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Abstract 
 
The paper applies a one-to-one correspondence which exists between individual Schrödinger perturbation 
terms and the diagrams obtained on a circular scale of time to whole sets of the Schrödinger terms belonging 
to a definite perturbation order. In effect the diagram properties allowed us to derive the recurrence formulae 
giving the number of higher perturbative terms from the number of lower order terms. This recurrence for-
malism is based on a complementary property that any perturbation order N  can be composed of two posi-
tive integer components aN , bN  combined into N  in all possible ways. Another result concerns the de-
generacy of the perturbative terms. This degeneracy is shown to be only twofold and the terms having it are 
easily detectable on the basis of a circular scale. An analysis of this type demonstrates that the degeneracy of 
the perturbative terms does not exist for very low perturbative orders. But when the perturbative order ex-
ceeds five, the number of degenerate terms predominates heavily over that of nondegenerate terms. 
 
Keywords: Circular Scale of Time, Quantum-Mechanical Energy Terms, Complementary Relations, 

Schrödinger’s Perturbation Theory 

1. Introduction 
 
As soon as quantum mechanics in its wave-mechanical 
form was developed, the perturbation problem of the 
eigenenergies and eigenstates came into consideration 
[1]. A necessity of the perturbation theory was dictated 
by the fact that only very few systems on the atomic 
level could be examined in an exact quantum-mechanical 
way. In an overwhelming part of physical problems, the 
approximate methods had to be developed, and one of 
them was the Rayleigh-Schrödinger (RS) perturbation 
framework [2]. Rayleigh’s name was involved because a 
similar perturbation method was applied by that author in 
a treatment of the acoustic waves; see [2]. More devel-
oped approaches to the perturbation theory than [2] are in 
[3-8]. 

In fact, perturbation theory is a complicated formalism 
already at the level of a one-particle (one-electron) sys-
tem that occupies a non-degenerate unperturbed state [1, 
2]. Essentially the method is based on the calculations of 
the matrix elements between the unperturbed wave func-

tions  

p , q ,               (1) 

and the potential function V  which represents a per-
turbation of an originally unperturbed energy Hamilto-
nian. If any matrix element is considered as a result of a 
single particle scattering on the potential , the number 
of the RS terms required to calculate the perturbation 
energy increases dramatically, especially when many 
different scatterings on V  are taken into account. In 
principle, a full RS series is obtained when the number of 
the different types of scatterings on  is allowed to go 
to infinity. In practice, however, we consider only the 
perturbations of some finite order , where  de-
fines the number of factors of the type  

V

V

N N

pqU p V q               (2) 

entering a product of terms (2) forming a single pertur-
bation term. In general, any of these factors is based on 
the eigenstates of the kind of (1) of an unperturbed Ham-
iltonian. 
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The RS formalism of the perturbation of a non-de- 
generate state strictly limits the number NS  of kinds of 
perturbative terms characteristic for a given . This 
number is represented by  

N

 
 

2 2

! 1N

N
S

N N





!

!
.            (3) 

Different values of NS  for different  numbers are 
listed in Table 1. 

N

The derivation of (3) is based on a complicated com-
binatorial formalism [9,10]. But, in many cases, we look 
for a recurrence formulae that allows us to calculate NS  
from the lower-order terms  

1 2 3 2 1, , , , ,N NS S S S S  .          (4) 

The aim of the present paper is to provide such for-
mulae. This treatment is based on a circular time scale. 

The idea of introducing the time variable as a tool to 
place the perturbative terms in order according to the size 
of  came from Feynman [4,11]. The scattering events 
with the perturbation  are arranged along a straight- 
linear time scale and all diagrams connecting a given 
number of events should be taken into account. However, 
the number  

N
V

 1 !NP N                  (5) 

of Feynman diagrams necessary to calculate the RS 
terms for a given  exceeds N NS ; see Table 1. 

Consequently, the energy contributions from the Feyn- 
man diagrams should be appropriately combined to give 
the proper contributions coming from the individual RS 
terms. The necessity of such a combination of diagrams 
makes the Feynman formalism especially cumbersome 
when  is large. For example, for  we have  N 20N 

20 1 767 263 190S              (6) 

Table 1. The number NS  of the RS perturbative terms 
[see (3)] and the number NP  of the Feynman diagrams 
[see (5)] of a given perturbative order . N

N  NS  NP  

1 1 1 

2 1 1 

3 2 2 

4 5 6 

5 14 24 

6 42 120 

7 132 720 

8 429 5040 

9 1430 40320 

10 4862 362880 

and  

  17
20 10 1 ! 1.216 10P     .         (7) 

Consequently, a combination of NP  energy terms 
into NS  terms becomes an uneasy task. 

But the difficulties of the Feynman formalism can be 
avoided when its straight-linear time scale is replaced by 
a circular time scale. In the latter case, a one-to-one cor-
respondence exists between the diagrams obtained on the 
circular scale and the RS perturbation terms [12-16]. In 
effect, any component term entering the set of NS  
terms corresponds to a separate diagram contributing a 
definite formula of the RS perturbation energy of order 

. This result is attained by applying an appropriate 
contraction rule for the scattering events on the circular 
scale. Any contraction prescribed by this rule is different, 
and the whole number of diagrams obtained in this way 
becomes exactly equal to 

N

NS
N

. Moreover, an analysis of 
all contractions for a given  gives precisely the same 
energy terms, as they are provided by the RS theory. 

In Section 3 we present the recurrence formulae for 

NS  attained on the basis of a graphical analysis applied 
in [12-16]. In fact, these formulae represent the comple-
mentary relations for NS  obtained on the basis of Na

 
and 

S

Nb
 having a , b . The property of com-

plementarity becomes evident if we note that any com-
ponent of 

S N N N

NS  is a product of Na
S  and Nb

S  for which 
there is satisfied the relation:  

a bN N N               (8) 

for any pair of integer numbers  and b . The 
changes of 

aN N

NS  due to the change of  are reported in 
Section 3. 

N

Another advantage of the circular scale is its use in 
detecting the degeneracy of the Schrödinger perturbation 
terms. In fact, any diagram representing the perturbation 
term is either symmetrical for itself, or asymmetrical 
with respect to another diagram; see Section 4. This 
property provides us with a simple rule that there is no 
degeneracy of energy for a symmetrical diagram, but a 
twofold degeneracy is connected with any pair of asym-
metrical diagrams. No other kind of degeneracy is ob-
tained on the basis of the symmetry analysis of the dia-
grams. Sections 4 and 5 demonstrate that the twofold 
degeneracy due to a circular character of the time scale 
holds for the most part of the perturbative energy terms 
belonging to a given  on condition . N 5N 
 
2. Recurrence Formulae for NS  and Their 

Complementary Character 
 
In the first step, we point out that the recurrence formal-
ism for NS  can be obtained without an analysis of all 

Copyright © 2011 SciRes.                                                                                 JQIS 
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contractions occurring on a circular scale for a given . 
If all scattering events are arranged on a line—see e.g. 
Figure 1 for —we can separate successively  

 points on that line. 

N

6N 
2,N 

N

1, 2,3, 4, , 1N 

6N 

The Formula (11) is a very simple result that is 
checked in Table 2 up to the order . 10N 
 
3. A Change S  of NS  

Figure 2 presents an example of such separations for 
 performed in each case with the aid of a single 

vertical line. 

 
In many cases we like to calculate the number NS

N
 of 

some perturbative order  from 1N  of order N S  1 . 
This calculation can easily be performed following the 
diagram on Figure 3 with the case  as an exam-
ple. From Figure 4, we obtain:  

6N 
According to the results from previous studies [12-16], 

any set of separated points can be considered as lying on 
some special loop of time of the circular scale character-
istic for a given . In the next step, such a loop has its 
characteristic number of contractions leading to a corre-
sponding number of diagrams for that loop. In effect, the 
number of the RS terms corresponding to any separation 
of the kind represented in Figure 2 labeled by is  is 
dictated by the size of the component integer numbers 
that satisfy the relation  

     
 

6 5 1 5 4 2 4 3 3 3 2

4 2 1 5        

S S S S S S S S S S S S

S S S S

        

  
  

                    6N        

Figure 1. Fundamental pattern of scattering points for cal- 
culating the number NS  in the RS perturbation theory; 
see (3). The pattern for the perturbative order 6N   is 
taken as an example. 

,a bN N N .                (9) 

Any pair of a , b  entering (9) should be different. 
Moreover, any term forming the set should satisfy the 
two-component sum rule (8). 

N N

N

 

Here  is the same constant number for all terms in 
(8) and (9). A full set of  for  is given 
in Figure 2. The number of terms 

 ,a bN N 6N 
is  in the set is evi-

dently equal to . 1N 
Because the loops,with their possible further contrac-

tions, behave independently each of other, any is  term 
of the set characterized by (9) provides us with the num-
ber of perturbative terms equal to  

Figure 2. Separations of a fundamental pattern of scattering 
points in Figure 1 useful in calculating NS . The perturba- 
tive order 6N   is taken as an example. The effect of 
separations is presented in (12). 

 
,

i
i N N a ba b

s N NS S S  .          (10) 
        6

              

            

        5

N

N


     
    



 
The total number of NS  is therefore equal to  

 
1

,
1

i N
i

N N Na b
i

S S
 



  .            (11) 

Figure 3. The fundamental pattern of scattering points for 
calculating the increment 1N NS S S     in the RS per- 
turbation theory; see (13) and (15). The perturbative order 

6N   is taken as an example. 

For  this gives the formula  6

1 5

14 1

S S 

  

N 

6 2

   1 5

S S


4 3 3 4 2 5 1

2 2 5 1 14 1 42.

S S S S S S S  

      
   (12) 

Table 2. The NS  numbers calculated for 2 10N   from the recurrence formulae of (10) and (11). 

2 1 1 1 1 1SS S     

3 1S S S2 2 1 1 1 2S S      

4 1 2 3 1 2 1 2 5S S S S S S3 2S        

5 1 4 2 3 2 4 1 5 2 2 5 14S S S S S S S       3S S

3 4S S 

3 5S

3 6S

7S S S

8 2S 

 

6 1 5 2 4 3 2 5 1 14 5 4 5 14 42S S S S S S S S S          

7 1 6 2 5 3 4 4 2 6 1 42 14 10 10 14 42 132S S S S S S S S S S S S             

8 1 7 2 6 3 5 4 4 5 2 7 1 132 42 28 25 28 42 132 429S S S S S S S S S S S S S S               

9S

1 9 2S S S 

1 8 2 7 3 6 4 5 5 4 6 3 2 8 1 429 132 84 70 70 84 132 429 1430S S S S S S S S S S S S S                 

10 8 3 7 4 6 5 5 6 4 7 3 9 1 1430 429 264 210 196 210 264 429 1430 4862S S S S S S S S S S S S S S S               
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The result of (14) agrees with the Huby-Tong formula 

of

 

Figure 4. Separations of a fundamental pattern of scattering 
points in Figure 3 useful in calculation of 1N NS S S     
for 6N  ; see (13). 

       1 14 5 1 5 2 2 2 1 5 1 1 14

28.

            


 (13) 

The difference (13) added to  gives:  

      (14) 

Calculations similar to those presented 
pe

5S

6 5 14 28 42S S S     .  

in (13) and (14) 
rformed for N  not exceeding 10 are presented in 

Table 3. The di rences other than (15), such as those 
between 

ffe

NS  and 2NS  , or NS  and 3NS  , can be cal-
culated on he sam oting  the di nce between  t e fo as ffere

NS  and 1NS  . 

 (3); cf. here the data in Table 1. A general formula for 
S  is  

 
   

1 1 1 2

2 2 3 2 2 1       .

N N N

N N N N

S S S S S S

S S S S S S S

  N

1  

  

      

 (15) 

 
. Symmetry of the Time Scale and  

rms 

 ular 

 

4
Degeneracy of the Perturbation Te

 
topological symmetry of energy diagrams on a circA

scale can be easily demonstrated by an example. 
Suppose we have the energy terms of the perturbative 

order 6N  . In Figure 5 we present four diagrams of 
6N  ; a ful
D

l set of the 6 42S   diagrams is given in 
[1 iagram (a), also cal ain time loop, has no 
contractions; it is symmetrical with respect to the line 
joining the beginning-end point of the loop with point 3, 
which is the most distant point from 

2]. led the m

 . 
The line divides the loop into halves. Diagram (d) has 

a similar symmetry that is characteristic by the time con- 
traction 2:4. On the other hand, diagrams (b) and (c) rep-
resent a different kind of symmetry: a mirror reflection 
with respect to the line joining points   and 3 gives 
diagram (c) from (b), and similar reflection of (c) gives 

Ta 3. ble The  numbers and  
,

i
N Na b

S NS  terms calculated

  

 from the recurrence Formula (13) for 3 10N  . 

3N   
 1 2 1 2 0 1 1S S S S S      

3 2 1 1 1 2S S      

4N   
  1 3 2 2 2 1 3 1 2 3S S S S S S S S        

4 3 3 2 3 5S S      

   

5N   
     1 4 3 2 3 2 3 2 1 4 3 1 5 9S S S S S S S S S S S           

5 4 9 14S S    

  

6N   
       1 5 4 2 4 3 3 3 2 4 2 1 5 9 3 2 14 28S S S S S S S S S S S S S S              

6 5 28 42S S    

  

7N   
         1 6 5 2 5 4 3 4 3 4 3 2 5 2 1 6 28 9 6 5 42 90S S S S S S S S S S S S S S S S S                 

7 6 90 132S S    

  

8N   
           1 7 6 2 6 5 3 5 4 4 4 3 5 3 2 6 2 1 7 90 28 18 15 14 132 297S S S S S S S S S S S S S S S S S S S S                    

8 7 297 429S S    

9N   

             1 8 7 2 7 6 3 6 5 4 5 4 5 4 3 6 3 2 7 2 1 8

     297 90 56 45 42 42 429 1001

S S S S S S S S S S S S S S S S S S S S S S S               

       

9 8 1001 1430S S    

  

10N   

              1 9 8 2 8 7 3 7 6 4 6 5 5 5 4 6 4 3 7 3 2 8 2 1 9

     1001 297 180 56 140 126 126 132 1430 3432

S S S S S S S S S S S S S S S S S S S S S S S S S S                 

         

10 9 3432 4862S S    
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(a)             (b)             (c)             (d) 

Figure 5. Two symmetric and two asymmetric diagrams for 
energy terms belonging to . Symmetric diagrams (a) 
and (d) represent non-de ergy term ymmetri
diag  of

respect to the line joining point 

6N 
gener te ena s, as c 

 rams (b) and (c) lead to two degenerate components
the perturbation energy. 

diagram (b). Either of symmetry mentioned above is cha- 
racteristic for any diagram of order N , so the diagrams 
can be classified as either symmetric, or asymmetric with 

  on the main loop of 
time with a point that is the most distant from  . For 
even N , the second point is labele by a point d 2N  
on the loop. However, for odd N , the most distant point 
from   does not coincide with a cattering event on the 
time scale, but is half of the time interval between the 
scattering points, labeled by 

 s

 1 2 N  and 1  
  1 2 1N  . For example, fo 1N  , this is no point 
on the loop beyond the beginning-end point 

r 
  and 

there are no contractions on that loop; see Figure 6. 
The symmetry behavior of the dia s the 

energy: the symmetr iagrams are non- 
degenerate, which means that the perurbative ter  cor-
responding to such diagram is different from all o

grams affect
perturbation ic d

m
ther 

terms. But the asymmetric diagrams give pairs of degen-
erate energy terms. This degeneracy is only twofold be-
cause it is due solely to the property of asymmetry of 
diagrams entering given pair. According to the rules ap-
plied earlier [12-16] the diagrams presented in Figure 5 
provide us with the following perturbation terms:  

 

     

    

;

a

np pq qr rs st tn

n p n q n r n s n t

E

U U U U U U

E E E E E E E E E E




    

   

(16) 

       

      

2

2

   

;

np pq qr rs sn
nnb

n p n q n r n s

np pq qr rs sn
nnc

n p n q n r n s

U U U U U
E U

E E E E E E E E

U U U U U
E U

E E E E E E E E

  
   

   
   

 

(17) 

        2 2

np pq qr rn np pn

d

n p n q n r n p

U U U U U U
E

E E E E E E E E
  

   
.  

(18) 

 

Figure 6. Diagram of the perturbative order N  
) give

nd the be

 repre
senting the side loops of diagrams (b) and (c n in
Figure 5. There is no scattering point beyo ginning- 
end point 

- 
 

  on the loop. 

In cases (b) and (c) [see (17)], the side loop provides 
us with a factor that represents the first-order per-
turbation energy 

nnU  
of 1N  . Another factor is entering 

the energy (18):  

 2

np pn

n p

U U

E E
.            (18a) 

This factor corresponds (apart of its sign) to the sec-
on

non-d
ntum state 

d-order perturbation energy  2N   because the side 
loop of diagram (d) has two points on it. In the Formulae 
(16)-(18a) nE  is a egenerate energy of an original 
(unperturbed) qua n . 

The sym  

la

bols 

, ,p q rE E E               (19) 

bel unperturbed energies of states , ,p q r   The 
formula for the matrix element pqU  between states 

p  and q  is given in (2). The repetition of the indi-
ces , , ,p q r   in the numerator of the energy expres-
sions given in (16)-(18a) implies a summation over p, q, 
r, 5, we give a s cti··· In Section 

ate perturbation
ele e for the degen-

er  terms of a given 
 

m pply 
 

on rul
order N . 

5. Algebra of the Time Loops in Diagrams 
and Selection of Degenerate Perturbation 
Terms 

 
Graphical presentation of the perturbation terms is a 
rather tedious way to select the degenerate terms, but an 
algebraic expression of the diagrams can be developed to 
implify the selection problem. As an exa ple, we as

this kind of algebraic expression for diagrams of order
6N  . 

Any diagram can be represented as a product referring
the numb

 
 er of points lying on the loops in that dia-to

gram. The side loops are considered in chronological 
order, which means that the loops containing earlier scat- 
tering points are represented before those containing later 
points. An exception is the loop having the beginning- 
end point  : this loop is presented regularly as the end 
factor of any product. For example, the loops in Figure 5 
have the following notation:  

 6 represents diagram ,L a  

Copyright © 2011 SciRes.                                                                                 JQIS 
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  Table 5. A list of tw ld degenerate contributions to the 
perturbation energy of order . Their algeb e- 
presentations are g ven in T  The non-degenerate 
energy terms are listed in Table 6. The diagrams on a 
circular scale corre onding to the listed terms are pre- 
sented in [12]. 

 

is given in [12]; a list of 
their algebraic represe tions is presented in Table 4. 
When one of two eq loops is near to the point 

 

1 5

1 5

2 4

represents diagram ,

represents diagram ,

represents diagram .

L L b

L L c

L L d

      (20) 

As a rule, the sum of the loop indices of L  in a given 
product is equal to the perturbative order N . A full set 
of 42 diagrams with 6N   

nta
ual side er 

  than another loop t loop is labeled by a su-
perscript  and her loop by

, the firs
 the fart n  a superscript 

 f . Whe ore than o e of equal lo gin in a 
n cont  po r numb by a 

se
or ex

of
n d

iden

ut a two-fold one due to an ar- 
ra

n m
raction

n
int, thei

ops be
er is indicated give

power exponent of L . 
Every pair of degenerate terms is repre nted by the 

same product of L , f ample, the second and the 
third row in (20). Nevertheless, a sequence of L  in 
degenerate products may be different, with the exception 

 the last term of the product, which should be the same 
for a give egenerate pair. The degenerate pairs are 

tified in Table 5, and the non-degenerate energy 
terms are listed in Table 6. A characteristic point is that 
no kind of degeneracy b

ngement of scattering points on the time scale is de-  

Table 4. Algebraic representation of 42 energy diagrams of 
perturbative order 6N  . For the diagrams see [12]. 

6 60 L  3

6 1 3XXI L L  

 
6 1 6I nL L  2

6 1 2 2XXII L L L  

 
6 2 4II nL L  6 1 2 1 2XXIII L L L L  

6 3 3III L L  2

6 2 1 2XXIV L L L  

6 4 2IV L L  3

6 1 3XXV L L  

 f

6 1 5V L L  6 1 2XXVI 4L L  

6 2 4VI L L  6 1 1 4XXVII L L L  

6 3VII 3L L  6 1 2XXVIII

ofo
6N 

able 4.
raic r

i

sp

6 6I X ; 6 6XXI XXV ; 

6 6II IX ;  

;  ;  

6 6XXII XXIV ; 

6 6III VII ; 6 6XXVII XXXII ; 

6 6V VIII ; 6 6XXVIII XXXI ; 

6 6XI XX ; 6 6XXX XXXIII ; 

6 6XII XIV ; 6 6XXXIV XXXIX ; 

6 6XIII  XVI 6 6XXXV XXXVII

6 6XVIII X ; IX 6 6XL XLI ; 

Table 6. Non-dege rate terms contributing to the pertur- 
bation energy of o er 6N

ne
rd  . Their algebraic rep enta- 

tions are given in Table 4, for t e diagrams see [12]. 

;  

res
h

60 ; 6IV ; 6VI ; 6XV ; 6XVII ; 6XIII

6XXVI ; 6IX ; XX 6XXXVI ; 6XXXVIII . 

 
tected for the perturbation terms. 

  (21) 

for 

The number of degenerate terms is equal to 2 multi-
plied by  

0,0,1, 4,16,56           

2,3,4 ,6,N

3L L L  

 
6 1VIII f

5L L  6 1 1XXIX 4L L L  

 
6 2IX n

4L L  2

6 1 1XXX 3L L L  

 
6 1X n

5L L  6 2 1 3XXXI L L L  
2

6 1XI 4L L  6 1 1XXXII 4L L L  

6 1 2XII 3L L L  2

6 1 1XXXIII 3L L L  

6 1 3XIII 2L L L  6 1 2XXXIV 3L L L  

6 2 1 3XIV L L L  6 1 3XXXV 2L L L  
2

6 2XV 2L L  6 2 2XXXVI 2L L L  

6 3 1XVI 2L L L  6 1 3XXXVII 2L L L  
2

6 1XVII 4L L  2

6 1 2XXXVIII 2L L L  

6 1 2XVIII 3L L L  6 1 2XXXIX 3L L L  

6 2 1XIX 3L L L  6 1 2 1XL 2L L L L  
2

6 1XX 4L L  6 1 1 2XLI 2L L L L  

,5 7 
5

, ec y. B innresp tivel eg ing with 
N   this numb r is me uch la  numrger than the ber of 
on-degenerate terms, which is  

 

e as they are listed below (21). 
It can be noted that an equality of t

sentations of the two diagrams is a
cient condition for

energi
example, XXVII6 and 

XXXII6 in Table 4 give degenerate te
a non-degenerate contribution. 

6.

n

1, 2,3,6,10, 20            (22)

for the sam N  
he algebraic repre-
 necessary but not 

suffi  the degeneracy of the diagram 
es: some equal algebraic representations can also 

give non-degenerate terms. For 
rms, but XXIX6 is 

 
 Summary 

 
In the first step, we presented a graphical and algebraic 
derivation of the number NS  of the RS perturbative 
components of the energy for some perturbative order 
N  from the values Na

S , Nb
S  for the lower perturbat-

ive orders aN , bN , where a

rt

n i

N
 Th e
e

 and  satisfy the 
urbe tum state is 

ate one. A ilar recur-
ce formula is obtai ncrem

bN
d quan

sim
ent 

complementarity r
assumed to be a

u
 no

le (8).
n-deg

ned 

e p
ner
for aren S  which 

should be added to 1NS   to obtain NS , so  
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de acy for the
energy terms belonging to very low p
fo

an  Mechanics,” Cambridge
ss, Cambridge, 1967. 

, “A Guide to Feynman Diagrams in the

1N NS S S   .            (23) 

The calculations make reference to the properties of 
the time contractions characteristic for a circular scale of 
time along which the perturbative effect of a quantum- 
mechanical system is developed. 

The property of asymmetry of the time loops on a cir-
cular scale is applied in examining the degeneracy of the 
perturbation terms. An absence of gener  

erturbative orders is 
und. However, a twofold degeneracy of most of per-

turbative terms can be detected when the perturbative 
order N  becomes larger than 5. 
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