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ABSTRACT 

This paper investigates the revenue and duration of a well-known hybrid oral auction (English auction and Dutch auc-
tion) that is extensively adopted in practice, for instance the Christie’s. Unlike sealed bid auction, oral auction is fea-
tured by its complexity of dynamic process. The bidding price varies as a stochastic time series. Therefore, the duration 
of oral auction as well as its revenue performs randomly. From the seller’s perspective, both the revenue and the dura-
tion are so important that extra attention and effort should be put on auction design. One of the most important issues is 
how to choose the starting bid price to maximize its revenue or minimize its duration. In this paper, the bidding process 
is decomposed into two phases: English auction (descending-bid) phase and the Dutch auction (ascending-bid) phase. 
For each phase, with the aid of Markov method, we derive the expected revenue and duration as a function of the start-
ing bid. For an oral auction with a large number of bidder and each bidder behaves independently, we provide the limit 
results of the expected revenue and duration. The results of the auction model can be easily implemented in auction 
design. 
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1. Introduction 

As a powerful and well-known tool in business markets, 
auction plays an important role in selling objects espe-
cially for antiques and art. With a long history around the 
world, auctions are very common for the commodities such 
as tobacco, fish, cattle, racehorses, and anything that has 
a market of multiple people interested in purchasing. The 
main reason why auction is so common is that a group of 
people are interested in buying the same object, and thereby 
offering their individual bids on the object. Serving as a 
tool that takes all the interested buyers into one game, 
auction decides the winner (usually the highest bidder) of 
the game. 

Recently, the auction theory has been well developed 
systematically in practice and academy as well. Generally 
speaking, there are four types of auction that are used for 
the allocation of a single item: These four standard auctions 
are the English auction, the Dutch auction, the First-Price 
Sealed-Bid auction, and the Second-Price Sealed-Bid auc-
tion. The context for each type of auction is explained briefly 
as follows. We refer the interested reader to [1]. 
 Open ascending-bid auctions (English auctions) is 

commonly referred to as oral outcry auctions, in which 
the price is steadily raised by the auctioneer with bidders 
dropping out once the price becomes too high. This con-

tinues until there remains only one bidder (the highest 
bidder) who wins the auction at the current price. 
 Open descending-bid auctions (Dutch auctions) in 

which the price starts at a level sufficiently high to deter 
all bidders and is progressively lowered until a bidder 
indicates to buy at the current price. The bidder wins the 
auction and pays the price at which he or she bid. 
 First-price sealed-bid auctions in which bidders 

place their bid in a sealed envelope and simultaneously 
hand them in to the auctioneer. The envelopes are opened 
and the bidder with the highest bid wins, paying a price at 
which he or she bid. 
 Second-price sealed-bid auctions (Vickrey auctions) 

in which bidders place their bid in a sealed envelope and 
simultaneously hand them to the auctioneer. The enve-
lopes are opened and the bidder with the highest bid wins, 
but paying at the second highest bid. 

Revenue management is the most crucial topic in auc-
tion design and its application. One of the most remark-
able results in auction theory is the revenue equivalence 
theorem, which was first introduced by [2]. Two auctions 
are said to be “revenue equivalent” if they produce the 
same expected sales price. This is an important issue to a 
seller who wants to hold an auction to sell the item for 
the highest possible price. If one type of auction is found 
to generate higher average sales revenue, then that type 
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auction will obviously be preferred by the sellers. In other 
words, the revenue equivalence theorem states that, if all 
bidders are risk-neutral bidder and have independent pri-
vate value for the auctioned items, then all four of the 
standard single unit auctions have the same expected sales 
price (or seller’s revenue). 

To analyze and formulate a dynamic auction, most lit-
erature adopts the stochastic process approach. For ex-
ample, an online auctions problem is studied by [3] and 
they design a (1－1/e) competitive (optimal) algorithm 
for the online auction problem. Vulcano, G. et al. analyze 
a dynamic auction, in which a seller with C units to sell 
faces a sequence of buyers separated into T time periods 
[4]. They assume each group of buyers has independent, 
private values for a single unit. Buyers compete directly 
against each other within a period, as in a traditional auc-
tion. For this setting, they prove that dynamic variants of 
the first-price and second-price auction mechanisms maxi-
mize the seller's expected revenue. E. J. Pinker, et al. analyze 
the current state of management science research on online 
auctions [5]. They develop a broad research agenda for 
issues such as the behavior of online auction participants, 
the optimal design of online auctions, and so on. Most 
recently, Z. J. Shen and X. Su provide a detailed and 
up-to-date review of customer behavior in the revenue 
management and auction literatures and suggest several 
future research directions [6]. 

In the auction study, an increasing number of empirical 
studies apply a structural econometric approach within the 
theoretical framework of the independent private values 
model and the common value model [7,8]. In common 
value auctions, a bidder's value of an item depends en-
tirely on other bidders' values of it. By contrast, in private 
value auctions, the value of the good depends only on the 
bidder's own preferences. In auction design, efficiency 
and optimality are the two primary goals: the former fo-
cuses on the social welfare of the whole seller-bidder system, 
whereas the latter emphasizes the revenue-maximizing 
from the seller’s perspective [9]. 

Markov theory was developed by the Russian mathe-
matician A. A. Markov. The theory provides a foundation 
for modeling a stochastic process whose future state de-
pends solely on its current state and is completely inde-
pendent of its past states. This property is well known as 
memorylessness [10]. Markov process has been wildly 
applied to model the auction process. For example, S. 
Park, et al. devise a new strategy that an agent can use to 
determine its bid price based on a more tractable Markov 
chain model of the auction process [11]. They show that 
this strategy is particularly effective in a “seller’s market”. 
A. Segev, et al. model an online auction in terms of a 
Markov process on a state space defined by the current 
price of the auctioned item and the number of bidders 
that were previously “bumped” [12]. They first convert 
an online auction into a small-to-medium sized auction. 

Then the transition probability matrix of states is derived 
and the price trajectory of the small-scale Markov proc-
ess is obtained. Finally, the final price prediction can be 
determined based on the obtained transition probability 
matrix. 

Duration of auction is another factor under considera-
tion in auction design. D. Reiley, et al. show that the 
length of the auction positively influences the auction 
price [13]. To the best of our knowledge, except the 
aforementioned reference, there are very few literatures 
considering the duration of auction. At this point, one 
effort of this paper is to bridge the gap via deriving the 
duration as a function of the starting bid. 

Unlike sealed bid auction, oral auction is featured by 
its dynamic complexity of the bidding process. In practice, 
oral auction is more widely preferred than sealed bid 
auction. For instance, Christie's has auctioned off artwork 
and personal possessions mostly via oral auctions [14]. 
Christie's was founded in London, England, on 5th December 
1766 by James Christie. Christie's soon established a repu- 
tation as a leading auction house, and took advantage of 
London's new found status as the major centre of the 
international art trade after the French Revolution. Christie's 
has held the greater market share against its longtime 
rival, Sotheby's, for several years and is currently the 
world's largest auction house by revenues. In addition to 
Christie's, a variety of world famous auction organizations 
adopt oral auction in their business. 

The bidding process of the oral auction under study is 
explained as follows. The auctioneer begins the auction 
with an announced starting bid. This bid is referred to as 
the starting bid. Then the auctioneer will ask the bidders 
for their response by open cries. If nobody responses for 
the bid, then the auctioneer announce “Going once” for a 
short while. If there is still no response from bidders, then 
“going twice” is announced for another short while. If no 
response again, then the auctioneer deduces the bid, and 
ask the bidder for their response. The similar process 
continues until there is bidder responding to the revised 
bid. Such bid-deceasing phase will be stopped since all 
bidders shall response to a revised bid while it gets low 
enough. Once a bidder response to a revised bid, the auc-
tioneer increases the bid and asks for the response with 
“going once, going twice” as aforementioned crying out 
process. The process proceeds and stops until there is no 
response within the sequential announcement of “going 
once, going twice and gone”. In other words, once no 
bidder is willing to raise the revised bid, the object is 
“hammered down”, and the last bidder (with the highest 
bid) wins the auction. 

From the bidding process described above, we can see 
the oral auction is composed of two phase: descend-
ing-bid (Dutch auction) and ascending-bid (English auc-
tion), and thereby the oral auction is referred to as a hy-
brid auction. For the hybrid oral auction and from the 
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practice point of view, the final bid and the total time 
spent on bidding are two important factors investigated in 
auction design. The final bid of the auction is referred to 
as the revenue and the total time of bidding is referred to 
as the duration. Each of them can be employed to evalu-
ate the efficiency of the auction. Maximum revenue or 
minimum duration can be obtained via choosing an opti-
mal starting bid. In this paper, it is of our interest to de-
rive the expected revenue and duration as a function of 
the starting bid. To this end, we shall first formulate an 
oral auction model based on Markovian property. Then 
we decompose the hybrid oral auction into two phases: 
descending-bid phase and ascending-bid phase. For each 
phase, we derive the Markov transition matrixes which 
are referred to as the downward for the descending-bid 
phase and upward matrix for the ascending-bid phase. 
With the aid of Markov approach, we finally obtain the 
revenue and duration of the auction as a function of the 
starting bid. 

where  and . Let  and F  denote 

the starting bid and the final bid, respectively. Let B  
denote the lowest bid level over the bidding process, 
where  and B . For each bid, let T  denote 
the whole period length of announcement by the auc-
tioneer (briefly referred to as the announcement period 

for each bid). Let  denote the number of responds 

to the bid  from bidders within announcement period 

. In the descending phase, if  for bid , 
then the auctioneer will decrease the bid, otherwise, the 
descending-bid phase will stop and proceed to the as-

cending-bid phase. In the ascending phase, if  

for bid , the auctioneer will increase the bid, otherwise, 

the auction will end with the final bid . Figure 1 
depicts a sample path of the oral auction bidding process. 
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From the auction process described above, we have 
some following conclusions. This paper makes the following contributions. First, it 

presents an exploratory analysis of the hybrid auction and 
obtains a closed form expressions for the auction revenue 
and duration. Secondly, for a large group of bidders, the 
limit performance has been analyzed. These results can 
be applied directly in practice as an aid in auction design. 

1) All the items could be auctioned off since the bid-
ders are willing to take the auction at a low enough price, 
say . Therefore, the final bid of the auction is at least . 1P 1P

2) Within the bidding process, there are two bidding 
phase: descending and ascending. In the descending phase, 
bidding price decreases from start price  to the lowest 
bid . In the ascending phase, bidding price increases 
from the lowest bid  to the final bid . 

S
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B

The remaining of this paper is organized as follows. 
The model of oral auction is formulated in § 2. The ex-
pected revenue is derived in § 3, and the duration is de-
rived in § 4. Finally, § 5 concludes the paper. The random variable  corresponding to bid 

 governs the bidding process. If , namely, 
( )iN T

iP 0( )iN T >
2. Model Formulation 

Let the discrete bid levels be denoted by 0,1,2,3,...{ : }iP i = , 
there are some bidders willing to take the auction with 

bid , then the auctioneer will revise the bid and increaseiP
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Figure 1. A sample path of the bidding process 
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from  to . Let iP 1iP +

0Pr{ ( ) }iN T q= = i             (1) 

then, 

0 1Pr{ ( ) }i iN T q> = -          (2) 

  Since each  is given and constant, the transition 

probability from  to  or  is solely de- 

iq

iP 1iP + 1iP-
termined by . It implies that the bidding process is a 

Markovian. 
iq

From previous discussion, we can see there are three 

typical processes which are possibly incurred in practice. 

Case 1. Descending-bid (Dutch auction) 

In the descending-bid process, the bidding is monoto-

nously decreasing from starting price  to final bid F . 

Figure 2 depicts a sample path of such process. 

S

Case 2. Ascending-bid (English auction) 

In the ascending-bid process, the bidding is monoto-

nously increasing from starting price  to final bid . 

Figure 3 depicts a sample path of such process. 
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Figure 2. A sample path of the descending-bid process 
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Figure 3. Ascending-bid process 
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Case 3. Hybrid bidding 
As shown in Figure 1, the bidding is first decreasing 

from starting bid  to the lowest bid , and then in-
creasing from the lowest bid  to the final bid . 

S B
B F

As we can see, the descending-bid (described in case 1) 
and ascending-bid (described in case 2) processes are 
trivial cases of the hybrid bidding process. The hybrid 
auction could be decomposed into descending-bid phase 
and ascending-bid phase, which gives an idea to analyze 
oral auction. 

2.1 Descending Phase 

The descending phase is a Markov process and its 
one-step transition matrix is given by 
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To see this, we consider the states ant their one-step 
transition over the descending-bid process. 
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1
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Since any bidder is willing to take the auction at price 

, we must have . Therefore 1P 1 0q =

11
0M

( , )
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For any other states where j i¹  and 1j i¹ - , we 
have 

0M
( , )i j-é ù =ê úë û               (7) 

In summary, we have  given by Equation (3). M-

2.2 Ascending Phase 

The ascending phase is a Markov process and its one-step 
transition matrix is given by 
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for any other states where j i¹  or 1j i¹ + , 

0M
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In summary, we have  given by Equation (8). M-

3. Revenue of Oral Auction 

In this section, we shall derive a functional expression for 
the revenue of oral auction as a function of the starting 
bid. 

Given the starting bid , let the expected revenue of 
the auction be denoted by 

kP

( )kR P F S Pk
é ù= =ê úë û             (14) 

In the following, we consider the revenue in descend-
ing-bid, ascending-bid and hybrid auctions. 

3.1 Descending-Bid Phase 

During the descending-bid process with the starting bid 

, the probabilities for , , 

, …,  are provided in Table 1. 
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(16) 

Accordingly, the expected revenue for the ascend-

ing-bid auction with the starting bid  is given by lS P=
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Table 1. Final bid and its probability over the descending-bid phase 
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Table 2. Final bid and its probability over the ascending-bid phase 
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3.2 Ascending-Bid Phase 

In the ascending process with the starting bid , 

the probabilities for , ,…,  are pro-

vided in Table 2. 

l
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Accordingly, the expected revenue for the ascend-

ing-bid auction with the starting bid  is given by lS P=
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3.3 Hybrid Auction 

m
(19) 

In the hybrid auction process with the starting bid 

, the probability for the process with the lowest 

bid level  and the final bid  is given 

by, where  and l ,  
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Given the starting bid , the expected revenue is given by kS P=
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3.4 An Example of Auction with a Large Number 
of Bidders 

In this subsection, we consider an example of oral auc-
tion where there are a large number of potential bidders. 
We assume that each bidder responds to the bid inde-
pendently and the probability of responding to bid iP  
over the announcement period is small. To begin with, 

we give a limit theory as follows. 

Lemma 1: Let X  be a binomial random variable 

with parameters , then  approached to Pois-

son random variable with parameter  as n  

gets large and  gets small. 
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Then, for a large enough  and a small enough , 

we have the following limits, 
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In view of Lemma 1, for a large  and small , 
the number of responding bidders within a unit time in-
terval is a Poisson random variable with arrival rate 

. It follows that the number of responding 

bidders within the announcement period T ,  

follows a Poisson distribution, that is . 

Since , therefore . 

Let further , then 
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Accordingly, 

( )i T      (24) 

and . Substituting 

Equation (24) into Equation (21), we have 
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              (25) 

Substituting Equation (25) into Equation (22), we finally have 

1
11exp 1( ) ( ln( exp( )))

k

m

l m l

k m
k ii l j lmR P P p p p

¥

= =
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Figure 4 depicts the sketch of the functional relation-
ship between the expected revenue and the starting bid. 
Graphically, the peak point in the curve represents the 
optimal starting bid as well as its corresponding expected 
revenue. 

4. Duration of Oral Auction 

In this section, we consider the expected length of the 
oral auction. In practice, each bid is announced for at 

most 3 times. For each bid, let ,  and  denote 1T 2T 3T
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Figure 5. Time evolution of a bidding process 

 
the time length of the periods between the announce-
ments of the bid beginning, “going once” “going twice” 

and “gone”, respectively. Let . For 

example, when the auctioneer announces the bid , if 

there is no response up to , that is , then 

1 2T T T T= + +

P

1 0( )iN T =

3

2

3

i

1T

the auctioneer announces “going once”; if there is still no 

response up to , that is  

then “going twice” will be announce; if there is no re-

sponse up to , that is , then 

“gone” is announced. Figure 5 depicts a sample path of 

the time evolution of the bidding process in term of a 

step function. 

1T T+

1 2T T+ +

1 2 0( )iN T T+ =

0( )iN T =T
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Let  denote the time length for bid , where 

 can take value of , , or . 

For any bid , let  denote the probability of there 

is no response during period Xi Pi

1 2T T+Xi 1T

,i j

1T T+ 2 3T+

Pi q

Tj , where 1 2 3, ,j =

=

, that 

is  

1(i= 0, P( ) )i jq N T           (27) 

Lemma 2. For any bid , the following holds Pi
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Proof. The conditional probabilities are given as 
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Then, the proof is completed by the definition of con-
ditional expectation. (Q.E.D) 

Let  denote the time length of the bidding 

process with the starting bid , the lowest bid 

 and the final bid . Thereby 
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Note that there is no response for any bid along the 
descending-bid process. Then, Equation (29) can be sim-
plified as 

1( )
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Therefore, the duration for the auction with starting bid 
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l
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where  is given by Equation (28). 

There, the first equation above holds by the definition 
and the conditional expectation. The second equation 
holds by Equation (30). The third equation holds follow-

0[ | ( )j jX N T > ]
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ing the definition of conditional expectation. The last 
equation follows Equation (21). 

5. Conclusions and Discussions 

This paper studies the revenue and duration of an oral 
auction, which has a hybrid structure of English auction 
and Dutch auction. Our effort is to derive the revenue and 
duration of the auction as a function of the starting bid. 
To this end, we decomposed the bidding process into two 
phases: English auction (descending-bid) phase and the 
Dutch auction (ascending-bid) phase. For each phase, we 
first gave the one-step transition matrix and the formula 
for revenue and duration are obtained consequently. For 
an oral auction with a large number of bidder and each 
bidder behaves independently, we also derived the limit 
results of the expected revenue and duration. 

The results obtained can be implemented in practice 
directly. In particular, the probability of bidder respond-
ing to a bid can be statistically estimated from the ob-
served data. Therefore, the one-step Markov transition 
matrix can be computed directly. The one-step transition 
matrix for each phase can be used to compute the ex-
pected revenue and duration. From the seller’s perspec-
tive, the optimal starting bid is of great interest and it can 
be obtained numerically by some basic searching algo-
rithm. With the formula for revenue and duration, we 
may take their ratio to evaluate the efficiency of the oral 
auction. This ratio accounts for the revenue as well as the 
time, and thereby provides a comprehensive evaluation. 

Our model is formulated based on Markov assumption, 
that is, the bidder behaves only according to a function of 
the bid level. It does not depend on the bidder’s previous 
behavior as well as the other bidders’ behavior. Although 
Markov process models provide a mathematical approach 
to predict online auction prices, estimating parameters of 
a Markov process model in practice is a challenging task. 
For example, S. Chou, et al. propose a simulation-based 
model as an alternative approach to predict the final price 
in online auctions [15]. To study the oral auction with 
bidder inter-dependent behavior, we can extend our model 
to a multi-space Markov model, in which each state space 
represents the bidding price for each bidder. This leads to 
a new topic of further research. 

It is commonly assumed that the customer behavior is 
exogenous. For example, market size is often represented 
using a demand distribution (e.g., the newsvendor model). 
However, in our real world of oral auction, all bidders do, 
at some point, actively evaluate alternatives and make 
choices. This suggests that bidders’ decision is jointly 
effected together. Thereby, “customer behavior” should 
be introduced to auction design. In our view, it is impor-

tant to adopt a micro-perspective on such biding interac-
tions. This requires a high-resolution lens to zoom in on 
the incentives and decision processes of bidders at their 
individual level. 
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