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Abstract

Stochastic two-stage linear optimization is an important and widely used optimization model. Efficiency of
numerical integration of the second stage value function is critical. However, the second stage value function
is piecewise linear convex, which imposes challenges for applying the modern efficient spare grid method. In
this paper, we prove the first order convergence rate of the sparse grid method for this important stochastic
optimization model, utilizing convexity analysis and measure theory. The result is two-folded: it establishes
a theoretical foundation for applying the sparse grid method in stochastic programming, and extends the
convergence theory of sparse grid integration method to piecewise linear and convex functions.
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Theory

1. Introduction

Stochastic two-stage linear optimization, also called sto-
chastic two-stage linear programming, models a sequen-
tial decision structure, where the first stage decisions are
made now before the random variable manifests itself;
and the second stage decisions are made adaptively to the
realized random variable and the first stage decisions.
The adaptive decision model has been applied many im-
portant application areas. For example, in the introduc-
tory farmer’s problem [1], a farmer needs to divide the
land for different vegetables in spring. The farmer’s ob-
jective is to maximize profit in the harvest season. The
profit is related to the market price at that time and the
weather dependent yield. Neither the price nor the
weather is known at the present time, hence the farmer’s
decision in spring has to take into account multiple sce-
narios. It is not a simple forecasting problem though,
since the farmer’s second stage decision in fall, which
adapts to different scenarios, also jointly determines the
profit. The second stage decision problem is also called
“recourse” problem. [2] collects more recent applications
in engineering, manufacture, finance, transportation, tele-
communication et al.

A stochastic two-stage linear problem with recourse
has the following general representation:
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min ¢ x+ [_p(x,&)P(d¢),and

p(x,&)=mins"y @
SL.Qy=<&+Tx,y>0,

where & is a random vector properly defined on
(E,F,P), X isapolytope feasible region for the first
stage, Qe R™",sand T are a vector and a matrix of
proper sizes, p:(X,2)—> Ru{o,—o} is a real valued
function.

The high dimensional integration in (1) is difficult and
is usually approximated by using a set of scenarios and

weights {gk,w"},k =1 K as:
min CTX+iWkp(X,§k ).and
Xe par]
p(x,fk)zmindTy 2

st.Qy=&+Tx,y>0.

Under this scenario approximation, the optimal objec-
tive value Z, of (2) provides an approximation of the
optimal objective value z* of (1). An optimal solution
%, of (2) provides an approximation of an optimal solu-
tion x* of (1).

Monte Carlo (MC) method has been widely used in
this approximation, where &* k =1,---,K are random
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sampling points and w* =1/K . The convergence theory
of Monte Carlo method has been extensively studied
[3-6]. The core result is the epi-convergent theorem: un-
der mild assumptions, Z, converges to z w.p.l as
K — o0 ; and any clustering point of the {x, ¥;_, , which
is the sequence of optimal solutions to (2), is in the op-
timal solution set of the original problem. Quasi Monte-
Carlo (QMC) method has also been recently studied [7],
and similar convergence result has been achieved.

The sparse grid (SP) method is an established high
dimensional quadrature rule, which was originally pro-
posed by Smolyak [8], and has been studied by many
authors in the context of numerical integration [9] (and
references therein). Its application in the stochastic two-
stage linear optimization is only shown in a recent nu-
merical study in [10]. Though [10] shows the superior
numerical performance of sparse grid method, compared
with both MC and QMC, the convergence analysis is
based on an assumption that the recourse function is in a
Sobolev space, which only holds for a very narrow sub-
set of the two-stage linear problems, i.e., separable prob-
lems. The contribution of this paper are 1) establishing
the epi-convergence of the sparse grid method for this
important decision model; 2) prove the first order con-
vergence rate of the method.

We first introduce the spare grid approximation error
for integrand functions in Sobolev spaces.

Let D, denote the partial derivative operator

_of

(Djf)(x)-g(x)

Let a=(a,,a),a; €N" be a multi-index, and
define

d ) e
D* =]D;’ = o

d
- a
B I |anJ
=1

where |a| = a; +---+a, . The Sobolev space with smooth-
ness parameter r>1 is defined as

Wd':{f D f eﬁz[o,l]dforallasr},

where o <r means component-wisely «; <r,
Vvj=1,---,d . Sobolev spaces could also be defined using

L, norms, see Evans [11]. The derivatives in the defini-

tion of Sobolev space are weak derivatives. Formally,
D“f is the « -derivative of f if for all veC;[0,1]",

i.e., infinitely differentiable function on (0,1)d , D*f
satisfies the following equation:
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oz (P F)(x)v(x)ax
- (—1)‘“‘ j[o,l]d f (x)(D"v)(x)dx.

For example, f(x)=|x defined in [0,1] has the
first order weak derivative function Df =sign(x); but
the function is nondifferentiable at O in the usual strong
sense. It has been shown that weak derivative is essen-
tially unique, and coincides with the classical strong de-
rivative when it exists. Various properties of strong de-
rivatives carry over to weak derivative as well, for ex-
ample, D“’f =D*(D”f)=D”(D“f) for all multi-
index «, ,|a|+|B|<r. For more calculus rules regard-
ing weak derivative, including the extended Leibniz
theorem, see Evans ([11], Section 5.2.3).

The norm of the defined Sobolev space is

” f "Wdr - ("Daf |[2 )asr 2

where ||, is the L, -norm of a function, a<r
component-wisely, |, is the Euclidian 2-norm of a
finite vector:

1/2
[0, = (el O )
K ) 12
=[S
j=1

For f eW), the sparse grid method achieves the fol-
lowing convergence rate [12]:

K

I[O,l]df (§)d5 _zwk f (é’k)

k=1

(|Og K )(d—l)(r+l) (3)

<, el

where K is the number of function evaluations, g,
is a constant independent of f , increasing with both d
and r,see Brass [13]. Note that f €)1 implies

f eW),i<r. Since the norm "f"wg and B, are non-

decreasing in r, and the term K" (InK)“H"™

non-increasing in r for large K, it is none trivial to
tell which space will yield the tightest bound. The prob-
lem is called fat F problem in Wonzniakowski [14]. In
this paper, as we shall see, only r =1 is relevant for our
discussion.

The convergence result in (3) only holds for the two-
stage stochastic linear programming (1) in the trivial case,
i.e, when the integrand function p(x,):E—>R s
separable. For example,

P(%.%,5.6,)= ;[liyn Y Y Y Y,
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Vi =Y =& %
yz*—y;:efz—xz

Vi Y1 Y2, Y2 20
is equivalent to

p(Xl,Xz,fl.fg)=|§1—X1|+|§2 _X2|:

where |&-x|e W', |&-x|eW' and the conver-
gence result in (3) can be applied directly.

However, in general, p(x,-) is non-separable piece-
wise function, see Birge and Louveaux [1], and does not
belongto W) forany r.For example,

p(xl’ X21§1v§2) = n;lil’l)ﬁ +y
vty

e A e
yy 20
is equivalent to
P(X %066 ) =16 =& =X =%,

and does not have the (weak) derivative D™ p(x,,%,,)
since Df s discontinuous and non-differentiable
even in the weak sense, while D f = D9 (D £ if
D®f exists. Hence the error bound in (3) can not be
applied to two-stage linear problem directly. The major
contribution of this paper is to prove the convergence of
(2) to (1) in the rate specified in (3) with r=1, i.e., the
first order convergence rate, even though p(x,-)e W
On the other hand, this analysis extends the convergence
theory of sparse grid method to convex multivariate
piecewise linear functions since for such a function
f:X—>R:=dx for xeB,; each B, is polyhedron
and {B,-,B,} partitions X, could be represented as'

f(x)=miny
y
y>dx,i=1,--,m

The paper is organized as the followings. In Section 2,
we introduce a logarithmic mollifier function and prove
its various properties. The mollifier function is quite fa-
miliar to the optimization community as it is the barrier
function used in the Interior Point Method for linear pro-
gramming. In Section 3, we use the limiting properties of
the mollifier function to prove the uniform convergence
and the first order convergence rate for the objective
function. We also show the converging behaviour of the
optimal solutions &, in a subsequence. Finally, Section
4 presents our conclusions.

In the coming sections, we assume = = [0,1]d . For a
more general continuous distribution with a inverse cu-

"We thank John Birge for pointing out this elegant argument.
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mulative function F': [0,1]d — =, one can apply trans-
formation

J.zf (£)F(dS)= J.[Oyl]d f (Ffl(a)))da).

The transformation brings in more complexity in the
analysis without changing our conclusion, hence we as-
sume E:[O,l]d in the following sections and extend
the analysis through inverse transformation and trunca-
tion in the Appendix.

2. Mollifier Function

We make the following mild assumptions of the problem
(2):

Al: X is compact with nonempty relative interior;
vxeX,EeE p(x &) <o, orrelative;

A2: completeness, and p(x,&) has nonempty rela-
tive interior;

A3: rank(Q)=m;

A4: £ is a continuous random vector with an in-
vertible cumulative distribution function.

Assumption Al is necessary for our analysis using the
Interior Point Method theory. Assumption A2 is for
convenience since otherwise we need to discuss the case
p(x, &)=, which will drag our analysis to a different
focus. Assumption A3 is implicitly assumed in many
analysis of linear programming, since the rows of Q
could be preprocessed such that the reduced Q has full
row rank. Assumption A4 facilitates the conversion from

—_

a unit cube [0,1]d to = through the inverse c.d.f. trans-
formation.
We define a mollifier function p,.:E—>R:
Pux(&)=minsTy+uB(y)
st.Qy =& +Tx,

where B(y):—zi":llog y;. In the following, we call

p(x,&) the recourse function, and p, (&) the molli-
fier function. We let

o()=v8(n)<[- Lo L

7ARA

4)

H(y):VZB(y)=diag£i2,---,i2]. (5)
Y1 Ya

B(y) is in fact a barrier function widely used in the
Interior Point Method for linear programming, and its
properties are well studied. As x — 0", the convergence
of p,.(£) and (y,,.u,,) is stated in the following
theorem.

Theorem 2.1. For any xe X,z €(0,1), let (y,,.u; )
be the optimal primal and dual solutions of the mollifier
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function, then

Ilmp#x(ég):p(x’ﬁf)
im (Y0 ) = (o).

where (y:,uX is an optimal primal and dual pair of the
recourse function p(x,¢).

Proof. Due to the barrier function B(-), the objective
function of p,, (&) is strictly convex. Together with
the relative completeness assumption, it is clear that
P, (&) has an unique optimal solution. Since the pro-
blem has non-empty relative interior by assumption, the

central path {(y;'x,u;x)} exists for each x, and con-
U

verges to the analytical center of the optimal set, see
Roos et al. [15] Theorem 1.30 and its Definition 1.20 for
analytic center. O

The converging property of (y;,,.u . X) (central path)
as u— 0" has been an important topic In Interior Point

Method, and has been extensive studied by many authors.

For interested readers, in addition to the reference given
in the proof, we refer the extensive research in Megiddo
[16], an early work Fiacco [17], and a survey of degen-
eracy and IPM by Guler et al. [18]. For readers interested
in the interior point method in general, we refer Nesterov
and Nemirovskii [19], Renegar [20] and Wright [21].

The KKT condition of the optimization problem ap-
peared in (4) is

Funy0:6)= [S(;yﬂ—g;—aqu )

where F,, iRIxR"xZ—>RM™ . Clearly F,,(--°)
is infinitely differentiable. Furthermore,

V(VU)F/IX [ﬂH(y/‘x) QT]

Q 0
0
VfFﬂ,x :(_I Jl (6)
where | is an identity matrix, Vv ,F, . is invertible

since H(:) is posmve definite. Hence by the implicit
function theorem, yﬂx, ;X are infinitely differentiable
functions of & . So p, (£)=s" y;,x+,uB(y;'X) is
infinitely differentiable.

Proposition 2.1. For any xe X, z<(0,1),

P.() E>ReC”
In the following, we directly derive the (strong) partial
derivatives of D“p, (-) forall a<1. Note that there
are 2° -1 number of «s satisfying a<1. We also

prove these partial derivatives are finite for all x <(0,1),
x € X . Finally, we show that their limits are finite when

Copyright © 2011 SciRes.

44— 0" . Hereinafter, a vector v<o or a matrix
M <o means the inequality holds component-wisely.
Proposition 2.2. For all xe X, €(0,1),

/o (&)= _u;,x < oo,

Furthermore, lim,¢*Vp, (&)= -U, <.
Proof. The Lagrangian function of the optimization
problem in (4) is

L (y,u,&)=s"y+uB(y)+u'Qy-u"é-u'Tx.
Since L, (yux’uy,x!ff):/?,,,x(é),

VP, (8)= VL, (Yo U)o €)

_ oL, . 8LilyX ayﬂ'X . aLﬁf ‘ 8uﬂ ‘
o8 oy, 0 ou,, o&
N
- T X
=-u’, (s+yg(yﬂx) Q uﬂ,x) o
#H(Q e -T2
:_u,u,x'

where the last equality follows the KKT condition.
Clearly u,, (&)<w.As u—0", u, —u, by Theo-
rem2.1.

We let

Y, =diag(y;,,).3; = diag(y; ).

Recall that the 'y, refers to the limiting point defined
in the Theorem 2.1, not an arbitrary optimal solution of

p(x&).
Lemma 2.1. Forany xe X,ue(0,1),

i, (€)= -u(Q2Q7)
vy, (€)= 22,07 (QAQT) .

Proof. F(£,Y,.U,,)=0 defines implicit functions
(V5003 ) - With Viyo)Fur: VF,x givenin (6),

X

V(y,u)FMl can be epr|C|tIy computed as

il (RCHCURC LR CRCI CURC O
(QHQ)'QH*  —u(QH™Q")

where H is a shorthand notation of H(y;, ). Hence
by the implicit function theorem

VY (€)]
(Vuw(f)} -

and the conclusion follows straightforward computation

FlV.F

(yu)" ux ™ &0 pux?
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and (5).
Proposition 2.3. Forall xe X,z e(0,1),

Vp, (&)=u(QV2.Q" )71 <o . Furthermore,

lim,o*V?p,, (£)=0 essentially.
Proof. By Proposition 2.2 and Lemma 2.1,

-1

V2, (€)= u(Q¥2Q") W

Hence V?p, (&)<, VEeQ,xeX. By Theorem
2.1,

iimVp,,.(£)=0-(Q7Q")"

u—)O

If the optimal set of p(x,&) is non-degenerate,
Q))’Q" is non-singular, hence the above limit is zero. If
the optimal set is degenerate, then the limit 0-00 is not
defined. However, in the following, we show that the
degenerated case has zero Lebesgue measure, hence the
limit is zero with probability one. Let’s first consider a
special case of degeneration. Let the first M columns
of Q be an optimal basis B and
V. =0,¥,,-, Y, >0,y,.,="-=Yy,= be a degenerated
optimal basic feasible solution. Define the set
E={¢|ys =B (£+Tx),%,=0,¥,, -+, Y, >0}0. Since

set Y={yeR"|y,=0,y,,Y, >0} has zero Lebes-
gue measure in R™, and B is both injective and sur-
jective, hence m(E)=m(B(Y))=0. Clearly the same
argument holds for an arbitrarily degenerated optimal
basis B with an arbitrarily chosen degenerated basic
column. Furthermore, there are only finitely many ways
to choose basis and degenerated columns. Hence the total
measure of the set & which leads to a degenerated
p(g,x) is zero. Hence we conclude that the limit is
zero essentially. O

We continue to calculate higher order partial deriva-
tives. Note that V?p, (&) isa mxm matrix, and

MO N R
ococpE, | o5 P9)]

In general, for any k<d and any set of i,--,i,,
0 0
8& 65.

—V?p,, (&) isa mxm matrix, and

ap_(f){ii

VZ
ocoz, o0z, |0, o “(5)}

k i ip

Proposition 2.4. For any xe X,u<(0,1), and any
set of indices i, i, ,
ak

o Pux(&) <

0, -+ 05, “
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ak
JLT+ 6§|1 6é:ik Pux (‘f) =

essentially.
Proof. We first prove the conclusion for k=2, and
extend by induction.

o 5 V2P, (&)= aﬂ(Qyﬂ,xQT )’

:'u{(QyuZ,xQT)lQ[GZ pXJQ (Qy,,xQ ) }

Y1
05

0
ay* (8)
a 0 2,1,%
=2u(QU2Q") QY 2,
0 e 0

*

. Y

Q (@7

where

*

Nijux _ o
aj—;( - [vyﬂvx (é:):|1k

is shown in lemma 2.1. Clearly (8) is finite for x#>0.
Now taking limit z— 0, by Theorem 2.1 and Proposi-
tion 2.3:

=20 (@)

jk

lim -2 v? P (&)= Oessentially.
ot 08

Furthermore, we prove by induction that

00 .
isinthe form 24-S(Q,),,, ,
agi?’ aék 'D/l X (5) 'u (Q yu,x yu,x)
where S() is an algebraic expression involying multi-
plication and summation of ¥, ,(Q)7,Q") . Q. The

claim is true for %Vzpﬂyx(g) in (8). Suppose it is
k
0

%,

the term (Q)”,Q") " will be expanded into multiplica-

true for —

i3

——V?p, (&), then by the chain rule,

tion of the same terms Y, ,(Q)?,Q" ) Q, hence the

form 24-5(Q,Y,,.),,) is established. It is clear that

|im;H0+2y~S(Q,yﬂ,x,yﬂ,x)=0essentially by the Theo-

rem 2.1 and Proposition 2.3. We also derive higher order
partial derivatives explicitly in the Appendix A.
Theorem 2.2. Forany xe X,ue(0,1),

AJCM



S.Y.CHEN 299

@), <

L

oo =i, i <
Furthermore,
RRY
sl +Jef, ) <=

Proof. follows the definition of the norm ””wl
Proposmons 2.2, 2.3, 24 and Theorem 2.1. The finite-
ness of u;,, j=1, , follows the relative com-
pleteness assumption of the two-stage linear problem and
duality theory. Furthermore, X is compact, hence
C<ow. O

3. First Order Convergence Rate

We first discuss the convergence of the objective func-
tion specified in the approximation model (2) to the ob-
jective function of the true model (1), and the conver-
gence rate.

Theorem 3.1. Forall xe X,

K log K )24V
fogep (x:£)d; —;Wkp(x, &)\ <cpy %

Hence,
Zw p(x&* )—>I dp (x,£)d, uniformly.

Proof. For notation convenience, define operators E
and A, as

f ): -[[O,l]d f (‘f)df’

Ad()= iwkf( )
Thenforany xeX,ue(0,1),K
[E(p(x)=Ac(p(x ))|
<[E(p(x))~E(p ()
+E(pux ()= Ac (2 ()
+HA(2()) = Ac (%))

Taking limiting #— 0" on both sides, then the first
and third term on the right hand side go to zero by Theo-
rem 2.1, and the second term is bounded by the classical
convergence rate of sparse grid method, see (3), Proposi-
tion 2.3 and Theorem 2.2. [

Let the objective function of the true problem (1) and
the approximated problem (2) be

Copyright © 2011 SciRes.

7(x)= CTX+'[[O’1]dp(x,§)P(d§),
7 (x)= CTX+kZ';1Wk'O(X'§k)'

and let the optimal objective value and optimal solution
set of the true model and approximated model be
2", X", 7, X respectively. Theorem 3.2 and Theorem
3.3 state the results for the optimal objective value and
the optimal sets separately.

Theorem 3.2. The optimal objective value converges,
i.e., limko.Zx — Z , and the rate of convergence is

(Iog K )Z(dfl)
K .

Proof. For the minimization problem we note that
z(x")<z(x) forany x e X",xe X, and
7o (%) <2, (x) forany % e Xy, xeX. Let

(log K)Z(d_l)

|z* ~ 7 | <CB 4

e =Chy , then

where the inequalities follow Theorem 3.1.
Theorem 3.3. Forany %, € X;,X e X",
(log K )Z(d—l)

1) %, isfeasible;
2) ‘Z(XK)—Z(X*)‘SZCﬂLdTJ

3) For any clustering point X of a subsequence
% teN, % € Xy, X eX'; furthermore, if X" ={x}
t t t

is a singleton, then X" =x".

Proof. X, satisfies the first stage constraints and by
the relative completeness assumption, X, is feasible.
To show that X, is also very close to any optimal solu-
tion, we apply the similar technique used in Theorem

3.1

since —&, <z(%X)—Z (% )<&c by Theorem 3.1, and
—&y SZ(XK)—Z(X*)SEK by the steps in the proof of

~*

Theorem 3.3. Since X is a clustering point,
‘z(i*)—z(x*)‘znmt% z(iKt)—z(x*)‘zo by the ine-
quality above. As a special case, if X :{x*}, then
£ =x".

The third result of Theorem 3.3 is a classical result
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based the uniform convergence, see Romisch [22]. The
result is stated in subsequence since the optimal sets are
not necessarily singletons, and one can only expect op-
timality of clustering points. The result can also be
proved by epi-convergence, see Attouch [23,24]. Epi-
convergence is implied by uniform convergence, see
Kall [25].

4. Conclusions

The modern sparse grid method is very efficient in nu-
merical integration for integrant functions the Sobolev
space W) . However, the integrand function in two-
stage linear programming does not belong to W) . We
prove that the sparse grid method for the stochastic two-
stage linear programming not only converges but also
converges in the first order rate. Our constructive proof
uses a logarithmic mollifier function from interior point
method.
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Appendix A. Inverse Transformation and
Truncation

For a random vector on = with invertible cumulative
distribution function F‘l:[O,l]d — 2, the integration
domain of a mollifier function can be transformed from
E to [O,l]d :

¢)F(dg)= .[[0,1]‘”014’X (F'l(a)))da),

then we apply the sparse grid method to generate scenar-
ios and weights for on the cube [0,1]. We need to
check the properties of the integrand function

P,y F (). Its differentiability only depends on F™*()
since p,,€C”(). Most commonly used invertible cu-
mulative distribution functions, for example, inverse of
normal distribution function ¢7*(-), isalsoin C”. The
finiteness of the partlal derivatives of p,, oF™(-) also
only depends on F~ () since partlal derivatives of
P, () are finite for any multi-index & <1 compo-
nent-wisely.

The higher order partial derivative of a composite
function can be calculated explicitly. For
h:xeXcR——>yeYcR—25zeR, we can ap-
ply the Faa di Bruno’s formula:

dl‘l

oo 1(000)=(F29)" (9= X 17 (g (x)[Te" (x).

Pel, BeP

[Pux(

where P, is the set of all partitions of the set J, of
integers 1,---,n. A partition of J, is a family of pair-
wise disjoint nonempty subsets of J, whose union is
J,- |Al means the cardinality of the set A. For a vec-
tor composite function:

h:xeXcR' —5yeYcR —4»7eR,

We apply Tsoy-Wo Ma’s higher chain formula [26]:

o oMz = 1 { 1 a"ky]mk
:al —_

ox* '(s,p,zmz)epay’“ kst MY pt ox

where D is the set of all decompositions of multi-index
« with multiplicities m. Calculation involving a multi-
index a=(ey,-+-,a,)eN" follows rules:

|a|=zvlaj,a!=ﬁa-!,

v 3z ‘z v 9"l
— = — .

A multi-index a<R" decomposes into s parts
P, Py in N with multiplicities m;,---,m; in N’
respectively if the decomposition equation

a= |m1| p1+|m2| P, +"'+|ms| Ps

S
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holds and all parts are different. The total multiplicity is
defined as

M=m, +m, +---+m,.

The list (s, p,m) iscalleda y-decomposition of « .
To ensure all parts are different we may impose
O<xpxp,<<p, , where aeR" <«pfeR’
means o =B;,-,a;,=F;,, but o;<p;, for a
J<v.

For the problem under discussion, let a <1 compo-
nent-wisely, i.e., r=1, note that are 2* -1 number of
such a (s). Following the higher chain rule formula,
we get

o }

W’D#YXOF 1((0)

_ o so1 1 e |
= Zepagm pllx(g)g mk||: pkl aa)pk!}

Furthermore, since lim,,*V’p,, (£)=0 by Proposi-

tion 2.3, the computation of "mﬂ—w*aa_apy,x oF ()
a

can be simplified significantly. In this case, only the de-
compositions (1,a,e;), € isthe ith unit basis of R, cor-
respond to non-zeros in the above formula. Otherwise, for

o

$>2, m=m+-+mg, and [im, o Y — P (£)=0.
Hence
8% S 9p, (& )6‘”“5
lim = lim ) oy —22—~=—2
,Ll—>0+a ap”’ ( ) ;;—)O*lzll agl ow*
d . a\a\é:
_Zalulx oW
Hence,
. - e . a\“\é .
tim o0 B (@) =) D i, 25 .
2 Ja<1 2
\a\§
if and only if L<oo almost surely
a)
Va<1,Vi=1,---,d. For some distributions, the condi-

tion might not hoId. For example, the inverse of a cumu-
lative function of the normal distribution does not have
this property nearby 0 or 1. To remove the singularities,
truncation of the cube [0, 1] could be applied:

.[[Oyl]dh(x)dx ~ j[gvl_g]dh(x)dx,

where 0<g<1 is a small positive number. To com-
pute the righthand side using the standard sparse grid
method, we need to change the variable to y, where
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x=g+(1-25)y:[0,1] »[s,1-&]". Hence
'f[g‘l_g]dh(x)dx =(1-2¢)’ 'f[o’l]dh(g+(1—25) y)dy.

Hence for a two-stage linear problem with an invert-
ible but unbounded cumulative distribution function
F, we shall first generate the standard grid points and

K
weights {(w",w“)} using the sparse grid method,

then scale and transform them to the original random
variable & by

Copyright © 2011 SciRes.

g =F(e+(1-28)0"), W =(1-2¢)" W,
and finally use the {&,W*| in the approximation
model (2).

The error of this approximation model is exactly the
sum of truncation error e, and sparse grid approxima-
tion error e,. Error e, goes down with & and error
e, goes down with increasing K at the first order rate

of sparse grid method.
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