

A Family of Binary Sequences with Large Linear Span

Jun CHEN, Yun CHEN

Information Security Institute, Chengdu University of Information Technology, 610225, Chengdu, China Email: chenjun@cuit.edu.cn, chy@cuit.edu.cns

Abstract: A new family of binary sequences $S^{(r)}$ based on d-form function and Niho sequence is constructed for n=4m, where $gcd(2^m-1,r)=1$. It is shown that the total number of the sequences with period 2^n-1 is 2^n and maximum correlation of the family is $2^{n/2+2}-1$. Especially, the linear span of the new sequences is proved to be larger than $n2^{n/2-3}$, when $r=2^{m-1}-1$. Compared to the sequences family constructed in literature [14], the new family in this paper has larger linear span under the conditions of the same maximum correlation and family size..

Keywords: pseudorandom sequence; linear span; low cross-correlation; d-form sequence

一类具有大线性复杂度的二元序列集

陈 俊,陈 运

成都信息工程学院信息安全研究所,成都,中国,610225 Email: chenjun@cuit..edu.cn, chy@cuit.edu.cn

摘 要:对正整数 n = 4m,基于 d-型函数和 Niho 序列集,文中构造了一类周期为 $2^n - 1$,序列数目为 2^n ,最大相关函数值为 $2^{n/2+2} - 1$ 的序列集 $S^{(r)}$,其中 $gcd(r,2^n-1)=1$;特别地,当 $r = 2^{m-1} - 1$ 时,证明了该序列集中的序列的线性复杂度都大于 $n2^{n/2-3}$ 。文中构造的序列集与文献[14]中构造的序列集具有相同的相关函数值和序列数目,但拥有更大的线性复杂度。

关键词: 伪随机序列; 线性复杂度; 低相关性; d-型序列

1 引言

在码分多址通信系统中,广泛使用具有低相关特性、较多序列数目和大线性复杂度的伪随机序列集。序列间的低相关性可降低来自同一信道中其他用户的干扰,较多的序列数目可以增加系统的容量,而较大的线性复杂度可以抵抗基于 Berlekamp-Massey 算法实施的攻击。因此,构造同时具有低相关特性和大线性复杂度,又包含较多序列的伪随机序列集具有重要的意义。

人们已经构造出了许多具有低相关特性的序列集,如文献[1],[2],[3],[5],[6],[7],[8],[9]中的序列集。这些序列集都不同时具有低相关特性、大线性复杂和较多的序列数目,例如文献[7],[8],[9]中的序列集具有低相关特性和大线性复杂度,但序列的数目相对于其长度较少,文献[2],[3]中序列集拥有最优的相关特性,但序列数目较少且线性复杂度很低,文献[1],[5],[6]中序列集有较多的序列数目和较好的相关特性,但线性复杂度同样很低。

资助信息: 国家自然科学基金资助项目(60873216)

本文基于 d-型函数和 Niho 序列集,构造了一类新的序列集,该序列集的序列数目为 2^n ,相关函数的最大边峰值为 $2^{n/2+2}$ -1,线性复杂度大于 $n2^{n/2-3}$ 。

2 预备知识

设 $S = \{s_i \mid 0 \le i \le M-1\}$ 是由 M 条周期为 N 的二元序列组成的序列集,其中 $s_i = \{s_i(t)\}_{t=0}^{N-1}, s_i(t) \in \{0,1\}$. 序列 s_i 和 s_j 的周期相关函数定义为:

$$R_{i,j}(\tau) = \sum_{t=0}^{N-1} (-1)^{s_i(t) + s_j(t+\tau)}$$

其中 $0 \le i, j \le M-1$, $0 \le \tau < N$, $t+\tau$ 是模N加。

序列集 S 的周期相关函数的最大边峰值 R_{\max} 定义为 $R_{\max} = \max\{|R_{i,i}(\tau)|i\neq j$ 或 $\tau\neq 0\}$ 。

令 GF(2ⁿ)表示含有 2ⁿ 个元素的有限域。

设正整数 n,m,e 满足 n=me , 定义从 $GF(2^n)$ 到 $GF(2^m)$ 的迹函数为

$$tr_m^n(x) = \sum_{k=0}^{e-1} x^{2^{mk}}$$
,

其中 $x \in GF(2^n)$ 。

迹函数的性质参见文献[4]。

定义 $\mathbf{1}^{[7]}$ 设 n = me , $e \ge 2$, H(x) 是从 $GF(2^n)$ 到 $GF(2^m)$ 的函数, d 是一个正整数,如果对于任意的 $x \in GF(2^n)$ 和 $y \in GF(2^m)$,有

$$H(yx) = y^d H(x)$$
,

那么称H(x)为从 $GF(2^n)$ 到 $GF(2^m)$ 的d-型函数。

定义 $2^{[7]}$ 设 n = me , $e \ge 2$, H(x) 是从 $GF(2^n)$ 到 $GF(2^m)$ 的 d-型函数,r 是一个正整数,并且满足条件 $gcd(r,2^m-1) = gcd(d,2^m-1) = 1$, α 是 $GF(2^n)$ 的一个本原元,那么称序列

$$s = \left\{ s(t) = tr_1^m ([H(\alpha^t)]^r) \right\}_{t=0}^{2^n - 2}$$

为 d-型序列。

引理 $\mathbf{1}^{[7]}$ 设 n=me, $e\geq 2$, $r\geq 1$, $\gcd(r,2^m-1)=1$, $f_0(x)$, $f_1(x)$ …, $f_{M-1}(x)$ 分别是从 $GF(2^n)$ 到 $GF(2^m)$ 的 d-型函数,并且满足 $\gcd(d,2^m-1)=1$ 。令 α 是有限域 $GF(2^n)$ 的一个本原元,序列集定义为

$$S^{(r)} = \{S_0^{(r)}, S_1^{(r)}, \dots, S_{M-1}^{(r)}\},\$$

其中

$$s_i^{(r)} = \{s_i^{(r)}(t) = tr_1^m([f_i(\alpha^t)]^r)\}_{t=0}^{2^n-2},$$

则 $S^{(r)}$ 和 $S^{(1)}$ 具有相同的相关函数值。

3. 序列集的构造

下文中总令 α 表示有限域 $GF(2^n)$ 的一个本原元, $\gamma_i \in GF(2^n)$, $i = 0,1,\cdots,2^n-1$, $r = 2^{m-1}-1$,n = 4m。 定义新序列集为,

$$S^{(r)} = \{s_0^{(r)}, s_1^{(r)}, \dots, s_{2^n-1}^{(r)}\}$$

其中 $s_i^{(r)} = \{s_i^{(r)}(t) = tr_1^m \{ [tr_m^n(\alpha^t + \gamma_i \alpha^{(3 \cdot 2^{2m} - 2)t}]^r \} \}_{t=0}^{2^n - 2}$.

对 $0 \le i \le 2^n - 1$,令 $f_i(x) = tr_m^n(x + \gamma_i x^{3 \cdot 2^{2m} - 2})$,则 有 $S_i^{(r)}(t) = tr_i^m \{ [f_i(\alpha^t)]^r \}$ 。

因为对任意的 $z \in GF(2^m)$,有 $z^{2^m-1} = 1$, 所以

$$f_{i}(zx) = tr_{m}^{n}[zx + \gamma_{i}(zx)^{3 \cdot 2^{2m} - 2}]$$

$$= ztr_{m}^{n}(x) + ztr_{m}^{n}(\gamma_{i}x^{3 \cdot 2^{2m} - 2})$$

$$= zf_{i}(x).$$

从而 $f_0(x), f_1(x), f_2(x), \dots, f_{2^n-1}(x)$ 分别是从 $GF(2^n)$ 到 $GF(2^m)$ 的 1-型函数。又因为 $gcd(2^m-1, 2^{m-1}-1)=1$,所以根据定义 2,序列

$$s_i^{(r)} = \{s_i^{(r)}(t) = tr_1^m \{ [f_i(\alpha^t)]^r \} \}_{t=0}^{2^n-2}$$

是 1-型序列,因此由引理 1 知 $S^{(r)}$ 和 $S^{(1)}$ 具有相同的相

关函数值。

由文[12]知, $S^{(1)}$ 的最大边峰值 $R_{\text{max}} = 2^{n/2+2} - 1$.因此本文构造的序列集 $S^{(r)}$ 的最大边峰值同样也为 $2^{n/2+2} - 1$ 。

下面证明序列集 $S^{(r)}$ 中的序列具有较大的线性复杂度,并且大于(除 $\gamma_i = 0$ 外)文献[14]中序列的线性复杂度。

令 $LS(s_i^{(r)})$ 为序列 $s_i^{(r)}$ 的线性复杂度。由文献[11] 知,若将 $s_i^{(r)}(t)$ 表示成 α^t 的多项式,则 $s_i^{(r)}$ 的线性复杂度就等于该多项式中包含的 α^t 的单项式的数目。若令 $x = \alpha^t$,则 $s_i^{(r)}(x) = tr_i^m\{[tr_m^{4m}(x + \gamma_i x^{3 \cdot 2^{2m} - 2})]^r\}$ 的展开式中关于 x 的单项式的个数就等于 $LS(s_i^{(r)})$ 。

$$\Rightarrow v = x^{2^{2m}-1}$$
, \mathbb{Q}

$$\begin{split} s_{i}^{(r)}(x) &= tr_{1}^{m} \{ [tr_{m}^{4m}(x + \gamma_{i}x^{3 \cdot 2^{2m} - 2})]^{r} \} \\ &= tr_{1}^{m} \{ [tr_{m}^{2m}(xy^{-2}(\gamma_{i}^{2^{2m}} + y^{2} + y^{3} + \gamma_{i}y^{5}))]^{r} \} \\ &= \sum_{k=0}^{m-1} \{ \sum_{j=0}^{1} [xy^{-2}(\gamma_{i}^{2^{2m}} + y^{2} + y^{3} + \gamma_{i}y^{5})]^{2m^{2}} \}^{2^{k}r}. \end{split}$$

若令 $\Delta_k(x) = \{\sum_{j=0}^1 [xy^{-2}(\gamma_i^{2^{2m}} + y^2 + y^3 + \gamma_i y^5)]^{2^{mj}}\}^{2^k r}$ 则有如下的引理。

引理 2 对 $k \neq k'$, $\Delta_k(x)$ 的展开式中关于变量 x 的单项式的指数与 $\Delta_{k'}(x)$ 的展开式中关于变量 x 的单项式的指数互不相同。

证明: 令 **A** 和 **B** 分别表示 $(\sum_{j=0}^{1} x^{2^{mj}})^{2^{k_r}}$ 和 $\Delta_k(x)$ 的 展开式中关于变量 x 的指数构成的集合。那么,因为 $y = x^{2^{2m}-1}$,所以若将集合 **A** 和 **B** 中的每个元素都模 $2^{2m}-1$,则 **A** 和 **B** 相等,即 **A** \equiv **B** mod $2^{2m}-1$ 。因此,只需要比较 $(\sum_{j=0}^{1} x^{2^{mj}})^r$ 和 $(\sum_{j=0}^{1} x^{2^{mj}})^{2^{k_r}}$ 的展开式中是 否有相同指数(模 $2^{2m}-1$ 情况下)的 x 的单项式。

根据文献[7]中引理 1 的证明可以知道 $(\sum_{j=0}^{1} x^{2^{mj}})^r$ 和 $(\sum_{j=0}^{1} x^{2^{mj}})^{2^k r}$ 中不存在相同指数(模 2^{2m} –1 情况下)的 x 的单项式,从而有引理 2 成立。证毕。

若用 $|\Delta_k(x)|$ 表示 $\Delta_k(x)$ 中关于x的单项式的数目,则由引理2可知, $LS(s_i^{(r)}) = m \cdot |\Delta_0(x)|$.

采用与文献[7]中命题 3 相同的证明方法,可以证明 $\Delta_0(x) = \sum_a [xy^{-2}(\gamma_i^{2^{2m}} + y^2 + y^3 + \gamma_i y^5)]^{\sum_{l=0}^l a_l 2^{ml}}$,其中的求和取遍所有满足 $a_0 + a_1 = 2^{m-1} - 1$ 及 $a_0 \ge 0$, $a_1 \ge 0$ 的向量 $\overline{a} = (a_0, a_1)$ 。

令 $T_{\bar{a}} = [xy^{-2}(\gamma_i^{2^{2m}} + y^2 + y^3 + \gamma_i y^5)]^{\Sigma_{l=0}^l a_l 2^{ml}}$,则有下面的引理成立。

引理 3 若向量 $\overline{a} = (a_0, a_1) \neq \overline{a}' = (a_0, a_1')$,则 $T_{\overline{a}}$ 和 $T_{\overline{a}}$ 的展开式中不存在指数相同的x的单项式。

证明:因为 $y=x^{2^{2m}-1}$,所以 $T_{\overline{a}}$ 的展开式中,变量 x 的指数模 $2^{2m}-1$ 同余 $\sum_{l=0}^{1}a_{l}2^{ml}$ 。因为 $\sum_{l=0}^{1}a_{l}2^{ml}$ 是某个正整数的 2^{m} 进制表示,并且 $\sum_{l=0}^{1}a_{l}2^{ml}<2^{2m}+1$,所以 当 $(a_{0},a_{1})\neq(a_{0}^{'},a_{1}^{'})$,一定有 $\sum_{l=0}^{1}a_{l}2^{ml}\neq\sum_{l=0}^{1}a_{l}^{'}2^{ml}$,从而引 理 3 成立。证毕。

根据引理2和引理3,有如下的命题成立。

命题 1 序列 s(r) 的线性复杂度

$$LS(s_i^{(r)}) = m \cdot \sum_{\bar{a}} |(\gamma_i^{2^{2m}} + y^2 + y^3 + \gamma_i y^5)^{\sum_{l=0}^{l} a_l 2^{ml}}|$$
 (1)

其中 $\overline{a} = (a_0, a_1), a_0 + a_1 = 2^{m-1} - 1, a_0 \ge 0$ 和 $a_1 \ge 0$ 。

因为当 $\sum_{i=0}^{1} a_i 2^{mi}$ 为一般值时,很难精确计算在 $\Gamma_i(y)$ 的展开式中,单项式 y 的数目,所以下面考虑 当 $\sum_{i=0}^{1} a_i 2^{mi}$ 取某些特殊值时, $\Gamma_i(y)$ 的展开式中关于 y 的单项式的数目,为此需要引理 4 和 5。

引理 4 设 $c = \sum_{j=0}^{l} t_j 2^{2j} + 2^{2l+l} \sum_{i=0}^{s} k_i 2^{2i}, l' \geq 2$ 。如果存在不全为零的整数 $t_0, t_1, \dots, t_l, k_0, k_1, \dots, k_s$, 使得 c = 0,那么一定存在某个 t_j 或 k_i ,使得 $t_j \equiv 0 \mod 4$ 或 $k_i \equiv 0 \mod 4$,但 $t_i \neq 0$ 且 $t_i \neq 0$ 。

证明: 假设 $\sum_{j=u}^{l} t_j 2^{2j} + 2^{2l+l'} \sum_{i=0}^{s} k_i 2^{2i} = 0$,其中 u 是使得 $t_u \neq 0$ 的最小正整数,则有

$$\sum_{i=u}^{l} t_i 2^{2j-2u} + 2^{2l+l'-2u} \sum_{i=0}^{s} k_i 2^{2i} = 0$$

从而 $t_u \equiv 0 \mod 4$ 。同样,若 $t_j = 0, j = 0, 1, \cdots, l$,而存在不全为零的 k_0, k_1, \cdots, k_s 使得 $\sum_{i=0}^s k_i 2^{2i} = 0$,那么一定有某个 $k_v \equiv 0 \mod 4$,但 $k_v \neq 0$ 。证毕。

引理5 设m为正奇数,整数a满足

$$-2(2^{2m}+1) < c < 2(2^{2m}+1)$$

其中 $c = \sum_{j=0}^{(m-3)/2} t_j 2^{2j} + 2^{m+1} \sum_{i=0}^{(m-3)/2} k_i 2^{2i}$, $t_j, k_i \in \{-5, -3, -2, -1, 0, 1, 2, 3, 5\}$,那么若 $c \equiv 0 \mod 2^{2m} + 1$,则一定有c = 0,并且对所有的i, j,有 $t_j = 0, k_i = 0$.

证明: 根据题设条件易知, 如果 $c \equiv 0 \mod 2^{2m} + 1$, 那么有 c = 0 或 $c = \pm (2^{2m} + 1)$ 。下面采用反证法证明 $c = \pm (2^{2m} + 1)$ 不成立。

不妨设 $c=2^{2m}+1$, c如题设所述。此时有

$$\sum_{j=0}^{(m-3)/2} t_j \, 2^{2j} + 2^{m+1} \sum_{i=0}^{(m-3)/2} k_i \, 2^{2i} = 2^{2m} + 1 \tag{3}$$

从而有 $t_0 \equiv 1 \mod 4$ 。故而(3)变换为

$$\sum_{j=1}^{(m-3)/2} t_j 2^{2j} + 2^{m+1} \sum_{i=0}^{(m-3)/2} k_i 2^{2i} = 2^{2m} + 4b_0$$
 (4)

其中 $b_0 \in \{-1,0,1\}$ 。

由(4)式可知,必有 $t_1 \neq 0$ 。否则,若 $b_0 \neq 0$,则(4)

显然不成立; 而若 $b_0 = 0$,则由引理 4 知,此时存在某个 $t_j \equiv 0 \mod 4$, j > 1,而 $t_j \neq 0$; 或者存在某个 $k_i \equiv 0 \mod 4$,而 $k_i \neq 0$ 。此与题设矛盾。由对(3)的讨论知,若(4)式成立,则可变换为

$$\sum_{j=2}^{(m-3)/2} t_j 4^{j-1} + 2^{m-1} \sum_{i=0}^{(m-3)/2} k_i 4^i = 4^{m-1} + 4b_1$$
 (5)

其中 $b_1 \in \{-1,0,1\}$ 。

对(5)式进行如同对(4)的讨论知道,此时必有 $t_2 \neq 0$ 。将这样的讨论重复下去可知,若(3)式要成立,则必有下式成立,即有

$$4^{2} \sum_{i=0}^{(m-3)/2} k_{i} 4^{i} = 4^{(m+3)/2} + 4b_{(m-3)/2}$$
 (6)

其中 $b_{(m-3)/2} \in \{-1,0,1\}$ 。

若 $b_{(m-3)/2} \neq 0$,则(6)式显然不成立;若 $b_{(m-3)/2} = 0$,则由引理 4 知,此时存在 $k_i \equiv 0 \mod 4$,但 $k_i \neq 0$ 。此与题设矛盾。

综上所述,在题设的条件下只能有c=0。再根据引理 4 知,对所有的i, j,有 $t_i = 0, k_i = 0$ 。证毕。

引理 6 当 m 为奇数时,如果 $a_0 = (2^{m-1}-1)/3$, $a_1 = (2^m-2)/3$ 或 $a_0 = (2^m-2)/3$, $a_1 = (2^{m-1}-1)/3$,那么 $\Gamma_i(y)$ 的展开式中 y 的指数在模 $2^{2m}+1$ 的情况下互不相同;当 m 为偶数时,如果 $a_0 = (2^m-1)/3$,且 $a_1 = (2^{m-1}-2)/3$ 或 $a_0 = (2^{m-1}-2)/3$, $a_1 = (2^m-1)/3$,那么 $\Gamma_i(y)$ 的展开式中 y 的指数在模 $2^{2m}+1$ 的情况下也互不相同。

证明:情形 1.m 为奇数。

1).如果 $a_0 = (2^{m-1}-1)/3, a_1 = (2^m-2)/3$,那么满足 $a_0 + a_1 = 2^{m-1}-1$ 。

令b表示 $\Gamma_{i}(v)$ 的展开式中v的指数,则有

$$b = \sum_{i=0}^{(m-3)/2} t_i 2^{2i} + 2^{m+1} \sum_{i=0}^{(m-3)/2} k_i 2^{2i}$$
 (7)

其中 $t_i, k_i \in \{0, 2, 3, 5\}$ 。

如果存在 $b' = \sum_{j=0}^{(m-3)/2} t_j' 2^{2j} + 2^{m+1} \sum_{i=0}^{(m-3)/2} k_i' 2^{2i}$,使得 $b \equiv b' \mod 2^{2m} + 1$,那么因为

 $b-b' = \sum_{j=0}^{(m-3)/2} (t_j - t_j') 2^{2j} + 2^{m+1} \sum_{i=0}^{(m-3)/2} (k_i - k_i') 2^{2i}$ (8) 其中 $(t_j - t_j'), (k_i - k_i') \in \{-5, -3, -2, -1, 0, 1, 2, 3, 5\}$,所以可知 $-2(2^{2m} + 1) < b - b' < 2(2^{2m} + 1)$,从而根据引理 5 可得,b = b',并且 $t_i = t_i'$, $k_i = k_i'$ 。

2).如果 $a_0 = (2^m - 2)/3, a_1 = (2^{m-1} - 1)/3$, ,那么也有 $a_0 + a_1 = 2^{m-1} - 1$ 。

此时
$$\Gamma_i(y)$$
的展开式中变量 y 的指数 b 为
$$b = 2\sum_{i=0}^{(m-3)/2} t_i 2^{2j} + 2^m \sum_{i=0}^{(m-3)/2} k_i 2^{2i}$$
(9)

其中 $t_i, k_i \in \{0, 2, 3, 5\}$ 。

如果存在 $b' = 2\sum_{j=0}^{(m-3)/2} t_j' 2^{2j} + 2^m \sum_{i=0}^{(m-3)/2} k_i' 2^{2i}$,使得

 $b-b' \equiv 0 \mod 2^{2m}+1$,那么又因为 $-2(2^{2m}+1) < b-b' < 2(2^{2m}+1)$,并且b-b'为偶数,所以一定有b-b' = 0,从而再根据引理 4 可知,此时有 $t_i = t_i, k_i = k_i'$ 。

情形 2.m 为偶数。

1). 如果 $a_0 = (2^m - 1)/3, a_1 = (2^{m-1} - 2)/3$,那么我们有 $a_0 + a_1 2^m = (2^{2m-1} - 2^m - 1)/3$,且 $a_0 + a_1 = 2^{m-1} - 1$ 。

此时 $\Gamma_i(y)$ 的展开式中,变量 y 的指数 b 满足 $b \le 5(a_0 + a_1 2^m) < 2^{2m} + 1$,并且

$$b = \sum_{j=0}^{(m-2)/2} t_j 2^{2j} + 2^{m+1} \sum_{i=0}^{(m-4)/2} k_i 2^{2i} , \qquad (10)$$

其中 $t_i, k_i \in \{0, 2, 3, 5\}$ 。

若存在 $b' = \sum_{j=0}^{(m-2)/2} t_j' 2^{2j} + 2^{m+1} \sum_{i=0}^{(m-4)/2} k_i' 2^{2i}$,使得 $b-b' = \sum_{j=0}^{(m-2)/2} (t_j-t_j') 2^{2j} + 2^{m+1} \sum_{i=0}^{(m-4)/2} (k_i-k_i') 2^{2i} = 0$, 其中 (t_j-t_j') , $(k_i-k_i') \in \{-5,-3,-2,-1,0,1,2,3,5\}$,则由引 理 4 可知,此时有, $t_i=t_j'$, $k_i=k_i'$ 。

2). 如果 $a_0 = (2^{m-1}-2)/3$, $a_1 = (2^m-1)/3$,那么也有 $a_0 + a_1 = 2^{m-1}-1$,且 $a_0 + a_1 2^m = (2^{2m}-2^{m-1}-2)/3$ 。此时, $\Gamma_i(y)$ 中 y 的指数 b 为

$$b = 2\sum_{j=0}^{(m-4)/2} t_j 2^{2j} + 2^m \sum_{i=0}^{(m-2)/2} k_i 2^{2i} .$$
 (11)

如果存在 $b' = 2\sum_{j=0}^{(m-4)/2} t_j' 2^{2j} + 2^m \sum_{i=0}^{(m-2)/2} k_i' 2^{2i}$,使得 $b-b' \equiv 0 \mod 2^{2m}+1$,其中 $t_j', k_i' \in \{0,2,3,5\}$.那 么 因 为 $-2(2^{2m}+1) < b-b' < 2(2^{2m}+1)$,并且 b-b' 是偶数,所以 有 b-b' = 0,从而由引理 4,对所有的 i,j,有 $t_j = t_j'$, $k_i = k_i'$ 。

根据情形 1 和情形 2 知,当向量 (a_0, a_1) 的选择满足引理 6 中题设条件时, $\Gamma_i(y)$ 的展开式中,y 的指数在模 $2^{2m}+1$ 的情况下互不相同。证毕。

定理 1 设 $r=2^{m-1}-1$,那么当 $\gamma_i \neq 0$ 时,序列 $s_i^{(r)}$ 的线性复杂度 $LS(s_i^{(r)}) > n \cdot 2^{n/2-3}$; 而当 $\gamma_i = 0$ 时, $LS(s_i^{(r)}) = n \cdot 2^{n/2-4}$ 。

证明:在(2)式中,当向量 (a_0,a_1) 的选择满足引理 6中的条件时,有 $a_0+a_1=2^{m-1}-1$ 。根据引理 6知,当 $\gamma_i\neq 0$ 时, $\Gamma_i(y)$ 的展开式中共有 4^{m-1} 个指数(模 $2^{2m}+1$) 互不相同的 y 的单项式。再由命题 1知,当 $\gamma_i\neq 0$ 时,序列 $s_i^{(r)}$ 的线性复杂度 $LS(s_i^{(r)})>m\cdot 2\cdot 4^{m-1}=n\cdot 2^{n/2-3}$;而当 $\gamma_i=0$ 时,序列为 GMW 序列,因此其线性复杂度 $LS(s_i^{(r)})=n\cdot 2^{n/2-4}$ 。证毕。

表 1 列出了本文构造的序列集 $S^{(r)}$ 与文[14]中序列集的性质比较。

Table 1. the comparison between this sequence set and the sequence set in the paper [14]

表 1 本文序列集与文[14]中序列集的比较

序列	n	序列 数目	最大边峰值	最大线性复 杂度
文[14]中序列	4 <i>m</i>	2 ⁿ	$2^{(n+4)/2}-1$	$n \cdot 2^{n/2-3}$
本文的序列	4 m	2^n	$2^{(n+2)/2}-1$	$> n \cdot 2^{n/2-3}$

表 2 中给出了当 $n = 4m, m = 3, 4, \dots, 7$ 时,本文序列的线性复杂度的数值解与文献[14]中序列的线性复杂度。

Table 2 the comparison of linear complexity between this sequence and the sequence in the paper [14]

表 2 本文序列与文[14]中序列的线性复杂度比较

m	本文中序列的线性复杂度 (序列数目)	文献[14]中序列 的线性复杂度 (序列数目)
3	48(1),168(1),180(其余)	96 (全部)
4	256(1),1344(1),1632(其余)	512 (全部)
5	1280(1),13580(其余)	2560(全部)
6	6144(1),72864(1),108480 其余)	12288(全部)
7	28672(1),498792(1),831208(其余)	57344(全部)

由表 1 可知,本文构造的序列集 s⁽ⁿ⁾ 与文[14]中序列集有相同的序列数目、序列长度和最大边峰值,但拥有更大(除 GMW 序列外)的线性复杂度,并且从表 2 可以看出,随着 m 的增大,本文中序列的线性复杂度远大于文[14]中序列的线性复杂度。

4 结论

本文基于 d-型函数和 Niho 序列集构造了一类具有大线性复杂度的低相关序列集,该序列集与文献[14]中的序列集有相同的相关函数值和序列数目,但拥有更大的线性复杂度。若将这类序列用于码分多址通信系统,可以提高系统的安全性。

References (参考文献)

- Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions [J]. IEEE Trans. Inform. Theory, 1968, 14(1), P154-156.
- [2] Kasami T. Weight distribution Formula for some class of cyclic codes[R]. Coordinated Sci Lab, Univ Illinois, Urbana, IL, 1996.
- [3] Olsen J D, Scholtz R A and Welch L R. Bent function sequences [J]. IEEE Trans. Inform. Theory, 1982, 28(6), P858-864.
- [4] Lidl R, Niederreiter H. Introduction to Finite Fields and their Applications. Cambridge: Cambridge University Press, 1994.
- [5] Kasami T. Weight distribution of Bose-Chaudhuri-Hocq-uen ghem codes [M]. Combinatorial Mathematics and Its Applic ations, R. C. Bose and T. A. Dowling, Eds. Chapel Hill, NC: Univ. North Carolina Press, 1969, P335–357.
- [6] Zeng X, Liu J Q and Hu L. Generalized Kasami sequences: the

- large set [J], IEEE Trans. Inform. Theory, 2007, 53(7):, P2587-2598
- [7] Klapper A. d-form sequences: families of sequences with low correlation values and large linear spans [J]. IEEE Trans. Inform. Theory, 1995, 41(2):, P423-431.
- [8] No J S, Kumar P V. A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span [J]. IEEE Trans. Inform. Theory, 1989, 35(2):, P371-379
- [9] Zeng X, Hu L, Liu J Q, and Zhu Y. A family of binary sequences with optimal correlation property and large linear span [A]. In 2006 IEEE International Conference on Communications (ICC 2006).
- [10] Zeng X, Hu L and Jiang W. A family of binary sequences with 4-valued optimal out-of-phase correlation and large linear span

- [J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences., 2007, E89-A(7):, P2029-2035.
- [11] Key E L. An analysis of the structure and complexity of nonlinear binary sequence generators [J]. IEEE Trans. Inform. Theory, 1976, 22(6):, P732-736.
- [12] [Niho Y. Multivalued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences [D]. Ph.D. Dissertation, Univ. Southern Calif., Los Angeles, 1972.
- [13] Helleseth T. Some results about the cross-correlation function between two maximal linear sequences[J]. Discrete Math.16(1976), P301-307
- [14] Tang Jinbing, ZENG Xiangyong, HU Lei. On the linear span of a class of low correlation sequence family[J], Journal on Communications, 2008, 29(7), P75-80 (Ch).