on general relativistic equations. 

The mass, charge, angular momentum and the mag- 
netic dipole moment were determined in Section 5. In 
particular, we derived the analytical Formula (77) for the 
gyromagnetic ratio and discussed special cases to estab-
lish the facts regarding the connection between the ana-
lytical Formula (77) and Blackett’s empirical for For-
mula (80) the conditions under which the analytical For-
mula (77) reduces to Blackett’s empirical formula, were 
obtained. No new properties of matter and no new phys-
ics was required. Perhaps the analytical Formula (77) is 
valid for all rotating objects and in particular for stars, 
but we have no data to demonstrate this, except for the 
cases of the Sun, 78 Virginis and the Earth. 

All the physical quantities of interest in the interior 
and exterior were calculated as well as those associated 
with the spherical surface layer. In this problem, the or- 
dinary gravitational junction conditions are inappropriate. 
In fact there are two sets of junction conditions, the elec- 
tromagnetic and the gravitational ones. The former were 
expressed in the familiar form of classical electromag- 
netic theory. The gravitational junction conditions in this 
problem are more complicated than the usual ones, be- 
cause of the surface layer. These were clearly stated, al- 
though no detailed formulae were displayed.  

This solution permits a reversal of the signs of 3A+  
and 4A+  in (34) and (35) [14], which will cause a rever-
sal of the signs of 3A-  and 4A-  in (52) and (48). If we 
replace the harmonic functions  and z  in (26) and 
(27) by 

h

( ) 2

cos
1      =

m J
C r

r r

q
h z= = +  

then, instead of the metric functions in (32) and (33), we 
shall have 

12 2

2

cos
1

m J
F

r r

q
-

+
ì üï ïæ ö æ öï ï÷ ÷ç ç= + +÷ ÷í ýç ç÷ ÷ç çïè ø è øïî

ïïþ
 

2sin
 2

J m
w

r r

q+ æ ö÷ç= + ÷ç ÷çè ø
 

with appropriate modifications to the remaining func-
tions in (32)-(34). Our exterior solution, given by these 
equations, reduces to the solution obtained by Perjes 
[14]. 

To find the limit of the exterior solution (32)-(35) 
when the angular momentum J  is reduced to zero, we 
replace the harmonic function  in (27) by zero, choose 

 and base the solution on the single harmonic 
function  in (26). This leads to  

z
1,b =

( )C rh =

( ) ( )

( )

1- 2

4 3

exp ( )     =0   

1
1      0

F C r K w

A A
C r

m+ + + +

+ +

= = =

= - =
 

which is the Papapetrou solution [15] for which Bonnor  
has found a matching interior solution [8].  

Referring to the surface layer that occurs in our solu- 
tion, we note the result obtained by Ruffini and Treves in 
a non-relativistic treatment, in which they had shown that 
a magnetized rotating object has surface charge and cur-
rent densities; it is also endowed with a net electric 
charge [16]. This agrees with our results and in particular, 
it confirms the existence of a surface layer with 4-current 
and stress-energy tensor on the boundary   .r a=

The mass, charge, angular momentum and the mag- 
netic dipole moment were determined in Section 5. In 
particular, we derived the analytical Formula (77) for the 
gyromagnetic ratio and discussed special cases to estab- 
lish the facts regarding the connection between the ana- 
lytical Formula (77) and Blackett’s empirical Formula 
(80). The conditions under which the analytical Formula 
(77) reduces to Blackett’s empirical formula, were ob- 
tained. No new properties of matter and no new physics 
were required. Perhaps the analytical Formula (77), is 
valid for all rotating objects and in particular for stars, 
but we have no data to demonstrate this, except for the 
cases of the Sun, 78 Virginis and the Earth. 
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ABSTRACT 

There are four fundamental forces: gravitational force, electromagnetic force, strong force and weak force, in the well 
known physics. The unified field theory considers the constructive relations among these forces or fields. In the present 
work the fundamental relations have been studied and trial has been made to derive more significant relations among 
the known fields. This gives out a generalized unification. 
 
Keywords: Fundamental Force; Unified Field; Generalized Relation 

1. Introduction 

According to Newton’s law, two bodies of mass 1  and 
 attract one another with gravitational force whose 

m

2m

magnitude is 1 2
2grav

Gm m
F

r
 . But Einstein’s general re-  

lativity does not consider gravity as a force rather it is a 
space-time curvature. As in [1] Newtonian field equation 
is 2 4πG   , but in general relativity the Einstein  

equation is 
1

8π
2

R g R GT   



. On the other hand  

Maxwell equations [2] are the field equations of elec- 
tromagnetism that relate the electromagnetic field to its 
source-charge and current. But Einstein’s equation relates 
the space-time curvature to its source- the mass-energy 
of matter. The well known unified electromagnetic field 
Equations [2] are    E E v B  and 

2

 
c





   
 

v E
B B . These imply that one observer’s  

electric field is another’s magnetic field and that depends 
on the relativity. In 1935, H. Yukawa proposed a theory 
on generation of strong force [3] which deals with parti-
cle physics. This theory implies a relation between elec-
tromagnetic field and strong field. After a long year of 
this contribution, the weak force and the electromagnetic 
force were unified in a theory presented independently 
by A. Salam, Weinberg and Glashow [4-6]. Afterwards a 
lot of papers, regarding unified field theory, have been 
published. However, in [7,8], trial have been made to 
deduce relations among the known fields (i.e. gravita-
tional field, electromagnetic field, strong field) following 
a constructive method, which may satisfy the dream of 

Einstein’s fields unification. The present work is the 
modified formulation of unified field equations as dis-
cussed in [7,8]. 

2. Modified Relation among the Fields 

The well known relations between electric field and mag- 
netic field are 

 E v B                     (1) 

2

 

c




v E
B                    (2) 

From (1) and (2) we shall have the matrix form of 
these field transformation as  

1

x x

y ij y

z z

E B

E k v B

E B

   
      
      

              (3) 

2

x x

y ij y

z z

B E

B k v E

B E

   
      
      

              (4) 

where 
xx xy xz

ij yx yy yz

zx zy zz

v v v

v v v v

v v v

 
 

 
 
 

 1 2 and k k,  are two con-  

stants. Again, we would obtain from relativistic electro-
dynamics [2] the relations  

 E v B                   (5) 

2

 

c
 


v E

B                  (6) 

where,  v V  is the proper velocity. So, using (3) and *Corresponding author. 
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(4) we get from (5) and (6) 

1

x x

y y
ij

z z

t t

E B

E B
V

E B

E B



   
      
   
      

              (7) 

2

x x

y y
ij

z z

t t

B E

B
V

B E

B E



   
      
   
      

E
              (8) 

1  and 2   are also two constants. 

where, 

xx xy xz xt

yx yy yz yt
ij

zx zy zz zt

tx ty tz tt

V V V V

V V V V
V

V V V V

V V V V

 
 
   
  
 

 

But,  and E B  are not separate. These are included in 
a field which is called electromagnetic field. According 
to [9,10] electromagnetic field function i ψ E B . So, 
from (7) and (8) we get a generalized relation  

  , ijV E B   ,   E B            (9) 
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This means that  and  in B E     transfer to and E B  
respectively in  . In [7] it reveals that through two 
simultaneous superimposed motions gravitational field 
transfers to electromagnetic field and the relation is 
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, and 

 
i

c
 w a b  as in [7]. Again in [8] relation between 

strong field and electromagnetic field is given by 

ijG w                  (11) 

This leads to a relation between strong gravitational 
field (strong field) and weak gravitational field  G  
which is 

ij ijG w w G                 (12) 

Equations (7), (8), (10) and (11) are analogous. So, 
following (5) and (6) we can write the relations in vecto-

rial form as 

  1, ,ψ   E B w G



            (13) 

2 , ,ψ E B     G w            (14) 

where, G in (13) represents weak gravitational field 
and G  in (14) represents strong gravitational field or 
strong field.  is the composed velocity as in [7] as 
well as four-velocity. In (13) and (14)  are 
two constants. 

w

1 2 and  

Again from (12), (13) and (14) we can consider the 
vector relation between strong field and weak gravita-
tional field which would give 

3      G w w G             (15) 

where, 3  is a constant like  and  1 2

3. Conclusion 

In this work a constructive vector relation among the 
fields has been deduced. Equations (13)-(15) represent 
such relations which can clear the concepts of fields 
transformations. These also imply that field transforma- 
tions are associated with relativistic phenomenon in dif- 
ferent frames. 
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ABSTRACT 

Along with the construction of non-Lorentz-invariant effective field theories, recent studies which are based on geomet- 
ric models of Finsler space-time become more and more popular. In this respect, the Finslerian approach to the problem 
of Lorentz symmetry violation is characterized by the fact that the violation of Lorentz symmetry is not accompanied by 
a violation of relativistic symmetry. That means, in particular, that preservation of relativistic symmetry can be consi- 
dered as a rigorous criterion of the viability for any non-Lorentz-invariant effective field theory. Although this paper 
has a review character, it contains (with few exceptions) only those results on Finsler extensions of relativity theory, 
that were obtained by the authors. 
 
Keywords: Lorentz-, Poincare- and Gauge Symmetry; Spontaneous Symmetry Breaking; Alternative Gravity Theories; 

Space-Time Anisotropy; Finsler Differential Geometry 

1. Introduction coordinates of the fiber. Despite the fact that the most na- 
tural generalization of this construction is known to the 
mathematicians for a very long time within Finsler geo- 
metry [1-3] which describes the locally anisotropic spaces, 
the first viable model of Finsler space-time [4] and the 
based on it special relativistic theory of locally anisotropic 
space-time [5-7] were promoted not long ago. These works 
were motivated by the suggested at that time and now 
popular idea [8,9] of Lorentz symmetry violation, which 
means that the “true” metric of the flat space-time deviates 
from the Minkowski metric. 

Nowadays, the program of geometrization and algebrai- 
zation of the fundamental laws of nature which was for- 
mulated at the early stage of GR development is still not 
fulfilled. Every step in realization of this program sug- 
gests partial or complete reconsideration of the common 
notions and of the properties of the corresponding to them 
physical objects. Many basic concepts of the modern phy- 
sics and mathematics are expressed in terms of the notion 
of manifold, which allows possibility of universal aryth-
metization of the events of the physical world and of the 
relations between them; the notion of manifold is also a 
symbiosis of  geometric and algebraic ideas. 

Generally speaking, the discussion on space-time ani- 
sotropy needs to clarify first two issues: 1) why this should 
be done, i.e. what are its physical premises and 2) what 
does the suggested anisotropy mean. The second question 
implies that geometry in mathematics corresponds to the 
theory of measurements in physics, that is, when we speak 
of, say, space-time curvature, we presume that it will 
show itself in measurements. If we have in mind the phy- 
sical applications of the geometrical constructions, the 
same must be true for anisotropy. Notice that to speak of 
the curvature or anisotropy of the empty space is possible 
only when we don’t deal with experimental science at all, 
and if we do deal with it, the characteristic scale for the 
possible applications of the theoretical speculations must 

Despite the abstract character of the manifolds studied 
in modern physics and mathematics and of a lot of addi- 
tional structures which geometrically describe the laws of 
nature, some of these structures still remain rather con- 
servative. First of all, we mention the manifolds endowed 
with metrics, while the majority of modern geometrical 
models deal with the metric tensor as a function on the 
tangent bundle. In every coordinate chart, the metric 
tensor field depends on the coordinates of the base in an 
arbitrary smooth way, and it depends bi-linearly on the  
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be provided. The last means that when the necessity to 
study the space-time anisotropy occurs, one should sug- 
gest its local source. 

The answer to the first question is less obvious and is 
rather vast from the point of view of the analysis of the 
situation in physics (see [10-15] and additional reasoning 
below). The result of this analysis has both general and 
concrete aspects. The general conclusion is that the gra- 
vitation theory, i.e. GR, was developed for and success- 
fully applied at the scale of planetary systems. When 
applied to cosmological (galactic) scales in the way in 
which this is done now, it demands the introduction of 
corrections that are 25 times larger than the value of mass 
of the observable Universe and which are related to the 
existence of the new (still unknown) substances—dark 
matter and dark energy, which were not supposed to be 
present in the initial theory. Obviously, alongside with 
their tracking, one should make sure that the theoretical 
models are valid. These models are: the so called simplest 
scalar used in the expression for the Hilbert-Einstein ac-
tion, i.e. scalar curvature; the geometry used for the 
space-time description, i.e. Riemann geometry; and the 
4D space-time used for the description of the physical 
reality itself. 

Important observations that make simple sense, have 
sufficient value and statistical validity, but contradict clas- 
sical GR, are the rotation curves of spiral galaxies. The 
attempts to modify the theory in order to describe them in 
an adequate way based on increase of complexity [16,17] 
or change [18] of the simplest scalar, or on the modifica-
tion of the metric [19], appeared to be either not consistent 
enough—f(R)-theories, or imposed as well to introduce a 
new unknown scalar field or some new unknown interac-
tion. The phenomenological MOND theory [20] required 
either an arbitrary change of the dynamics law, or an arbi- 
trary change of the expression of the gravitation force, in 
order to provide an acceptable description of the pheno- 
mena observed at galactic scales. Its covariant generaliza- 
tion [21] also leads to the introduction of the new scalar 
field. 

The concrete consequence of the analysis is that there is 
a necessity to make the next step and to study the possi- 
bility to use a new geometry to interpret the observations. 
The natural generalizations of Riemann geometry are 
Finsler and Lagrange geometries, both taking into account 
the dependence of the metric tensor on direction at the 
given point. This direction can be global—which corre- 
sponds to one of the geometries constructed on the com- 
mutative-associative algebra, namely, to Berwald-Moor 
geometry. If we use the Berwald-Moor metric to interpret 
the gravitation theory, there appear a fixed number of 
stationary global sources of gravitation whose nature is 
unclear. This direction could be local—and then the inter- 
pretation might correspond to the motion of the local 

sources of curvature. The last one seems well-grounded, 
since the common features of the gravitation theory and of 
electrodynamics from the point of view of Lorentz in- 
variance and of the inverse square law were long ago 
noticed. The corresponding attempts to generalize the 
theory with the help of the notion of mass currents were 
undertaken in [22,23], and the common geometrical back- 
ground of both theories was discussed in [12]. Neverthe- 
less, the gravito-electromagnetism [23] doesn’t seem to be 
self-consistent enough, because one cannot deal with the 
gravitation charges in the same way as with electric 
charges: the first are sources of curvature, while the se- 
cond are not. Instead of the introduction of Lorentz force 
according to a formal analogy, one should require that, in 
the case of gravitation, the metric becomes anisotropic. 
This would lead to the gravitational force dependence on 
the velocity of the test particle and on the vector field 
corresponding to the motion of the sources of curvature. 
The literal meaning of the equivalence principle suggests 
the same: the inertial forces might depend on velocities 
and have large values, while the usual relativistic correc- 
tions interpreted as the force dependence on velocities, are 
small. In this case the application of the Schwarzschild 
type solutions to the problems stated at galaxy scale is not 
appropriate, and cannot be used to describe the spiral 
galaxies dynamics which is revealed by observations. 

Turning back to the motivation of the research which 
deals with Finsler geometric structures of space-time, one 
should notice that the whole variety of astrophysical data 
including the anisotropy of the acceleration of the Uni- 
verse expansion and the anisotropy of relic radiation, 
points at the anisotropy of space-time only in an indirect 
way. The same can be said about the baryonic asymmetry 
problem, a breaking of the discrete space-time symmetries 
in weak interactions, the problem of anomalous magnetic 
moment of muon, etc. This emphasizes the significance of 
new results obtained in the two independent experiments 
which show directly the existence of the space-time ani- 
sotropy. 

In the first of them [24], the precise atomic interfere- 
ometer was used to measure the phase shifts of the freely 
falling atoms. The local Lorentz symmetry break larger 
than 2 standard errors was found, which means that there 
exists an anisotropic condensate of  unknown nature, and 
that, this interacts with the gravitation field in such a way, 
that the central symmetry of the gravitational potential is 
broken. Consider now the second experiment. 

Recently, at Large Hadronic Collider (LHC) there was 
found a new phenomenon [25] which is now known as 
Ridge/CMS-effect (CMS stands for Compact Muon So- 
lenoid which is both the detector and the name of the 
corresponding research collaboration). One of the features 
of the effect consists in the following. If the proton-proton 
collisions with the full energy 7 TeV produce more than 
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100 particles, the planes corresponding to the tracks of 
every pair of the produced charged particles are oriented 
in such a way that a significant part of them has a common 
cross-line coinciding with the initial protons collision axis. 
This resembles the situation with the elastic scattering of a 
moving particle on a particle at rest: due to the momentum 
conservation (the momentum is equal to the flying particle 
momentum), all the planes to which the tracks of the two 
particles belong after scattering, have the common cross- 
line which coincides with the track of the initial flying 
particle. But contrary to the elastic scattering on the par- 
ticle at rest, the total momentum of the colliding protons at 
LHC is equal to zero. This fact and also the fact that the 
Ridge/CMS-effect is characteristic only to the high mul- 
tiplicity events are hard to explain by regular considera- 
tions: the physical origin of the appearance of the pre- 
ferred direction coinciding with the protons collision axis 
when a hundred or more particles are emitted, remains 
unclear. 

Thus, the Ridge/CMS-effect directly demonstrates that 
in the early Universe there spontaneously emerged the 
axially symmetric local anisotropy of space-time with a 
group DISIMb(2) as an inhomogeneous group of local 
relativistic symmetry and the corresponding Finsler met- 
ric. As for the possibility of spontaneous emergence of the 
complete local anisotropy of space-time with the Abelian 
homogeneous group of local relativistic symmetry and the 
corresponding generalized Finslerian Berwald-Moor me- 
tric, the answer to this question will depend on the three- 
particle correlation function, whose measurement is al- 
ready planned by the CMS collaboration. 

In Section 2, we consider the relativistic Finslerian 
DISIMb(2)-invariant model of a flat space-time with par- 
tially broken isotropy in the 3D space. It will be shown 
that in this model the physical carrier of the anisotropy of 
flat space-time is axially symmetric neutrino-antineutrino 
condensate, and the model itself underlies the anisotropic 
special theory of relativity and admits a natural generali- 
zation to the case of curved space-time and the Finslerian 
extension of GR. The mentioned above Finsler extensions 
of general relativity necessarily leads to the existence of, 
at least, one gauge vector field and of its interaction with 
the conserved current of the rest mass.  

High multiplicity events take place in case of the central 
collision of the initial protons. Then the energy density at 
the moment of the collision is comparable to the energy 
density shortly after the Big Bang, when instead of had- 
rons there was quark-gluon plasma. It is clear that dealing 
with the high multiplicity events in the proton-proton 
collisions, one should account for the phase transitions 
corresponding to the high gauge symmetries violations 
that are accompanied by the vacuum rearrangement. The 
condensate appearing during such rearrangement is lo- 
cally isotropic (Higgs type) only in frames of the usual 
relativistic theory. In the relativistic theory with Lorentz 
symmetry violation, or, in other words, in the anisotropic 
theory of relativity, which will be discussed below, the 
role of the Higgs condensate is played by the axially sym- 
metric anisotropic fermion-antifermion condensate. Be- 
sides, when rapid cooling and hadronization of quark- 
gluon plasma takes place, an entirely anisotropic three- 
gluon condensate can appear. On the one hand, quantum- 
field vacuum, that includes the anisotropic condensate, is 
the physical carrier of the local anisotropy of space-time, 
and it can be regarded as an anisotropic quintessence, on 
the other—it imparts all the particles the properties of 
quasi-particles in the crystalline environment. In particu- 
lar, apart from the rest energy, the particles obtain a rest 
momentum. With regard to the Ridge/CMS-effect, this 
means that in the reference frame coinciding with the 
center of masses of the colliding protons, (relative to the 
laboratory), the total momentum of the appearing pri- 
mordial plasma differs from zero and lies on the collision 
axis (this is due to the anisotropy of the condensate, which 
arises spontaneously along the collision axis). This is why 
the correlation of paired tracks in the CMS experiment has 
turned out such that the planes to which the tracks belong 
cross mostly on the axis of proton collisions. 

A number of astrophysical effects of this interaction 
were studied in detail in the framework of the approach 
proposed by S. V. Siparov. It is suggested to model the 
physical real world by the 8-dimensional phase space- 
time, one of the coordinates of which appears to have a 
constant value. The discussion of this approach, of its 
origination and of the corresponding calculated and ob- 
served effects is given in Section 3 of this review. 

As to Section 2, in addition to the flat space-time with 
partially broken isotropy of the 3D space, it contains a 
brief review of a three-parameter family of flat Finsler 
spaces with entirely broken 3D isotropy and with Abelian 
three-parametric group of relativistic symmetry. The Abe- 
lian group structure of the relativistic symmetry was the 
starting point for a deeper study of Finsler Berwald-Moor 
space, which for the four-dimensional case belongs to the 
specified family. 

In Section 4 we consider the geometric, algebraic, and 
physical aspects of the commutative associative algebras 
and Berwald-Moor geometries of various dimensions as- 
sociated with them. In recent years, studies of this kind 
were also conducted within the framework of interna- 
tional cooperation between the Romanian Academy and 
the Academy of Sciences of the Russian Federation. In 
particular, thanks to the work of Romanian geometers led 
by V. Balan, the results concerning the algebraic side of 
the theory of Berwald-Moor metrics for various dimen- 
sions were complemented by the specific results origin- 
nating from the modern differential geometry of Finsler 
spaces. Their description in a concentrate form can be 

Copyright © 2012 SciRes.                                                                                 JMP 



V. BALAN  ET  AL. 1317

found in Section 5 of this review. 

2. Relativistically Invariant Finslerian 
Spaces with Local Lorentz Symmetry 
Violation 

As it is known, space-time is Riemannian within the fra- 
mework of GR, and the distribution and motion of matter 
only determines the local curvature of space-time without 
affecting the geometry of the tangent spaces. In other 
words, regardless of the properties of the material medium 
which fills the Riemannian space-time, any flat tangent 
space-time remains the space of events of SR, i.e. the 
Minkowski space with its Lorentz symmetry, which is 
usually identified with the relativistic symmetry. 

However, in recent literature there is an increasing in- 
terest in the problem of violation of Lorentz symmetry. 
Particularly, the string-motivated approach to this prob- 
lem is widely discussed. 

The point is that even if the original unified theory of 
interactions possesses Lorentz symmetry up to the most 
fundamental level, this symmetry can be spontaneously 
broken due to the emergence of the condensate of vector 
or tensor field. The appearance of such a condensate, or of 
a constant classical field on the background of Minkowski 
space, implies that it can affect the dynamics of the fun- 
damental fields and thereby modify the Standard Model of 
strong, weak and electromagnetic interactions. Since the 
constant classical field is transformed by the passive 
Lorentz transformations as a Lorentz vector or tensor, its 
influence on the dynamics of fundamental fields of the 
Standard Model is described by the introduction of the 
additional terms representing all possible Lorentz-cova- 
riant convolutions of the condensate with the Standard 
fundamental fields into the Standard Lagrangian. The 
phenomenological theory, based on such a Lorentz-cova- 
riant modification of the Standard model is called the 
Standard Model Extension (SME) [26-32].  

By design, the phenomenological SME theory is not 
Lorentz-invariant, since its Lagrangian is not invariant 
under active Lorentz transformations of the fundamental 
fields against the background of fixed condensate. In 
addition, in the context of SME, a violation of Lorentz 
symmetry also involves the violation of relativistic sym- 
metry, since the presence of non-invariant condensate 
breaks the physical equivalence of the different inertial 
reference systems. 

It should be added that in the low-energy limit of gra- 
vitation theories with broken Lorentz and relativistic sym- 
metries, there appears an unlimited number of possibilities 
to build a variety of effective field theories, each of which 
could potentially explain at least some of the recently 
discovered astrophysical phenomena (see, e.g., [33]). 

The very existence of the Finsler geometric models of 
space-time within which a violation of Lorentz symmetry 

occurs without the violation of relativistic symmetry 
strongly constrains the possible effective field theories 
with broken Lorentz symmetry: in order to be viable, such 
theories, in spite of the presence of Lorentz violation, 
should have the property of relativistic invariance. 

Since only two types of Finsler spaces with broken Lo- 
rentz symmetry are relativistic invariant [34], we first 
consider the Finsler spaces of the first type. 

2.1. The Relativistically Invariant Finslerian Spaces 
with Partially Broken 3D Isotropy 

The metric of such spaces suggested in [4] has the fol-
lowing form 
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This metric depends on two constant parameters r and 
 and generalizes the Minkowski metric, where r de- 

termines the spatial anisotropy, characterizing, thus, the 
degree of deviation of (1) from the Minkowski metric. 
Instead of the 3-parametric group of rotations of Min- 
kowski space, Finsler spaces (1) can have only an 1-pa- 
rametric group of rotations around the unit vector  
which presents a physically preferred direction in the 3D 
space. The translational symmetry suffers no change: 
space-time translations preserve metric (1) invariant (in 
this sense, it is natural to consider the family of spaces (1) 
as a family of flat Finsler spaces. With regard to the 
transformations connecting different inertial reference 
frames, the usual Lorentz boosts conformally modify me- 
tric (1). Therefore, they do not belong to a group of iso- 
metries of this metric. However, by using them, we can 
construct such transformations [5] which belong to the 
group of isometries of metric (1). The corresponding ge- 
neralized Lorentz transformations (generalized Lorentz 
boosts) are as follows 
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present the additional dilatational transformations of the 
coordinates of events. 

In contrast to the usual Lorentz boosts, the generalized 
boosts (2) determine a 3-parametric non-compact group 
with generators 1 2 3, ,X X X . Thus, with inclusion of 1- 
parameter group of rotations around the preferred direc- 
tion  and 4-parameter translation group, the inhomo- 
geneous group of isometries, or in other words, inhomo- 
geneous group of relativistic symmetry of flat Finsler 
spaces (1) appears to have 8-parameters. To obtain the 
simplest representation for its generators, it is enough to 
send the third spatial axis along  and rewrite the trans- 
formation (2) in the infinitesimal form. As a result, we 
come to the following eight generators 

ν

ν
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According to [5], these generators satisfy the commu- 
tation relations 
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This shows that the homogeneous isometry group of 
flat Finsler spaces with partially broken 3D isotropy 
contains four parameters (generators 1 2 3, ,X X X and 3 ). 
It is a subgroup of the 11-parametric Weyl group [35], and 
it is isomorphic to the corresponding 4-parametric sub- 
group (with generators 

R

1 2 3 R
0r

 and 3 ) of the 
homogeneous Lorentz group. Since the 6-parametric ho- 
mogeneous Lorentz group does not have any 5-parametric 
subgroup, while its 4-parametric subgroup is unique up to 
isomorphisms [36], the passage from Minkowski space to 
Finsler spaces (1) implies a minimum possible violation 

of Lorentz symmetry. With this, the relativistic symmetry 
represented now by the generalized Lorentz boosts (2) 
remains valid [37]. 

Here it is worth noting the following. Despite the fact 
that at 0r   the Finsler metric (1) reduces to Minkowski 
metric  the 3-parametric non-compact 
transformations (2) that serve as the homogeneous rela- 
tivistic symmetry transformations for Finsler metric (1) 
don’t reduce to the usual Lorentz boosts 

2 2
0d d ds x  x2 ,

  i i
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kx L x  v  
but reduce to the transformations 
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            (5) 

that differ by additional rotations  ,i i
kx R  v ν x  of the 

space axes. These rotations are designed so that if a 
light-beam in one inertial frame has the direction of  
then it will have the same direction in all inertial frames. 

,ν

Thus, at 0r   i.e. in frames of the usual SR, the trans- 
formations (5) are the alternative to the Lorentz boosts, 
however, in contrast to the Lorentz boosts, for any value 
of  they present a 3-parameter non-compact subgroup 
of the 6-parametric homogeneous Lorentz group. As it 
was noted in [37], in order to realize these transformations 
physically, it is enough to choose  as a direction at any 
star and then perform an arbitrary Lorentz boost, sup-
plementing it with such rotation of spatial axes that in the 
new reference system, the direction at the star does not 
change. Taken together, these transformations form the 
specified subgroup (5) of the 6-parametric homogeneous 
Lorentz group. As a result, we can say that within the 
framework of SR,  has no physical meaning and serves 
to the relativistically invariant calibration of the directions 
of spatial axes of inertial frames. 

,ν

ν

ν

In connection with the last statement, it is necessary to 
make another important remark concerning the 3-parame- 
tric non-compact group of homogeneous transformations 
(5). If one complements this group by the 1-parametric 
group of rotations around  and 4-parametric transla- 
tion group, the result is an 8-parameter subgroup of the 
Poincare group, whose generators and Lie algebra have in 
our basis the forms (3) and (4) assuming that 

ν

0r   For 
such a group the name ISIM(2) is now used, and its ho- 
mogeneous 4-parametric subgroup SIM(2), which in- 
cludes (5) and the rotations around , is the basis for the 
so-called Very Special Relativity (VSR) [38]. According 
to VSR, SIM(2) symmetry suggests a more fundamental 
local space-time symmetry than the local Lorentz sym- 
metry. In particular, the requirement of SIM(2) symmetry 
was sufficient to show [39] that neutrinos may have mass 
along with the lepton number conservation, and it is im- 
portant that this result can not be obtained within the 
framework of Lorentz-invariant approach without intro- 
ducing sterile neutrinos. However, a significant drawback 
of the VSR is that  is regarded only as a phenomenolo- 
gical parameter and VSR can not say anything of its 

ν

ν

, ,X X X
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physical nature. 
Much more meaningful from the physical point of view 

is the special relativistic theory of the locally anisotropic 
space-time [5-7], based on Finsler metric (1), which de- 
scribes a family of flat relativistically invariant spaces of 
events with partially broken 3D isotropy, and hence with 
broken Lorentz symmetry. Most of the results obtained 
under such a theory have been reproduced in [40] using 
alternative methods (see also [41]). In particular, the in- 
homogeneous 8-parametric group of relativistic symmetry 
of metric (1) with its Lie algebra (4) were obtained using 
the method of continuous deformations of algebra ISIM(2). 
As a result, the corresponding symmetry is more fre- 
quently called DISIMb(2) symmetry (where b is the new 
designation of the parameter r), and the theory itself [5-7] 
is more frequently called General Very Special Relativity 
(GVSR).  

2.1.1. The Rest Momentum in Addition to the Rest 
Energy 

In order to modify the usual relativistic mechanics in 
accordance with the requirement of invariance with re- 
spect to DISIMb(2) it is enough to replace the Minkowski  

line element 2
0d d ds x  x2

s

 in the integral of action 

d
b

a

S mc                  (6) 

by the Finsler line element (1). As a result, the Lagrange 
function corresponding to a relativistic particle in a locally 
anisotropic space (1), is the following 

2 2

2 2

1
1

1

r

c
L mc c

c

    
  

vν
v

v

2 .     (7) 

With this, one can get the expression for the energy  
and momentum  of the relativistic particle [6]: 

E
p
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2 2 2 2
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        (9) 

According to (8), the particle energy E reaches its ab- 
solute minimum  at . As for the momen- 
tum  then according to (9), at  it takes the value 

.  Thus, in the anisotropic space with metric (1), 
in addition to the rest energy , any massive par- 
ticle obtains another observable parameter—the rest 
momentum  Note also that as shown in [6], the 

4-momentum 

2E mc

.mcr ν

0v
v

E m

,p
mcr ν

0

2c
p

p

 0 ,ip p E c  p  satisfies the DISIMb(2) 
-invariant dispersion relation, which we give here in the 
form: 

 

         

2 2
0

2
2 1 1 0

2 2
0

.1 1
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p
mc r r
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p

pν

p

  (10) 

In the non-relativistic limit, the Lagrange function (7) 
has the following form 

       22
2 1 1

2 2

mm
L mc mcr r r r      

vνv
vν .  

Since this expression  which is pre-
sent here is the total derivative over time, it can be omitted. 
As a result, we see that the kinetic energy and momentum 

 2mc mcr  vν

 

1
v ,

2

v ,

, 1,

v

2,3

T m

p m

 



 

 







 

of the non-relativistic particle  in the anisotropic space (1) 
are determined by the tensor of the inertial mass [34]: 

 1 .m m r r                 (11) 

Let us now rewrite the Finsler metric (1) so that it is 
expressed through the four-dimensional quantities:

                     

 

22
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r
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iki k

ik

x
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ν x
x

x
d

     (12)

 

Since 2 1,ν  it is clear that here we have 

  
 
1, , 1, 1, 1, 1 ,

1, , 0.

i ik

i i
i

diag 

  

     

 

ν

ν
 

Finally, we present the physical carrier of the anisot- 
ropy of the flat space of events (12) and outline a plan for 
the further development of the theory. In order to do this, 
we first turn our attention to the unique property of Finsler 
metric (12). On the one hand, for  this turns into 
Minkowski metric, on the other, at  it transforms 
into the total differential d i

0,r 
1,r 

d .is x  The latter means 
that in this case the action (6) does not depend on the 
shape of the world line connecting the points a and b In 
other words, the space-time loses such a physical char- 
acteristics as spatial extension, and only a temporal dura- 
tion which represents the absolute time interval ds   

d i
i x  is left. Moreover, according to (11), the inertial 
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masses of all particles also vanish, and i  becomes not 
the spurionic vector field but is transformed into a co- 
variant constant vector field defined on this degenerate 
(from the metric point of view) space-time manifold. 
Incidentally, we note that it is on the space-time manifold, 
and not on the Minkowski space-time, that the massless 
fundamental fields (for example, those of the Standard 
Model) are introduced before spontaneous violation of the 
initial gauge symmetry and before the appearance of 
masses of the initially massless particles. It is clear due to 
the fact that in the massless world there are no inertial re- 
ference systems, with their mandatory attribute—the refe- 
rence stick. 

In accordance with (6) and (12), a constant non-zero 
field r defines the specific inseparable interaction of the 
constant spurionic field i  with massive particles. The 
effect of this interaction is that the particles obtain—ac- 
cording to (11), the properties of quasi-particles in an 
axially symmetric crystalline medium. The complex of 
constant fields containing the scalar field r and the spu- 
rionic field i  is, thus, the physical carrier of the anisot- 
ropy of the flat space of events (12). As it turned out, the 
null-vector spurionic field i  presents a neutrino-anti- 
neutrino condensate constructed out of constant Weyl spi- 
nors. Such spinors are an exact solution of the DISIMb(2) 
-invariant generalized massive Dirac equation [42], whose 
Lagrangian has the form 

 
22

2

     

r

i
L

m

 
 




  

  








   

 
       

       (13) 

If the constant scalar field r is set to zero, the 
DISIMb(2)-invariant generalized massive Dirac equation 
becomes the standard massive Dirac equation, which does 
not have any solution in the form of constant spinors. 
However, the Weyl equations, arising from the standard 
massless Dirac equation have solutions in the form of 
constant spinors, and they provide the possibility to build 
a constant null-vector spurionic field i . But physically, 
it would be unobservable, since at  we come back 
to the framework of SR: the Finsler metric (12) becomes 
the Minkowski metric, the rest momentum 

0r

mcrp ν  
disappears, the tensor of inertial mass (11) ceases to be a 
tensor and becomes a scalar m. Accordingly, all the other 
effects of spatial anisotropy discussed in [43] will be lost. 

2.1.2. On the Problem of Construction of the 
Finslerian GR Based on the Group DISIMb(2) 

As noted in the Introduction, the Ridge/CMS-effect which 
was observed at the LHC, directly suggests that in the 
early Universe the axially symmetric anisotropy of space- 
time spontaneously arose, and it had the DISIMb(2) group 

as an inhomogeneous group of local relativistic symmetry 
and the respective Finsler metric (12). This is the first and 
most important reason to regard the problem of con-
structing a Finslerian general relativity based on the group 
DISIMb(2) Needless to speak about the complexity of such 
a problem, especially because it involves the answers to 
the questions concerning the nature of the dark matter and 
dark energy. Despite some advances in this direction, this 
problem is still not completely solved. So, in the end of 
Section 2.1, we suggest a possible way the progress on 
which is likely to lead to the planned purpose. 

The key point in the generalization of the flat DISIMb(2)- 
invariant Finsler metric (12) to a Finsler metric, which 
describes the corresponding curved locally anisotropic 
space-time is the following. If the constant values on 
which the metric (12) depends, namely a scalar  the 
spurion null-vector vi and the spurion tensor ik

,r
   

 1, 1, 1, 1diag     are replaced by the corresponding 
conventional fields defined on the space-time manifold, 
i.e. in the metric (12) the substitutions  ,xr r  

   ,i i ik ikx g x    are performed, then the result 
will be the curved Finsler metric of the following form 
(see [44,45])  

 
/22

d
d d

d d

r
i

i i k
iki k

ik

x
d ,s g x x

g x x

 
   
  

      (14) 

where  ik ikg g x  is the Riemannian metric tensor as- 
sociated with the gravitational field,  is a scalar 
field, which characterizes the magnitude of the local 
space-time anisotropy and i i

 r r x

 x   is a null-vector 
field that indicates the locally preferred directions in the 
space-time. 

At any point of the curved Finsler space (14), the corre- 
sponding flat tangent Finsler space (12) has its own values 
of the parameters r and  These values are nothing but 
the values of the fields 

.ν
 r x  and  xν  at the point of 

tangency. 
Obviously, the dynamics of a Finsler space (14) is 

completely determined by the dynamics of the interacting 
fields      ,  ,  ,ik ig x r x x  and these fields together 
with fields of matter form a unified dynamic system. 
Therefore, in contrast to the existing purely geometric 
approaches to the Finsler generalization of Einstein’s equ- 
ations, our approach [44,45] to this problem is based on 
the use of methods of the conventional theory of interact- 
ing fields. 

The fact that during the transition from a flat DISI- 
Mb(2)-invariant Finsler metric (12) to a curved Finsler 
metric (14), we replaced the spurion tensor 

ik    1, 1, 1, 1diag     and the spurion null-vector i  
by the conventional fields, became the property of metric 
(14) invariance with regard to the following local trans-
formations 

Copyright © 2012 SciRes.                                                                                 JMP 



V. BALAN  ET  AL. 1321

 

   

2

1

,

,

,

x
ik ik

r x r
i

g e g

e

r r




i 







         (15) 

where  x  is an arbitrary function. 
In addition to metric (14), the local transformations (15) 

leave invariant all the observables. Therefore, in the the-
ory of gravitation based on the group DISIMb(2) the 
transformations (15) have the meaning of local gauge 
transformations. For example, the action 

4

*1
d

r
i

i

i k
ik

v
S

c g v v




 
   
 
 

 4g x  

for a compressible fluid in a Finsler space (14) is gauge 
invariant. In this formula, *  is the invariant energy 
density of the liquid, d d ,i iv x s  and ds is metric (14). 

In connection with the above-mentioned local gauge 
invariance, the dynamical system consisting of the fields 

, ,ik ig r   and a compressible fluid must be supplemented 
by two vector gauge fields iA  and  that under local 
transformations (15) are transformed in the corresponding 
gradient manner. The i

,iB

A  field for a certain class of pro- 
blems is a pure gauge field, and the  field, whose 
gauge transformation has the form 

iB

   
;

1 ,i i i
B B b r x r      

where b is a constant with the dimensionality of length, 
interacts with the conserved rest mass current  adding 
the term proportional to  to the full gauge invariant 
Lagrangian. 

,ij
i

iB j

2.2. The Relativistically Invariant Finslerian Spaces 
with Entirely Broken 3D Isotropy 

In general case, the metric of relativistically invariant Fin- 
slerian spaces with entirely broken 3D isotropy [46,47] is: 
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The three parameters ( 1 2  and 3 ) characterize the 
anisotropy of spaces (16) and have the following restric- 
tions 

,r r r
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Thus, in this particular case, we obtain the well-known 
Berwald-Moor metric, but written in the basis, which 
was introduced in [46].

 Now consider the group of isometries of flat Finsler 
space (16). The homogeneous 3-parametric non-compact 
group of isometries, i.e. the group of the relativistic sym- 
metry of space-time (16) appears to be Abelian, and the 
transformations belonging to such a group have the same 
meaning as the ordinary Lorentz boosts. The explicit form 
of these transformations is 

i ik kx DL x                  (17) 

where 
 1 1 2 2 3 3r r rD e       

ik  are the unimodular matrices that are given by the 
formulas  
L
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A B C D

B A D C
L
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1 , 2 , 3  are the parameters of the group. Along with 
the parameters ,i  the components 0v d di ix x  of the 
coordinate velocity of the primed reference frame can also 
be used as group parameters. The parameters  and vi i  
are related by 
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The reverse relations have the form 
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  (20) 

It should be noted that if 1 2 3  then the 
metric (16) becomes the fourth power root of the product 
of four 1-forms 

0,r r r  
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As for the generators iX  of the homogeneous 3-para- 
metric group of isometries (17) of the space-time (16), 
they can be represented as follows 
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where p x     are the generators of the 4-parame- 
tric group of translations. Thus, with inclusion of the latter, 
a inhomogeneous group of isometries of the entirely ani-
sotropic Finsler space of events (16) is a 7-parametric 
group. As to its generators, they satisfy the commutation 
relations 
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3. Modeling Real World by the Phase 
Space-Time and Physical Results 
Obtained on This Way 

The theory and results briefly given below are discussed 
in detail in the monograph [83]. 

Let 4M  
C

 x y

 be a differentiable 4-dimensional mani-
fold of class .  Let TM be its tangent bundle with co- 
ordinates  If c is a parame- 
trizable curve on M, 

 , , ; 0,1, 2i ix y i 


,3.
 : , ,c a b M


  then 

its natural extension on TM is 
  ,it x t 

 : ,c a b
,

,TM  
  ,i it x t y  t  where d d .iiy x t  The arc length 

s, usually chosen as the natural parameter on the curve is  

thus equal to 
0

d ;
t i j

ijs g y y  
 

 Suppose  , 0,1,2,3i j  .

that the metric introduced above depends on y, i.e. 
 , .ij ijg g x y  In general, this metric corresponds to the 

generalized Lagrange geometry,  ,ij g x y  is a twice 
covariant symmetric tensor on TM with the only restric- 
tions: a)  for any   0ijdet g  ,x y  on TM and b) when 
the coordinates on TM change in the way corresponding to 
the change of coordinates on M, the components of the 
metric vary in the same way as the components of the 
(0,2)-tensor on the main manifold M. This means that TM 
is an 8-dimensional Riemannian manifold, analogous to 
the 6-dimensional phase space well-known in physics. Its 
geometry is quite complicated and uses such concepts as 
nonlinear connection (Ehresmann). But if we limit our- 
selves to the case of linear coordinate transformations 

with constant coefficients and of weak gravitational field, 
i.e. 
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1,

 

the geometry essentially simplifies, and the definition of 
iy  makes it possible to use the Sasaki lift for raising and 

lowering indices on the vertical and horizontal compo- 
nents of the bundle, that is use the same metric tensor. The 
tensor ijg  is a zero-order homogeneous in y tensor, i.e. 
the metric depends only on the direction of y, but not on its 
value. This is expressed by the relation  

  0.k k
ijg y y    If there also holds the condition 

  0,k j
ijg y y    then this metric becomes the usual  

Finsler one [1], but in this approach this is not assumed. 
The described formalism means that alongside with the 

use of a new geometry for the modeling of phenomena in 
the physical world, instead of the space and time of 
Newton or of the Minkowski space-time, the 8-dimen- 
sional phase space-time is introduced. The character of its 
extra dimensions is not formal, but they have clear phy- 
sical meaning, due to the used approach. Clearly, the 
correspondence between the Lagrangian and Hamiltonian 
formalism now obtains a new dimension. It should be 
noted that similarly to the situation when the transition 
from Newton’s time and space to the Minkowski space- 
time took place and the fundamental constant c with the 
dimension of speed was demanded, the transition from 
Minkowski space-time to the 8-dimensional phase space- 
time demands another fundamental constant, l, this time 
with the dimension of length. One can associate it with the 
fundamental speed and take ,l c H  then H will be a 
new constant which has the dimension 1.s  This suggests 
that in the interpretations, the following correspondence 

 
 

0 1 2 3 0 1 2 3, , , , , , ,

, , , , , , ,x y z

x x x x y y y y

ct x y z c H v H v H v H


 

should be borne in mind. One should also pay attention to 
the fact that all the events would take place in the 7-  
dimensional subspace of the 8-dimensional phase space- 
time, one of the coordinates of which is constant accord- 
ing to construction. The symmetry groups corresponding 
to this space will be the generalized Lorentz group and de 
Sitter group. The last can be contracted and be used in the 
Carroll space and in the Newton-Hooke space that are of 
interest for the astronomical applications. The possibility 
of separating the resulting space into such parts as 
 , ,x y z  and  , , , ,x y zct c H v H v H v H  allows the 
use of Lobachevsky geometry to describe the space of 
velocities, this geometry was previously used only in the 
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theory of high-energy particles.
 Preserving only linear terms proportional to ,k

ij x   
k

ij y   and 2 ,k l
ij x y    one can obtain the gener- 

alized geodesics similarly to [48-50] in the following form 
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where 1

2
i ih k j

jk hj hk jk hx x x              is  

the Christoffel symbol depending on y. Thus, in order to 
obtain the equations of motion (dynamic equations) in the 
weak field limit in the anisotropic space, one should use 
(21), but not geodesic equation d d 0i i l k

lky s y y   ,  
which is appropriate in the same approximation only in a 
space with Riemann geometry. As a result, after certain 
simplifications and extraction of the anti-symmetric part 
of the auxiliary tensor introduced in [10-15], the equation 
of motion obtained from the geodesic (21) and applied to 
the spatial cross-section of the space takes the form 
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where 00  is the only (temporal) component of the metric 
tensor, which remains in the equation of motion in the 
approximation of the weak field. Regarding (22) as the 
equation of dynamics, we obtain the expression for the 
generalized gravitational force depending on velocities 
[10-15] 
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The last two equations are obtained from the geodesics 
corresponding to the field equations for an anisotropic 
metric. They do not require a special choice of the energy- 
momentum tensor, and any additional a priori assump- 
tions. The field equations in the anisotropic space in the 
linear approximation for weak fields retain their form [51], 
although their terms may now depend on y. 

To study the dynamics of spiral galaxies, one could 
choose 
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If we demand the existence of limit transition to the 
usual GRT, then 
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and it can be shown that the second term under the gra- 
dient has the same order of magnitude as the first one at 
distances of the order of a galaxy radius. It is this that 
prevents the vanishing of orbital velocity required by the 
general relativity. At the same time, the motion in the 
galactic plane and perpendicular to this plane is now de- 
scribed by the different laws, which removes the well- 
known paradox [52] in the observations of motion of stel- 
lar globular clusters. 

In the framework of the suggested approach—anisot- 
ropic geometrodynamics (AGD)—the notion of a point 
mass is not sufficient to model the elementary (effective) 
source of gravitation, and one should use a system of 
“center plus current” which represents a gravitational 
analogue of the circular coil with current around the cen- 
tral charge. The use of such a system for simulation of a 
spiral galaxy, leads to the expression  for the 
orbital velocity corresponding to the observed flat rotation 
curve, and to the empirical Tully-Fisher law 

~orbv cons

1 4~ ,orb lum  
which has no explanation in general relativity. The same 
model can explain the observed substantial excess of 
deflection in some gravitational lenses over the theoretical 
calculations, which appears to be due to the internal mo- 
tions of the masses in the galaxy-lens. It has been also 
shown that in addition to the known convex gravitational 
lenses, in the AGD there exist concave gravitational 
lenses. This can lead to the incorrect determination of 
distances to the sources compared to “standard candles”. 
And this can account for another interpretation of the data 
which led to the idea of the acceleration of the Universe 
expansion and to the notion of dark energy. 

v L

Calculation of the explosion of the central body in the 
“center plus current” model, resulting in the release of the 
two equal masses in opposite directions in the plane of the 
coil leads to trajectories that resemble the well-known 
observations obtained by the HUBBLE telescope (com- 
pare Figures 1(a) and (b)).  

Besides, there are also the images received recently by 
the space observatory HERSCHEL [84] (compare Fig- 
ure 1(b) and Figure 2) when photographing the center of 
our galaxy. Thus, there could be a new approach to the 
study of the origins of the arms and bars, characteristic of 
most spiral galaxies. 

where  is the mass current density, and r0 corre- 
sponds to the observer. Then the equation for the gravita- 
tional force obtains the form 

   mj r The theory presented in this section is based on the new 
notion, which serves the basis for the description of 
physical reality—the phase space-time admitting the use 
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(a) 

 
X1, X2, X1 

(b) 

Figure 1. (a) Galaxy NGC-1365 (Hubble telescope image, 
NASA/ESA); (b) Numerical calculation based on the “center 
plus current” model in the framework of AGD (the exact 
view of the central details depends on the step of the calcu- 
lation but they remain always present). 
 

 

Figure 2. Details discovered by Herschel orbital observa- 
tory in the center of milky way. 
 
of various geometries to describe its subspaces. The AGD 
approach is consistent with observations at the galactic 
scale, and does not require the introduction of dark matter. 
Besides, it includes a new (or additional) interpretation of 
the Hubble law, which takes into account not the radial 
expansion of the Universe but the various tangential mo- 
tions of its distant parts. The last being regarded in the 
framework of AGD leads to a linear decrease of frequency 

with distance to the radiation sources explained by the 
gravitational red shift. The observations of extremely 
high tangent velocities of the distant quasars present an 
indirect evidence supporting this idea. 

4. Mathematical, Physical and Geometric 
Aspects of Hyper-Complex Numbers 
Algebra 

The natural basis for Finsler geometries of special type 
(the so-called Berwald-Moor spaces  with metric n

 1 2ˆ d d dn nG S x x x   ,          (26) 

where  is the symmetrization operator (without the 
numerical factor)) represent the well-known associative- 
commutative algebras   

Ŝ

.nP
This section of the review is devoted to presenting the 

geometrical, algebraic and physical results obtained in the 
study of poly-numbers associative-commutative algebras 
and Berwald-Moor geometries of various dimensions 
related to them. 

4.1. Conformal Gauges and Non-Linear 
Symmetries 

It is well known that the Finslerian Berwald-Moor space 
 have a rich (infinite) group of conformal symmetries 
.n  We denote by 

n
 f

n  the Berwald-Moor manifold in 
a special conformal gauge, which can be obtained from 

n  by the action of some Instead of the 
transformations of the manifold n  belonging to the 
group  we now have the transformations of the 
manifold 

 .nf 

Iso ,n
f

n  belonging to the group  o ,
f

Is f
n n   

whose elements f  are defined by the formula 
1.f f f     The action of the group  Iso

f

n  in the 
coordinate space of the manifold f

n  in general case is 
described by nonlinear functions, so this group is naturally 
called the nonlinear f -representation of the group 

n  In general, the group Iso . Iso
f

n  can always be 
regarded as a (generally nonlinear) group of isometries 
Iso f

n  of a manifold f
n , which differs from f

n , 
only by its metric. The form of this metric depends on the 
type of the gauge function f . 

In [53,54] there are concrete examples that illustrate the 
fact that the isometry group and the group of conformal 
symmetries of the Berwald-Moor metric can interact with 
each other in a non-trivial way leading to nonlinear sym- 
metries of the known geometries. 

4.2. Osculating Riemannian Metrics 

With the disposal of the metric (26) and vector fields of 
Lie algebras of the groups  (and n ), one can 
naturally obtain an infinite number of Riemannian metrics 
out of the metric (26) with the help of the following gene- 

Iso n 
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ral technique. Consider the “incomplete” scalar poly- 
product of the form:  

 (1) (2) ( 2), , , , ,n
ng G X X X    ,  

where  jX  are the elements of Lie algebras of the 
groups n  and (or)  that are for convenience 
numbered by the indices corresponding to their places as 
the arguments of the Berwald-Moor metric. It is obvious 
that 

Iso ,n

g  is a (pseudo-) Riemannian metric, depending on 
the chosen fields  jX . The described method leads to a 
generalization of the concept of “Riemannian metric os- 
culating to a given Finslerian metric”, discussed in [1]. 

Consider as a reference vector field a common element 
of the Lie algebra of the subgroup of the uni-modular 
dilations  of the complete group  which 
has the form:  

3IsoD 3Iso ,

 1 2
1 1 2 2 1 1 2 1 2 2 3 ,X b D b D b x b b x b x        3



 

where 1 2  are arbitrary real parameters. The Rieman- 
nian metric osculating along this field has the form: 

,b b

 
  

 

1 2 3 3 2
1

2 1 3 3 1
2 1

3 1 2 2 1
2

d d d d

d d d d

d d d d .

g b x x x x x

b b x x x x x

b x x x x x

   

    

   

    (27) 

This metric is generally not flat. Its determinant defin- 
ing a local volume element is given by:  

    1 2 3
1 2 2 1det 2 .g b b b b x x x   

One can see that the metric (27) is nonsingular only if 
all of the conditions: 1  2  1 2  are ful- 
filled simultaneously. The standard study of isometries 
and conformal symmetries of this metric reveals the fact 
that this metric has a 3-dimensional algebra of isometries 
and 10-dimensional algebra of conformal symmetries. 
Such a rich algebra of conformal symmetries is a residual 
“track” of the infinite-dimensional algebra of conformal 
symmetries of the original Berwald-Moor metric (26) for 

 

0,b  0,b  b b

3.n 
The study of residual symmetries of the Riemannian 

metrics osculating to the Berwald-Moor metrics admits a 
more general setting in which we obtain the following 
basic relations: 

     
   

( ) ( )

( ) ( )

, ,

           , , , 
iiX X jj

k
i j ij k

L g L G X

G X X c g



   
     (28) 

and 

        
       

, ,

           ,

i ij jX X

k k k
i ij i j ijj k

L g L G X

kg c g c g  



   
 (29) 

where ( )jX  is an element of the Lie algebra of the group 

3  Iso ,  jX  is an element of the Lie algebra of the 
conformal group 3   and , k

ijc k
ijc  are the structural 

constants or the structural functions of the Lie algebra of 
the groups  and  respectively. 3Iso 3

Thus, the families of metrics   jg  and   jg  form 

differential ideals with respect to their Lie differentiation 

along the families of fields   jX  and   jX  respec- 

tively. This is a general property and it allows us to for- 
mulate some general theorems concerning the symmetry 
of Riemannian metrics  jg  and  jg  [55]. 

4.3. Metric Bingles in  3

Studying the properties of angles in Finsler geometry is of 
particular interest for its physical applications. One of the 
approaches to the problem of constructing of additive 
poly-angles (e.g. bingles and tringles) is to formulate and 
solve the corresponding functional equations that satisfy 
the additivity condition [56]. Instead of solving the func- 
tional differential equations in the space of basic con- 
formal invariants of B-M geometry, one can from the very 
beginning relate all the types of poly-angles with notions 
additive by their definition, such as lengths, areas or 
volumes, calculated on the unit sphere (indicatrix) of the 
B-M geometry. 

It turns out that for any pair of non-isotropic vectors A 
and B one can introduce two types of bingles—mutual and 
relative. The expression for the mutual bingle has the 
following form: 

    ,A B A B              (30) 

where  is a bi-projection operation in 3  which acts 
on an arbitrary element 

 ,

3X   according to the rule: 

  ln .
ii X

X  
X



The norm in (30) is calculated with the help of the 
standard Berwald-Moor metric in the isotropic coordi- 
nates. The bingle defined by (30) is additive by definition, 
i.e. for any triplet of the “coplanar” vectors , ,A B C  there 
is a condition which is analogous to the Euclidean one: 

     , , ,A .C A B B C       (31)  

The condition of coplanarity of the vectors , ,A B C  
has the form of the condition of collinearity of the corre- 
sponding -images: 

     0.A C  A B            (32)  

Expressions for the second (mutual) bingle (there may 
be three types of it, depending on the mutual orientation of 
vectors A and B) have the form: 
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cfh , , 1, 2,3,i i
B A

i A B e i


 
 

    (33) 

and the function, which is inverse to the Finsler-hyper- 
bolic cosine  is defined by the integral: cfh,

     
 

1/3

2 3 2 3

2

1/3
3 3

4 3

arccfh( )

1
4 3 4

2

( 4) 2
d .

( 4)

x x x x x x

x x x
x

x x









    

     


   (34) 

Finally, the expression for the value analogous to the 
solid angle on the vectors A, B and C is given by the fol- 
lowing integral: 

       

   

       

1

1

2
1 1

2

2 2

cfh [ , ]

4
cfh [ , ]

2
4 2

1 2

3
, , , cfh , cfh ,

2

cfh , cfh ,

1

4

cfh , 4 h ,

d

2 cf

A C

A B

A B C A B B C A B

B C A B

x x

x B C x

x

x x x B C





  

 









 




 
  




  

                                 

(35) 

The exact formulations, proofs and illustrations can be 
found in [57]. 

4.4. Classification of Homogeneous Cubic 
Metrics 

Symmetry analysis of geometric objects is a key means of 
study of their internal invariant properties (i.e. being in-
dependent on the coordinates). In order to understand the 
place of Berwald-Moor metric among other related cubic 
metrics, the study of the isometry group of the general 
homogeneous cubic form 

d d dG G x x x 
            (36) 

was undertaken. Here G  are the constant real com- 
ponents of the cubic form. The results of the study are 
summarized in Table 1. 

This proves that the symmetry analysis reveals 6 diff- 
erent symmetry classes (7th class is empty, and the 6th 

coincides with the 5th), the previously known 13 projec- 
tive classes [58] are distributed amongst them. The Ber- 
wald-Moor metric falls into the 1st symmetry class. One 
of the important findings of this study is the conclusion on 
the incompleteness of the classification of cubic homo- 
geneous metrics according to their isometry algebras [59]. 

4.5. h-Holomorphic Functions of a Double 
Variable 

For the interpretation of  as a plane of a double 
variable  it is natural to consider only the maps that 
preserve the hyperbolic complex structure of the plane, i.e. 
by the maps  of the form: 

2
,

   .h s F h
2

 The 
differentiable functions  which satisfy the 
condition: 

2 
,

F 0,
h
  are called h -holomorphic functions 

of double variable h. 
Let us formulate some important properties of the h- 

holomorphic functions as theorems. 
Theorem 1. Any -holomorphic function maps zero 

divisors into zero divisors. 
h

Theorem 2. The components U  and  of the - 
holomorphic function 

V h
F U jV   satisfy the hyperbolic 

Cauchy-Riemann conditions: , ,  , ,;t xU V .x t

Theorem 3. For any -holomorphic function 
U V  

h F  in 
 there holds the integral Cauchy Theorem: ,D

 d 0F h h


 ,  

where   is a simple closed piecewise smooth contour 
which has no isotropic elements and lies entirely in  .D

Theorem 4. For any -holomorphic function h F  in D, 
there holds true the integral Cauchy formula: 

 
0

d 0
F h

h
h h


 ,  

where   is a simple closed piecewise smooth contour 
which has no isotropic elements, lies entirely in  and 
encloses the point  

.D

0

Other versions of Cauchy’s integral formula are given 
in [60]. 

.h

Theorem 5. For a simple closed piecewise smooth 
contour   that has no isotropic elements and encloses 
the point  we have the formula: 0h ,

 0

0, 1;
d

, 1H

h h h
j

 


 
    

  .
     (37) 

 
Table 1. Projective and symmetry classes of 3D cubic metrics.  

Symmetry classes 1 2 3 4 5 6 7 8 

Projective classes III, XII V 
1):VIII, 

2):VI,XIII, 
3): VII 

IV II, X, XI ? — Gen., I, IX 
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where   is any real number, H  is the improper “fun- 
damental constant” in the plane of double variable that 
determines the amount of space of the hyperbolic angles 
(analogous to the constant  in the complex plane). 2π

Theorem 6. The pseudo-Euclidean metric  
Re d dh h     is conformal relative to an arbitrary 

h-holomorphic mapping of the plane of the double vari- 
able. 

In [60] the properties of the basic elementary h-holo- 
morphic functions of the double variable were studied in 
detail. 

4.6. Hyperbolic Field Theory on the  Plane 2

We consider an arbitrary h-holomorphic function ( )F h   
 as complex h-potential of a certain 2-dimen- 

sional vector field (h-field) in the plane of double vari- 
able. The real part U  of this function we associate with 
the potential of the field ( -potential function) and the 
imaginary part V we associate with the strength function 
of this field. We define the strength,  of the -field by 
the formula: 

U jV

h

 h

 , ,

d d
,

d d
t x t

F F
j U

h h
           xjU    (38) 

which can be regarded as a double form of representation 
for the vector field of the gradient of the function U with 
respect to the pseudo-Euclidean metric. Equation (38) is 
obtained taking into account the hyperbolic Cauchy- 
Riemann conditions. 

In view of the relation  z   (antiholomorphicity 
of strength), arising from the definition (38), we obtain the 
following identity: 

 , , , ,

1
0,

2 t t x x t x x tj
h

     


    
    (39) 

which is equivalent to two identities: 

, ,

, ,

divh 0;

roth 0,
t t x x

t x x t

  

  

  

  
         (40) 

expressing, respectively, the solenoidal and -potential 
properties of the electrostatic field1. 

h

As an example, consider the -potential of the form h

  ln ,F h q 

2 2 2 2 2
.

q qh t x
q j

t x t xh h

       
    (42) 

The field lines of a hyperbolic point source are the ra- 
dial lines with const,   and the equipotential lines are 
the hyperbolas const.  The picture of the field lines in 
all 4 wedges is shown on the figure: 
 

 
 

The dual interpretation of the hyperbolic point source is 
obtained by passing from the potential  F h  in (41) to 
the potential  jF h  At the same time for a new dual 
field  we get the following expression: 

2 2

d
.

d

F qj x jt
j q

t xh h


    


       (43) 

Field  is a hyperbolic analogue of a point vortex. Its 
lines of force are shown in the picture and present the 
hyperbolas: 



 

 

h             (41) 

which is obviously the hyperbolic generalization of the 
Coulomb potential. The corresponding field strength is 
given by (38) and has the form: 

1Notice that the divergence of the vector field is defined in the same 
way in the complex and hyperbolic cases, as opposed to the operation 
of the curl of a vector field, which includes the symmetric combination 
of partial derivatives in the hyperbolic case. 
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By analogy with the complex case, it is possible to 
combine the above two situations into one introducing the 
concept of hyperbolic vortex-source with the complex 
charge  Then the potential takes the form: .q jm 

With the help of (47), one can easily verify the validity 
of equations for function F  in the form of (46) by the 
direct calculation in components 

 
 

ln

ln ln .

F z h

q m j m q 

 

     



 
  (44) 

Such a potential can be most naturally interpreted in the 
framework of dual-symmetric hyperbolic field theory in 
which the hyperbolic electric and magnetic charges and 
currents are present on “equal footing”. The equation for 
the field lines of such field is obtained from (44) by 
equating the imaginary part to a constant: 

   1 1
const,t x t x

           (45) 

where .q m   The picture of the field lines for 
2    is shown on the figure: 

 

 
 

For physical applications it is necessary to generalize 
the concept of the h-field for the case of commutative and 
associative algebras of higher dimensions. In what follows 
we illustrate the idea of such a generalization by the ex- 
ample of the algebra of 3-numbers  3

We start with an isotropic basis in the 3  in which the 
h -holomorphic function has the following representation: 

.P
,P

       1 1 2 2 3 3.F h F e F e F e         (46) 

The operators of differentiation with respect to the in- 
dependent variables  have the following form: † ‡, ,h h h

1 2 3
1 2 3

1 2 3†
3 1 2

1 2 3‡
2 3

;

;

.

e e e
h

e e e
h

e e e
h

  

† ‡

31 2
1 2

1 2 3

0;

,

F F

h h
FF FF

e e
h   

 
 

 
 

  
    3e

i

     (48) 

where here and further  iF F   is the same function 
of various isotropic variables. 

The conditions of holomorphicity (multidimensional 
analogue of the standard Cauchy-Riemann conditions), in 
symmetric non-isotropic basis   which is de-
fined by: 



3

3

1 2 3, ,j j j

1 1 2 3

2 1 2

3 1 2

;

;

j e e e

j e e e

j e e e

  

   

   

            (49) 

and by the rules of multiplication: 

 
 

2
1 2 3 ;

· ,

i

i k l

j j j j

j j j j k l

   

  
         (50) 

have the form of matrix differential equations: 

 
 

 

3 2 1 1 2
1

2 3 1 3 2 2

3
1 3 3 1 2

0,

U

U

U

 

 

 

         
                    

 (51) 

 
 

 

2 1 3 3 1
1

1 2 3 2 1 2

3
3 2 2 3 1

0

U

U

U

 

 

 

         
                    

  (52) 

for every h-holomorphic function  
  1 1 2 2 3 3.F h U j U j U j    Here   ,i j i j    

1 2 3.        Due to the invariance properties of the 
h-holomorphy with respect to the choice of the algebra 
basis, we can say that the general solution of (51) and (52) 
is written by representing i  in terms of iU F  (components 
in the isotropic basis) expressed in terms of x-coordinates: 

   
  
   

1 2 1 3 3 1 2

2 1 2 3 3 1 2

3 1 2 3 2 1 3

;

;

.

U F x x x F x x x

U F x x x F x x x

U F x x x F x x x

     

     

     

    (53) 

This fact can be verified by direct substitution of (53) 
into (51) and (52). The combinations of coordinates in the 
arguments of F present the higher analogues of retarded 
and advanced arguments in the double plane. 

1

  

  

   
  

   

   
  

  
   

  
  

     (47) 
The third-order operator 

   3
1 2 3† ‡

1 2 3

e e e
h h h   
     

    
    

  (54) 
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The integral curves of the field  are spatial sec-
tions of 2-dimensional space-time, orthogonal to the lines 
of time at every point. Thus, the scale factor “governs” 
both the course of the proper time and spatial distances. 

Vis proportional to the algebraic unity, so for every smooth 
function  † ‡, ,F h h h

 3 3

 

         3 3
1 1 2 2 3 3 .F U j U j U j         (55) 

For arbitrary motions of test particles, the length and 
time intervals are calculated as:  If the function F is h-holomorphic, then because the 

operator  contains differentiation with respect to  
and  there holds the relation  which is 
equivalent to its three components: 

 3 †h
‡ ,h  3 0,F 

  3 0 1, 2,3iU i   .            (56) 

Equation (56) is a 3-dimensional analogue of the har- 
monicity conditions or the hyperbolic harmonicity condi- 
tions which are identically satisfied by holomorphic 
functions of complex or of double variable, respectively. 

The discussion and development of these ideas can be 
found in [61]. 

4.7. Conformal Two-Dimensional Theory of 
Relativity 

We extend the Poincare group acting on the two-dimen- 
sional space-time 2  to a group of arbitrary h-holomor- 
phic transformations that operate on points-events of 
space-time as on the elements of 2  Using the expo- 
nential representation for the derivative of 



.
F  : 

     ,, ,j t xF h F t x e          (57) 

we conclude that locally h-holomorphic transformations 
implement not only reflections and boosts known in the 
theory of relativity but also the extension of lengths of the 
vectors (scalar factor  ,F t x ). Let us consider the 
function F U jV   as the complex potential of the 
reference vector field of the 2-velocity or the reference 
field of the proper time. The field of 2-velocity u is de-
termined by the formula: 

d
,

d

F U U
u

h t x
j

 
  

 
        (58) 

which uses the definition of the operator of complex dif-
ferentiation and the hyperbolic Cauchy-Riemann condi-
tions. The square of the modulus of the 2-velocity is 

   2 2 2
.u U V F     

2
    (59) 

“The velocity field” of the proper time for any integral 
curve  of this field is given by: 

d
.

d
F

s

               (60) 

  d d
, ; ,

d d
U w V w

s s

     
  ,     (61) 

where  is the standard vector of the 2-velocity of the 
test particle 

w
 1 .w   

The simplest version of the variational principle of the 
dynamics theory of the hyperbolic field that takes into 
account the non-holomorphy of the hyperbolic potential 
inside the sources is determined by the action of the form: 

2

22

, ,
,  dh h

d ,F F F F h             


  h   (62) 

where the first term under the integral is a hyperbolic 
“kinetic term”. It is responsible for the dynamics of the 
hyperbolic potential in vacuum. The second term repre- 
sents a hyperbolic “potential term” and is responsible for 
the properties and for the contribution of sources. This last 
term depends only on the hyperbolic modulus of the 
magnitude of non-holomorphy, and in the region outside 
the sources, where the non-holomorphy becomes equal to 
zero, it defines (in the action) a certain “full divergence” 
that does not give any contribution to the equations of 
motion. The standard procedure of varying the action (62) 
over the field variables ,F F  leads to the following field 
equations: 

 , ,

1
.

4 h h
F F           (63) 

This expression is the inhomogeneous wave equation 
with a source on the right-hand side, depending only on 
the non-holomorphy of .F  As expected, the field equa- 
tions are nonlinear, since the field ,F  as follows from 
the principles of the theory, describes its own sources 
through effective self-interaction. In this sense the de-
veloped theory is adjacent to the versions of the unified 
field theory by Mie. 

A remarkable feature of Equation (63) is the existence 
(regardless of the specific form of the potential function 
 ) of the first integral  

   ,
1

h
F h            (64) 

containing an arbitrary function  h . Now in the h-holomorphic theory of relativity under 
consideration, the intervals of the pseudo-Euclidean length 
and time become different and the relationship between 
them at each point is governed by the hyper-complex 
potential .F  

The explicit expressions for the energy density of the 
algebraidized matter   and its pressure p, obtained using 
the standard formalism of the field theory (Noether’s 
theorem), have the form: 
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1 ;

1 ,

X XY

p X

     

    

  

   XY
     (65) 

where 
2

, .hY F  

With the help of the super-variational principle intro- 
duced in [62], it appears possible to calculate the general 
form of the potential   in the theory presented here 

  0 1
1

3 2 ln 1 ,
X

X X U U
U

           (66) 

where  and  are two fundamental constants of the 
theory. 

0U 1U

5. Differential-Geometric Aspects of the 
Theory of Berwald-Moor Type Finsler 
Spaces of Various Dimensions 

In order to find out the fundamental relations between the 
scalar poly-product and geometric objects induced by it, 
as a continuation of research on these interrelations 
(which started by the works of M.Matsumoto, H. Shimada, 
S.Numata, K.Okubo and of Romanian geometers [70, refs. 
[29-32] and [43]] and [75, refs.[3,4]]), new correlations 
were obtained between the Berwald-Moor m-th root 
pseudo-norms and geometric objects from the classical 
Finslerian context ([75, §2 and 5-7]). Such relations were 
investigated in [72] and [74]. Their role is a methodo- 
logical one: they enhance the process of deriving proper- 
ties of certain structures (e.g., projective ones, [75]), or 
passing from algebraic aspects of m-th root metric theory 
to differential geometry specific aspects from the theory 
of Finsler spaces. 

Description of the Obtained Results 

The study of connections which are compatible with re- 
markable geometric structures was performed in [72], 
where, for specific connections from Finsler geometry 
(e.g., for Cartan, Barthel and Miron connections), the 
authors point out the properties of induced connections on 
hypersurfaces, as a necessary step in the study of mean 
Y-curvature within the N-extremality framework. In this 
study, the authors propose an original software for the 
calculation and the use of Finslerian geometric objects 
specific to the study of y-minimal submanifolds. With the 
help of Maple symbolic calculations, they determine the 
coefficients of these geometric objects for low-dimen- 
sional manifolds equipped with 3-rd and 4-th root metrics 
and with Berwald-Moor conformal metrics. The under-
lying algorithm of this Maple software, was introduced by 
M. Matsumoto ([72, refs. [39,40]]) and is likely to pro-
vide a wide range of applications in the study of anisot-
ropic media.  

Moreover, in the paper [75,§3], there are indicated the 

essential connections to be used in determining whether 
an m-th root metric space is of Berwald or of Douglas type, 
and are derived original results concerning spaces with 
Berwald-Moor type metrics. 

On the other side, in [68], Landsberg spaces are char-
acterized by means of classical connections (Vasiman and 
Levi-Civita) and the connections which are subsequently 
induced into the structural and transversal fibers of the 
bundle, are indicated. 

The work [63,§2-3] performs a preliminary study of the 
cotangent bundle of spaces endowed with Berwald-Moor 
metric; in the cited paper, one defines the v-curvature 
tensors and the T-tensor of the Berwald-Moor space, for 
the case of Shimada-type m-th root metrics; the results are 
specialized for the case of dual m-th root metric spaces 
having the indicatrix given by the product of the mo- 
mentum components. In this case, the classical results 
regarding the vanishing of the torsion tensor and of the T 
-tensor, obtained by M. Matsumoto and H. Shimada ([63, 
refs.[5,11]]) and also the property of -likeness for the 
Berwald-Moor space, were obtained for the first time for 
the dual case. 

3S

The determining of connections and of induced geo- 
metric objects on submanifolds of m-th root metric spaces 
was carried out in the paper [72], by summing up known 
results and by original implementation of their construc-
tion into Maple code, using macros and supplementary 
procedures which simplify the use of the code and allows 
to extend the results specific to the study of the indicatrix. 

The procedure for obtaining the mean curvature and 
minimal (Y-extremal) surfaces/hypersurfaces and corre- 
sponding computer simulation are presented in [72], 
which embeds two addenda devoted to the 4-dimensional 
case. Here, the mean curvature and the equations of Y - 
extremal (hyper-)surfaces are explicitly obtained by the 
use of symbolic software, and the calculation of the ex- 
plicit form of the normal field to a submanifold (theo- 
retically described in [72, ref. [40]]), represents a concrete 
application of software procedures in solving nonlinear 
equations. Also, the mean curvature – depending on the 
energy of a space-like or light-like normal vector field, is 
obtained by using specific procedures of the relativistic 
pseudo-Finslerian approach. This approach imposes re-
strictions on the submanifolds for the indicated practical 
applications, aiming to find solutions of the equations of 
Y-extremal submanifolds. 

Another aim of an earlier planned research ([68, ref. [2]]) 
relates to determining specific types of cohomology in m- 
th root metric spaces ([68,77]), including the cohomolo- 
gies of certain Berwald-Moor Finslerian spaces. These 
papers present new results concerning fibered structures 
of Finsler type: in [77], it is proved the existence of a 
diffeomorphism between the 2-jet vertical bundle induced 
by the canonical bundle and the product of the horizontal, 
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vertical and mixed subbundles of 2-jets induced by the 
second order tangent bundle. In [68], it is introduced the 
Vaisman connection and it is proven that the pair Levi- 
Civita connection—Vaisman connection induces a pair of 
connections of the same type as the initial ones in the 
structural bundle, only if the base manifold M is a Land- 
sberg space, and that the slit tangent bundle (the tangent 
bundle without the image of its null section, denoted as 

) is a Reinhart space if and only if the base manifold 
is Riemannian. Further, the 2-leaf jets on  are stu- 
died, it is obtained a decomposition of this space, and the 
1-dimenional Cech cohomology group with coefficients 
from the sheaf of basic functions is constructed in terms of 
fields on leaves of 2-jets. It is defined the Mastrogiacomo 
coholology group with respect to the connection on the 
structure sheaf induced by a connection on the manifold 

 and it is proven that the associated cohomology 
group is isomorphic to the 1-dimensional Cech cohomo- 
logy group on the manifold , having as coefficients 
germs of functions on TM , which are related to the 
induced connection; in particular, for 4-dimensional m-th 
root spaces, it is proven that this sheaf is isomorphic to the 
sheaf of basic functions on . 

0TM

0TM

0TM

0TM
0

0TM
In [78,79], the ( )HC n

 

 Halphen-Castelnuovo problem 
for smooth curves is split into two parts: the study of the 
lacunary and of the non-lacunary domain. The latter one is 
studied: existence obstructions are determined and ex- 
amples of curves on rational surfaces and irrational scrolls 
are built. There are studied for the first time the existence 
of smooth irreducible non-degenerate curves of degree d 
and genus g from the projective space (the Halphen- 
Castelnuovo HC n  problem). For the domains 1  
and 2  , built in the plane ( ), it is shown that 1  is 
simply connected, by using curves which are displaced on 
rational surfaces related to hyper-elliptic type sections, 
and are presented well known theorems of Ciliberto, Ser- 
nesi and Pasarescu. As well, using results of Horrowitz, 
Ciliberto, Harris and Eisenbud, it is conjectured that  
is exactly the targeted lacunary domain. 

nD
n

nD

nD ;d g D

Geodesics and Jacobi fields are investigated in [75,§2] 
and [74,§3], where geodesic equations and spray coeffi-
cients are introduced and studied for conformal flag met-
rics. In [75], the hv-curvature tensor is determined for 
arbitrary m-th root structures; this result is further used in 
determining the specific characterizations of Landsberg 
and Berwald-type m-th root metric spaces. Relations be-
tween the coefficients of two sprays for non-decom- 
posable metrics are obtained in an explicit form, for cubic 
metrics in [74,§6]. All these results complete known re- 
sults obtained for m-th root metric spaces by M. Matsu-
moto and H. Shimada. It is emphasized the role of flag 
curvature, which is a key one in describing the behavior of 
geodesics. This is continued in [73], where there are de- 
scribed the geodesic equations perturbed by the presence 

of an electromagnetic field. In Finsler spaces, the 4-poten- 
tial 1-form is anisotropic, and represents a horizontal 
1-form on the tangent bundle, having specific properties. 

Relativistic models based on 4-dimensional m-th root 
metric are subject of intensive research. In [48], original 
results were obtained for the OMPR (optic-metrical pa- 
rametric resonance) effect, with applications to relativity 
theory and to experimental physics (detection of gravita- 
tional waves). This work has been carried out in collabo- 
ration with the Russian physicist S. Siparov. The influ- 
ence of a weak deformation of a flat pseudo-Finslerian 
metric upon the electromagnetic field tensor is studied in 
[73] and, in particular—for the case of m-th root metrics 
of Berwald-Moor type. The generalized geometric models 
are obtained and the physical meaning of such a gener- 
alization, together with its role in the equations of elec- 
tromagnetism in Finsler spaces is pointed out. Geodesics 
and Jacobi fields are also studied in [70,§1-2] in the con- 
text of structural stability of second order differential 
equations, where the authors obtain original results for 
sheaves of curves and for the forces which deviate tra- 
jectories from geodesics in the case of conformal defor- 
mations of m-th root structures or locally Minkowski 
metrics. With the help of supplementary software design- 
ed to determine geodesics by means of the computer, 
original procedures for defining the invariants which cha- 
racterize the stability of structures were derived. 

In [75,§3-6], there are studied m-th root Berwald and 
Landsberg spaces and projectively flat spaces and, in the 
work [74,§4]—cubic spaces. In [75, Th.17 and Th.18], 
there are investigated m-th root projective spaces and, in 
particular, Riemann-projective spaces with m-th root 
metrics [75, Th.19, 20 and Prop.22]. All these results are 
original and they complete, in the case of m-th root met-
rics, known results obtained by S. Bacso, Zs.Szabo, L. 
Tamassy and Cs. Vincze. 

In [70], the authors present the basic notions from the 
theory of structural stability (KCC—Kosambi-Cartan- 
Chern)—created and developed by P. L.Antonelli, I. Bu- 
cataru and S. Sabau [70, refs. [1-8, 48-49]] and carried out 
by V. Balan and I. R. Nicola for biological and ecological 
models ([70, refs. [10-13]]). The five KCC-invariants are 
described and in the Appendix, original Maple programs 
for determining the invariants describing Jacobi stability 
of dynamical systems associated with the Finslerian ap- 
proach, are presented. Sections 4 and 5 contain original 
results for the case of conformal deformations of m-th root 
metrics and describe the properties of the associated de- 
formation algebras. 

The papers [64,66] extend known results for symmetric 
positive definite tensors for Z, H and E-spectra of Ber- 
wald-Moor and Chernov tensors in 4-dimensional spaces. 
The algebraic properties of these tensors induce geomet- 
rical properties: by spectral techniques it is shown that the 
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indicatrices of the associated Finsler metric are not ruled 
and compact, and that the problem of the minimal distance 
between the origin of the frame and the indicatrix has a 
solution depending on the Z-eigenvalue with maximal 
absolute value and with the corresponding direction given 
by the generating Z-eigenvector. The problem of asymp-
totic behavior of the indicatrix is solved by means of 
spectral properties of the symmetric tensor associated to 
the fundamental Finsler function. There are defined: re- 
cession vectors, degenerate vectors, singular points of the 
indicatrix and the best first-order approximation. The qua- 
litative description of the three types of eigenvalues is 
obtained in [71] with the help of the theory of resolvents 
for the cubic Berwald-Moor metric. 

Hamilton equations, Legendre duality and physical mo- 
dels associated with m-th root metric spaces on the tangent 
or on the cotangent bundle are studied in [67], where it is 
indicated an essential parallelism between different trans- 
formations with physical meaning, and it is emphasized a 
Legendre-type relation between the Lagrangian formal- 
ism and the Hamiltonian one. It is investigated the alter- 
native given by the use of the Rashevskii transformation 
commonly used in mechanics and its degenerate nature. 
The hyperbolic character of the Finsler and Cartan func- 
tions is emphasized and the correspondence between the 
basic geometric objects and their duals given by Legen- 
dre-Finsler duality for general Berwald-Moor metrics of 
arbitrary dimension is described. 

In [51,80-82], the authors build models for the gravita- 
tional and for the electromagnetic fields, based on gener- 
alized Lagrange metrics and in particular, on the locally 
Minkowskian Berwald-Moor metric. 

In [65], it is studied the geometry of submanifolds in 
m-th root metric spaces and in [67] the hyperbolic char- 
acter of the Berwald-Moor metric is emphasized; in [65], 
the author proposes a pseudo-Finslerian formalism for 
Finsler metrics of locally Minkowski type, including the 
Berwald-Moor metric; a special attention is paid to the 
objects which allow to characterize minimal surfaces. 
Linear and nonlinear Cartan connections are studied and 
Gauss-Weingarten, Gauss-Codazzi, Peterson-Mainardi and 
Ricci-Kuhn equations are obtained. In [64,66], geometric 
properties of the Berwald-Moor indicatrix are obtained by 
means of spectral theory associated to a supersymmetric 
tensor; the spectra are obtained with the help of the Maple 
software. 

The study of cohomology classes for m-th root metric 
spaces and the study of associated bundles extend known 
results by addressing to the initial context of Finsler 
spaces (in particular, for locally Minkowskian metrics). 
The results include an explicit description of the Vaisman 
connection for a vertical fiber with respect to the verical 
bundle and a proof of the fact that its leaves are Reinhart 
spaces [76]. Further, in [77], in a vertical fiber of a Finsler 

manifold it is defined an adapted basis to the Liouville 
fibration, the vertical bundle of 2-jets and the leaves of 
vertical bundles of 2-jets of transversal and mixed types. It 
is proven that there exists a canonical diffeomorphism 
between the total space of the vertical bundle of 2-jets and 
one of the product bundles of vertical, transversal and 
mixed leaves of 2-jets. 

Specific variational features of the energy in m-th root 
metric spaces and the behavior of geodesics is studied in 
[81,82]; the authors investigate extensions of Lorentz 
geodesics to generalized Lagrange relativistic models 
obtained for small deformations of Berwald-Moor and 
locally Minkowski metrics. In [82], it is described a class 
of solutions of the Einstein field equations for such mo- 
dels. In [69], a system of second order differential equa- 
tions is considered as an extension of geodesic equations 
and it is investigated by means of the KCC approach. 

The study of constant scalar curvature and constant flag 
curvature is continued in [65]; there, it is investigated the 
horizontal curvature of a pseudo-Finsler manifold. It is 
proven that, in the Berwald-Moor case, the horizontal and 
the flag curvature of the space vanish, while the induced 
curvatures on submanifolds are generally nontrivial. 

The investigation of rheonomic KCC models is con- 
tinued in the work [69]; the autonomous case is extended 
to the rheonomic one by means of a geometrization of 
classical KCC theory on first order jet spaces. Here, the 
authors study the relations between spatial and time 
semisprays and define a nonlinear connection on the 1-jet 
space. They find the five invariants of the theory and point 
out the differences between the rheonomic case and the 
autonomous one, considering the geometric objects re- 
lated to induced connections and KCC invariants. 
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ABSTRACT 

When initial radius  if Stoica actually derived Einstein equations in a formalism which remove the big bang 

singularity pathology, then the reason for Planck length no longer holds. The implications of  are the first 

part of this manuscript. Then the resolution is alluded to by work from Muller and Lousto, as to implications of entan- 
glement entropy. We present entanglement entropy in the early universe with a steadily shrinking scale factor, due to 

work from Muller and Lousto, and show that there are consequences due to initial entanged 

0initialR 
0initialR 

2 20.entropyS  3 Hr a for a 

time dependent horizon radius Hr  in cosmology, with for flat space conditions Hr   for conformal time. In the case 

of a curved, but not flat space version of entropy, we look at vacuum energy as proportional to the inverse of scale fac- 

tor squared times the inverse of initial entropy, effectively when there is no initial time in line with 2~ H G  
1H a  . The consequences for this initial entropy being entangled are elaborated in this manuscript. No matter how 

small the length gets,  if it is entanglement entropy, will not go to zero. The requirement is that the smallest 

length of time, t, re scaled does not go to zero. Even if the length goes to zero. This preserves a minimum non zero 
entropyS

  
vacuum energy, and in doing so keep the bits, for computational bits cosmological evolution even if . 0initialR

 
Keywords: Fjortoft Theorem; Thermodynamic Potential; Matter Creation; Vacuum Energy Non Pathological 

Singularity Affecting Einstein Equations; Planck Length; Braneworlds 

1. Introduction 

This article is to investigate what happens physically if 
there is a non pathological singularity at the start of 
space-time, i.e. no reason to have a minimium nonzero 
length. The reasons for such a proposal come from [1] by 
Stoica who may have removed the reason for the deve- 
lopment of Planck’s length as a minimum safety net to 
remove what appears to be unadvoidable pathologies at 
the start of applying the Einstein equations at a space- 
time singularity, and are commented upon in this article. 

2~ 1H G H a    in particular is remarked upon. 
This is a counter part to Fjortoft theorem in Appendix I 
below. 

Note a change in entropy formula given by Lee [3] 
about the inter relationship between energy, entropy and 
temperature as given by 

2

2πU
B

a
m c E T S S

c k


      

 


    (1) 

Lee’s formula is crucial for what we will bring up in 
the latter part of this document. Namely that changes in 
initial energy could effectively vanish if [1] is right, i.e. 
Stoica removing the non pathological nature of a big 
bang singularity. 

If the mass m, i.e. for gravitons is set by acceleration 
(of the net universe) and a change in enthropy  
between the electroweak regime and the final entropy  

38~ 10S

value of, if 
2c

a
x




 for acceleration is used, so then we  

obtain 
88~ 10TodayS               (2) 

Then we are really forced to look at (1) as a paring 
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between gravitons (today) and gravitinos (electro weak) 
in the sense of preservation of information. 

Having said this note by extention  
2 1~ H G H a   . As   changes due to  

2~ H G  and 
1

~
#initial Ng PlanckR l , then a  is also  

altered i.e. goes to zero. 
What will determine the answer to this question is if 

initial  goes to zero if which happens if 
there is no minimum distance mandated to avoid the pa- 
thology of singularity behavior at the heart of the Ein- 
stein equations. In doing this, we avoid using the 

 situation, and instead refer to a nonzero energy, 
with initial  instead vanishing. In particular, the En-
tanglement entropy concept as presented by Muller and 
Lousto [4] is presented toward the end of this manuscript 
as a partial resolution of some of the pathologies brought 
up in this article before the entanglement entropy section. 
No matter how small the length gets, entropy  if it is 
entanglement entropy, will not go to zero. The require- 
ment is that the smallest length of time, t, re scaled goes 
to zero. This preserves a minimum non zero. 

E

0E 


0initialR 

E

S

  va- 
cuum energy, and in doing so keep the bits, for compu- 
tational bits cosmological evolution even if . 0initialR 

Before doing that, we review Ng [5-7] and his quan-
tum foam hypothesis to give conceptual underpinnings as 
to why we later even review the implications of entangle- 
ment. Entropy, i.e. the concept of bits and computations 
is brought up because of applying energy uncertainty, as 
given by [3] and the Margolis theorem appears to indi-
cate that the universe could not possibly evolve if [1] is 
applied, in a 4 dimensional closed universe. This bottle 
neck as indicated by Ng’s [4] formalism is even more 
striking in its proof of the necessity of using entangle- 
ment entropy in lieu of the conclusion involving entan- 
glement entropy, which can be non zero, even if  

. 0initialR 

2. Review of Ng [5-7] with Comments 

First of all, Ng refers to the Margolus-Levitin theorem 
with the rate of operations  

2

#
Mc l

E operations E time
c

      


. Ng wishes 

to avoid black-hole formation 
2lc

M
G

  . This last  

step is not important to our view point, but we refer to it 
to keep fidelity to what Ng brought up in his presentation. 
Later on, Ng refers to the  

 2 123# ~operations R l 10H P  with HR  the Hubble 
radius. Next Ng refers to the  3 4

# #opbits erations . 
Each bit energy is 1/RH with 123 2~ 10H PR l   

The key point as seen by Ng [4] and the author is in 

3 43 4 2

# ~
E l Mc l

bits
c c

        

      (3) 

Assuming that E of the universe is not set equal to zero, 
which the author views as impossible, the above equation 
says that the number of available bits goes down dra- 

matically if one sets 
1

~
#initial Ng PlanckR  l ? Also Ng  

writes entropy S as proportional to a particle count via N. 

 2
~ H PS N R l              (4) 

We rescale HR  to be 

123 2~ 10
#
Ng

H rescale

l
R           (5) 

The upshot is that the entropy, in terms of the number 
of available particles drops dramatically if  becomes 
larger. 

#

So, as 
1

~
#initial Ng PlanckR  l  grows smaller, as  

becomes larger. 

#

a) The initial entropy drops; 
b) The nunber of bits initially available also drops.  
The limiting case of (4) and (5) in a closed universe, 

with no higher dimensional embedding is that both 
would vanish, i.e. appear to go to zero if  becomes 
very much larger. 

#

3. Does It Make Sense to Talk of Vacuum 
Energy if Rinitial ≠ 0 Is Changed to 
Rinitial → 0? Only Answerable 
Straightforwardly if an Embedding 
Superstructure Is Assigned. Otherwise 
Difficult. Unless One Is Using 
Entanglement Entropy which Is Non Zero 
Even if Rinitial → 0 

We summarize what may be the high lights of this in- 
quiry leading to the present paper as follows. 

a) One could have the situation if  of an 
infinite point mass, if there is an initial nonzero energy in 
the case of just four dimensions and no higher dimen- 
sional embedding even if [1] goes through verbatim. The 
author sees this as unlikely. But is prepared to be wrong. 
The infinite point mass construction is verbatim if one 
assumes a closed universe, with no embedding super- 
structure. Note this appears to nullify the parallel brane 
world construction author, in lieu of the manuscript sees 
no reason as to what would perturb this infinite point 
structure, so as to be able to enter in a big bang era. In 
such a situation, one would not have vacuum energy. 
That is unless one has a non zero entanglement entropy 
[4] present even if . See [8] for a smilar ar- 
gument. 

0initialR 

0initialR 
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b) The most problematic scenario.  and no 
initial cosmological energy, i.e. this in a 4 dimensional 
closed universe. Then there would be no vacuum energy 
at all.initially. A literal completely empty initial state, 
which is not held to be viable by Volovik [9].  

0initialR 

c) Finding that additional dimensions are involved, 
than just 4 dimensions may give credence to the authors 
speculation as to initial degrees of freedom reaching up 
to 1000, and the nature of a phase transition from essen-
tially very low degrees of freedom, to over 1000 maybe 
in fact a chaotic mapping as speculated by the author in 
2010 [10]. 

d) What the author would be particularly interested in 
knowing would be if actual semiclassical reasoning could 
be used to get to an initial prequantum cosmological state. 
This would be akin to using [11], but even more to the 
point, using [12] and [13], with both these last references 
relevant to forming Planck’s constant from electromag-
netic wave equations. The author points to the enormous 
Electromagnetic fields in the electroweak era as perhaps 
being part of the background necessary for such a semi-
classical derivation, plus a possible Octonionic space- 
time regime, as before inflation flattens space-time, as 
forming a boundary condition for such constructions to 
occur [14]. 

The relevant template for examinging such questions 
is given in the following Table 1. 

e) The meaning of Octonionic geometry prior to the 
introduction of quantum physics presupposes a form of 
embedding geometry and in many ways is similar to Pen- 
rose’s cyclic conformal cosmology speculation. Note the 
following argument, as: 

f) We are stuck with how a semiclassical argument can 
be used to construct Table 1 below. In particular, we 
look at how Planck’s constant is derived, as in the elec- 
troweak regime of space-time, for a total derivative [12, 
13] 

 y
y y

A
E A t

t
 


    


x       (6) 

Similarly [12,13] 

 y
z y

A
B A

x
 


     


t x      (7) 

The A field so given would be part of the Maxwell’s 
equations given by [11] as, when    represents a D’Al- 
bertain operator, that in a vacuum, one would have for an 
A field [12,13] 

  0A                   (8) 

And for a scalar field   

  0                   (9) 

Following this line of thought we then would have an 

Table 1. Time interval dynamical consequences does qm/wdw 
apply? 

Just before  
Electroweak Era 

Form  from early E & M 
fields, and use Maxwell’s 
Equations with necessary to 
implement boundary  
conditions created from change 
from Octonionic geometry to 
flat space 



No 

Electro-Weak Era   kept constant due to  
Machian relations 

Yes 

Post Electro-Weak 
Era to Today 

  kept constant due to  
Machian relations 

Yes 
Wave function of
Universe 

 
energy density given by, if 0  is the early universe per- 
meability [12] 

    2 2 2 20
02 y z yE B A t x


            (10) 

We integrate (10) over a specified E and M boundary, 
so that, then we can write the following condition namely 
[12,13]. 

 
    2

0

d d d

d dy

t x y z

dA t x t x y z



 



   




     (11) 

(11) would be integrated over the boundary regime from 
the transition from the Octonionic regime of space time, 
to the non Octonionic regime, assuming an abrupt transi-
tion occurs, and we can write, the volume integral as 
representing [12,13] 

gravitational energyE               (12) 

Our contention for the rest of this paper, is that Mach’s 
principle will be necessary as an information storage 
container so as to keep the following, i.e. having no 
variation in the Planck’s parameter after its formation 
from electrodynamics considerations as in (11) and (12). 
Then by applying [12,13] we get  formed by semi-
classical reasons and need to have Machs principle (1) to 
have the same value up to the present era. In semi classi-
cal reasoning similar to [11] 



  ReApply Machs lations
t     (Constant value)  (13) 

The question we can ask, is that can we have a pre- 
quantum regime commencing for (11) and (12) for  if  

1
~

#initial Ng PlanckR  l ? And a closed 4 dimensional uni- 

verse? If so, then what is the necessary geometrial re-
gime of space-time so that the integration performed in 
(11) can commence properly? Also, what can we say 
about the formation of (12) above, as a number, gets 
larger and larger, effectively leading to. Also,with an 
Octonionic geometry regime which is a pre quantum 
state [14]. 

#
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In so many words, the formation period for  is our 
pre-quantum regime. This Table 1 could even hold if 

 but that the 4 dimensional space-time exhibi- 
ting such behavior is embedded in a higher dimensional 
template. That due to  not removing entan- 
glement entropy as is discussed near the end of this article.  



0initialR 

0initialR 

4. If Rinitial → 0, Then if There Is an Isolated, 
Closed Universe, There Is a Disaster 
Unless One Uses Entanglement Entropy 

One does not have initial entropy, and the number of bits 
initially disappears. 

Abandoning the idea of a completely empty universe, 
this unperturbed point of matter-energy appears to be a 
recipede for a static point with no perturbation, as may be 
the end result of applying Fjortoft theorem [15] to the 
thermodynamic potential as given in [16], i.e. the non 
definitive anwer for fufillment of criteria of instability by 
applying Fjortoft’s theorem [15] to the potential [16] 
leading to no instability as given by the potential given in 
[16] may lead to a point of space-time with no change, i.e. 
a singular point with “infinite” mass which does not 
change at all. 

5. Can an Alternative to a Minimum Length 
Be Put in? Consider the Example of 
Planck Time as the Minimal Component, 
Not Planck Length 

From J. Dickau, the following was given to the author, as 
a counter part as to how to view threshholds as to how a 
Mandelbrot set may pre select for critical behavior dif-
ferent from what is being pre supposed in this manuscript. 
[17]. 

Dickau writes: 
“If we examine the Mandelbrot Set along the Real axis, 

it informs us about behaviors that also pertain in the 
Quaternion and Octonic case-because the real axis is 
invariant over the number types. If numbers larger than 
0.25 are squared and summed recursively ( i.e. –z = z^2 
+ c ) the result will blow up, but numbers below this 
threshold never get to infinity, no matter how many times 
they are iterated. But once space-like dimensions are 
added, i.e. an imaginary compoent—the equation blows 
up exponentially, faser than when iterated”. 

Dickau concludes: 
“Anyhow there may be a minimum (space-time length) 

involved but it is probably in the time direction”. 
This is a counter pose to the idea of minimum length, 

i.e. the idea being a replacement for what the author put 
in here: looking at a beginning situation with a crucial 
parameter initial  even if the initial time step is “put in 
by hand”. First of all, look at [4], if E is M, due to setting 
c = 1, then 

R

 2
4πinitial initial initialE R  R      (14) 

Everything depends upon the parameter initial  which 
can go to zero. The choice as to initial  going to zero, or 
not going to zero will be conclusion of our article.  

R
R

We have to look at what (14) tells us, even if we have 
an initial time step for which time is initially indetermi- 
nate, as given by a redoing of Mitra’s 00g  formula [8] 
which we put in to establish the indeterminacy of the 
initial time step if quantum processes hold. 

    00 0

2
exp 0

1 p
g

t p t   

     
    

   (15) 

What Dickau is promoting is, that the Mandelbrot set, 
if applicable to early universe geometry, that what the 
author wrote, with  

#

1
~

#initial Ng PlanckR l small value    potentially  

going to zero, is less important than a minimum time 
length. To which the author states, if Dickau is correct as 
to applicability of the Mandelbrot set, that he, the author 
is happily corrected, but he also thinks that the Mandel-
brot set is a beautiful example of the fungability of space- 
time metrics used, i.e. how one sets the initial space-time 
potential is to determine the correctness of the Mandel-
brot set, i.e. the [16] reference, as given, by Thanu Pad-
manabhan appears not to have a Mandelbrot set, in its 
thermodynamic potential. The instability issue is review- 
ed in Appendix II. For those who are interested in the 
author’s views as to lack proof of instability. It uses [16] 
which the author views as THE reference as far as ther-
modynamic potentials and the early universe. 

6. Muller and Lousto Early Universe 
Entanglement Entropy, and Its 
Implications. Solving the Spatial Length 
Issue, Provided a Minimum Time Step Is 
Preserved in the Cosmos, in Line with 
Dickau’s Suggestion 

We look at [4]  
2 20.3entropy HS r a  for a time dependent 

horizon radius Hr  in cosmology       (16) 

Equation (16) above was shown by the author to be 
fully equivalent to  

2 2
2

0.3
0.3 ~ exp

3entropy HS r a t
a

 
 

 
      (17) 

i.e. 
2

~ ln
3 0.3e entropy

a
t

   
   

  
S        (18) 
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So, then one has 
2

2

2

3
ln

0.3e entropy

a
S

t

  
    

   
       (19)  

No matter how small the length gets, entropy  if it is 
entanglement entropy, will not go to zero. The require-
ment is that the smallest length of time, t, re scaled does 
not go to zero. This preserves a minimum non zero 

S

  
vacuum energy, and in doing so keep the bits, for com-
putational bits even if . 0initialR 

7. Conclusions 

a) The universe if  [1] and if it is an iso- 
lated system, i.e. not as embedded in higher dimensions 
as referred to in [18] may have no bits, or computations 
as thought of by Ng [5-7]. This would be in tandem with 
the authors conclusion that one would have an initial 
infinite point mass and no evolution. And no generation 
of entropy. The only way about this, as indicated in sec- 
tion 6 would be to use entanglement entropy, [4] and to 
keep the minimum time step from going to zero. 

0initialR 

b) If  [1] but the universe is embedded in a 
higher dimensional system, as given by [19], then there is 
no reason to say there are no bits, or computations, and 
the universe will continue to evolve with entropy as a by 
product of that evolution. 

0initialR 

The future endeavor to investigate, is if entanglement 
entropy can be set up so as to have Vacuum energy no 
matter what in terms of (19). Satisfying this will make 

a tractable cosmological problem, and [1] 
very useful [4]. 

0initialR 
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Appendix II. Constructing an Appropriate 
Potential for Using Fjortoft Theorem in 
Cosmology for the Early Universe Cannot  
Be Done. We Show Why 
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ABSTRACT 

Curved space-time 4-interval of any probe particle does not contradict to flat non-empty 3-space which, in turn, as-
sumes the global material overlap of elementary continuous particles or the nonlocal Universe with universal Euclidean 
geometry. Relativistic particle’s time is the chain function of particles speed and this time differs from the proper time 
of a motionless local observer. Equal passive and active relativistic energy-charges are employed to match the universal 
free fall and the Principle of Equivalence in non-empty (material) space, where continuous radial densities of elemen-
tary energy-charges obey local superpositions and mutual penetrations. The known planetary perihelion precession, the 
radar echo delay, and the gravitational light bending can be explained quantitatively by the singularity-free metric with- 
out departure from Euclidean spatial geometry. The flatspace precession of non-point orbiting gyroscopes is non-New- 
tonian one due to the Einstein dilation of local time within the Earth’s radial energy-charge rather than due to unphysi-
cal warping of Euclidean space. 
 
Keywords: Euclidean Material Space; Metric Four-Potentials; Radial Masses; Energy-to-Energy Gravitation; Nonlocal 

Universe 

1. Introduction 

The ideal penetration of a static superfluid medium 
through a rotating drag one was observed in He3-He4 
experiments well before the distributed Cooper pair ex- 
plained the nonlocal nature of superconductivity. But 
does spatial distribution of paired superelectrons mean 
that two nonlocal carriers move one through another as 
overlapping continuous distributions of mass-densities or 
do these densities bypass each other separately without 
mutual penetrations? Is there a principle difference be- 
tween the superfluid motion of two paired electrons and 
the free, geodesic motion of any normal electron between 
drag collisions with energy exchanges? 

During the last fifty years the celebrated Aharonov- 
Bohm effect is trying to dismiss doubts regarding the 
nonlocal nature of the electron, while the Classical The-
ory of Fields is persisting to accept a self-coherent ana-
lytical distribution of the charged elementary density 
(instead of the point particle approximation for the elec-
tron). Fermions take different energies and, therefore, 
cannot exhibit one net phase even under the ideal (with-
out dissipation) motion. At the same time, each distrib-
uted electron may have a self-coherent state of its own 
matter. Particles motion with drag collisions and heat 
release represents much more complicated physics than 

the superfluid motion with a self-coherent state of dis-
tributed elementary mass. Such a nonlocal superfluid 
state is free from energy and information exchanges. 
Charged densities of drag and superconducting electrons 
in the same spatial point can move even in opposite di-
rections, for example under thermoelectric phenomena 
where nonequilibrium superconductors exhibit up to five 
[1] different ways for heat release/absorption. Such a 
steady countermotion of drag and superfluid densities of 
electrons may be a laboratory guiding for theories toward 
the global counterbalance of all material flows in the 
nonlocal Universe with local energy dissipation. How- 
ever, if there is a mutual penetration of extended bodies 
(with or without dissipation), then how can General 
Relativity (GR) address the laboratory nonlocality of 
each electron in order to incorporate the material spatial 
overlap of distributed carriers of mass-energy? Below we 
accept the ideal global overlap of all elementary energy 
flows in all points of their joint 3D space, which is asso-
ciated with the superposition of flat material 3-sections 
of curved elementary 4D manifolds. We shall rely on 
superfluid, self-coherent states of extended elementary 
particle (called the astroparticle due to its infinite spatial 
distribution [2]) between drag collisions and dissipation 
events. At the same time, 3D overlap of such self-co- 
herent radial distributions can rarely exhibit, due to drag 
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collisions, summary superfluid states of identical bosons, 
while 3D energy ensembles of extended fermions can 
exhibit only ideal summary flows without joint coherent 
properties. 

It is important to emphasize that strict spatial flatness 
is principal for reasonable Quantum Mechanics, say for 
the Bohr-Sommerfeld quantization, and for reasonable 
Electrodynamics, which is based on constant Gauss flux 
through any closed surface. The author does not see clear 
experimental reasons why one should redesign Classical 
Electrodynamics for a curved-space laboratory in ques-
tion. On the contrary, due to well established measure-
ments of magnetic flux quantization in superconducting 
rings, one may insist that would gravity contribute to 
length of superconducting contours, then SQUIDs could 
not be explained satisfactorily, for example [3]. Indeed, 
would spatial intervals depend on gravity or acceleration, 
working SQUID accelerometers were already created. In 
such a view, Einsteins metric gravitation, which started 
from the very beneficial 1913 idea of 4D geometrization 
of fields, should double-check its wide opportunities and 
overcome the current phase with unphysical metric sin-
gularities. There are no sharp material densities in reality 
like Dirac operator delta-densities and relativistic physics 
should try continuous particles prior to declare singulari-
ties and black holes in physical space. One may expect 
that advanced metric gravitation should be a self-co- 
tained theory of continuous energy flows which ought to 
derive analytical components of the metric tensor g  
for space-time dynamics of distributed astroparticles with- 
out references on the point matter paradigm in question 
and the Newtonian limit for point masses. Advanced GR 
solutions for mass-energy densities of moving material 
space should provide Lorentz force analogs even in the 
non-relativistic limit. Newtons gravitation cannot satis-
factorily describe this limit for moving sources and, 
therefore, should not be used for relevant gravitational 
references for a rotating galaxy (that raised the dark mat-
ter problem). 

Recall that in 1913 Einstein and Grossmann published 
their Entwurf metric formalism for the geodesic motion 
of a passive material point in a gravitational field [4]. In 
October 1915, Einstein’s field equation [5] and the Hil-
bert variational approach to independent field and parti-
cle densities [6] were proposed in Berlin and Gottingen, 
respectively, for geometrization of gravitational fields 
“generated” by the energy-momentum density of Mies 
continuous matter [7], which later failed to replace point 
masses of the pre-quantum Universe. This metric theory 
of gravitational fields around still localized particles, 
known today as General Relativity, can operate fluently  

with curved spatial displacement d = d dN i j
N ijl x x  of  

a point mass Nm  by accepting the Schwarzschild or 
Droste empty-space solutions [8] without specific restric-

tions on the space metric tensor  

  1
N N N N N

ij oi oj oo ijg g g g


  . 

GR solutions for dynamics of the considered probe 
particle N are related to its space-time interval,  

2 2d d d = dN 2dN N Ns g x x l 
   , 

where the time element 

 
1 22

1d d do iN N
N oo oo oiN

g x g g x     
 

depends on the local pseudo-Riemannian metric tensor 
Ng  and, consequently, on local gravitational fields. He- 

reinafter, , = 1,2,3i = 0,1, 2,3 , and the speed of light 
c = 1 in the most of equations. 

The author intends to revisit time, d N , and space,  

d d dN i j
N ijl x x , elements within the conventional GR 

four-interval d dN ds g x x 
  in order to prove that  

the time element of the freely moving mass Nm
dt

 de- 
pends not only on the world time differential  (with 
d d do o

oot x x = d > 0ox ) and gravitation, but also on 
space differentials or matter displacements d ix  in 
gravitational fields. Then the ratio d dN Nl v  , called 
the physical speed in Special Relativity (SR), should 
non-linearly depend on spatial displacement  
d d dN i j

N ijl x x , called the space interval in SR. Non- 
linear field contributions to such an anisotropic (Finsler- 
type) time element  d ,dN x x  within the four-interval 

   2d2 2d d ,ds x x l x  of Einstein’s Relativity may 
modify Schwarzschild-type metric solutions based on 
curved three-space around non-physical point singulari- 
ties for GR energy-sources [2]. Moreover, the calculated 
ratio  d d =v vN Nl   may differ from a real speed 
d dN ol   measured by a motionless observer with local 
proper-time  = 0 do l   vd d N . This metric-type ani- 
sotropy of measured time rate was already confirmed by 
observations of the gravitational Sagnac effect when 

d d 0i
oig x   . Rigorous consideration of anisotropic 

physical time   d d d ,x x  v  of each moving particle 
may preserve universal flatness of its 3-space element 

. We shall start from the 1913 Entwurf metric for- 
malism for the geodesic motion of passive masses. Then, 
we shall employ the tetrad approach and analyze non- 
linear relations in the anisotropic relativistic time for a 
passive mass under the geodesic motion. This will sug-
gest to keep for physical reality Euclidean 3D sub-inter- 
vals in curved 4D intervals of moving probe particles. 

dl

The first attempt to interpret GR in parallel terms of 
curved and flat spaces was made by Rosen [9], Einstein’s 
co-author of the unpublished 1936 paper about the non- 
existence of plane metric waves from line singularities of 
cylindrical sources. Later, Sommerfeld, Schwinger, Bril- 
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louin and many other theorists tried to justify Euclidean 
space for better modern physics. Moreover, the original 
proposal of Grossmann (to use 4D Riemannian geometry 
for geometrization of gravitational fields in the 1913 
Entwurf version of GR) relied exclusively on 3D Euclid- 
ean sub-space. Grossmann did not join further GR metric 
developments with curved 3D intervals. In 1913 Einstein 
clearly underlined that space cannot exist without matter 
in the Entwurf geometrization of fields. However, at that 
pre-quantum time there were not many options for ge-
ometrization of particles, because all (but Mie) consid-
ered them localized entities for local events. This might 
be the reason why in January 1916 Einstein promptly 
accepted Schwarzschild’s warping of 3D space around 
the point particle. Nonetheless, in 1939 Einstein finally 
rejected Schwarzschild metric singularities for physical 
reality. The well derived Schwarzschild’s solution has no 
mathematical errors in the empty-space paradigm. How-
ever, we tend to use the non-empty-space paradigm for 
the global superfluid overlap of self-coherent elementary 
particles, when each continuous particle is distributed over 
the entire Universe together with the elementary field. 
This nonlocal approach to matter can avoid difficulties of 
the Entwurf geometrization of fields, proposed in 1913 
without geometrization of particles, and, ultimately, can 
avoid non-physical warping of the universal spatial ruler, 
which becomes the same for all local observers in the flat 
Universe. 

Contrary to non-metric approaches to gravitation with 
spatial flatness, for example [10], we shall comply with 
the Einstein-Grossmann extension of Special Relativity 
(SR) to gravitation through warped space-time with non- 
Euclidean pseudo-geometry, founded by Lobachevsky, 
Bolyai and Riemann [11]. Inertia and gravitation keep 
the same metric nature in our reiteration of the Einstein- 
Grossmann approach. The proposed 4D geometrization 
of matter together with fields will be made under six 
metric bounds for g  (called sometime intrinsic met-
ric symmetries) in the GR tensor formalism for every 
physical object. In other words, the author is planning to 
revise neither Einstein’s Principle of Relativity nor the 
GR geometrization concept. On the contrary, I am plan-
ning further GR geometrization of continuous particles 
together with the already available geometrization of 
gravitational fields. Local nullification of the Einstein 
tensor curvature for paired densities of the distributed 
astroparticle and its field will be requested in their rest 
frame of references. I intend to prove, for example, that 
Schwarzschild’s solution for a central field is not “the 
only rotationally invariant GR metric extension of the SR 
interval”. One should admit non-empty (material) space 
or Newtonian stresses of the material medium-aether 
associated with continuous very low dense distributions 
of non-local gravitation/inertial mass-energies. Then bound 

ensembles of elementary radial energies form so called 
“macroscopic” bodies with sharp visual boundaries (ob-
served exclusively due to experimental restrictions to 
measure fine energy densities). 

First, we discuss a local time element,  
   d d dv  l , which should be considered as a chain 

function of speed = d dv l   or spatial displacement  
of a passive material point in external gravitational field. 
Then, we discuss the electric Weber-type potential en- 
ergy  

dl

 2 1= 1 = 1W
o o N o o o oU U v m U P U P   1  

for a point planet with mass Nm  and relativistic energy 

o  in the Sun’s static field generated by the ac-
tive energy-charge 

=o NP m V

ME . Ultimately, this paper presents 
the self-contained GR scheme with the energy-to-energy 
interaction potential = o o MU P  for Machian 
mechanics of nonlocal astroparticles with an analytical 
radial density 

G E r

   22
o r r= 4πn r r o  instead of the 

Dirac delta density 
r
 r . One should see arguments for 

the singularity-free gravitational contribution o oU P  to 
the smooth metric tensor component   2

= 1oo o og U P
 . 

The main challenge here was to keep the free fall uni-
versality and the GR Principle of Equivalence for all car-
riers of probe (passive, inertial) energies o  in radial 
fields of the Sun’s gravitational (active) energy 

P

ME . 
In the speed-dependent time approach, the warped GR 

four-interval  d d d ,ds l l    cannot be approximated in 
weak fields by pure time and pure space subintervals, 
like in Schwarzschild-type solutions [8] with their formal 
time and space metric split without chain relations. In 
order to justify the indivisible non-linear involvement of 
space displacements into physical time  d dl  of a 
probe particle under the the geodesic motion, one should 
clarify how the already known gravitational tests of GR 
can be explained quantitatively without departure from 
spatial flatness. Then we discuss our energy-to-energy 
attraction under the Einstein-Grossmann geodesic motion 
in metric fields with flat 3-section (i.e. without Schwar- 
zschild singularities). The author also accepts the Ein-
stein-Infeld-Hoffmann approach (but under flat 3-space) 
to non-point slow-moving gyroscopes in order to de-
scribe the Gravity Probe B quantitatively. 

In 1913, Einstein and Grossmann put weak Newtonian 
field only into the temporal part of the Entwurf 4D in- 
terval. Today, one tends to justify that strong-field GR 
metric may also admit for reality six metric bounds 

=N
ij ij   which preserve universal 3D interval in spe-

cifically curved space-time for any elementary particle N. 
Then the metric tensor g  for curved 4D with flat 3- 
section depends on four gravitational potentials  

oG U  P  for the particle energy-charge  

2= 1o N ooP m g v . 
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This finding matches 6 metric bounds for spatial flat-
ness under any gravitational fields and their gauges. 
Since 2000, this post-Entwurf metric scheme with warp- 
ed space-time, but strictly flat three-space, became con-
sistent with the observed Universe’s large-scale flatness, 
confirmed at first by balloon measurements of the Cos-
mic Microwave Background and then by all ongoing 
Wilkinson Microwave Anisotropy Probe (WMAP) Ob-
servations of the flat Universe [12]. This new reading of 
curved 4D geometry with non-linearly dilated anisotropic 
time and flat non-empty space, explains quantitatively all 
GR tests, the known planet perihelion precession, the 
radar echo delay, and the gravitational light bending, for 
example [13]. 

Speed-dependent time corrections to post-Newtonian 
dynamics in Sun’s flat material space lead to computa-
tion results similar to numerical computations of other 
authors who traditionally correct Newton in empty, but 
curved 3-space. Observable dynamics of matter in mod-
erate and strong static fields provides, in principle, an 
opportunity to distinguish our metric solutions with iso-
tropic flat space and speed-dependent time from Schwar- 
zschild’s solutions, based on curved 3-space and dilated 
time. Alternative empty-space and non-empty space pa- 
radigms can also be distinguished through different probe 
body dynamics in stationary fields of rotating astro-
physical objects. 

2. Warped Four-Space with Intrinsic Metric 
Symmetries for Flat Three-Space 

To begin, we employ the GR tetrad formalism, for ex-
ample [14,15], in covariant expressions for an elementary 
rest-mass Nm  in order to justify the mathematical op-
portunity to keep a flat 3D subspace i

Nx  in curved four- 
space Nx  with a pseudo-Riemannian metric tensor  

=Ng g   (for short). First, we rewrite the curved four- 
interval, 



   

   

2d d d d

d d

d d ,

vN
N N N ds g x x g x x

e e x x

x x

  
 

   
  

 






 





 

in plane coordinates    d dx e x  
 d and   dx e x  

 , 
with 

 diag 1, 1, 1, 1      . 

One can find    = ;o
oo oo ie g g  g

b
 and  

 from the equality     = 0,b
ie e

  2
2d d d d

.

o i i
oo i ij

i oi oo

d ,js g x g x x x

g g g

    
 

 

At first glance, the spatial triad ( ) ( )
i

b
i

b

N
e e  (a, b = 1,2,3 

and ,   = 0,1,2,3) should always depend essentially 
on the gravitational fields of other particles because this 
triad is related to components of Ng . However, this 
might not be the case when there are internal metric rela-
tions or bounds in the general pseudo-Riemannian metric 
with the warped tensor Ng . Shortly, a curved mathe-
matical 4D manifold does not necessarily mean a curved 
3D section for real matter (warped 2D paper in 3D trash, 
for example, keeps parallel Euclidean lines due to steady 
metric relations between neighboring points of paper). 

It is not obvious that physical restrictions for four-ve- 
locities of real matter, like , might require to 
keep flat 3D sections of curved pseudo-Riemannian 4D 
manifolds. Therefore, let us look at three spatial com- 
ponents i  of the four-vector 

= 1g V V
 

V d dV g  x s
  by us- 

ing the conventional tetrad formalism, 
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Here, we used ( ) =o
i oe g o ig  and  

   
      

   1 2 1 2

= 1 ; 1b b
b b bV v v v v v

 
  

 
i iV e V

. 

Now one can trace that the considered equalities  



= =b

 admit trivial relations  and   
 = bi

i bv v v v
 

 i iv e v  
 

b
ib v b  between the curved velocities, 

 d d d dj o i j
i ij oo i ijv x g x g x x d     ,  

and the plane velocities,  
 = d da

abbv x  . All spatial 
triads for these “trivial” relations may be considered as 
universal Kronecker delta symbols, 

N

   =b
i ie b , and, con- 

sequently, the three-space metric tensor is irrelevant to 
gravitation fields, i.e.  

1= = N = K
ij oi oj oo ij ij ij ijg g g g      . 

All components g , involved in these six relations, 
may depend on gravitations fields or system accele- 
rations but their combination should always keep spatial 
flatness under admissible coordinate transformations. 
One could, surely, ignore flat 3-space option within curv- 
ed 4D manifold, as was suggested by the above tetrad 
analysis, by trying curved 3D solutions in iV  when 

N

( )e ( )b
i i

b . But we do not see much physical sense in 
such complications and, therefore, restrict GR geome- 
trical constructions by a partial case with six metric 
relations oi oj oo ij ij

1g g g = g   . Applications of pseudo- 
Riemannian space-time with flat 3-sections will quan- 
titatively describe all known gravitational experiments 
plus magnetic flux quantization. The latter and the Ahar- 
onov-Bohm effect require only flat 3-space for satisfac- 
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tory interpretations. 
Again, we shall read    Kg e e 

     though  

   = ;o
oo oo ie g g  g

b

 

and  

      = 0,b b
ie     

for all physical cases we are interested in describing. 
This means for our consideration that  

       ,o o o o
oo o o oi o ig e e g e e  , 

and 
( ) ( ) ( ) ( ) ( ) ( )=o o a b o o

ij i j ab i j i j ijg e e e e e e    . 

And Euclidean spatial geometry,  
2d d d = d di j i jK
K ij ijl x x x  x , 

will be applied to pseudo-Riemannian 4-intervals of all 
particles (due to intrinsic metric relations 

  1
K K K K
oi oj oo ij ijg g g g 


  ). 

Contrary to universal spatial displacements d , in- 
variant four-intervals have differently warped metrics for 
particles K and N, because 

l

N Kg g    and d dk Ns s  
in different external fields (for example, in the two-body 
problem). The GR four-interval for a selected mass- 
energy carrier, 

 
2 2 2

2

d d d

= d d d do i i
oo oi oo ij

s l

,jg x g x g x x





 

 
    (1) 

is defined for only one selected probe mass Nm  despite 
notifications d dNs s  and d dNx x  are regularly used 
for brevity. This geometrical 4-interval should be phy- 
sically commented in terms of time 2d dx  and space 

 elements, albeit 3-space differ- 
entials 

2d d di j
ijl x x
d i

d = di j
ijx  x

x  contribute to particle’s physical time  d dx . 
We prove below that particles proper time d  depends 
on  even in constant gravitational fields (where there 
is a first integral of motion ). Such an ani- 
sotropic time element  

dl
= conoP st

     d d d do i
N oo ix g x x g x    

of the moving mass Nm  always counts its spatial dis- 
placement  in a oriented gravitational field, despite 
the fact that it is not immediately obvious from the phy- 
sical time definition for metrics with . This post- 
Newtonian phenomenon, related to the energy nature of 
anisotropic time, appears in nonlinear gravitational equa- 
tions through the energy(velocity)-dependent potentials. 
Our interpretation of the warped four-interval (1), based 
on warped anisotropic time in isotropic non-empty flat- 
space rather than in empty warped space, may be con- 

sidered as a prospective way for further developments of 
the 1913 metric gravitation through joint geometrization 
of distributed fields and distributed elementary particles. 

dl

= 0oig

Now we return to components of the four-vector  
= d dN NV g x  s . Notice that 
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because  and   = 0b
oe ( ) ( )=b

i ie  . Flat three-space geo- 
metry is a promising way to introduce gauge invariant 
gravitational potentials,  

=o NG U P G       

with 

  = ,o o
N o oU e m V U P     N      

for the passive (probe) mass Nm , in close analogy to 
four-component electromagnetic potentials for the clas- 
sical electric charge. The point is that a four-momentum 

N N
NP m V   of the selected scalar mass Nm  (without 

rotation) can be rigorously decomposed into mechanical, 
NK , and gravitational, NU , parts only under strict 

spatial flatness,  

 
  

2 2

2 2

1 ; 1

 1 1 ; 1

,

N
N N i

N oo N i oo

N N

P m v m v v

m g v m g g v

K U



 

   

   

 

  (2) 

where 

 1 22, , d d , d d

d = d ,d d , ;

= = .

j i i i
i ij i

N i oi oo

ij i j oo ij ij ij

v v v v v v x ds x x

x g x x x g g g

g g g g




  
 

 

  

   

  

  

,

 

Again, we use a time-like worldline with  
and 

d = d > 0ot x
 1 2d = d d > 0o i

oo ig x g x    for the passive-inertial 
. The gravitational energy-momentum part U> 0Nm   

is defined in (2) for a selected mass Nm
V

 and its posi- 
tively defined passive energy o N o , associated 
with the global distribution of all other masses 

=P m > 0

Km . This 
gravitational part, o U G P , is not a full four-vector in 
pseudo-Riemannian space-time, like NP , nor is the me- 
chanical summand NK m V  . 

Because     b b  b= 0, =ie     and  
 d = dx e x 


 , 

the tetrad with the zero (i.e. time) label takes the follow- 
ing components from (2):  
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 ( ) 2 1 2 1

( ) 2 1

= 1 1 ; 1

= 1 .

o
o N i N

o
N

e v U m v U

v U m



 

 



  

 

m
 

Ultimately, the tetrad  e 
  for the selected particle 

 and the metric tensor N    Ng e e 
    , with  

=g g  
  , depends in Cartesian coordinates only on 

the gravitational four-potential oU P G   (introduced 
for the relativistic energy-charge  [16]),  

No ocP cP

     

     

 
 

   

         

2 1

1 1

2
( ) ( ) 2 1

21

2 1 2 1

1

2 2

2

1

= 1

= 1

= 1 1

= 1 1

= (1 1 ) 1

=

= 1

=

= (1 )

o N

o o o o

o oN
oo o o o N

o o

o oN
oi o i o N i N

N
oo i o

o o a bN
ij i j ab i j i j N ij

N
oo i j o ij

oo
N o o

e v U m

U P U P

g e e v U m

U P

g e e v U m v U m

g U P

g e e e e v U U m

g U U P

g U P

  
  

 
 

 

 

 





 





 









 

 

  



   

   



 2 2

1

,

= , = ,

ij
i j o

oi ij ij
N i o N

U U P

g U P g


























 
 

  (3) 

where we used      2
2= 1 1o o

oo o o og e e v U    and  
 2 = 1o ooV g v 2  to prove that  

 1 1= 1 = 1 1oo oo o o o og g U P U P   . 

Therefore, the passive-inertial GR energy,  

 
 

2 2

2

= 1 = 1 1

= 1 ,

o oo o o

o

P m g v m v U P

m v U

  

 

1

 

takes a linear superposition of kinetic and potential 
energies in all points of pseudo-Riemannian space-time 
warped by strong external fields. Note that we did not 
assign spin S  or internal angular mechanical momen- 
tum to the Einstein-Grossmann “material point” or the 
probe mass Nm  with the energy-momentum (2). The af- 
fine connections for the metric tensor (3) depend only on 
four gravitational potentials oU P  in our space-time 
geometry, which is not relevant to warped manifolds 
with asymmetrical connections and torsion fields, for 
example [17]. 

Every component of the metric tensor in (3) depends 
on the gravitational part N N oU m V m V G P     

P
 of 

the probe carrier energy-momentum  . At the same 
time, all the components of the three-space metric tensor, 

1 =ij oi oj oo ij ijg g g g   , are always independent from 
the gravitational potential = oG U P   or its gauge. 
Such inherent metric symmetries for 3D subspace may 

be verified directly from (3). In fact, our tetrad, and the 
metric tensor, depends formally on the inharmonic Weber- 
type potentials,  

 2 11 = 1N o o oU v m U P U P 
   1 , 

associated with the particle speed 2 2= d dv l 2 . In 1848 
Weber introduced [18] the non-Coulomb potential  

 2
12 121 2

 based on lab measurements of acce- 
lerating forces between moving charges 1  and 2  
with the relative radial velocity . This might was 
the first experimental finding that mechanical inertia and 
acceleration depend on the kinetic energy or speed of 
interacting bodies. 

1 2q q v r

2 2d

q q
2
12 1v 

By substituting the metric tensor (3) into the interval 
2d d d ds g x x l 

    , one can rewrite (1) and sub- 
mit the chain relation for the proper time d = d N   of 
the probe mass-energy carrier N in external gravitational 
fields,  

     

 

1 22
1

2 2

d d d d d

= d d 1 d d d .

oo iN N
oo N oi

o N
N

l g x g g x e x

x x U m l l











     

 

   (4) 

Notice that the proper-time differential,  

 1d = d 1o K
O o Kx U m  , 

of the local observer K , with  and d = , 
differs from the time element (4) of the moving mass  
with the GR energy-charge 

d = 0i
Kx 0Kl

m
21 v=P m go oo  . The 

proper interval ds  of the moving mass and its proper 
time element (4) depends, in general, on all four com- 
ponents of U . Therefore, the observable three-speed 
d d Ol  , of a moving particle always differs in rela- 
tivistic gravito-mechanics from the non-linear ratio  

 d d dl l v  , called the particle’s physical speed (1). 
The chain relation  d = f d   in the physical time (4) 
of a moving particle changes the GR interpretation of the 
geodesic motion and allows to apply flat 3D space for 
gravitational tests. 

The metric tensor (3), the interval (1), and the local 
time element (4) are associated with warped space-time 
specified by external fields for one selected mass Nm  or, 
to be precise, for the passive energy-charge N

oP . We 
may employ common three-space for all elementary par- 
ticles (due to universal Euclidean geometry for their spa- 
tial displacements), but we should specify warped space- 
times with differently dilated times for the mutual motion 
of gravitational partners. The particle’s time element 

 d d d ,N l v   in (4) may depend on the particles vel- 
ocity or displacement. Ultimately, a non-linear time rate 

( )= d doe x x
 o  (hereinafter d d ,d d of t f t c  x ) of 

moving material objects in (4) depends on the ratio 
2 2 2=l v  . This non-linear chain relation can be sim- 
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plified in several subsequent steps through the following 
equalities to (4): 

1 2 1 2

1 1

1 1

d d 1 1 1 1

d 1

d 1 1 .

i
o N i N

i
o o o i

i
i o o o

t U m v v U m v

t U P P U v

t U P x U P

  

 

 

    

  

  
    (5) 

Such anisotropic time dilatation in (5) by the external 
four-potential =N N N

o oG U P  results in the gravitatio- 
nal Sagnac effect when an observer compares the dyna- 
mics of different elementary energy-charges  in fields 
with . 

oP
0iU 

Now, one may conclude that the anisotropic time ele- 
ment d  in the metric interval (1) and, consequently, in 
the physical speed = d d ,v l   depends only on univer- 
sal four potentials G  for positive probe charges 
The potential energy part N NN

> 0oP . 
m U P m V  

=

 con- 
tributes to GR energy-momentum of the probe body and, 
therefore, to its passive energy-charge, N om V o . The 
universal ratio 

P

oU P

=ME

 should be tried in Einstein’s 
gravitation as a metric field four-potential (which is not a 
covariant four-vector) of active gravitational charges for 
passive energy-charges. Contrary to Newton’s gravitation 
for masses, Einstein’s gravitation is the metric theory for 
interacting energies. The static Sun, with the active 
energy-charge , keeps the universal potential 2Mc

 1E r

2nst mc

= 0U E  ;G

o

m M  in the Sun’s frame of reference 
for the passive, inertial energy content  

o m  of the probe mass = =E ccP Nm . Below, 
we employ the universality of the Sun’s potential,  

= =GE r r

2r

N N
o oU P M o , for all planets in our com- 

putations for gravitational tests of General Relativity 
with dilated time (4)-(5) and flat material space filled 
everywhere by  gravitational fields and the 

r

4r  ex- 
tended masses. 

3. Flatspace for the Planetary Perihelion 
Precession 

Now we consider the metric tensor (3) for a central 
gravitational field with a static four-potential, , 

, where 

1 = 0i oU P

1 1=o o MU P GE r   2= = conG stE Mc rM o  is 
the active gravitational energy of the ‘motionless’ Sun 
(in the moving Solar system). We use Euclidean geo- 
metry for the radial distance  from the Sun’s 
center of spherical symmetry in agreement with spatial 
flatness maintained by (3) for any gravitational four- 
potential 

1r u

G  and its gauge  . Let us denote the 
energy content of a probe mass  in the static central 
field as a passive energy-charge 

m

 2= = 1 =o N o N ooP m V m g v E m . 

Then, the interval (1) for the passive energy carrier in 
a central field with  takes two equivalent pre- 

sentations due to (4) and (5),  

= 0iU

  
 

2
2 2 2

22 2

d = 1 1 d d d d d

d 1 d ,

M m

M

2 2s GE E rm l l t l

t GE r l





 

  


  (6) 

where iterations  

     
2

2 2 2d 1 1 d d d = d dM mt GE E rm l l     
2 l  

over the chain function  in the Lorentz factor   2d dl

result in   22d 1 Mt GE r  for the Sun-Mercury po-    
tential energy =o M mU GE E r . In other words, the 
specific, Weber velocity-dependent potentials exhibit 
after chain iterations common for all probe particles local 
time, 2 2d d d = dN Ks l    , in static fields. Spherical 
coordinates can be equally used in (6) for the Euclidean 
element in flat 
laboratory space. 

2 2 2 2 2 2 2d = d d sin d = d di j
ijl r r r x x    

The static metric solution (6) for probe elementary 
energy-charges in non-empty space of the radial energy- 
charge does not coincide with the Schwarzschild metric 
[8] in empty space. Therefore, the Schwarzschild exten- 
sion of the SR interval is not the only rotationally in- 
variant solution which GR’s tensor formalism can propose 
for tests of space-time-energy self-organizations. Ultra- 
relativistic velocities, d d 1v l    and 21 0v  , 
in the Weber-type energy-to-energy interaction in (6) re- 
vise the Schwarzschild singularity. The latter is not ex- 
pected at the finite radius in the energy-charge formalism 
of Einstein’s gravitation. Einstein, “the reluctant father of 
black holes”, very strictly expressed his final opinion re- 
garding the Schwarzschild solution: ‘The essential result 
of this investigation is a clear understanding as to why 
Schwarzschild singularities do not exist in physical re- 
ality’ [19]. In authors view, Schwarzschild’s metric so- 
lution, and all Birkhoff class solutions for the empty 
space dogma, originates with ad hoc modeling of matter 
in the 1915 Einstein equation in terms of point particles. 
However, Einstein anticipated extended sources for his 
equation and for physical reality. Below, we prove that 
the static metric (6) corresponds to the  radial energy- 
charge or the extended source of gravity. Therefore, our 
analysis denies the empty space paradigm. Non-empty 
material space is in full agreement with Einstein’s idea of 
continuous sources and Newton’s “absurd” interpretation 
of distant attractions through stresses in an invisible ma- 
terial ether (called in 1686 as “God’s sensorium”). 

4r

Our next task is to derive integrals of motion for the 
passive (probe) mass-energy in a strong central field 
from the geodesic equations 

2 2d d = d d d 2x p x x   
 p . 

Nonzero affine connections 
  for the metric (6) 
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take the following components:  
2 2 2

2

d d = = , = sin

= d 2d , d d d

r r

r
tt oo

x p r r

g r x x p


 

  


,   

 
 

= = = = 1 ,

= sin cos , = = ctg ,

r r r r r   
   

  
    

   

   
 

and = = d 2 dt t
tr rt oo oog g r  , where oog  is the function 

next to  in the interval (6), 2dt 2 2d = d d 2
oos g t l . 

By following the verified approach with  
= π 2 = const  for the isotropic central field, for ex- 

ample [15], and by substituting flatspace connections 

  into GR’s geodesic equations, one can define the 

parametric differential  and write the following gra- 
vitational relations, 

dp

   
  

 

2

2

22 1

22 2

2 2 2

d d = 1,d d = d d

= = const d d =

= const, d d =

= const d d

= const = d d

d d = 1,

oo oo

m

m

oo

m

m oo

g t p p s g t s

E m r p J

r s J E m

r p J r g

m E r s

r s E m g

















 



 

L



        (7) 

with the first integrals  and , ,mE m J  of the relativ- 
istic motion in strong static fields. 

The last line in (7) is the interval equation  
2 2d = d doo

2s g t l  with two integrals of motion  
2 2 2 2 2= d dm ooE m g t s  and = π 2 . Therefore, the sca- 

lar invariant (6) is actually the equation of motion for the 
constant energy charge  in a central field 
with the static Weber-type potential  

= constmE

   
 

2= 1

= ,

W
o o o m

M M

U U m v U E U

GE r GE

  

 
o  

which is inharmonic for the Laplacian, . 
Recall that Schwarzschild’s curved 3D solution not only 
differs from (6), but results in conceptual inconsistencies 
[20] for the Einstein equation. We can use (6) and (7) for 
relativistic motion in strong central fields in order to 
reinforce the ignored statement of Einstein that Schwar- 
zschild singularities do not exist in physical reality. 
There are no grounds for metric singularities either in the 
interval (6), or in the radial potential  for , 
because 

2 0W
oU 

r 0r W
oU

 d d = =t g r r GM 

u

oo  is a smooth func- 
tion. One can verify that the non-empty space metric 
tensor (3), as well as , does correspond to the 
continuous energy-source in the 1915 Einstein equation. 

2 0W
oU 

The strong field relations (6) and (7) can be used, for 
example, for computations of planetary perihelion pre- 
cession in the solar system. The planet’s gravitational en- 
ergy for the GR energy-to-energy attraction,  

m , where 1= =o M m oU GE E r r E  2 = constor GM c  
and 1u r , is small compared to the planet’s energy, 

= co mU E onst , that corresponds to the non-rela- 
tivistic motion of a planet N (with = const 1mE m  , 

m M , and E E 2 2 2d d 1v l   ) in the Sun’s rest 
frame, with . The GR time element for the planet 
reads from (6) or (7) as 

= 0iU

 

  
 

2 2 2

2
2 2

2 2

d d d d

= d 1 1 d d d

1 2 d d ,

o m

o o

s l l

t r uE m l l

r u t r u l





 

 

  

2        (8) 

where we set , 1or u = 1mE m ,  2 2d d dl l , and 
 2 2d d dt l 2dt . 

The field term with spatial displacement o  on 
the right hand side of (8) belongs to the physical time 
element within the invariant 

2dr u l

2ds . This displacement cor- 
responds to the non-linear chain nature of anisotropic 
time    d d = d dl f l  , originating from the Weber- 
type energy potential 21U v m  in (3). There is no 
departure from Euclidean space geometry with the flat 
metric  

 2 2 2 2 4 2 2 2d = π 2 d d d dl r r u u u        

in the chain reading of geometrical intervals (6) or (8). 
Again, a particle’s non-linear time with chain spatial dis- 
placement  d dl

 1/2
2 or u

 differs in (8) from the proper-time 
 of the local (motionless) observer. 

Displacement corrections, 
d = 1 dO t 

2 2d dor u l t , for the non-re- 
lativistic limit are very small compared to the main gra- 
vitational corrections,  2 or u , to Newtonian time rate 

2 u  2 du l t21 2 dt r r o o . However, the chain depen- 
dence of a particle’s time element 2d  from spatial dis- 
placement  accounts for the reverse value of this 
time element, 

2dl
2 2d dor u l  , that is ultimately a way to 

restore strict spatial flatness at all orders of Einstein’s 
metric gravitation. Here there is some kind of analogy 
with electrodynamics where small contributions of Max- 
well’s displacement currents restore the strict charge 
conservation in Ampere’s quasi-stationary magnetic law. 

Two integrals of motion  1 2 d d =o mr u t s E m  and 
2d dr s L  result from (7) and (8) for weak fields in a 

rosette motion of planets, 

    2 2 2 21 2 1 3 = ,o or u L r u u u E L m2 2         (9) 

where u du d   and . Indeed, (9) may be dif- 
ferentiated with respect to the polar angle 

1or u
 , 

2 2= 92 3 32 ,o o o ou u r L r u r u u r u 2           (10) 

by keeping only the largest gravitational terms. This 
equation may be solved in two steps when a non- 
corrected Newtonian solution,  2= 1 coso ou r L    , is 
substituted into the GR correction terms at the right hand 
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side of (10). 
The most important correction (which is summed over 

century rotations of the planets) is related to the “re- 
sonance” (proportional to cos  ) GR terms. Therefore, 
one may ignore in (10) all corrections apart from  

2 2 42 cou L s    and 2 4 cosLou u r   

cos

. Then the 
approximate equation for the rosette motion, 

o o
2 36u u r L r 4L       , leads to the well known 

perihelion precession  2 2 6πo or L r 21a= 6π   , 
which may also be derived through Schwarzschild’s me- 
tric approximations with warped three-space, as in [13-15]. 

It is important to emphasize that the observed result 
for a planet perihelion precession 

ij

 (in the Solar non- 
empty flatspace with dilated time by Sun’s energy den- 
sities) has been derived here from the invariant four- 
interval (1) under flat three-space, = ,ij   rather than 
under empty but curved three-space. 

4. The Radar Echo Delay in Flatspace 

The gravitational redshift of light frequency   can be 
considered a direct confirmation that gravity couples to 
the energy content of matter, including the massless 
photon’s energy E , rather than to the scalar mass of the 
particle. Indeed, Einstein’s direct statement  for 
all rest-mass particles is well proved, but the inverse 
reading, 

2mc=E

2c
= 0
E m

=m E , does not work for electromagnetic 
waves (with ) and requires a new notion, the wave 
energy-charge  or the relativistic mass 

. 

m
2 0c  

0m 
In 1907, Einstein introduced the Principle of Equiva- 

lence for a uniformly accelerated body and concluded 
that its potential energy depends on the gravitationally 
passive (“heavy”) mass associated with the inertial mass 
[21]. This correct conclusion of Einstein was generalized 
in a wrong way that any energy, including light, has a 
“relativistic mass” (the gravitational energy-charge in our 
terminology) for Newtons mechanics. Proponents of this 
generalization in question proposed that photon’s “rela- 
tivistic mass” is attracted by the Sun’s mass M in agree- 
ment with the measured redshift  

 1 2= = SE E m GMR m c         .  

Nonetheless, the coherent application (in the absence 
of the correct EM wave equations in gravitational fields) 
of the “relativistic mass” to zero-mass waves promptly 
re- sulted in the underestimated light deflection,  

2= 2 2S o S , for the “mechanical free 
fall” of photons in the Sun’s gravitational field [22]. In 
1917, when Schwarzschild’s option [8] for spatial cur- 
vature had been tried for all GR solutions, the new non- 
Newtonian light deflection, 

GM R c r R   

= 4 o Sr R  , had been pre- 
dicted due to additional contributions from the supposed 
spatial curvature in question. Later, all measurements sup- 

ported this curve-space modification for the “relativistic 
mass” deflection by the Sun that provided false “experi- 
mental evidences” of non-Euclidean three-space in con- 
temporary developments of metric gravitation. 

Below, we prove that Einstein’s GR for the Maxwell 
wave equation firmly maintains the flatspace concept for 
interpretation of light phenomena in gravitational fields if 
one coherently couples the Sun’s rest energy to the 
photon’s wave energy E . We consider both the radar 
echo delay and the gravitational deflection of light by 
coupling its energy-charge with local gravitational poten- 
tials. Our purpose is to verify that Euclidean space can 
match the known measurements [13,23,24] of light phe- 
nomena in the Solar system. Let us consider a static 
gravitational field ( i , for simplicity), where the 
physical slowness of photons, 

= 0g
1n v  c , can be derived 

directly from the covariant Maxwell equations [14], 
1 = = oon g   . Recall that a motionless local ob- 

server associates oog  with the gravitational potential 

o oU P  at a given point. The light velocity = d d Ov l  , 
measured by this observer, as well as the observed light 
frequency = dt do O   , is to be specified with respect 
to the observer’s time rate d = dO oog t . This con- 
sideration complies with Einsteins approach, where the 
light’s redshift is associated with different clock rates (of 
local observers) in the Sun’s gravitational potential [21]. 

Compared to the physical speed of light,  
1= d d =ov l cn  , its coordinate speed 

   2

d d d d = =

1 1 2

O O oo oo

o o

l l t cn g cg

c r r c r r

 


  

   


      (11) 

is double-shifted by the gravitational potential  
=o o oU P r r , where 2= = 1.48 kmo Sr GM c  and 

or r RS . Notice that both the local physical slowness 
1 = oon g  and the observer time dilation 

d d =O oo  are responsible for the double slowness 
of the coordinate velocity (11), which is relevant to ob- 
servations of light coordinates or rays under gravitational 
tests. 

t g

A world time delay of Mercury’s radar echo reads 
through relation (11) as 

  2 2

2

= 2 d 1 1 2 2 d

4 4 = 220 μs,

M M

E E

l x

ol x

o MS ES S

t l l c c r x x

r cln r r R

  



  y
    (12) 

where  km is the radius of the Sun, 
while km and km are 
the Earth-Sun and Mercury-Sun distances, respectively. 
Notice that in flat space we use the Euclidean metric for 
spatial distance, 

6= 0.7 10Sy R 
6= 149.5 10ESr 



6= 57.9 10MSr 

1 22=r x  2y , between the Sun’s cen- 
ter (0,0) and any point (x, y) on the photonic ray. One can 
measure in the Earth’s laboratory only the physical time 
delay = E

E oog t  , which practically coincides with 
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the world time delay  in the Earth’s weak field, i.e. t
= 220 μsE t   . From here, the known experimental 

results [13,24] correspond to the radar echo delay (12), 
based on strictly flat three-space and dilated time as in 
1913 Entwurf metric scheme. 

5. Gravitational Light Bending in 
Non-Empty Flatspace 

A coordinate angular deflection =      of a light 
wave front in the Sun’s gravitational field can be pro- 
mptly derived in flat space geometry by using the co- 
ordinate velocity (11) for observations, 

 
 

2 2

0 0

3/22 2

0

= 2 d

4 do S

l y

r R




  2c

x

 d 2

= 4 = 1.75 .

o

S o S

l x y r x y

x R r R

 
  

 



   

 
  (13) 

The most rigorous classical procedure to derive the ray 
deflection (13) is to apply the verified Fermat principle to 
light waves. This basic principle of physics should also 
justify spatial flatness under suitable applications [25]. 

In agreement with Einstein’s original consideration 
[21], one may relate the vector component oK  in the 
scalar wave equation  to the measured (physi- 
cal) energy-frequency 

= 0K K
  of the photon  

= = =o ocK E d d ,t consto o   

2 4c
K K g 



 

m
= K K

 
P

=P P


). Recall that 

o  is also the measured particle’s energy in the similar 
equation, , for a rest-mass particle. The 
scalar wave equation 

N    has the fol- 
lowing solution for the electromagnetic wave, 

= 0

 
 

 

2 2

2 2 2 2 2

d d =

= =

= d d

= d d d d

= d d d d

o i i
o o oo i ij

o i
oo i o oo

i
o oo

i
o oo i

i oo i o oo ,

jK t c g K g K K K

g K g K K g

t c g K

t x c g lK

x l g g t c g

  

 

 

 

 



   









   (14) 

with   1= , d dj
ij oo i K E E x g l g c      . 

The Fermat-type variations with respect to   and 
u  ( ,1r u  , and = π 2  are the spherical coor- 

dinates) for photons in a static gravitational field are 

 22 2 2 2

d = d d d

= d d 1

i j i
i o ij oo

o o

K x x cg l x

c u u r u u

   

  



  

 




 = 0,
 (15) 

(where   2
= 1oo og r u

 , , = 0ig =ij ij  ,  
2 2di j

ijl x x r 2drd =   
o

) resulting in a couple of 
light ray equations for , 1r u

    2 2 21 4 = = const = 2o or u u u u u u r u 
      

2
o o  (16) 

Solutions of (16),  

 1 2= sin 2 1 coso o ou r u r u     

and 1o o o Sr u r R  , may be used for the Sun’s weak 
field. The propagation of light from  

   = , = πr     to    ,r        

corresponds to the angular deflection  

 1= arcsin 4 1 cos

4 = 1.75

o S

o S

r R

r R

 
    

  
 

from the light’s initial direction. This deflection coin- 
cides with (13) and is in agreement with the known 
measurements 1.66 0.18   , for example [13]. 

We may conclude that there is no need to warp Eu- 
clidean three-space for the explanation of the “non-New- 
tonian” light deflections if one strictly follows Einstein’s 
original approach to light in gravitational fields [21]. In 
fact, the massless electromagnetic energy exhibits an in- 
homogeneous slowness of its physical velocity,  

d d =o oo , and, therefore, a double slowness 
of the coordinate velocity, 
v l c g

d d = ool t cg . This coordinate 
velocity slowness is related to the coordinate bending of 
light measured by observers. In closing, the variational 
Fermat’s principle supports Entwurf physics of Einstein 
and Grossmann with dilated time and strict spatial flat- 
ness for light in the Solar system. 

6. Geodetic and Frame-Dragging Precessions 
of Orbiting Gyroscopes 

Precession of the orbiting gyroscopes in the Gravity 
Probe B Experiment [26] has been compared only with 
Schiffs formula [27] based on the Schwarzschild-type 
metric for curved and empty 3D space. Here the author 
plans to criticize the point spin model for GP-B com- 
putations in favor of the regular Einstein-Infeld-Hoffman 
approach to slowly rotating distributions of masses. This 
original GR approach practically coincides in the weak 
Earths field with our flatspace reading of Einstein’s ph- 
ysics. Recall that our Entwurf-type space interval is 
strictly flat due to the intrinsic metric bounds in the GR 
four-interval (1) with the metric tensor (3). However, the 
GR tensor formalism can be universally applied to any 
warped space-time manifold with or without intrinsic me- 
tric bounds. 

By following Schiff and many other point particle 
proponents in gravitation, one has to assume for a mo- 
ment that the vector geodesic equation,  

d d = d dS p S x p 
   , 

in pseudo-Riemannian four- space with only symmetrical 
connections, = 

  
S

, may be applied to the point spin 
“four-vector”   with “invariant” bounds  
or i  for orthonormal four-vectors,  

= 0V S 
= i

oS  x S
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 .

 
of material points) to localized spins S  (which are not 
four-vectors in 4D manifolds with symmetrical affine 
connections) contradict the spirit of GR inertial motion 
and, ultimately, the Principle of Equivalence. 


d d =

=

o j
i i o i j

o j o k j j j k
io ik io ik j

S t S x S x

x x x x S

 
   

   

 

   
    (17) 

Our flat-space for a strong static field with (3) and 
 21= 0, = 1 = 1oi oo

o o oog g U P Our affine connections = 
    , related to the 

metric tensor (3), depend only on four field potentials  
g , and =ij ijg  ,  

would formally maintain an inertial conservation,  

 1 1= ,o o o i oG U P U P U P 
  1 . This post-Entwurf metric   

  
=

=

ij
o o oo i j

i i
oo oo i j

g S S S S g S S

x g x g S S


  

 
 tensor has been introduced for the local energy-mo- 

mentum (2) without any rotational or spin components. 
Moreover, neither the mechanical part, K , nor the gra- 
vitational part, oP G , in (2) are separately covariant 
four-vectors in warped space-time with the metric tensor 
(3). Therefore, there are no optimistic grounds to believe 
that four spin components S  might accidentally form a 
covariant four vector in space-time with symmetrical con- 
nections for translation of the energy-momentum four- 
vector, oP K GP    . Nonetheless, we try by chance 
these symmetrical connections for the point spin avenue 
(17) in question in constant fields (when , for 
simplicity), 

= 0g
o

 2 2= = consti
iS S vS S  , 

in agreement with Einstein’s teaching for a free-falling 
body. At the same time, Schwarzschild’s metric option 
(curved space) tends to suggest [15,27] the non-com- 
pensated Newtonian potential = GM r   even in the 
“free fall” equation,  

   2 2const = = 1 2Schg S S vS S
    . 

Therefore, formal applications of the Einstein-Gross- 
mann geodesic relations (derived for spatial translations  

   
   
     

 

1 1 1

21 2 2 1 1 1

2 1 1 1 1

21 2

2

2 1

2

2 1

j
io j o i oo j i o oo i i o oo

j
io o o i o i oo o i j i o oo i j o oo

j
ik j i k o oo k o oo i j o i o oo k i o oo

o ij
ik o o i j o

U P g U P g U P g

U P U P g P U U P g U P g

U U P g U P g U P U P g U P g

U P U U P

  

    

    

 

      

               

      

          
     

1 1

1 2 2 2

k k o oo k i o oo

o o i j k o oo k j k o oo j j k o oo

U P g U P g

U P U U P g U U P g U U P g





 

   

  

     

              (18) 

One could start with  and  1 1=o o MU P GE r  angular velocity, i.e. 1r  , 2 1i i oU U P  , ME M , 
and 2= 2 5n n n En

I m x v MR   for  [14]. Then, 
by keeping only linear terms with respect to 

<ER r

i oU P , one 
can rewrite (17) for a slowly rotating gravitational field: 

 1 3= 2i o i
U P GIr r     

for the homogeneous spherical mass M rotating with low  

   
   

1 1

1 1

d d 2

2 .

j jk
i j i oo j i k o oo k i o oo j j o i oo

j k
j i k o oo k i o oo oo

S t S x ln g S U P g U P g S U P g

x x S U P g U P g g

  

 

        

   



 
                (19) 

The last three terms on the right-hand side of (19) are 
responsible for frame rotation and frame dragging, which 
vanish for non-rotating centers when 0   and  

0i oU P  . Precessions of the constant magnitude vec- 
tor   1= 2 oJ S vS v UP  2

= const,

, obtained for the weak- 
field limit of  

     2 21 2 11 2j i ij ij
o o i i o j j o j i i j i jg S S U P U U P x S U P S x S S S J J

             
   

when   1o oU P  , , and 1i ix x   1i i
i o ox v U P    in (19), 

     
   

1 1 1

1 1 1 1

d d 2 2

,

j i jk
i j i o o j o o j i k o k i o

j j o i o o i o j o o

1J t J v U P v U P J U P U P

J U P U P U P U P

  

   

          
     



                (20) 
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may be compared with Schiff’s non-relativistic pre- 
diction d d geo fd J t     J  for Gravity Probe B. 
The second summand at the right hand side of (20), 

  1 1 2jk
j i k o k i o fd 

i
J U P U P J         , takes exactly 

Schiff’s answer [27] for the frame-dragging precession, 

 3
3 2

32
12 = .fd

r rGIr
GIr

r r


 

       
  






1.

 (21) 

The first and third precession terms in (20) depend on 
the Earth’s radial field  and they count to- 
gether geodetic and frame phenomena. These terms pro- 
vide  Such a preces- 
sion for a point spin model, formally borrowed from the 
Einstein-Grossmann theory for the probe mass without 
rotation, fails to reiterate the already well verified de Sit- 
ter geodetic precession, 

 1
i o oU P

 1 1
o o oP U P  = 2gf v U  

   1= 3 2 = 3 2geo o ov U P GM r v r    3 , 

of the Earth-Moon gyroscope in the Sun’s field, where 
. Why does the Einstein-Grossmann 

geodesic point mass fail for physics of spins and mass 
rotations? 

 1 2 2, , = 0U U U U

First of all, there is a clear mathematical reason to re- 
ject point spins from the Einstein-Grossman metric for- 
malism. The point spin approach to GR matter cannot 
justify that S  is a covariant four-vector in pseudo-Rie- 
mannian space-time where the metric tensor is defined 
exclusively for matter without self-rotations or for the 
four-momentum of a probe particle without spin. There- 
fore, one cannot place S  into the Einstein-Grossmann 
geodesic equation with symmetrical connections. Riemann- 
Cartan geometries with the affine torsion and asymme- 
rical connection [17] are still under discussions for pro- 
per applications. 

In 1938 Einstein already answered the point spin 
question by developing with Infeld and Hoffmann rela- 
tivistic dynamics of slowly moving distributions of active 
and passive masses. It is well known (Weyl in 1923 and 
Einstein-Infeld-Hoffmann in 1938 for example [14]) that 
the inhomogeneous GR time dilation (or inhomogeneous 

 oog r  for mass elements rotating over a joint axis) 
defines a relativistic Lagrangian for the classical non- 
point gyroscope. Therefore, Einstein’s relativity quan- 
titatively explains the de Sitter precession through local 
non-Newtonian time rates for distributed rotating systems. 
The non-Newtonian (three-times enhanced) precession 
originates exclusively from different GR time rates in 
neighboring material points, rather than from a local space 
curvature in question for the ill-defined GR spin of a 
point mass. The author does not understand Schiffs re- 
asons to ignore Einstein-Infeld-Hoffmann physics and 
Weyl results for relativistic gyroscopes prior to testing 
General Relativity through rotation of masses. 

The Einstein-Hilbert tensor formalism for energy den- 
sities of a gravitational source (rather than for a point 
source) requires non-Schwarzschildian interpretation of 
all gravitational tests, including Lunar-Laser-Ranging 
and Gravity Probe B data. In authors view, the 1913 
Einstein-Grossmann geodesic motion in pseudo-Rieman- 
nian space-time with flat space can provide a physical 
basis for translational dynamics of only point particles, 
but not for self-rotations of distributed relativistic matter. 
Point spin models for geodetic and frame-dragging an- 
gular drifts of free-falling gyroscopes cannot be reasona- 
ble for GR physics even under formal success of point- 
spin approximations for the observable geodetic preces- 
sion. Possible speculations that the de Sitter geodetic 
precession of the Earth-Moon gyroscope or that the Mer- 
cury perihelion precession have already confirmed non- 
Euclidean space geometry are against proper applications 
of the well-tested GR time dilation by gravitational fields, 
and, therefore, against Einstein-Infeld-Hoffmann’s phy- 
sics of slowly rotating systems having finite active/ 
passive masses at finite dimensions. In fact, the available 
GP-B releases (einstein.stanford.edu) of the processed 
geodetic precession data perfectly confirmed time dila- 
tation for Einstein-Infeld-Hoffmann rotating distributions 
of masses. Lunar laser ranging of the Earth-Moon gy- 
roscope and the GP-B geodetic precession are irrelevant, 
in fact, to experimental proofs of space warping by the 
missing inch. These tests are equally irrelevant to experi- 
mental proves of black holes existence. On the contrary, 
all known precision measure- ments in gravitation con- 
firms the strong-field metric (3) with time dilation and 
continuous gravitational masses in nonempty Euclidean 
3-space. 

7. Conclusions 

There are a lot of disputes in modern gravitation and 
astroparticle physics. Our main goal was to reinforce 
spatial flatness for real, non-point matter in a line of the 
original Entwurf geometrization of fields, rather than to 
discuss other consequences of the selfcontained SR-GR 
metric scheme [2,16]. In order to achieve this main goal, 
we derived quantitative geodesic predictions for Mercury’s 
perihelion precession, Mercury’s radar echo delay, and 
the gravitational light deflection by the Sun in strictly flat 
three-space without references on the 1915 GR equations 
at all. The numerical results are well known from the 
Schwarzschild empty-space approximation of reality. 
Recall that the conventional interpretation of post-New- 
tonian corrections relies on space warping around the 
localized gravitational source (including the ‘point’ Sun). 
On the contrary, our chain analysis of particles physical 
time allows us to infer that curved 4-interval can keep 
strict spatial flatness and the Entwurf metric scheme for  
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strong-field gravitation. The GR displacement  may 
be referred as a space interval (like in Special Relativity) 
in flatspace relativity of nonlocal superfluid masses with 
mutual spatial penetrations. Consequently, the integral 

 along a space curve does not depend anymore on 
gravitational fields and takes a well-defined meaning. 
Such a Machian-type nonlocality of superfluid astropar- 
ticles reconciles 3D space properties with the relativistic 
Sommerfield quantization along a line contour. Indeed, 
these are no reasonable explanations for quantized mag- 
netic flux in laboratory SQUIDs, unless one accepts 3D 
spatial flatness for any 2D surface [3]. 

dl

dl

GR physics may attach all field corrections within the 
GR invariant 2ds  to the time element  2d dl  with 
chain relations. Gravity indeed curves elementary space- 
time intervals (therefore d  and ds  are specific for 
each moving particle), but their space sub-intervals  
are always flat or universal for all particles and observers. 
It is not surprising that our approach to relativistic cor- 
rections, based on the strong-field equations (7), resulted 
in Schwarzschild-type estimations, which are based on 
very close integrals of motion in the Sun’s weak field. 
However, strong fields in (7) will not lead to further co- 
incidences with empty-space Schwarzschild-type solu- 
tions for dynamics of probe particles. 

dl

Both the Euclidean space interval d = d d > 0i
il x x  

and the Newtonian time interval  

d = d d d > 0o o
ot x x x
   

are independent from local fields and proper parameters 
of elementary particles. This absolute universality of 
world space and time rulers is a mandatory requirement 
for these notions in their applications to different par- 
ticles and their ensembles. Otherwise, there would be no 
way to introduce for different observers one universal 
ruler to measure three-intervals and to compare dynamics 
of particles in common 3-space under the common time 
parameter. For example, it is impossible to measure or to 
compare differently warped four-intervals  

d = ( )d dN
Ns g x x x 

  of different particles. In other  

words, there is no universal, non-specific pseudo-Rie- 
mannian geometry for all world matter. Therefore, joint 
evolution of energy carriers can be observed only in 
common sub-spaces when they maintain universal (for 
all matter) sub-metrics. 

Space-time-energy self-organization of extended mat- 
ter can be well described without 3D metric ripples, 
which have no much sense in strictly flat material space. 
Laboratory search of observable chiral phenomena for 
paired vector interactions in flat material space is worth 
to be performed before expansive projects to find 3D 
metric ripples in cosmic space. Record measurements of 
flat material space beyond the present limit  

might not be required for confirmation of the residual  

1810 m

EM nature of elementary masses under their Einstein- 
type geometrization. Once chiral symmetry for hadrons 
was violated at , then this mass-forming symme- 
try was equally violated in the entire nonlocal structure 
of the superfluid astroparticle [2] or in its infinite mat- 
erial space. Non-empty Euclidean 3-space does match 
curved 4D space-time in metric gravitation. Such a match- 
ing allows the extended radial electron to move (both in 
theory and in practice) without spatial splits of mass and 
electric charge densities. Strict spatial flatness is a real 
way for quantization of elementary fields and for unified 
geometrization of extended gravitational and electric 
charges. 

1510 m
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