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Abstract 

Stochastic two-stage linear optimization is an important and widely used optimization model. Efficiency of 
numerical integration of the second stage value function is critical. However, the second stage value function 
is piecewise linear convex, which imposes challenges for applying the modern efficient spare grid method. In 
this paper, we prove the first order convergence rate of the sparse grid method for this important stochastic 
optimization model, utilizing convexity analysis and measure theory. The result is two-folded: it establishes 
a theoretical foundation for applying the sparse grid method in stochastic programming, and extends the 
convergence theory of sparse grid integration method to piecewise linear and convex functions. 
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1. Introduction 

Stochastic two-stage linear optimization, also called sto-
chastic two-stage linear programming, models a sequen-
tial decision structure, where the first stage decisions are 
made now before the random variable manifests itself; 
and the second stage decisions are made adaptively to the 
realized random variable and the first stage decisions. 
The adaptive decision model has been applied many im-
portant application areas. For example, in the introduc-
tory farmer’s problem [1], a farmer needs to divide the 
land for different vegetables in spring. The farmer’s ob-
jective is to maximize profit in the harvest season. The 
profit is related to the market price at that time and the 
weather dependent yield. Neither the price nor the 
weather is known at the present time, hence the farmer’s 
decision in spring has to take into account multiple sce-
narios. It is not a simple forecasting problem though, 
since the farmer’s second stage decision in fall, which 
adapts to different scenarios, also jointly determines the 
profit. The second stage decision problem is also called 
“recourse” problem. [2] collects more recent applications 
in engineering, manufacture, finance, transportation, tele- 
communication et al. 

A stochastic two-stage linear problem with recourse 
has the following general representation: 
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where   is a random vector properly defined on 
 P, ,  , X  is a polytope feasible region for the first 
stage, m nQ  , s and  are a vector and a matrix of 
proper sizes, 

T
  : , ,X        is a real valued 

function. 
The high dimensional integration in (1) is difficult and 

is usually approximated by using a set of scenarios and 
weights  , , 1, ,k kw k K  
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Under this scenario approximation, the optimal objec-
tive value *

Kz  of (2) provides an approximation of the 
optimal objective value  of (1). An optimal solution *z

*
Kx  of (2) provides an approximation of an optimal solu-

tion *x  of (1). 
Monte Carlo (MC) method has been widely used in 

this approximation, where  are random  , = 1, ,k k  K
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sampling points and = 1kw K . The convergence theory 
of Monte Carlo method has been extensively studied 
[3-6]. The core result is the epi-convergent theorem: un-
der mild assumptions, *

Kz  converges to  w.p.1 as 
; and any clustering point of the =1 , which 

is the sequence of optimal solutions to (2), is in the op-
timal solution set of the original problem. Quasi Monte- 
Carlo (QMC) method has also been recently studied [7], 
and similar convergence result has been achieved. 

*z
*{ }K Kx K 

The sparse grid (SP) method is an established high 
dimensional quadrature rule, which was originally pro-
posed by Smolyak [8], and has been studied by many 
authors in the context of numerical integration [9] (and 
references therein). Its application in the stochastic two- 
stage linear optimization is only shown in a recent nu- 
merical study in [10]. Though [10] shows the superior 
numerical performance of sparse grid method, compared 
with both MC and QMC, the convergence analysis is 
based on an assumption that the recourse function is in a 
Sobolev space, which only holds for a very narrow sub- 
set of the two-stage linear problems, i.e., separable prob- 
lems. The contribution of this paper are 1) establishing 
the epi-convergence of the sparse grid method for this 
important decision model; 2) prove the first order con- 
vergence rate of the method. 

We first introduce the spare grid approximation error 
for integrand functions in Sobolev spaces. 

Let jD  denote the partial derivative operator  
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. The Sobolev space with smooth- 

ness parameter  is defined as  1r 
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1, ,j   d . Sobolev spaces could also be defined using 

p  norms, see Evans [11]. The derivatives in the defini-
tion of Sobolev space are weak derivatives. Formally,  
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For example,   =f x x  defined in  0,1  has the 
first order weak derivative function  Df xsign ; but 
the function is nondifferentiable at 0 in the usual strong 
sense. It has been shown that weak derivative is essen-
tially unique, and coincides with the classical strong de-
rivative when it exists. Various properties of strong de-
rivatives carry over to weak derivative as well, for ex-
ample,   D f D D f D       D f  for all multi- 
index , , r     . For more calculus rules regard-
ing weak derivative, including the extended Leibniz 
theorem, see Evans ([11], Section 5.2.3). 

The norm of the defined Sobolev space is  
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For , the sparse grid method achieves the fol-
lowing convergence rate [12]:  
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where K  is the number of function evaluations, ,r d  
is a constant independent of f , increasing with both d 
and , see Brass [13]. Note that  implies  r r

df 
,i

df i r  . Since the norm r
d

f  and ,d r  are non-  


decreasing in r , and the term    1 1
ln

d rrK K
   is 

non-increasing in  for large , it is none trivial to 
tell which space will yield the tightest bound. The prob-
lem is called fat 

r K

F  problem in Wonzniakowski [14]. In 
this paper, as we shall see, only  is relevant for our 
discussion. 

= 1r

The convergence result in (3) only holds for the two- 
stage stochastic linear programming (1) in the trivial case, 
i.e., when the integrand function  is 
separable. For example, 
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2 2 1x    and the conver-
gence result in (3) can be applied directly. 
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contribution of this paper is to prove the convergence of 
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The paper is organized as the followings. In Section 2, 
we introduce a logarithmic mollifier function and prove 
its various properties. The mollifier function is quite fa-
miliar to the optimization community as it is the barrier 
function used in the Interior Point Method for linear pro-
gramming. In Section 3, we use the limiting properties of 
the mollifier function to prove the uniform convergence 
and the first order convergence rate for the objective 
function. We also show the converging behaviour of the 
optimal solutions *

Kx  in a subsequence. Finally, Section 
4 presents our conc ions. 

In the coming sections, we a
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m
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Assumption A1 is necessary for our anal
terior Point Method theory. Assumption A2 is for 

convenience since otherwise we need to discuss the case 
 , =x   , which will drag our analysis to a different 
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analysis of linear programming, since the rows of Q  
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row rank. Assumption A4 facilitates the conversion from  
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is in fact a barrier function widely used in the ( )B y  
Interior Point Method for linear programming, and its 
properties are well studied. As 0  , the convergence 
of  ,x   and  * *

, ,,x xy u   i in the following 
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e mollifierbe the optimal primal and of th   dual solutions 1We thank John Birge for pointing out this elegant argument. 
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function, then  
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,xH yH  . Hence 

by the i licit function theorem  

 *

mp

 
, 1

( , ) , ,*
,

= ,x
y u x x

x

y
F F

u


  
 

    
 

 

and the conclusion follows straightforward computation 
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tion 2.3. For all 1   

  . Furthermo

essentia
a 2.1, 

        (7) 

Hence 

and (5).  
Proposi  , 0,x X   ,

    12 2 T  


  re, , ,x xQ Q 
2  0 , 0lim x      

Proof. By Propositio
lly.  

n 2.2 and Lemm

   , ,x xQ Q       
12 2 T 

 2
, < , , .x x X        By Theorem 

2.

If the optimal set of 

1,  

    12 2
,

0

= 0 .lim
T

x xQ Q


 




    

 ,x 
ce the a

 is non-degenerate, 
2 T

x Q  is non-singular, hen bove limit is zero. If 
al set is degenerate, then the limit 0

Q
the optim   is not 
defined. However, in the following, we sh at the 
degenerated case has zero Lebesgue measure, hence the 
limit is zero with probability one. Let’s first consider a 
special case of degeneration. Let the first m  columns 
of Q  be an optimal basis B  and  

1 2 1, , , 0,m m ny y y y y      be
e the set 

  * 1= | = , = 0, , , > 0E y B Tx y y y   

ow th

degene0
optimal b


asic feasible solu

 rated 

. Since  

set 0  has zero

a 
tion. Defin

1 2 0B m

m 1 2= | = 0, , , >mY y y y y 
easure in m , and B  is both 

 
 for an arbitrarily d

n. 

 Lebes-
gue m injective and sur-
jective, hence    0m E m B Y  . Clearly the same 
argument holds egenerated optimal 
basis B  with an arbitrarily chosen degenerated basic 
colum Furthermore, there are only finitely many ways 
to choose basis and degenerated columns. Hence the total 
measure of the set   which leads to a degenerated 
 , x   is zero. Hence we conclude that the limit is 

ntially.   
We continue t ca

zero esse
o lculate higher order partial deriva-

tives. Note that  2
,x   is a m m  matrix, and  

   
3  , 2

,= .x
x

i j k k ij


 

   
 

     
 

In general, for any  and any set of ,   k d 1, , ki i

 2
,

3

x
i ik

 
  

s a m
 

  i m  matrix, and  

   , 2
,

1 2 3 ,1 2

= .
k

x
x

i i i i ik k i i




 
 

    

   
 

    



 



Proposition 2.4. For any  , 0,x X   ,1  and any 
set of indices 1, , ki i ,  

 ,

1

< ,
k

 ,
0

1

= 0lim
k

x
i ik




 
 


 

 

essentially. 
Proof. We first prove the conclusion f r , and 

extend by induction. 
o  = 2k

  12 2
, ,( ) = T
x x

k k

Q Q   
 




 




   

 

 

1 12 2 2
, , ,

*
1, ,

*
2, ,

12
,

*
, ,

12
,

=

0 0

0 0
= 2

0 0

0

   ,

T T T
x x x

k

x

k

x
T

x k

n x

k

T T
x

Q Q Q Q Q Q

y

y

Q Q Q

y

Q Q Q

  
















 



 





   
     

 
 
 

  
 
 
 
  
  







 

 

  

 



(8) 

where 

   
*

1, , * 2 2
, , ,= =j x T T
x x xjk jkk

y
y Q Q Q
  


       

   

is shown in lemma 2.1. Clearly (8) is finite for > 0 . 
Now taking limit 0  , by Theorem 2.1 and 
tion 2.3:  

Proposi-

 2
,

0

= 0 essentially.lim x



 k






Furthermore, we prove by induction that  


 

 2
,



x
i ik

 
 




 
 

3i ik

x 
 




 
  is in the form  , ,2 , ,x xS Q      , 

ere  S   is an algebraic expression invowh lving multi-
plicati ummation 

claim 

on and s

is true for 

of   12
, ,, T
x xQ Q 


  , Q . The  

  2
,x

k
  it is 


 in (8). Suppose 

true for  2
,

3 1

x
i ik

 
 



 


 
 , then by the chain rule, 

the term  2
,

T
xQ Q

1
 panded into multiplica-  

tion of th ,xQ , Q , hence the 

 will be ex

e same terms  

form 

 12
, , T
x Q


 

 , ,2 , ,x xS Q       is established. It is clear that  

 0 2 0 essentiallylim    by the Theo-  , ,, ,x xS Q    

rem 2.1 and Proposition iv igher order  2.3. We also der e h
partial derivatives explicitly in the Appendix A.

Theorem 2.2. For any 1 ,  
  

 , 0,x X  
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 
1,

2
1

2
 

2

( ) < ;x
n

  


* *
1, 1, ,

2 20

( ) , < .lim x x m x
n

u u


 


  
  

Furthermore,  

 
1

2 2 2* *
1, ,

2 2
, .sup x m x

x X

u u


 
 

   

Proof. follows the definition of the norm 1
n




e finite-
, 

Propositions 2.2, 2.3, 2.4, and Theorem 2.1. Th
ness of *

,j xu , = 1j , ,
mption of the 
. Furthermo

m , follows the relative com-
pleteness two-stage linear problem and 
duality th re, 

 assu
eory X  is comp t, hence 

o
 (1

gence e.

ac
<  .   

3. First Order Convergence Rate 

We first discuss the convergence of the objective func-
tion specified in the approximati n model (2) to the ob-
jective function of the true model ), and the conver-

 rat   
Theorem 3.1. For all x X , 

         2 1

1,0,1
=1

, , .k k
d d

k

x d w x
K        

Hence, 
K

log
dK K


.

Proof. For notation convenience, define operators 
and 

 , Kk kw x      
0,1

=1

,d
k

x d uniformly  

E  

KA  as  

     
0,1

d ,dE f f    

   =
K

k k
KA f w f

=1k

 . 

Th  for any  , 0,1 ,x X K   ,  en 

     
     

     
    

,

, ,

,

, ,

               ,

                  

    ,

K

x

x K x

K x K

E x A x

E x E

E A

A A x



 



 

 

 

 

  

   

   

   

 

Taking limiting on both sides, then the first 
and third term on t nd side go to zero by Theo-
rem 2.1, and the sec  is bounded by the classical 
convergence rate grid method, see (3), Proposi-
tion 2.3 and Theorem

Let the objective function of the true problem (1) and 
the approximated problem (2) be 

              

0   
he right ha

ond term
 of sparse 

 2.2.   

       

   
0,1

=1

= , d ,

= , ,

d

K
T k k

K
k

z x c x P

z x c x w x

T x   

 




 

an



d let the optimal objective value and optimal solution 
set of the true model and approximated model be 

* * * *, , ,K K

3.3 state the resu
z X z X  respectively. Theorem 3.2 and Theorem 

lts for the optimal objective value and 
the optimal sets separately.  

Theorem 3.2. The optimal objective value converges, 
i.e.,  and the rate of convergence is  * *

limK Kz z  ,

   2 1

* *
1,

log
.

d

K d

K
z z

K




    

Proof. For the minimization problem we note that 
   *z x z x  for any * *,x X x X  , and  
   K K Kx z x   for any * ,K Kz x X x X  . Let  

  2

1,

log
=

d

K d

K
1

K
 



 , then 

           
 

* *=

 
K K K K K K

Kz  
 

K K K

z x z x z x z x z x z x

x z x

   



   

 



          

  

* * *

* ,*

*=K K K K K

K

z x z x z x z x x

z x x 

  

   

   
 

K

where the inequalities follow Theorem 3.1. 
Theorem 3.3. For any 

Kz

z x z 

  
* * *,K Kx X x X  , 

Kx  1) is feasible;  

2)        2 1

*
1,

log
2

d

K d

K
z x z x

K




   ; 

* of a subsequence  3) For any clustering point x  
*, ,K K Kt t t

x t x X   , * *x X ; furthermore,  * *=if X x   

is a singleton, then * = *x x . 
Proof. Kx  satisfies the first stage constraints and by 

the relativ mpleteness assumption,e co  Kx  is feasible. 
To ow t sh hat Kx  is also very close to a mal solu-
tio m 
3.1. 

ny opti
n, we apply the similar technique used in Theore

           * *
K K K K Kz x z x z x z x    

 
 2 , 2 ,K K  

since 

=Kz x z x 

   K K K K Kz x z x       by Theorem 3.1, and  

   *
K K Kz x z x      by the steps in the proof of  

Theo *x  is a clustering point,  rem 3.3. Since 

       * * * 0limt Kt
z x z x z x z x      by the ine- 

quality above. As a special case, if  *=X x , then 
* *=x x . 

 tThe .3 is a classical result hird result of Theorem 3
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based the uniform conve
bsequ al sets are 
eto , and on xpect op-

timality of clustering points. The result
h [23,24

onverg c nvergenc
K

he sparse grid method for the stoch -
mming not only converges but

 order rate. Our constructive proof

 Mathematics, Philadelphia, 2005. 

 R. J.-B Wets, “Epi-Convergency of Con- 
 Programs,” Stochastic and Stochastic Re-

ports, Vol. 34, 1991, pp. 83-92. 

chastic Pro- 

rgence, see Römisch [22]. The 
result is stated in su ence since the optim
not necessarily singl ns e can only e

 can also be 
proved by epi-convergence, see Attouc ]. Epi- 
c en e is implied by uniform co e, see 

all [25]. 

4. Conclusions 

The modern sparse grid method is very efficient in nu-
merical integration for integrant functions the Sobolev 
space r

d . However, the integrand function in two- 
stage linear programming does not belong to r . We 
prove that 

d
astic twot  

stage linear progra
converges in the first

 also 
 

uses a logarithmic mollifier function from interior point 
method. 
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Appendix A. Inverse Transforma
Truncation 

F   
distribution function  1 : 0,1

d
F    , the integrat

domain of a mollifier function can be transformed fr
  to  0,1

d
:  

      1
, ,d = d ,x xF F [0,1]d

     

   

then we apply the sparse grid method to generate scenar- 
s and weights io for on the cube . We need to 

check the properties of the integrand   
. Its differentiability only depends on

  0,1
d

 function
 1

,x F
   1( )F    

since , ( )x C
  . Most commonly used invertible cu-

mulative distribution functions, for e ple, inverse of 
normal distribution function  1  , is also in C

xam
 . The 

finiteness of the partial derivatives of  1
,x F

 
only d 

 also 
epends on 1F    since partial derivatives of 

 ,x   are finite for any multi-index 1   compo-
nent-wisely. 

The higher order partial derivative of a posite 
function can be calculated explicitly. For  

: f gh x X y Y z         , we can ap-
ply the Faà di Bruno’s formula:  

 com

                
n

d
= = ,

d

n
n P B

n
P B P

f g x f g x f g x g x
x 

   


where n  is the set of all partit



ions of the set nJ  of 
intege . A partition of rs 1, , n nJ  

s of 
is a family o ir-

wise di nempty subset
f pa

sjoint no nJ  whose un  ision  

nJ . A  means the cardinality of the set A . For a vec-
p

rm

tor com site function:  

: ,f gh y Y z         

We apply Tsoy-Wo Ma’s higher chain fo ula [26]:  

o

x X 

 , , =1

1 1
= !

! !

mkpm s k

m pk
s p m k k k

z  z y

m px y x 


 
 

    
 



 

w  here   is the set of all decompositions of multi-index
  with multiplicities Calculation involving a multi- 

x 
m . 

inde  1, , 
      follows rules:  

=1 =1

= , != !,

= .

j j
j j

jz

=1 =1

= ,j
j

j j j

x x z
xx



   
 

A multi-index 







    
 

   decomposes into s  parts 

1, , sp p  in   with multiplicities 1, , sm m  in   
respectively if the decomposition equation  

1 1 2 2= s sm p m p m p     

holds and all parts are different. The total multiplicity is 
defined as  

1 2= .sm m m m    

The list  , ,s p m ed a  is call  -decomposition of  . 
nsure all parts are different we may impose 

1 20
To e

sp p p   , where       
means = , , =1 1 1j j j     , but <j j  , for a 
j  . 

For the problem under discussion, let 1   compo-
nent-wisely, i.e., = 1r , note that are 2 1d   number of 
such   (s). Fol g the higher c  formula, 
we get  

lowin hain rule

 

 
 

1
,

1 1
= .

x

k

F


  





 
 


 

,
!

mpm s k

xm pk
 

 
 
 

ce 

, , =1 ! !s p m k k km p   

Furthermore, sin 2
0 ,m x    by Proposi-  

tion 2.3, the computation of 

 = 0li  

 1F


0 ,lim x   


  
 



can be simplified significantly. In this case, only the de-
compositions  1, , ie , 

-zeros in the 
ie  is the th unit basis of  cor- 

respond to non ula. Otherwise, for  
i

above form

d ,

, 1= sm m m  , and  0 , = 0lim
m

xm  






. 2s 

Hence  

   ,

0 0 =1
im

d
x i

i i w


1

, =lim lx iF

*
,

=1

= .
d

i
i i x

i

u
w



 
 

  





 




 




 
 

 
 

 



 

Hence, 

 1 *
, ,1

0

= <
d

x i
 




=1
2 1 2

,lim i
i x

d i

F u



 

  






  
 
 




if and only if 

  

<i











 almost surely  

1, = 1, ,i d    . For some distributions, the condi-
tion might not hold. For example, the inverse of a cumu-
lative function of the normal distribution does not have 
this property nearby 0 or 1. To remove the singularities, 
truncation of the cube [0, 1] could be applied:  

where 

     d0,1 ,1
( )d d ,dh x x h x x

 
   

0 < < 1  
han

 we need t

is a small positive number. To com-
d side rd sparse grid 

method, o change the variable to , where 
pute the right  using the standa

 y
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  = 1 2 : 0x y   ,1 ,1
d d  

1

   . Hence  

          
,1 0,1

d = 1 2 1 2 d .
d

d dh x x h y y
 

  


     

Hence for a two-stage linear problem with an invert-
ible but unbounded cumulative distribution function 
F  , we shall first generate the standa

weights   ,

    1= 1 2 , = 1 2 ,
dk k k kF w w         

finally use the and  ,k kw   in the approximation 
model (2)

The er proximation model is exactly the 
. 
ror of this ap

sum of truncation error te , and sparse grid approxima-
tion error se . Errord grid points and  

=1

K
k kw  using the sp

k
arse grid method, 

then scale and transform them to the original random 
variable   by  

r goes down with te    and error 

se  goes do  w ng wn ith increasi K  at der rate 
sparse g ethod. 

the first or
of rid m
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