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Abstract 
 
We propose a mechanism for perfect entanglement transport in anti-ferromagnetic (AFM) quantum spin 
chain systems with modulated exchange coupling and also for the modulation of on-site magnetic field. We 
use the principle of adiabatic quantum pumping process for entanglement transfer in the spin chain systems. 
We achieve the perfect entanglement transfer over an arbitrarily long distance and a better entanglement 
transport for longer AFM spin chain system than for the ferromagnetic one. We explain analytically and 
physically—why the entanglement hops in alternate sites. We find the condition for blocking of entangle-
ment transport even in the perfect pumping situation. Our analytical solution interconnects quantum many 
body physics and quantum information science. 
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1. Introduction 
 
Quantum communication between distant co-ordinates in 
a quantum network is an important requirement for quan- 
tum computation and information. One can construct the 
quantum network in different ways. Optical systems are 
typically employed in quantum communication and cry- 
ptography applications to transfer the state between two 
distinct co-ordinates directly via photons [1]. Quantum 
computing applications work with trapped atoms to 
transfer information between distant sites—photons in a 
cavity QED [2-6]. However, we would like to study the 
entanglement transfer through the quantum spin chain 
systems. The potentiality of the spin chain system—anti- 
ferromagnetic (AFM) and ferromagnetic (FM)—as a 
network of quantum state and entanglement transport has 
already been studied by many groups as referred in the 
literature [7-22]. The experimental evidence of nanoscale 
spin chain and their properties have been discussed in 
Ref. [23]. 

It is well known that entanglement is the manifestation 
of quantum correlations between two systems when they 
are in inseparable state. We consider the spin singlet 
state as an example of an entangled state.  
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            Typically, the sen- 

der holds one member of the state of the pair of qubits 
while putting the other member at the near end of the 
AFM spin chain of length N. The spin chain is in the 
ground state. When the spin 0 starts to interact with the 
first spin of the chain then the Hamiltonian includes this 
additional interaction term ( 0 0 1I J    ), where 0  
and 1  are the Pauli spin operators for the 0 and 1 sites 
respectively and J  is the exchange coupling. The ini- 
tial state being   0,00     g  where 

>g  is the ground state wave function of the AFM 
Hamiltonian and 


 0 >  is the ground state wave 
function of the total Hamiltonian. This initial state starts 
to evolve and from that one can compute the density 
matrix and concurrence to measure the entanglement and 
purity of states. This is conventional wisdom of entangle- 
ment transport in the existing literature. 

Motivations: But the goal of this letter is different: to 
solve the problem of entanglement transport orthogonally. 
Our main motivation is to interconnect the quantum 
many body physics and quantum information science. It 
is common practice in quantum many body physics to 
create a particle at any point in the system and study the 
dynamics of that particle to understand the physical 
behavior of the system. Therefore, we consider that one 
of the spin (  or ) of the singlet interacts with the 
spin chain and this spin itself transports through the 


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chain medium due to the adiabatic variation of exchange 
couplings of the Hamiltonian, and reaches the other end 
of the chain.  

We will explain the entanglement transport by calcula- 
ting the entanglement current not by calculating concur- 
rence and fidelity that reflect the orthogonality to solve 
this problem [11]. We achieve the perfect entanglement 
transport and also find a condition for blocking the 
entanglement transport even in the perfect pumping 
condition. These rigorous analytical solution and physical 
explanation are absent in all previous studies [7-22].  

The other goal of this letter is to provide the correct 
analytical and physical explanation of entanglement 
hopping in alternate sites. It discusses why the entangle- 
ment transport in AFM spin chain outperforms the FM 
spin chain and also why the entanglement transport is 
better for a longer spin chain than for the shorter one. 

Before we proceed further we would like to state the 
basic aspects of adiabatic pumping process (one of the 
elegant process of quantum many-body physics). An 
adiabatic parametric quantum pump is a device that 
generates a dc current by a cyclic variation of system 
parameters, the variation being slow enough that the 
system remains close to the ground state throughout the 
pumping cycle [24,25]. It is well known that when a 
quantum mechanical system evolves, it acquires a time 
dependent dynamical phase and time independent 
geometrical phase [26]. The geometrical phase depends 
on the geometry of the path in the parameter space. In 
the adiabatic entanglement pumping process, the locking 
potential well carries a spin of the singlet pairs. As the 
locking potential well slides through the adiabatic 
variation of system parameters, it induces a current ( I ) 
in the system. In this study we calculate the current of 
this spin transport, which transports a spin from one end 
of the chain to the other and as a result of which 
entanglement is transported (because the spin 0  and 0 
are singlet and monogonus in nature) from one side to 
the other. This quantization is topologically protected 
against the other perturbation as long as the gap along 
the loop remains finite [27,28]. 
 
2. Model Hamiltonians, Quantum Field 

Theoretical Studies and Physical  
Interpretations 

 
Here we consider two different Hamiltonian: 1H  with 
modulated exchange coupling in XY  plane and 2H  
for onsite magnetic field modulation. Hamiltonians of 
the systems are the following.  
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This model Hamiltonian has some experimental rele- 
vance [27]. The other model Hamiltonian with onsite 
magnetic field modulation is  
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Here we consider that the modulation is periodic over 
two lattice sites. We see that this model have essential 
ingredients to capture the adiabatic entanglement pum- 
ping. 

Here, we would like to present the basic analytical 
methods to study the entanglement transport physics. In 
one dimensional quantum many body system, the 
Luttinger liquid (LL) theory based method is one of the 
most successful analytical methods to study the quantum 
systems. The analytical technique to implement LL 
picture is the Abelian bosonization method. At first, we 
express the spin Hamiltonians in terms of spinless 
fermion (annihilation and creation) operators. After that 
stage, we use the Abelian bosonization method to solve 
these Hamiltonians. One can express spin chain systems 
to a spinless fermion systems through the application of 
Jordan-Wigner transformation. In Jordan-Wigner trans- 
formation the relation between the spin and the electron 
creation and annihilation operators are  
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[29], where †
j j jn    is the fermion number at site 

. Spin operators in terms of bosonic field are the 
following.  
j
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K  is the Luttinger liquid parameter,  and  are 
the constants. The fermionic fields,  

2c 3c

              (5)    e
2π

i r x xr
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U
x  


 S  
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r  denotes the chirality of the fermionic fields, right 
(1) or left movers (–1). The operators r  (Klein opera- 
tors) preserve the anti-commutivity of the fermionic 
fields 

U

  field corresponds to the quantum fluctuations 
(bosonic) of spin and   is the dual field of  . 

Using the standard machinery of continuum field 
theory [29], we finally get the bosonized Hamiltonians as  
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0H  is the gapless Tomonoga-Luttinger liquid part of 
the Hamiltonian. 

We consider spin singlet as a reference entangled state. 
Therefore, we would like to explain the basic aspects of 
quantum entanglement pumping in terms of spin pumping 
physics of our model Hamiltonians. An adiabatic sliding 
motion of one dimensional potential, in gapped Fermi 
surface (insulating state), pumps an integer numbers of 
particle per cycle. In our case the transport of Jordan- 
Wigner fermions (spinless fermions) is nothing but the 
transport of spin from one end of the chain to the other 
end because the number operator of spinless fermions is 
related to the z-component of spin density [30]. We will 
see that the non-zero  and  introduce the 
gap at around the Fermi point and the system is in the 
insulating state (Peierls insulator). 

 1 t  2 t

Here, we would like to discuss the physics of geome- 
tric phase related to our model Hamiltonians and its 
relation to the entanglement current. It is well known that 
the physical behavior of the system is identical at these 
two Fermi points. We would like to analyses these 
double degeneracy points following the seminal paper of 
Berry [26]. In our model Hamiltonian there are two 
adiabatic parameters  and . The Hamilto- 
nian starts to evolve under the variation of these two 
adiabatic parameters. When the Hamiltonian returns to 
its original form after a time T , the total geometric 
phase acquired by the system is  

 1 t  2 t

   d
2πn n RC

i
T R    n ,        (8) 

A line integral around a closed loop in two dimen- 
sional parameter space. Using Stokes theorem, one can 
write  

  =  d
2πn R n R

i
T   

The flux   through a closed surface C is,  
dB S   . Therefore, one can think of the Berry phase 

as flux of a magnetic field. Now we express,  

  11 1n K nB K A K     

and            11 1
2πn K

i
A K n K n K  1 ,  

where     1 21 , ,K k t t  ,  1 t  and  2 t  are 

the real and imaginary part of the fourier transform of 

 1 t . Similarly for the Hamiltonian 2H , the adiabatic 

parameters will be different. Here  and nB nA  are the 

fictitious magnetic field (flux) and vector potential of the 
nth Bloch band respectively. The degenerate points 
behave as a magnetic monopole in the generalized 
momentum space ( 1K ) [26], whose magnetic unit can be 

shown to be 1 analytically as  where 

positive and negative signs of the above equations are 
respectively for the conduction and valance band 
meeting at the degeneracy points [26,27].  represent 

an arbitrary closed surface which enclose the degeneracy 
point. In the adiabatic process the parameters 

1S dS B  1

1

 

S

 1 t  or 

 2 t  are changed along a loop ( ) enclosing the 

origin (minima of the system). We define the expression 
for spin current (



I ) from the analysis of Berry phase. It 
is well known in the literature of adiabatic quantum 
pumping physics that two independent parameters are 
needed to achieve the adiabatic quantum pumping in a 
system [31]. Here one may consider these two para- 
meters as the real and imaginary part of the fourier 
transform of a modulated coupling induced potential. 
When the shape of the potential will change in time, then 
it amounts to changing the phase and amplitude in time. 
We define the expression for spin current ( I ) from the 
analysis of Berry phase. Then according to the original 
idea of quantum adiabatic particle transport [24,25, 
27,28], the total number of spinless fermions ( I ) which 
are transported from one side of this system to the other 
is equal to the total flux of the valance band, which 
penetrates the 2D closed sphere ( ) spanned by the 2S   

and Brillioun zone [27].  

1
2

d
S

I S B 1              (10) 

n S .      (9) 

1B  is directly related with the Berry phase (  n T ) 
which is acquired by the system during the adiabatic 
variation of the exchange couplings during the time 
period of the adiabatic process. This quantization is 
topologically protected against the other perturbation as 
long as the gap along the loop remains finite [27,28]. 
Therefore, the adiabatic entanglement pumping is cons- 
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tant over the arbitrarily long distance of the system. This 
result is in contrast with the existing results in the 
literature [8,9,20]. Therefore we have solved the problem 
of entanglement transport in terms of entanglement 
current but not in terms of conventional wisdom of the 
literature [8-22]. The authors of Ref. [23] have found that 
the entanglement decays exponentially after a certain 
distance. 

Now we explain the quantum entanglement transfer 
for 1H . The second term of the Hamiltonian for NN 
exchange interaction has originated from the x  and  
component of exchange interaction. This term implies 
that infinitesimal variation of coupling in lattice sites and 
is sufficient to produce a gap around the Fermi points. So 
when 

y

1 2 < < 1K , only these time dependent exchange 
couplings are relevant and lock the phase operator at  

π
0

n

K
   . Now the locking potential slides adiabati-  

cally. The speed of the sliding potential is low enough 
such that the system stays in the same potential valley, 
i.e., there is no scope to jump onto the other potential 
valley. The system will acquire  phase during one 
complete cycle of the adiabatic process. This expectation 
is easily verified when we notice the physical meaning of 
the phase operator (

2π

 x ). Since the spatial derivative of 
the phase operator corresponds to the z-component of 
spin density, this phase operator is nothing but the minus 
of the spatial polarization of the z-component of spin, i.e.,  

1

1
z

N z
jjS

P
N 

   jS . During the adiabatic process t   

changes monotonically and acquires –  phase. In this 
process 

2π
z

sP  increases by 1 per cycle. We define it 
analytically as [27, 32]  

 1
d d

2π
z z

s s xP P x x


      1     (11) 

This physics always hold as far as the system is locked 
by the sliding potential and 1   [27]. The change of 
the spatial polarization by unity during a complete 
evaluation of adiabatic cycle implies the transport of 
entanglement across the system. The entanglement 
transport of this scenario can be generalized up to the 
value of  for which  K  is greater than 1/2 . In this 
limit, z-component of the exchange interaction has no 
effect on the entanglement pumping of our system. But 
when 1 2K  , then the interaction due to  becomes 
relevant and creates a gap in the excitation spectrum. 
This potential profile is static. Therefore, there is no 
scope to slide the potential and to get a adiabatic pumping 
across the system. 



Similarly, for the Hamiltonian 2H , the second term of 
the Hamiltonian produces the gap and the pumping 

process is the same as that of 1H . Therefore, we con- 
clude that the modulations in plane exchange coupling 
and also for the modulations in the on site magnetic field 
yield the same adiabatic entanglement pumping. If we 
consider the unmodulated exchange coupling in our spin 
chain system, then there is no gap in the excitation 
spectrum. Therefore, there is no entanglement transport 
in our system. As we have been already described, in 
adiabatic quantum pumping process gap is absolutely 
necessary. 

In this pumping process the most favorable states of 
the system are the antiferromagnetic configuration  
010101... >  and 101010,, , >  (0 stands for up spin 

and 1 stands for down spin). One may start from any 
antiferromagnetic states and transfer the spin of every 
site to the right by two sites to achieve the pumping. 
Therefore, our test spin which we introduce at the one 
end of the spin, hops to the right by two sites in every 
step. Thus when we study the entanglement transport 
between the spin 0  and 0, it is natural that the entan- 
glement also is transported through every alternate sites. 
This is the first correct and complete analytical and 
physical explanation in the literature. The authors of Ref. 
[7,22] have observe, the non analytical behavior of 
entanglement transport as a function of time. But in our 
study the entanglement current is constant and it is 
almost perfect entanglement pumping. In their case the 
spin chain has the spin rotational symmetry. When one 
member of an entangled pair of qubits is transmitted 
through such a channel , then the two qubits states evolve 
to a Werner state [33]. But our spin chain systems has no 
spin rotational invariant symmetry and the transport 
mechanism is also different. 

Here, we would like to explain the difference of 
entanglement transport between the FM and AFM spin 
chain. It is mentioned in the literature but the complete 
physical explanation is not upto the mark [7-18,22]. Here 
we consider the AFM/FM spin chain with static exchange 
coupling to use the result of Bethe ansatz calculations. 
As we know that entanglement is a quantum mechanical 
property, Schrodinger singled out many decades ago as 
the characteristic of quantum mechanics [34] and that 
has been studied extensively in connection with Bell’s 
inequality [35]. In FM ground state, there is no difference 
between the classical and quantum mechanical ground 
state and the low lying excitations are spin-1 magnons. 
The AFM ground state has a complex structure specified 
by the Bethe-ansatz solution. There are no similarities 
between classical and quantum mechanical ground state 
and first excited state of the AFM chain and as a result of 
the quantum mechanical property of the system, the 
entanglement manifests prominently in the AFM spin 
chain. This is the only clear reason why AFM outper- 
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forms the FM spin chain as far as entanglement related 
properties are concerned. This correct physical analysis 
was absent in all previous studies. 

Here we discuss possible sources of imperfections in 
the entanglement pumping process of our system. The 
non-adiabatic contributions leave the system in an 
unknown superposition of states after the full cycle. Also, 
the appearance of Landau-Zener transition in the pum- 
ping system should be negligible so that the system is in 
the ground state. This condition limits the pumping rate  

of entanglement by the mathematical relation 
h

J

 .  

However, even then the entanglement pumping is not  

perfect due to the non vanishing 
J


. Our effort also  

should take the elimination of entanglement pumping in 
the wrong directions. The residual exchange coupling 
may lead to a different spin state. An entangled spin 
transported through a correct exchange coupling modula- 
tion with probability  and through the residual ex- 
change coupling with the probability . There-  

P
1Q   P

fore, the pumping error in each site is 
Q

P
. During this  

analysis we assume that . Our system consists of 
 sites. So the probability of correct entanglement 

transport is 

P Q
N

2~ NP  and wrong entanglement transport is  

2~ NQ . The total pumping error, 
2N

Q

P
 
 
 

, decreases  

with the number of sites in nanoscale spin chain. 
Therefore, for the spin chain system entanglement trans- 
port is better for larger length compared to the smaller 
length with the same exchange couplings. This finding is 
in contrast with the previous findings. 
 
3. Conclusions 
 
We have presented the theoretical explanation of perfect 
adiabatic entanglement pumping for our model Hamilto- 
nians. We have solved this problem orthogonally. We 
have defined and calculated the entanglement current for 
the first time in the literature. We have also found a sub- 
class for blocking of entanglement transport, even in the 
perfect pumping condition. We have explained many 
physical findings of entanglement transport, such as 
hopping of entanglement in alternate sites and the fact 
that entanglement transport in AFM spin chain outper- 
forms the FM spin chain. These facts were subject of 
curiosity before our study. We have explained analyti- 
cally and physically the reasons why the entanglement 
transport is better for the larger length scale compared to 
the smaller one. Our rigorous analytical solutions inter- 

connect quantum many body physics and quantum infor- 
mation science.  
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