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Abstract 
 
The effect of radiation on the unsteady natural convection flow past an infinite vertical plate is presented, 
wherein the plate temperature is a ramped one. The fluid considered here is a gray, absorbing/emitting but a 
non-scattering medium. The influence of the various parameters entering into the problem on the velocity 
field, temperature field, skin friction and Nusselt number is studied. 
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1. Introduction 
 

The analysis of free convection flow near a vertical plate 
has been carried out as an important application in many 
industries. Numerous investigations are performed by 
using both analytical and numerical methods. The first 
exact solution of the Navier-Stokes equation was given 
by Stokes [1] and explains the motion of a viscous in- 
compressible fluid past an impulsively started infinite 
horizontal plate in its own plane. This is known as 
Stokes’s first problem in the literature. If the plate is in a 
vertical direction and gives an impulsive motion in its 
own plane in a stationary fluid, then the resulting effect 
of buoyancy force was first studied by Sundalgekar [2] 
by Laplace transformation technique and the effects of 
heating or cooling of the plate by free convection cur- 
rents were discussed. Pohlhausen [3] was among the ear- 
lier research workers, who first analyzed the steady free 
convective flow of a viscous, incompressible fluid past a 
semi-infinite vertical plate by using integral method. 
Later on, Ostrach [4] studied the same problem using the 
similarity solution method. Siegel [5] and Gebhart [6] 
discussed the unsteady free convective flow of a viscous 
incompressible fluid, bounded by a semi-infinite vertical 
wall by using integral and approximation methods, re- 
spectively. Several authors (cf. [7-12]) have investigated 
a number of unsteady free convection flows near a verti- 
cal plate under different sets of thermal conditions at the 
bounding plate.  

Practical problems usually occupy wall conditions that 

are non-uniform or arbitrary. Therefore, it is very useful 
to investigate problems subject to step change in wall 
temperature. Schetz [13,14] developed an approximate 
analytical model for natural convection flow from a ver- 
tical plate with discontinuous wall temperature condi- 
tions. However, different techniques were attempted on 
this problem. Hayday et al. [10] used a numerical ap- 
proach, Kelleher et al. [11] and Kao [15] used series ex- 
pansions. Lee and Yovanovich [12] have attempted to 
improve the earlier results for step change in wall tem- 
perature.  

The interaction of natural convection with thermal ra- 
diation has increased greatly during the last decade due 
to its importance in many practical involvements. When 
free convection flows occur at high temperature, radia- 
tion effects on the flow become significant. Radiation 
effects on the free convection flow are important in con- 
text of space technology, processes in engineering areas 
occur at high temperature. Soundalgekar and Takhar [16] 
have considered the radiative free convective flow of an 
optically thin gray-gas past a semi-infinite vertical plate. 
Radiation effects on mixed convection along an isother- 
mal vertical plate were studied by Hossain and Takhar 
[17]. Raptis and Perdikis [18] studied the effects of 
thermal radiation and free convection flow past a moving 
vertical plate. Das et al. [19] have analyzed radiation 
effects on flow past an impulsively started infinite iso- 
thermal vertical plate by the Laplace transform tech- 
nique. 

Recently, Muthucumaraswamy and Janakiraman [20] 
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studied MHD and radiation effects on moving isothermal 
vertical plate with variable mass diffusion. Also, Chandran 
et al. [8] have analyzed the unsteady natural convection 
flow of a viscous incompressible fluid near a vertical 
plate with ramped wall temperature and they have com- 
pared the results with the case of constant wall tempera- 
ture. The fluid convection resulting from such a wall 
temperature profile is likely to be of relevance in several 
industrial applications, especially, where the initial tem- 
perature profiles assume importance in design processes. 
Saha et al. [21] investigated the natural convection 
boundary layer adjacent to an inclined semi-infinite flat 
plate subjected to ramp heating. Recently, Deka et al. [22] 
have analyzed the unsteady free convection flow of a 
viscous incompressible fluid past an infinite vertical 
plate with ramped wall temperature in presence of heat 
source. 

In the present problem, it is proposed to study the ef- 
fect of thermal radiation on the unsteady free convection 
flow of a viscous incompressible fluid past an infinite 
vertical plate containing a ramped type temperature pro- 
file with respect to time. Two different solutions corre- 
sponding to ramped as well as constant wall temperature, 
are obtained by Laplace transform technique have been 
shown separately. 

 
2. Mathematical Formulation 

 
We consider a two-dimensional flow of a viscous in- 
compressible fluid past an infinite vertical flat plate. The 
fluid considered here is a gray, absorbing/emitting but a 
non-scattering medium. With respect to an arbitrarily 
chosen origin on this plate, the x -axis is taken along 
the wall in the vertically upward direction, and the y - 
axis is taken normal to the plate into the fluid. Initially, 
for time , both the fluid and the plate are at rest 
and assumed to be at the same temperature . At time 

, the temperature of the plate is raised or lowered to 

0t 
T

0t 
0 0w  and thereafter main-

tained at the constant temperature  for t . 
( )T  ,  when  t t t t     T T

w 0

We assume that the flow is laminar and is such that the 
effects of the convective and pressure gradient terms in 
the momentum equations can be neglected (see Currie et 
al. [23]). It is also assumed that the effect of viscous dis-
sipation is negligible. Moreover, as the plate is infinite in 
extent in the

T  t 

x -direction, the derivatives of all the flow 
variables with respect to x  vanish and as a result of the 
boundary layer approximations, the physical variables 
are functions of  only. Thus the motion is one di- 
mensional with only non-zero vertical velocity 

,y t 
-u  

varying with  and t  only. Due to one-dimensional 
nature, the equation of continuity is trivially satisfied.  

y 

Then under usual Boussinesq’s approximation, the un- 

steady flow is governed by, 
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The initial and boundary conditions are, 
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(3) 
The local radiant for the case of an optically thin gray 

gas is expressed by, 

* 4 44 (rq
a T T

y
  )

    
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         (4) 

It is assumed that the temperature differences with the 
flow are sufficiently small so that  may be expressed 
as a linear function of the temperature, which is accom-
plished by expanding 

4T 

4T   in a Taylor series about T  
and neglecting the higher order terms. Thus, 

4 34 3T T T T 4
                    (5) 

By using Equations (4) and (5), Equation (2) reduces 
to, 
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Introducing the non-dimensional quantities, 
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the Equations (1) and (2) reduce to, 
2
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According to the above non-dimensional process, the 
characteristic time t0 can be defined as, 
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t

and then the initial and boundary conditions in non-di-
mensional form are, 

0 :       0,      0,                   0

0,                                   at 0
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 All the physical quantities are mentioned in Nomen- 
clature. 

 
3. Method of Solution 

 
Here,  1H t  is the unit step function defined, in 

general as, 
The Equations (8) and (9) subject to the conditions (10) 
are solved by the usual Laplace-transform technique and 
the solutions are as follows:  

1,

0, 0
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Case I: Pr  1 
The exact solutions for temperature and velocity are 

given by, 
To differentiate the effect of the ramped temperature 

distribution from the constant wall temperature on the 
flow, we compare both solutions obtained. The solutions 
for temperature and velocity for the flow near an iso-
thermal stationary plate can be obtained as, 
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       (15) where, (see the equation at the bottom of this page). 
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Case II: Pr = 1. 
Pr 0  The exact solutions for temperature and velocity are, 
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where, 
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4. Nusselt Number and Skin-Friction 

 
We now study the heat transfer coefficient, i.e. Nusselt 
number, which is given in non-dimensional form by, 
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while, for the isothermal plate, 
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From the velocity field, we now study the skin friction. 
The non-dimensional form of skin-friction is given by, 
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Again, the skin friction for isothermal plate is given 
by, 
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5. Results and Discussions 
 
In order to understand the effects of different physical 
parameters, namely; rP  (Prandtl number), R  (radiation 
parameter) and t  (time), on the nature of the flow, 
computations are carried out for velocity, temperature, 
Nusselt number and skin friction. The computed results 
are presented graphically. In all the figures, dotted lines 
correspond to solutions without ramped wall tempera-
ture. 

Figures 1-3 display the effect of  (time) on the 
temperature field for the case of air (Pr = 0.71). It is ob- 
served that temperature increases with an increase in  
(time). It is also found that the temperature decreases 
with  from its ramped value on the plate to its free 
stream value for all values of time . 

t

t

y
t

Figure 2 represents the temperature profiles for dif-
ferent values of  at  and . It is 
found that the temperature decreases with an increase in 

. Figure 3 shows the effect of radiation parameter R 
on the temperature field for fixed values of 

Pr 0.5t  2.0R 

0.5t
Pr

  and 
0.71Pr   and demonstrates that the temperature de- 

creases gradually with increasing values of .  R
From Figures 1-3 we have presented the temperature 

variation with the two types of boundary conditions, 
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Figure 1. Temperature profile for different time t. 
 

 

Figure 2. Temperature profile for different Pr. 
 

 

Figure 3. Temperature profile for different R. 
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ramped and constant plate temperature. We observe that 
the fluid temperature is greater in the case of isothermal 
plate than in the case of ramped temperature at the plate. 
This should be expected since in the latter case, the 
heating of the fluid takes place more gradually than in 
the isothermal case. Also, we observe that the tempera-
ture is maximum near the plate and decreases away from 
the plate and finally takes free stream value for all values 
of ,  and . t Pr R

In Figures 4 and 5, the velocity profiles are shown for 
different values of physical parameters involved. Figure 
4 reveals velocity variations with and  at Pr t 3.0R  . 
It demonstrates that the velocity decreases with increase- 
ing the Prandtl number. Figure 5 illustrates the influence 

of  on the velocity field for both ramped temperature 
and isothermal plate. It is observed that the fluid velocity 
decreases on increasing radiation parameter  in the 
boundary layer region. This implies that the radiation 
decelerates fluid velocity for both ramped temperature 
and isothermal plate. Figures 4 and 5 also demonstrate 
that the velocity increases with an increase in time . 
Again, from Figures 4 and 5, we observe that the veloc-
ity increases with  near the plate, becomes maximum 
and then decreases away from the plate and finally takes 
asymptotic value for all values of . Lastly, it is seen 
that the velocity in case of ramped temperature plate is 
always less than the flow induced by a plate of constant 
temperature.  

R

R

t

y

R

 

 

Figure 4. Velocity profile for different Pr and t. 
 

 

Figure 5. Velocity profile for different R and t. 
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Nu  is calculated for different ,  and t  and pre- 

sented in Figures 6 and 7. It is clear from the figures that 
for the ramped plate temperature, the Nusselt number 
increases for a range  and decreases for  
for all  and . But in case of constant wall tempe- 
rature, the Nusselt number decreases with respect to . 

Pr

1

R

0 t  1t 

t
Pr R

The numerical values of  are evaluated for different 
values of ; 0.71, 7.0Pr  2.0, 5.0R   and depicted in 
Figure 8 The effects of ramped and constant wall tem- 
perature on skin friction are also presented in this figure. 
We have seen that due to the presence of radiation, the 
skin-friction is greater in case of ramped temperature of 

the plate than the case of an isothermal plate. It is also 
noticed that for small values of t < 1, there is a quick fall 
in the skin friction in the case of ramped temperature of 
the plate, whereas the skin friction decreases more 
gradually with time for the case of isothermal plate. Fur- 
ther, we observe that the skin friction co-efficient in- 
creases with  for both ramped temperature and iso- 
thermal plate, which illustrates that radiation has ten- 
dency to enhance the skin friction. It is also observed that 
the skin friction is enhanced with . Lastly, we find 
that the ber.perayure skin-friction is more in water as 
compared to that in air. 

R

Pr

 

 

Figure 6. Variation of Nusselt number when R = 2. 
 

 

Figure 7. Variation of Nusselt number when Pr = 0.71. 
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Figure 8. Variation of skin friction for ramped and isothermal temperature. 
 
6. Conclusions 

 
An analysis is performed to study the effect of radiation 
on unsteady free convection flow past an infinite vertical 
plate with ramped wall temperature. The non-dimen- 
sional forms of the governing equations of the fluid flow 
are solved by Laplace-transform technique. The solutions 
for velocity, temperature are studied graphically. Also, 
the Nusselt number and skin friction have been dis- 
cussed. 

Following observations are made from the study: 
1) Temperature of the fluid increases with an increase 

in time  but as  increases, temperature decreases. 
Also, the temperature decreases gradually with . 

t Pr
R

2) The temperature decreases with  from its ramped 
value on the plate to its free stream value. 

y

3) The presence of radiation tends to decelerate the 
fluid flow for both ramped temperature and isothermal 
plate. Also, fluid velocity accelerates as time progresses. 

4) The velocity decreases with increasing the Prandtl 
number. 

5) Nusselt number increases for and decreases 
for  for all  and . 

0 t 1
1t  Pr R

6) Skin friction increases with increasing  and . Pr R
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Nomenclature 
 

*a  Absorption coefficient T  Temperature of fluid far away from the plate 

pC
 Specific heat at constant pressure t   Time 

g  Acceleration due to gravity t  Dimensionless time 

k  Thermal conductivity of the fluid 0t  Characteristic time 

rP  Prandtl number u  Velocity of fluid in the x′-direction 

rq  Radiative heat flux in the y direction u  Dimensionless velocity component in the x′-direction 

R  Radiation parameter x  Spatial coordinate along the plate 

T   Temperature of fluid y  Coordinate normal to the plate 

wT   Plate temperature y  Dimensionless coordinate normal to the plate 

 
Greek Symbols 
 

  Volumetric coefficient of thermal expansion   Dimensionless temperature 
  Coefficient of viscosity erfc  Complementary error function 
  Kinematic viscosity erf  Error function 
  Density of fluid ( 1)H t   Is the unit step function 
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