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Abstract

Considering the effects of the beam section rotation, shear deformation of the adjacent section and transverse
pressure, derived the new equation of rectangular section deep beams, and gives the basic solution of deep
beams [1]. And discussed at the bending problems of deep rectangular beams with fixed at both ends under
uniform load, based on the equations given in this paper, application of reciprocal law, doing numerical

calculation in Matlab platform, compare with the results of ANSYS finite element analysis [2].

Keywords: The Bending, Rectangular Section, Deep Beams, The Basic Solution, Uniform Load,

Fixed at Both Ends, Reciprocal Method

1. The Bending of Rectangular Deep Beams
under Uniform Load

1.1. The Derivation of New Equations of the
Rectangular Deep Beams

Calculating the Formula (2) to get
or
o,=—|—dz+C 6
e (6)

Paying attention to

o Or, _ 6 QN %)
1.1.1. The Derivation of the Transverse Pressure o, ox  bh® ox| 4
The elastic mechanics equations in z direction is Due to
or
0ty O 00, (1) R__, ®)
ox oy oz P

The 7, of straight beam which is in Figure 1 is 0,
and then the Formula (1) change into

q is the load strength of unit length along the X direction.
Put Formulae (7) and (8) into (6) to get

or,, 0o 2
e 2% 2) 69 (h
ox oz o, :J#[T—zzjduc )
According to the material mechanics knowledge [3],
there is when h
Q(h* 7=-2
T,=—oH)\ ——1 3
<=3\ a €) 2
For the rectangular cross-section as shown in Figure 1, b ‘
there is
bh’ o !
J = — 4 1
= ) é
And then 2 w2
6Q ( h? (a) (b)
T = _Q3 —-7 ®) . . .
bh’ | 4 Figure 1. Straight beam of rectangular cross section.
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2
o= 98 L glie o)
b bh 3 4

Reduction is

-9 . ¢cc--4 (10)
b 2b 2b
At last, getting:
3
o =-812 2 82 (11
4b|3 h 3{h

After calculation, we can get that when z=h/2,
o,=0.

1.1.2. The Derivation of the Moment M

Introducing the concept of average corner ,. Making
the @, is the average corner of cross section around X
axis, the @, is:

h
b[? oudz=M,0, (12)
2

In the formula, u'is the axial displacement of the
straight beam. Because
o, =% (13)
bh
Put Formula ( 13) into (12) to get
12M, z
b
I“ bh’

——dz=M, o,
2
There is
1220,
o, =Fj_22u 2dz (14)
Using the Hooke’s law to get
ou' 1
—=—(o,—Vvo 15
ax E( X Z) ( )

Put Formula (11) into (15) to get

2 ’ 3
o, —EW o —pIL_3W ——25+§ 21l e6)
dx dx b h 3lh

So the expression of the moment M, is

h
M, = bj'zh o,2dz
2

(17)

_EJ da)x+ 6v q
dx 5Ehb

Copyright © 2011 SciRes.

ET AL. 1183

After this, we establish the relationships between M,
and o,

1.1.3. The Derivation of @,
According to the shear hooker law [4], there is

au' aw' _ 6Q (h—z—zzJ (18)

oz ox Gbh’

2
On both sides of Formula (18) are by i{h__ 22}
bh”{ 4

and doing definite integration between Zz_h and
2

Z—E to get:
) OB
6u 6 h2 I '6 h2 —2 Wz
az bh3 ax bh3
2
QJ' (bh3j (h——z jdz

Calculatmg the first part of Formula (19) to get

6u 6 h2 A

62 bh®

h 2 2
et ot

(19)

bh3 j u'zdz
The Formula (14) is paid attention to get
h ' 2
.Ph ou o h _p z=a)xl (20)
oz bh b

Introducing the concept of average deflection w. w
is the average deflection of various of points along the
height of straight beam[ ]. The w is

h2
w-Q= j Yo [ zszw’dz

Calculating to get

305 0 52
W:Ejgw{l 4(hj }dz 1)

oW 8W' h?
X _-[ 6x h? [__szdz 22)

Putting Formulae (20) and (22) into (19) to get

1, h?
Ot 6xb GI (bh3) (——z ]dz (23)
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. E .
Given G =———, after calculating to get
2(1+v)
aw 12 1+v
——=4= 24
%= %S B @4

After this, we establish the relationships between «,,
w and Q,.

1.1.4. The Establishment of Equilibrium Differential

Equation
According to the material mechanics knowledge, there is
dQ,
X q (25)
dMm
L= 26
5=Q (26)
d’M, +q=0
o @7)
Putting Formula (25) into (28) to get
d’w h* dQ, h2
M, =-EJ +(1+v
o2 THV) = Y (28)
Putting Formula (25) into (28) to get
d’w gh?
M,=-EJ —-—(2+v 29
x o 10 2tY) (29)

After this, we establish the relationships between M,
and w.
Putting Formula (26) into (29) to get
d’'w h’ dg

Q =-El—-—(2+v)2

o 10 dx (30)

After this, we establish the relationships between Q,
and W.
Putting Formula (30) into (24) to get

ET AL.

After this, we establish the relationships between @,
and W.
Putting Formula (27) into (29) to get
d4 h? d’q
= +y)— (32)
d 4 q ( )dx2
The Formula (32) is the equlhbrium differential equa-
tion of the deep Beams under uniform load.
After that, the Formula (32) should be analyzed. As-
suming that

0=0,+Q, +0q, (33)

In the Formula (33), ¢, is the uniform load and q,
is the concentrated load of the point of 7 which can be
expressed as

6, = P& (x-7) (34)

In the Formula (34), §(x—7) is the one-dimensional
Delta function of the point of 7 and @, is the concen-
trated couples of the point of 77 which can be expressed as

q3:Mé"(X—77) 335

The control equation of the deep beams under uniform
load q, concentrated load P and concentrated couples
M s

4 2 2
d'w q—h—(2+v)j—q+ PS5 (x—7)
X

dx* 10
Ph? d’s(x-n ,
P S gy
2 2o _
LNE o

EJ

1.2. The Basic Solution of the Bending of
Rectangular Deep Beams

Considering the boundary conditions of the deep rectan-
gular beam as shown in Figure 2.

= d—W 12 IT]V Q, The deep rectangular beams as shown in Figure 3 with
d< 5 Ehb , (31) both ends simply supported under the one-dimensional
= _d_W_E( " V)d_W_i,l(l +v)(2+ v) Delta function &(X—7) is considered as the basic system.
dx 5hb dx* 25 Eb dx The solution of the basic system is the basic solution of
0 é X
l l
w

Figure 2. Rectangular beam with different conditions.
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Figure 3. Fictitiously basic system for deep beams of the rectangular cross section.

deep beams. Theoretically, any straight beam under trans-
verse uniform load ( can be considered as the basic
system, the solution of which can be considered as the
actual system. However, the deep rectangular beams with
both ends simply supported under transverse uniform
load should be chosen as the basic system, for the solu-
tion of which is simple.
The control equation of the deflection functions is

4
EJ d'w

T =8(x=¢) (37)

In the Formula (37), &(x—7) is the one-dimensional
Delta function of the point of (£,0) which is

5(x—§)={0’ X#&;

o, X=¢&
Forany a, b which satisfy the condition of
a<&<b, 8(x—n) has the following properties

1 I:d(x—(f)dx:l
2) [[F(x)(x-&)dx=f (&)
3) [ (x)6" (x-&)dx=(-1)" 17 (&)

For the straight slender beam which is not considered
the shearing deformation, in the Formula (37), &§(x-7)
is the transverse unit concentrated load of the point of
(£,0). However, for deep beams under the bending,
5(x—n) is the one-dimensional Delta function of the
point of (£,0) which dose not have No mechanical sig-
nificance is called unit concentrated load. And then the
rectangular deep beam in Figure 3 is the basic system,
the solution of which is the basic solution.

For the research, the function of & and its derivative
of Fourier coefficient are provided in Table 1.

If w, will be taken as single heavy trigonometric series,

means that w, = Y Aﬂsin@. And then &(x-7)

m=1,2
will be spread out into a sine trigonometric series
mm
S(x=¢&)= Z sin J sml— (38)
m=1,2
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Table 1. & function and the fourier coefficients of its de-
rivative with different orders.

sine series cosine series

f(x)
b (m=>1) a, a (m>1)
5(x=&) (2/1)sin (mn&/1) 2/1 (2/1) cos (mng/1)
5'(x=¢) 7(2mn/12)cos(m7t§/l) 0 (Zmn/lz)sin(mné/l)

5'(x-§) —(Zmznz/ls)sin(mné/l) 0 —(Zmznz/ls)cos(mné/l)

8"(x~ (2m T /l )cos(mné/l) 0 —(2mxn3/14)sin(m7r§/l)

Putting Formula (38) into (37) to get

3
S S .. (39)
(mm)” EJ I
The basic solution can be got easily
W ()= 3 sin ™8 6in M (40)
m=1,2 ( ) EJ I |

For calculating the flexible crankshaft equation of the
actual system, boundary corner expression which is in
the form of sine series of the actual system is provided as
follow

lawm (x| & 2k mré
O, = {—dx l_o = mgz (mn)3 - sin | 41

b [HD) S UT e,
dx ol m:l,z(mn) EJ I

And boundary corner expression which is in the form
of polynomial of the actual system is provided as follow

0. :{dwl (%1 —5)} 1

dx 6EJI

%= {dw} (Id; X’g)L B 6éJI (

(1-&)é21-¢)  43)

—&)E(1+8) (44
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2. The Bending of Rectangular Deep Beams
with Both Ends Simply Supported, Fixed
at Both Ends under Uniform Load

2.1. The Bending of Rectangular Deep Beams
with Both Ends Simply Supported

The actual system of rectangular deep beams with both
ends simply supported, fixed at both ends under uniform
load as shown in Figure 4.
The corresponding control equation is
d*w h? d’q
=0-—(2+v)—
dx4 q 10 ( ) dx2
The basic system as shown in Figure 3, taking the left
boundary corner with polynomial form as follow

0. :{dwl(x,l —(,‘)} _ 1

EJ

(45)

dx sEan (| ~9)E(=e) o)

Taking the right boundary corner with polynomial
form as follow

le{dwl(l—x,f)} _ 1 1
x| 6EJ

Considering the reciprocal method between the basic
system and the actual system (as shown in Figure 4), to
get the buckling line equation of the actual system

w(¢)= I[q—— (2+v) —}w x,&)d

+ MOHIO - Moeu

% 4t |11 hY L] @8
= 2 m3n5EJ{m2+10(2+V)(IJ n}

m=1,3,5

=&)e(1+8) @)

xsinm|§+|v| E(f &)

W(<§ ) is taken a derivatives for £ to get

ET AL.

dw ( ) & 4ql |11 hY
S : {mz +E(2+V)(Tj n} (49)

mné& 1
+M -2
X cos—= 2EJ( &)
W(&) is taken three derivatives for & to get
d? = :
s L LR R
m=1,3,5 7 m (50)
xcosml—né&
d 0
_C](f)z > 4—qcos—rmtéa (51)
dé m=1,3,5 I
Putting Formulae (49)-(51) into (31) to get
= 4ql |11 (hjz .| mme
=— — | —+—(2+Vv)| = —
“ m_%smzn“EJl:mz oY) ™ e
(1-2¢) 123 = 4q
-M +—(1+
TSI V)mzlzs,SanJ
2
{#JFE(ZJFV)(I_) nz:lcos T
6 h & 4q maé
-———(1+v)(2+ —
25 &t VN V)m:%j TR
(52)

By the left of the beam boundary conditions to get the
corner that should be 0, and then

0 3 2
> ?q: LZ+L(2+V) h n +MOI—
m=1,3,5 mT'EJ | m 10 | 2EJ

agl | 11 hY ,
—+—(2+Vv)| — 53
Shb Vm_m,sanJ{mz o V)(Ij eI

wt

Figure 4. Actual system of deep beams of the rectangular cross section with two edges fixed under uniformly distributed load.

o i (E3 =) e O R - e
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Putting Formula (54) into (48) to get (55) (see below).
2.2. Numerical Calculation

As a numerical calculation example, we make that the
span of beam is | =1m, the height of beam is h, the
width of beam is b =2h/3, depth-span ratio h/I= 0.1,
0.2,..., 0.8, 0.9, Elastic modulus E =2.06x10" Pa,
Poisson’s ration is 0.3 to calculate the deflection value of
beams with different depth-span ratio at various points
along the y direction. In this example, the beam is di-
vided into ten copies along the y direction (&/1=0.0,
0.1,--,1.0), and there is the h/I=0.1,0.2,0.3, 0.4,
0.8,09.

2.3. Finite Element Simulation

We use software of ANSYS Programming to calculate

the deflection value of beams along the y direction. The
deflection value of beams with different depth-span ratio
at various points along the y direction is list in the Ta-
bles 3-5. Considering the symmetry of the boundary, the
uniform loading across the entire span and the sym-
metry of deflection value of the beams, every table only
list deflection value of half of the beam.

2.4. Analysis of the Results

The deflection value of beams with different depth-span
ratio at various points along the y direction is list in the
Tables 6-8.

The numerical solution and finite element calculation
values of the deflection of beams with different depth-
span ratio at various points of the 1/2 cross section are
respectively list in the Tables 2 and 4. In this paper, the
error between ANSYS finite element solution and the

Table 2. Finite element deflection values at b/2 of deep beam of &/l =0.1.

N
Layer 0.0 0.1 0.2 0.3 0.4 0.5

1 0.0000 7.7052 x 1077 2.1498 x 10°° 3.5719 x 10°° 4.5999 x 10°° 49717 x 10°°

2 0.0000 7.6152 x 107 2.1490 x 10°° 3.5770 x 10°° 4.6085 x 10°° 4.9815x10°

3 0.0000 7.5435 x 1077 2.1484 x 10°° 3.5809 x 10°° 46152 x10°° 4.9891 x 10°°

4 0.0000 7.4954 x 1077 21481 x10°¢ 3.5839 x 10°¢ 4.6202 x 10°° 4.9947 x 10°°

5 0.0000 7.4688 x 1077 21481 x10°¢ 3.5859 x 10°¢ 4.6234 x 10°¢ 4.9983 x 10°°

6 0.0000 7.4643 x 107 2.1486 x 10°° 3.5870 x 10°¢ 4.6249 x 106 4.9999 x 10

7 0.0000 7.4824 x 1077 2.1494 x 10°° 3.5872x10°° 4.6247 x 10°° 4.9996 x 10

8 0.0000 7.5226 x 1077 2.1507 x 10°° 3.5866 x 10°° 4.6228 x 10°° 4.9974 x 10°°

9 0.0000 7.5841 x 1077 2.1524 x 10°° 3.5849 x 10°° 4.6192 x 10°° 49931 x10°

10 0.0000 7.6692 x 1077 21543 x10°¢ 3.5823x10°¢ 46138 x10°° 4.9868 x 10°°

11 0.0000 77724 x 107 2.1564 x 10°° 3.5785x10°¢ 4.6065 x 10°¢ 49783 x10°°

average 0.0000 7.5748 x 10 2.1505 % 10°¢ 3.5824 x10°¢ 46163 x10°¢ 4.9900 x 10°

w($)= I' {q —E(z +v)(:127?}w1 (%,&)dx+M,8,, —M,6,

o710

= o4qt |11 (hjz L omre (16-¢7)2
= — | S t+—(2+ _— 55
m%;m%SEJ{mZ TR U A e R T (55}

5 ) o]
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Table 3. Finite element deflection values at b/2 of deep beam of h/1=0.3.
£
Layer 0.0 0.1 0.2 0.3 0.4 0.5
1 0.0000 2.8094 x 10°® 57797 x 10°® 8.4560 x 10°® 1.0280 x 1077 1.0924 x 10”7
2 0.0000 2.7056 x 10°® 57763 x 10°® 8.5192x 10 1.0383 x 107 1.1040 x 1077
3 0.0000 2.6315x10° 5.7756 x 10°® 8.5699 x 10°® 1.0464 x 10”7 1.1131 x 107
4 0.0000 2.6000 x 10°® 5.7880 x 10°® 8.6186 x 10 1.0534 x 107 1.1209 x 1077
5 0.0000 2.6064 x 10°® 5.8202 x 10°® 8.6723 x 10°® 1.0600 x 1077 1.1279 x 10”7
6 0.0000 2.6446 x 10°° 5.8758 x 10°® 8.7352x 10°® 1.0667 x 10”7 1.1346 x 10”7
7 0.0000 27120 x 10°® 59559 x 10°® 8.8082 x 10°® 1.0734 x 107 1.1412x 107
8 0.0000 28159 x 10°° 6.0590 x 10°® 8.8899 x 10°® 1.0802 x 10”7 1.1476 x 10”7
9 0.0000 2.9649 x 10°® 6.1808 x 10°® 8.9757x 10°® 1.0866 x 1077 1.1532x 107
10 0.0000 3.1630 x 10°° 6.3139 x 10°® 9.0586 x 10°* 1.0918 x 10”7 1.1574 x 10”7
11 0.0000 33889 x 10°® 6.4475 % 10°® 9.1283 x 10°® 1.0949 x 1077 1.1591 x 10”7
average 0.0000 2.8220 x 10°® 59793 x 10°® 8.7665 x 10°® 1.0654 x 1077 1.1319 x 10”7
Table 4. Finite element deflection values at 5/2 of deep beam of h/1=05.
&N
Layer 0.0 0.1 0.2 0.3 0.4 0.5
1 0.0000 7.5279 x 10”° 1.4375x10°* 2.0080 x 10°* 23839 x 10°* 25147 x10°°
2 0.0000 7.1201 x 10”° 1.4376 x 10°* 2.0345x10°* 24256 x 10°* 25614 x10°*
3 0.0000 6.9645 x 10° 1.4416 x 10°® 2.0574 x 10°® 2.4600 x 10°® 2.5997 x 10°®
4 0.0000 7.0725 x 10° 1.4587 x 10°* 2.0869 x 10°* 24976 x 10°* 2.6400 x 10°*
5 0.0000 73217 x 10° 1.4919 x 10°® 21293 x10°® 2.5455x10°® 2.6895 x 10°®
6 0.0000 7.6477 x 10° 1.5419 x 10°® 2.1881 x10°® 2.6073 x 10°* 27520 x 10°®
7 0.0000 8.0376 x 10”° 1.6098 x 10°® 22641 x10°* 2.6840 x 10°* 2.8284 x 10°*
8 0.0000 8.5608 x 10”° 1.6973 x 10°® 23563 x10°* 27738 x 10°® 29168 x 10°®
9 0.0000 9.3551 x 107° 1.8050 x 10°# 2.4608 x 10°* 28722 x10°% 3.0127 x10°°
10 0.0000 1.0610 x 10°® 1.9283 x 10°® 2.5701 x 10°® 29717 x10°* 3.1088 x 10°®
11 0.0000 1.2210x 10°® 2.0531 x10° 26733 x10°* 3.0622 x 10°# 3.1951 x 1077
Average 0.0000 8.4026 x 10 1.6275 x 10°* 22572 x10°% 26622 x 10°* 2.8018 x 10°®

Copyright © 2011 SciRes.

ENG



Y.-J.CHEN ET AL. 1189
Table 5. Finite element deflection values at b/2 of deep beam of h/1=0.7.
N
Layer 0.0 0.1 0.2 0.3 0.4 0.5
1 0.0000 3.1017 x 10”° 5.8212x10° 8.0132x 107 9.4325 x 107 9.9234 x 107
2 0.0000 2.8962 x 10”° 5.8270 x 10° 8.1642 x 107 9.6678 x 10”° 1.0186 x 10°®
3 0.0000 2.8994 x 10”° 5.8899 x 10° 8.3143x 107 9.8784 x 107 1.0418 x 10°®
4 0.0000 3.0591 x 10° 6.0742 x 10° 8.5549 x 10 1.0165x10°® 1.0721 x 10°®
5 0.0000 3.2750 x 107 6.3816 x 10”° 8.9325x 107 1.0590 x 10°# 1.1162 x 10°#
6 0.0000 3.5249 x 10”° 6.8060 x 10° 9.4694 x 107 1.1184 x10°® 1.1774 x 10°®
7 0.0000 3.8106 x 10”° 73596 x 10”° 1.0178 x 10°® 1.1958 x 10°® 1.2565x10°®
8 0.0000 4.1698 x 10”° 8.0792 x 10° 1.1063 x 10°® 1.2898 x 10°* 13516 x 10°®
9 0.0000 47055 x 10”° 9.0128 x 10”° 1.2107 x 10°® 1.3962 x 10°* 1.4580 x 10°®
10 0.0000 5.6591 x 107 1.0161 x 10°® 1.3248 x 10°® 1.5074 x 10°* 1.5682 x 10°#
11 0.0000 7.0435 x 107 1.1375 x 108 1.4354 x10°* 1.6124 x 10°* 1.6713 x 10°*
Average 0.0000 4.0132x10° 7.5262 x 107 1.0218 x 10°® 1.1903 x 10°® 1.2476 x 10°®
Table 6. Deflection values at h/l =0.1, 0.2, 0.3.
h/I 0.1 0.3
el fext ANSYS ext ANSYS ext ANSYS
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 79142 x 107 7.5748 x 10”7 8.7793 x 10°® 8.3528 x 10°® 29763 x 10°® 2.8220 x 10°®
0.2 22249 x 106 2.1505 x 10°¢ 2.0818 x 1077 1.9756 x 10”7 63376 x 10°® 59793 x10°®
0.3 3.6758 x 10°¢ 3.5824 x 10°¢ 32031 x 107 3.0627 x 1077 9.2288 x 10°® 8.7665 x 10°®
0.4 47231 x10° 46163 x10° 3.9902 x 1077 3.8242 x 1077 1.1199 x 10”7 1.0654 x 10”7
0.5 5.1042 x 10°° 4.9900 x 10° 42754 x 107 4.0962 x 10”7 1.1909 x 10”7 1.1319 x 10”7
Table 7. Deflection values at h/l =0.4,0.5,06.
h/1 04 0.6
gl fext ANSYS text ANSYS text ANSYS
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 1.4920 x 10°® 1.4033 x 10°® 9.0358 x 10”° 8.4026 x 10° 6.0671 x 10”° 5.6055 x 10°
0.2 29919 x 10°® 2.8063 x 10°* 1.7503 x 10°® 1.6275 x 10°® 1.1506 x 10°* 1.0649 x 10°*
0.3 42072 x10°° 3.9739 x 10°* 2.4084 x 10°* 22572 x10°° 1.5615 x 10°® 1.4580 x 10°*
0.4 5.0153x10°® 47421 x10°® 2.8381 x10°® 2.6622 x 10°® 1.8261 x10°* 1.7068 x 10°®
0.5 53055 x10° 5.0094 x 10°® 29919 x 10°® 2.8018 x 10°® 1.9206 x 10°® 1.7919 x 10°®
Copyright © 2011 SciRes. ENG
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Table 8. Deflection values at /1 =0.7, 0.8, 0.9.
h/I 0.7 0.8 0.9
¢/l text ANSYS text ANSYS text ANSYS
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 43651 x107° 4.0132x 1077 3.3021 x 107 3.0201 x 107 2.5834 x 107 2.3587 x 107
0.2 8.1661 x 10~ 7.5262 x 107 6.1204 x 107 56113 x 1077 47570 x 10°° 43512 %107
0.3 1.0980 x 107 1.0218 x 10°* 8.1767 x 107 7.5741 x 107 6.3262 x 107 5.8483 x 1077
0.4 1.2775 x 107 1.1903 x 10°® 9.4791 x 107 8.7934 x 107 7.3147 x 107 6.7732 x 107
0.5 1.3415x 10°® 1.2476 x 10°* 9.9429 x 107 9.2066 x 107 7.6664 x 107 7.0858 x 1077
6. x10°m 50 x10'm
Y ANSYS
5 r V.
AN 4+ :A
41 hn=0.1 / \
3r h/I=0.27’ \
3t
> s ol h/1=0.3
2 1
L B e
1+ 1 / \’\\\
0r t/ \t 0r /
00 02 04 06 08 1.0 00 02 04 06 08 1.0
() (b)
op ¥10°m AA0m
. o 4] e
r _ ‘/‘\‘ [ AT A
h/l 0.47/ \ 12 hi=0.7 A//v/ \va
41+ - = 10 v v
h/I=0.5 i /:\\\
/ \ o[ M=08—7 A==\
3t J& /v/ A— \
= / /'\\ = 6f /t?‘% - T\sr\
2t AN . N
///'\% 4+ h/1=0.9
Iy~ WERRN 2t
o or
2 L L L L L

1 1 1 1

1 1
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Figure 5. Deflection distribution curve at b/2 with different depth-span ratios.

numerical solution respectively are 4.29%, 5.10%, 5.65%,
6.20%, 7.02%, 7.61%, 8.06%, 8.54%, 8.70%, all of
which are in the range of allowable error. We can know
the result is correct, and considering the reciprocal method
to solve the problem is right.

The deflection distribution curve of beams with dif-
ferent depth-span ratio at various points along the y di-
rection and the distribution curve of the finite element solu-
tion of the deep beam (h/1 =0.1, 0.2, 0.3, 0.4,---,0.8, 0.9)
are respectively list in the Figure 5. Directly comparing

Copyright © 2011 SciRes.

with numerical results, and the two results can well fit-
ting.

3. Conclusions

Considering the effects of the beam section rotation,
shear deformation of the adjacent section and transverse
pressure, derived the new equation of rectangular section
deep beams, and gives the basic solution of deep beams.
And we solve the example of the bending problems of
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deep rectangular beams with both ends simply supported,
fixed at both ends under uniform load, based on the
equations given in this paper, application of reciprocal
law, doing numerical calculation in Matlab platform,
compare with the results of ANSYS finite element
analysis.
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