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Abstract 
 
Considering the effects of the beam section rotation, shear deformation of the adjacent section and transverse 
pressure, derived the new equation of rectangular section deep beams, and gives the basic solution of deep 
beams [1]. And discussed at the bending problems of deep rectangular beams with fixed at both ends under 
uniform load, based on the equations given in this paper, application of reciprocal law, doing numerical 
calculation in Matlab platform, compare with the results of ANSYS finite element analysis [2]. 
 
Keywords: The Bending, Rectangular Section, Deep Beams, The Basic Solution, Uniform Load, 
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1. The Bending of Rectangular Deep Beams 
under Uniform Load 

 
1.1. The Derivation of New Equations of the  

Rectangular Deep Beams 
 
1.1.1. The Derivation of the Transverse Pressure z  
The elastic mechanics equations in z direction is 
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x y z
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  
            (1) 

The yz  of straight beam which is in Figure 1 is 0, 
and then the Formula (1) change into  
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According to the material mechanics knowledge [3], 
there is 
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For the rectangular cross-section as shown in Figure 1, 
there is 
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And then 
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Calculating the Formula (2) to get 
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Paying attention to 
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Due to 
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q  is the load strength of unit length along the x direction.  
Put Formulae (7) and (8) into (6) to get 
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(a)                             (b) 

Figure 1. Straight beam of rectangular cross section. 
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Reduction is 
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At last, getting: 
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After calculation, we can get that when 2z h , 
0z  . 

 
1.1.2. The Derivation of the Moment  x
Introducing the concept of average corner 

M

x . Making 
the x  is the average corner of cross section around x  
axis, the x  is: 
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In the formula, is the axial displacement of the 
straight beam. Because 
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Put Formula (13) into (12) to get 
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There is 
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Using the Hooke’s law to get 
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Put Formula (11) into (15) to get 
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So the expression of the moment xM  is 
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After this, we establish the relationships between xM  
and x  

 
1.1.3. The Derivation of x  
According to the shear hooker law [4], there is 
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On both sides of Formula (18) are by 
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and doing definite integration between 
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Calculating the first part of Formula (19) to get 
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The Formula (14) is paid attention to get 
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Introducing the concept of average deflection .  
is the average deflection of various of points along the 
height of straight beam [5]. The  is 
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And then 
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Putting Formulae (20) and (22) into (19) to get 
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, after calculating to get 

After this, we establish the relationships between x  
and . w

Putting Formula (27) into (29) to get 
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After this, we establish the relationships between x , 
 and w xQ . 

The Formula (32) is the equilibrium differential equa-
tion of the deep Beams under uniform load. 

 After that, the Formula (32) should be analyzed. As-
suming that 1.1.4. The Establishment of Equilibrium Differential 

Equation 
1 2q q q q3                 (33) 

According to the material mechanics knowledge, there is 
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The control equation of the deep beams under uniform 

load , concentrated load  and concentrated couples q P
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Putting Formula (25) into (28) to get 
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 After this, we establish the relationships between xM  
and . w

Putting Formula (26) into (29) to get 
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1.2. The Basic Solution of the Bending of  
Rectangular Deep Beams After this, we establish the relationships between xQ  

and . w  
Considering the boundary conditions of the deep rectan- 
gular beam as shown in Figure 2. 

Putting Formula (30) into (24) to get 
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The deep rectangular beams as shown in Figure 3 with 
both ends simply supported under the one-dimensional 
Delta function (x   is considered as the basic system. 
The solution of the basic system is the basic solution of  

 

 

Figure 2. Rectangular beam with different conditions. 
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Figure 3. Fictitiously basic system for deep beams of the rectangular cross section. 
 

deep beams. Theoretically, any straight beam under trans- 
verse uniform load  can be considered as the basic 
system, the solution of which can be considered as the 
actual system. However, the deep rectangular beams with 
both ends simply supported under transverse uniform 
load should be chosen as the basic system, for the solu- 
tion of which is simple.  

q

The control equation of the deflection functions is 


4

4

d

d

w
EJ x 

x
                (37) 

In the Formula (37), x    is the one-dimensional 
Delta function of the point of  ,0  which is 
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For any ,  which satisfy the condition of  a b
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For the straight slender beam which is not considered 
the shearing deformation, in the Formula (37),  x   
is the transverse unit concentrated load of the point of 

. However, for deep beams under the bending,  ,0
 x
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  is the one-dimensional Delta function of the 
point of ,0  which dose not have No mechanical sig- 
nificance is called unit concentrated load. And then the 
rectangular deep beam in Figure 3 is the basic system, 
the solution of which is the basic solution. 

For the research, the function of   and its derivative 
of Fourier coefficient are provided in Table 1. 
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Table 1.  function and the fourier coefficients of its de- 
rivative with different orders. 
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Putting Formula (38) into (37) to get 
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The basic solution can be got easily 
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For calculating the flexible crankshaft equation of the 
actual system, boundary corner expression which is in 
the form of sine series of the actual system is provided as 
follow 
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And boundary corner expression which is in the form 
of polynomial of the actual system is provided as follow 
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2. The Bending of Rectangular Deep Beams 
with Both Ends Simply Supported, Fixed 
at Both Ends under Uniform Load 
 

2.1. The Bending of Rectangular Deep Beams 
with Both Ends Simply Supported 

 
The actual system of rectangular deep beams with both 
ends simply supported, fixed at both ends under uniform 
load as shown in Figure 4.  

The corresponding control equation is 
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The basic system as shown in Figure 3, taking the left 
boundary corner with polynomial form as follow 
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Considering the reciprocal method between the basic 
system and the actual system (as shown in Figure 4), to 
get the buckling line equation of the actual system 
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 w   is taken a derivatives for   to get 
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 w   is taken three derivatives for   to get 
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Putting Formulae (49)-(51) into (31) to get 
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(52) 
By the left of the beam boundary conditions to get the 

corner that should be 0, and then 
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Solving to Formula (53) to get (54) )(see below). 
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Figure 4. Actual system of deep beams of the rectangular cross section with two edges fixed under uniformly distributed load. 
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Putting Formula (54) into (48) to get (55) (see below). 

 
2.2. Numerical Calculation 
 
As a numerical calculation example, we make that the 
span of beam is , the height of beam is , the 
width of beam is 

1 ml  h
2 3b h , depth-span ratio /h l   0.1, 

0.2,…, 0.8, 0.9, Elastic modulus , 
Poisson’s ration is 0.3 to calculate the deflection value of 
beams with different depth-span ratio at various points 
along the y direction. In this example, the beam is di- 
vided into ten copies along the y direction (

112.06  PaE 10 

0.0,l   
), and there is the 0.1, , 1.0  0.1, 0.2, 0.3, , , 0.4h l    

. 0.8, 0.9
 
2.3. Finite Element Simulation 

 
We use software of ANSYS Programming to calculate  

the deflection value of beams along the y direction. The 
deflection value of beams with different depth-span ratio 
at various points along the y direction is list in the Ta-
bles 3-5. Considering the symmetry of the boundary, the 
uniform loading across the entire span and the sym- 
metry of deflection value of the beams, every table only 
list deflection value of half of the beam. 
 
2.4. Analysis of the Results 

 
The deflection value of beams with different depth-span 
ratio at various points along the y direction is list in the 
Tables 6-8. 

The numerical solution and finite element calculation 
values of the deflection of beams with different depth- 
span ratio at various points of the 1/2 cross section are 
respectively list in the Tables 2 and 4. In this paper, the 
error between ANSYS finite element solution and the 

 
Table 2. Finite element deflection values at 2b  of deep beam of = 0.1h l . 

/l  

Layer 
0.0 0.1 0.2 0.3 0.4 0.5 

1 0.0000 7.7052 × 10–7 2.1498 × 10–6 3.5719 × 10–6 4.5999 × 10–6 4.9717 × 10–6 

2 0.0000 7.6152 × 10–7 2.1490 × 10–6 3.5770 × 10–6 4.6085 × 10–6 4.9815 × 10–6 

3 0.0000 7.5435 × 10–7 2.1484 × 10–6 3.5809 × 10–6 4.6152 × 10–6 4.9891 × 10–6 

4 0.0000 7.4954 × 10–7 2.1481 × 10–6 3.5839 × 10–6 4.6202 × 10–6 4.9947 × 10–6 

5 0.0000 7.4688 × 10–7 2.1481 × 10–6 3.5859 × 10–6 4.6234 × 10–6 4.9983 × 10–6 

6 0.0000 7.4643 × 10–7 2.1486 × 10–6 3.5870 × 10–6 4.6249 × 10–6 4.9999 × 10–6 

7 0.0000 7.4824 × 10–7 2.1494 × 10–6 3.5872 × 10–6 4.6247 × 10–6 4.9996 × 10–6 

8 0.0000 7.5226 × 10–7 2.1507 × 10–6 3.5866 × 10–6 4.6228 × 10–6 4.9974 × 10–6 

9 0.0000 7.5841 × 10–7 2.1524 × 10–6 3.5849 × 10–6 4.6192 × 10–6 4.9931 × 10–6 

10 0.0000 7.6692 × 10–7 2.1543 × 10–6 3.5823 × 10–6 4.6138 × 10–6 4.9868 × 10–6 

11 0.0000 7.7724 × 10–7 2.1564 × 10–6 3.5785 × 10–6 4.6065 × 10–6 4.9783 × 10–6 

average 0.0000 7.5748 × 10–7 2.1505 × 10–6 3.5824 × 10–6 4.6163 × 10–6 4.9900 × 10–6 
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Table 3. Finite element deflection values at 2b  of deep beam of = 0.3h l . 

/l  

Layer 
0.0 0.1 0.2 0.3 0.4 0.5 

1 0.0000 2.8094 × 10–8 5.7797 × 10–8 8.4560 × 10–8 1.0280 × 10–7 1.0924 × 10–7 

2 0.0000 2.7056 × 10–8 5.7763 × 10–8 8.5192 × 10–8 1.0383 × 10–7 1.1040 × 10–7 

3 0.0000 2.6315 × 10–8 5.7756 × 10–8 8.5699 × 10–8 1.0464 × 10–7 1.1131 × 10–7 

4 0.0000 2.6000 × 10–8 5.7880 × 10–8 8.6186 × 10–8 1.0534 × 10–7 1.1209 × 10–7 

5 0.0000 2.6064 × 10–8 5.8202 × 10–8 8.6723 × 10–8 1.0600 × 10–7 1.1279 × 10–7 

6 0.0000 2.6446 × 10–8 5.8758 × 10–8 8.7352 × 10–8 1.0667 × 10–7 1.1346 × 10–7 

7 0.0000 2.7120 × 10–8 5.9559 × 10–8 8.8082 × 10–8 1.0734 × 10–7 1.1412 × 10–7 

8 0.0000 2.8159 × 10–8 6.0590 × 10–8 8.8899 × 10–8 1.0802 × 10–7 1.1476 × 10–7 

9 0.0000 2.9649 × 10–8 6.1808 × 10–8 8.9757 × 10–8 1.0866 × 10–7 1.1532 × 10–7 

10 0.0000 3.1630 × 10–8 6.3139 × 10–8 9.0586 × 10–8 1.0918 × 10–7 1.1574 × 10–7 

11 0.0000 3.3889 × 10–8 6.4475 × 10–8 9.1283 × 10–8 1.0949 × 10–7 1.1591 × 10–7 

average 0.0000 2.8220 × 10–8 5.9793 × 10–8 8.7665 × 10–8 1.0654 × 10–7 1.1319 × 10–7 

 

Table 4. Finite element deflection values at 2b  of deep beam of = 0.5h l . 

/l  

Layer 
0.0 0.1 0.2 0.3 0.4 0.5 

1 0.0000 7.5279 × 10–9 1.4375 × 10–8 2.0080 × 10–8 2.3839 × 10–8 2.5147 × 10–8 

2 0.0000 7.1201 × 10–9 1.4376 × 10–8 2.0345 × 10–8 2.4256 × 10–8 2.5614 × 10–8 

3 0.0000 6.9645 × 10–9 1.4416 × 10–8 2.0574 × 10–8 2.4600 × 10–8 2.5997 × 10–8 

4 0.0000 7.0725 × 10–9 1.4587 × 10–8 2.0869 × 10–8 2.4976 × 10–8 2.6400 × 10–8 

5 0.0000 7.3217 × 10–9 1.4919 × 10–8 2.1293 × 10–8 2.5455 × 10–8 2.6895 × 10–8 

6 0.0000 7.6477 × 10–9 1.5419 × 10–8 2.1881 × 10–8 2.6073 × 10–8 2.7520 × 10–8 

7 0.0000 8.0376 × 10–9 1.6098 × 10–8 2.2641 × 10–8 2.6840 × 10–8 2.8284 × 10–8 

8 0.0000 8.5608 × 10–9 1.6973 × 10–8 2.3563 × 10–8 2.7738 × 10–8 2.9168 × 10–8 

9 0.0000 9.3551 × 10–9 1.8050 × 10–8 2.4608 × 10–8 2.8722 × 10–8 3.0127 × 10–8 

10 0.0000 1.0610 × 10–8 1.9283 × 10–8 2.5701 × 10–8 2.9717 × 10–8 3.1088 × 10–8 

11 0.0000 1.2210 × 10–8 2.0531 × 10–8 2.6733 × 10–8 3.0622 × 10–8 3.1951 × 10–7 

Average 0.0000 8.4026 × 10–9 1.6275 × 10–8 2.2572 × 10–8 2.6622 × 10–8 2.8018 × 10–8 
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Table 5. Finite element deflection values at 2b  of deep beam of = 0.7h l . 

/l  

Layer 
0.0 0.1 0.2 0.3 0.4 0.5 

1 0.0000 3.1017 × 10–9 5.8212 × 10–9 8.0132 × 10–9 9.4325 × 10–9 9.9234 × 10–9 

2 0.0000 2.8962 × 10–9 5.8270 × 10–9 8.1642 × 10–9 9.6678 × 10–9 1.0186 × 10–8 

3 0.0000 2.8994 × 10–9 5.8899 × 10–9 8.3143 × 10–9 9.8784 × 10–9 1.0418 × 10–8 

4 0.0000 3.0591 × 10–9 6.0742 × 10–9 8.5549 × 10–9 1.0165 × 10–8 1.0721 × 10–8 

5 0.0000 3.2750 × 10–9 6.3816 × 10–9 8.9325 × 10–9 1.0590 × 10–8 1.1162 × 10–8 

6 0.0000 3.5249 × 10–9 6.8060 × 10–9 9.4694 × 10–9 1.1184 × 10–8 1.1774 × 10–8 

7 0.0000 3.8106 × 10–9 7.3596 × 10–9 1.0178 × 10–8 1.1958 × 10–8 1.2565 × 10–8 

8 0.0000 4.1698 × 10–9 8.0792 × 10–9 1.1063 × 10–8 1.2898 × 10–8 1.3516 × 10–8 

9 0.0000 4.7055 × 10–9 9.0128 × 10–9 1.2107 × 10–8 1.3962 × 10–8 1.4580 × 10–8 

10 0.0000 5.6591 × 10–9 1.0161 × 10–8 1.3248 × 10–8 1.5074 × 10–8 1.5682 × 10–8 

11 0.0000 7.0435 × 10–9 1.1375 × 10–8 1.4354 × 10–8 1.6124 × 10–8 1.6713 × 10–8 

Average 0.0000 4.0132 × 10–9 7.5262 × 10–9 1.0218 × 10–8 1.1903 × 10–8 1.2476 × 10–8 

 
Table 6. Deflection values at = 0.1, 0.2, 0.3h l . 

0.1 0.2 0.3 h l  

/l  text ANSYS text ANSYS text ANSYS 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 7.9142 × 10–7 7.5748 × 10–7 8.7793 × 10–8 8.3528 × 10–8 2.9763 × 10–8 2.8220 × 10–8 

0.2 2.2249 × 10–6 2.1505 × 10–6 2.0818 × 10–7 1.9756 × 10–7 6.3376 × 10–8 5.9793 × 10–8 

0.3 3.6758 × 10–6 3.5824 × 10–6 3.2031 × 10–7 3.0627 × 10–7 9.2288 × 10–8 8.7665 × 10–8 

0.4 4.7231 × 10–6 4.6163 × 10–6 3.9902 × 10–7 3.8242 × 10–7 1.1199 × 10–7 1.0654 × 10–7 

0.5 5.1042 × 10–6 4.9900 × 10–6 4.2754 × 10–7 4.0962 × 10–7 1.1909 × 10–7 1.1319 × 10–7 

 
Table 7. Deflection values at = 0.4, 0.5, 0.6h l . 

0.4 0.5 0.6 h l  

/l  text ANSYS text ANSYS text ANSYS 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 1.4920 × 10–8 1.4033 × 10–8 9.0358 × 10–9 8.4026 × 10–9 6.0671 × 10–9 5.6055 × 10–9 

0.2 2.9919 × 10–8 2.8063 × 10–8 1.7503 × 10–8 1.6275 × 10–8 1.1506 × 10–8 1.0649 × 10–8 

0.3 4.2072 × 10–8 3.9739 × 10–8 2.4084 × 10–8 2.2572 × 10–8 1.5615 × 10–8 1.4580 × 10–8 

0.4 5.0153 × 10–8 4.7421 × 10–8 2.8381 × 10–8 2.6622 × 10–8 1.8261 × 10–8 1.7068 × 10–8 

0.5 5.3055 × 10–8 5.0094 × 10–8 2.9919 × 10–8 2.8018 × 10–8 1.9206 × 10–8 1.7919 × 10–8 
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Table 8. Deflection values at = 0.7, 0.8, 0.9h l . 

0.7 0.8 0.9 h l  

/l  text ANSYS text ANSYS text ANSYS 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 4.3651 × 10–9 4.0132 × 10–9 3.3021 × 10–9 3.0201 × 10–9 2.5834 × 10–9 2.3587 × 10–9 

0.2 8.1661 × 10–9 7.5262 × 10–9 6.1204 × 10–9 5.6113 × 10–9 4.7570 × 10–9 4.3512 × 10–9 

0.3 1.0980 × 10–8 1.0218 × 10–8 8.1767 × 10–9 7.5741 × 10–9 6.3262 × 10–9 5.8483 × 10–9 

0.4 1.2775 × 10–8 1.1903 × 10–8 9.4791 × 10–9 8.7934 × 10–9 7.3147 × 10–9 6.7732 × 10–9 

0.5 1.3415 × 10–8 1.2476 × 10–8 9.9429 × 10–9 9.2066 × 10–9 7.6664 × 10–9 7.0858 × 10–9 
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Figure 5. Deflection distribution curve at 2b  with different depth-span ratios. 

 
numerical solution respectively are 4.29%, 5.10%, 5.65%, 
6.20%, 7.02%, 7.61%, 8.06%, 8.54%, 8.70%, all of 
which are in the range of allowable error. We can know 
the result is correct, and considering the reciprocal method 
to solve the problem is right. 

The deflection distribution curve of beams with dif- 
ferent depth-span ratio at various points along the y di- 
rection and the distribution curve of the finite element solu- 
tion of the deep beam ( ) 
are respectively list in the Figure 5. Directly comparing 

with numerical results, and the two results can well fit- 
ting.  

/ 0.1, 0.2, 0.3, 0.4, ,0.8, 0.9h l  

 
3. Conclusions 

 
Considering the effects of the beam section rotation, 
shear deformation of the adjacent section and transverse 
pressure, derived the new equation of rectangular section 
deep beams, and gives the basic solution of deep beams. 
And we solve the example of the bending problems of 
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deep rectangular beams with both ends simply supported, 
fixed at both ends under uniform load, based on the 
equations given in this paper, application of reciprocal 
law, doing numerical calculation in Matlab platform, 
compare with the results of ANSYS finite element 
analysis. 
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