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Abstract 

Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency of deci-
sion making units (DMUs) on the basis of multiple inputs and outputs. The context-dependent DEA is intro-
duced to measure the relative attractiveness of a particular DMU when compared to others. In real-world 
situation, because of incomplete or non-obtainable information, the data (Input and Output) are often not so 
deterministic, therefore they usually are imprecise data such as interval data, hence the DEA models be-
comes a nonlinear programming problem and is called imprecise DEA (IDEA). In this paper the con-
text-dependent DEA models for DMUs with interval data is extended. First, we consider each DMU (which 
has interval data) as two DMUs (which have exact data) and then, by solving some DEA models, we can find 
intervals for attractiveness degree of those DMUs. Finally, some numerical experiment is used to illustrate 
the proposed approach at the end of paper. 
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1. Introduction 

Data envelopment analysis (DEA), developed by Char-
nes et al. [1], usually evaluates decision making units 
(DMUs) from the angle of the best possible relative effi-
ciency. If a DMU is evaluated to have the best possible 
relative efficiency of unity, then it is said to be DEA ef-
ficient; otherwise it is said to be DEA inefficient. Per-
formance of inefficient DMUs depends on the efficient 
DMUs, that is, the inefficiency scores change only if the 
efficiency frontier is altered. 

Although the performance of efficient DMUs is not 
influenced by the presence of inefficient DMUs, it is 
often influenced by the context. The context-dependent 
DEA [2-4] is introduced to measure the relative attrac-
tiveness of a particular DMU when compared to others. 
We know that the DMUs in the reference set can be used 
as benchmark targets for inefficient DMUs. The con-
text-dependent DEA provides several benchmark targets 
by setting evaluation context [3]. The context-dependent 
DEA is introduced to measure the relative attractiveness 
of a particular DMU when compared to others. Relative 
attractiveness depends on the evaluation context con-
structed from alternative DMUs. The original DEA 
method evaluates each DMU against a set of efficient 

DMUs and cannot identify which efficient DMU is a 
better option with respect to the inefficient DMU. This is 
because all efficient DMUs have an efficiency score of 
one. The standard DEA models assume that all data are 
known exactly without any variation. However, this as-
sumption may not be true. In the real world, some out-
puts and inputs may be only known as in forms of inter-
val data, ordinal data and ratio interval data. If we incor-
porate such imprecise data information in to the standard 
linear CCR model, the resulting DEA model is a nonlin-
ear and non-convex program, and is called imprecise 
DEA (IDEA), (Cooper et al. [5] and Kim et al. [6]). The 
approach in IDEA is to transform the non-linear and 
non-convex model to a linear programming equivalent, 
by imposing scale transformation on the data variable 
alterations (products of variables are replaced by new 
variables). Prior to IDEA, pertinent work was that of 
Cook et al. [7,8], which, is confined only to mixture of 
exact and ordinal data. They started by dealing with only 
one ordinal input [8] and then extended their model [7] 
to handle multiple cardinal and ordinal criteria. The basic 
idea in these models is to assign new auxiliary variables, 
one for every combination of ordinal variables and dis-
tinct ranks of it. The value for such an auxiliary variable 
corresponding to DMU j  and a rank position is 1, if 
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DMU j  is rated in the k-th place of ordinal variable and 
0 otherwise. Extensions of these basic ideas are reported 
in [9,10]. Recently, Despotits and Smirlis [11] calculated 
upper and lower bounds for the efficiency scores of the 
DMUs with imprecise data. They developed an alterna-
tion approach for dealing with imprecise data. They 
transformed the non-linear DEA model to a linear pro-
gramming equivalent by using a straightforward formu-
lation, completely different than that in IDEA. Contrarily 
to IDEA their transformation on the variables are made 
on the basis of the original data set, without applying any 
scale transformations on data. Also, in Jahanshahloo et al. 
[12,13] the radius of stability for the DMUs with interval 
data is calculated. In this paper we concentrate on the 
context-dependent DEA with interval data. For this rea-
son we consider each DMU j , with interval data, as two 
DMUs that have exact data. Then by a procedure similar 
to that one in [3], the evaluation contexts are obtained by 
partitioning these DMUs into several levels of efficient 
frontier. Then by introducing some models based upon 
these efficient frontiers we can measure the relative at-
tractiveness and progress of these DMUs and also we can 
determine the interval attractiveness and interval pro-
gress for each original DMU with interval data. Further 
by combination of these measures we can also character-
ize the performance of DMUs. 

The rest of the paper is organized as follows: next sec-
tion introduces the basic definitions of interval data and 
notations of the original context-dependent DEA. In Sec-
tion 3, interval context-dependent DEA is presented. In 
Section 4 we illustrate our proposed DEA method with 
two numerical examples and some discussion. Finally, 
some conclusions are pointed out in the end of this paper. 

2. Preliminaries 

Now suppose we have  DMUs which utilize  in-
puts 

n


m
, 1, ,ijx i   m to produce s  outputs  

rj  , 1, , ,  1, , y r s 

1

j n 

 , ,

. Also, assume that input 
and output levels of each DMU are not known exactly. 
We define j j mjX x x  and  1 , ,j j sjY y y  , 

. 1, , j n

2.1. Interval Data 

Let input and output values of any DMU be located in a 
certain interval, where L

ijx  and U
ijx are the lower and 

upper bounds of the i-th input of the DMU j , respecti- 
vely, and L

rjy ,  are the lower and upper bounds of 
the r-th output of the 

U
rjy

DMU j , respectively, that is to say, 
L U
ij ij ijx x  x  and L U

r yj rjy y  rj . Such data are called 
interval data, because they are located in intervals. Note 
that always L U

ij ijx x  and L U
rjyrjy  . If L U

ijijx x , then 

the i-th input of the DMU j  has a definite value. 
Interval problems are those whose parameter values 

are located in intervals, their exact values being unable to 
be identified. 

Therefore we consider problems with data such as 
,L U

ij ij ijx x x     and rj rj,L Uyrjy y    , where lower and 
upper bounds are known exactly, positive and finite. 

2.2. Context-Dependent Data Envelopment 
Analysis with Exact Data 

The original context-dependent DEA model is developed 
by using the following radial efficiency measure. Let 1I  
be the set of all DMUs, and kI  and  interactively 
defined as 

kE
1k k kI I E   , where consists of all the 

radially efficient DMUs by following linear program-
ming: 

kE

   

 

 

*

0

0

. .  

       

o o

j j

j j o

k

k k

s t X X

Y k

j F E







 

 

( )

( )

max

   0,   

k

k

j F I

j F I

j









 



 Y
        (1) 

where  kj F I  means DMU k
j I

E

. When k = 1, 
model (1) becomes the original output oriented CCR 
model and  define the first-level efficient frontier. 
When k = 2, model (1) gives the second-level efficient 
frontier after the exclusion of the first-level efficient 
DMUs. And so on. In this manner we identify several 
levels of efficient frontiers. We call  the k-th level 
efficient frontier. 

1E

k

Assume that, , 0 . We can 
calculate relative attractiveness measures for  
with respect to k-th level efficient frontier. Based upon 
the evaluation context , relative attractiveness meas-
ure of o  can obtained by the following con-
text-dependent DEA: 

0k

kE

DMUo E

kE
0

1, ,k   n
DMUo

DMU 

   

0

0

( )

( )

ax
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0

0

0

m  1,..., -

. .  
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j F

j j o
j F

k k
j

H k H

X







k k L

s t X

Y H k Y

j F E







k 





 




      (2) 

Then    * *
o1oA k H k

DMUo

0, ,k



k

 is called the (output oriented) 
attractiveness of  from a specific level . kE

Model (2) is same as [3] with slightly change. In 
model (2) we set 0L   in order to consider-
ing  as evaluation context for . 0kE 0DMU k

o E
Note: In this paper, only, attractiveness measure is 

used. By the same manner one can use progress measure 
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for DMUs with interval data. 

3. Interval Context-Dependent DEA 

Now, assume that there are  DMUs which produce n s  
outputs  by using  inputs rjy m ijx  such that 

, U
rj rj rjy y y

L   and ,L U
ij ij ijx x x  . By considering each  

DMU j as two DMUs with exact data, namely, 

 U,L
j jX Y  and  ,U L

j jX Y  we will have  DMUs. 2n

Now, to identify  efficiency levels, we apply the pro-
cedure introduced in [3] for these  DMUs. 

L
2n

Let   1 , ,   1, ,L U
j jJ X Y j n  

  , ,   1, ,U L
j j

 and  

1I X Y j n    be the sets of all these  

DMUs. Now, we consider two following models: 

2n
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and 
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* max ( )                            
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 
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 
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        kj F I

oY     (4) 

Models (3) and (4) are similar to model (1) because 
these models simultaneously identify several levels of 
efficient frontiers as follows: 

In the above models  kj F J  means  

 ,L U
j j

kX Y J  and  means  kj F I  ,U L k
j jX Y I .  

Then we define 1
1

k k kJ J E    and 1
2

k k kI I E   ,  

where     *

1 , ;k L U k
oj jE X Y J k  1  and  

    *
2 , ;k U L k

j j o
E X Y I k  1

k

1

k

1

, then to identify k th- 

level efficient DMUs, set . 1 2
k kE E E 

When k = 1, then first-level efficient frontier is defined 
by DMUs in , that is, 2 . When k = 2, models 
(3) and (4) give the second-level efficient frontier after 
the exclusion the first-level efficient DMUs. In this 
manner we can identify several levels of efficient fron-
tiers, where 1 2  consist the th-level efficient 
frontier. By following steps we can identify these effi-
cient frontiers using models (3) and (4): 

1E

E

1
1E E

k E k

Step 1. Set k = 1, evaluate the DMUs belong to 
1J I  using models (3) and (4) to obtain the first-level  

efficient DMUs, . 1 2
k kE E

Step 2. Set 1
1

k k kJ J E   , 1
2

k k kI I E   . (If 
1kJ     and 1kI   then stop). 

Step 3. Evaluate the new subset “inefficient” DMUs, 
1kJ  , using models(3) and (4) to obtain new sets of effi-

cient DMUs 1
1
kE   and . Set k = k + 1 and go to 

step 2. 

1
2
kE 

In the first section, we said that, the DMUs in the ref-
erence set can be used as benchmark targets for ineffi-
cient DMU. The context-dependent DEA provides sev-
eral benchmark targets by setting evaluation context. 
DMUs can reach (if possible) to the nearest efficiency 
level as the first target to improve their efficiency. 

Figure 1 plots the five levels of efficient frontiers of 5 
DMUs with single interval input and single interval out-
put (see Table 1). Assume that L levels of efficient fron-
tiers are identified by the above algorithm. It can be seen 
that in this example L = 5. 

Now based upon these evaluation contexts  
 ,  1, , ,kE k L   the context dependent DEA meas-

ures the relative attractiveness of each DMU (DMUs 
with interval data) as follows: 

Suppose for , by the above algorithm, we ob-  DMUo

tain   2,U L
o o

lX Y E  and   1, lL U
o oX Y E , clearly 1 2l l . 

 

 
Output 

DMU2 

DMU1 

DMU3

DMU5 
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E5

E3

E2 

E1

Input  

Figure 1. Levels of efficient frontiers. 
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Table 1. Data of numerical example. 

DMU j  Inputs L

jx  U

jx  Outputs L

jy  U

jy  

1 3.5 6 6 7 

2 2.1 5 3 4.2 

3 1.5 3 0.6 1.5 

4 7.5 8 1.6 4.5 

5 5 6 0.5 1 

 
Now, we introduce two following context dependent 

DEA models to obtain the relative attractiveness meas-
ure. 
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Clearly,  *
1oH k   and  * 1oH k   for  

20, ,  k L  l , and also,    *
1o

*
oH k H  k  and 

   * *1o oH k H  k . 

Theorem 1. For  we have DMUo    * * ,o oH k H k  
 2

Proof. First assume that 
0, , .k L  l

  * *, ,oH k
*

   be optimal 
solution for model (5). Thus we have 
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*

   is a feasible solution for  

model (6). Since model (6) is maximization and has an 
optimal value as  *

oH k , then    * *
o oH k H k . 

Corollary 1. If  DMU ,X Y  has exact data, where  
L U
o oX X X   and L U

oY Y Y  o , then we must have  
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is the relative attractiveness measure for DMU . 
Assume that  has interval data, that is,  DMUo

U
o,L
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o o oY Y Y    . By Corollary 1,  
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Definition 1. If we call k-degree attractiveness of 
 (which is lie on the specific level  DMUo

l l2 2
1E E E  2

2
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of  with respect to efficiency level  is DMUo
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Definition 2. We define 
   * *

1 1
,

o oH k H k

 
 
  

 as k-de-  

gree attractiveness of . DMUo

Since the parameter values are located in intervals and 
their exact values being unable to be identified, hence 
value of  *

oA k  is unknown. Also, one can rank the 
DMUs in each level based upon their attractiveness 
scores. 

4. Application 

In order to illustrate the use of the methodology for de-
termining the interval attractiveness developed here, first, 
in example 1 we use the data in Table 1 and in example 
2 we use an empirical data. 

4.1. Example 1: Personal Selection Data 

Assume that, we have 5 DMUs in one input and one 
output and these data are interval as shown in Table 1. 
By considering each DMU j  as two DMUs with exact 
data, namely,  U

j j,LX Y  and  ,U L j jX Y  we will have 
10 DMUs. Now, to identify the efficient levels of these 
DMUs, we apply models (3) and (4). 

Results are shown below: 

     1
1 1 2 2, , ,L U L UE X Y X Y  

     2
1 1 3 3, , ,U L L UE X Y X Y  

     3
2 2 4 4, , ,U L L UE X Y X Y  

       4
3 3 4 4 5 5, , , , ,U L U L L UE X Y X Y X Y  

   5
5 5,U LE X Y  
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We see that for these DMUs, 5 efficient levels are 
identified, i.e.,  = 5. By models (5) and (6), interval 
attractiveness of each DMU can be calculated. In Table 2 
interval attractiveness of each original DMUs (which 
have interval data) are shown in column 4. For example, 
in Table 2, first-degree interval attractiveness of  
with respect to efficiency level  is [1.67, 3.33]. 

L

1DMU
3E

That is, if we choose exact value for input and output 
of  and then calculate the attractiveness degree 
of 1  with respect to efficiency level , namely 

, we must have . 

1DMU
DMU

(3)

3E
*
1A *

11.67 (3) 3.33A 

Discussion 
In the above mentioned example, suppose that, we fix the 
data of these DMUs in their intervals, in the other words, 
assume that we have 5 DMUs, namely,  

 DMU , ,   1, ,5,j jj X Y j    which have exact data  

such that ,L U
j j jX X X    , ,L U

j j jY Y Y   . These data 
are as Table 3. 

We will show that, the attractiveness score of these 
DMUs lies in the interval attractiveness presented in Ta- 
 

Table 2. Interval attractiveness. 

DMU j  k-degree Efficiency Levels 
k-degree interval 

attractiveness 

1 Zero-degree 2E  [1,2] 

 First-degree 3E  [1.67,3.33] 

 Second-degree 4E  [5,10] 

 Third-degree 5E  [12,24] 

2 Zero-degree 3E  [1,3.33] 

 First-degree 4E  [3,10] 

 Second-degree 5E  [7.2,24] 

3 Zero-degree 4E  [1,5] 

 First-degree 5E  [2.4,12] 

4 Zero-degree 4E  [1,3] 

 First-degree 5E  [2.4,7.2] 

5 Zero-degree 5E  [1,2.4] 

 
Table 3. DMUs with exact data. 

DMU j  Input Output 

1 5 6 

2 3 4 

3 2 1 

4 7.5 4.5 

5 6 0.5 

ble 2. Hence, we employ models (3) and (4) for these 
DMUs. Let 

k
E  be the th-level of efficient frontier. 

See Figure 2 and compare 
k

k
E  and . kE

We define  kS E  as follows: 

 

   
1 1

, , , 0, ,

k

n n
k

j j j j j j j
j j

S E

x y x X y Y X Y E  
 



 
    

 
 

 

For example, Figure 3 illustrates region of  k
S E . 

It can be seen that, 

         

         

5 45 4 3

3 2 12 1

S E S E S E S E S E

S E S E S E S E S E

   

    
 

Assume that, we want to calculate the attractiveness  

degree of 1DMU  with respect to efficiency level 
4

E ,  

that is, we want to calculate . Since  *
1 4A

2
1DMU E  

and      43 4S E S E S E  , hence the attractiveness  

 
 

Output

Input 

DMU1 

DMU2 

DMU3 

DMU5 

DMU4 

E1

E3

E4

E5

5 

3

2

1

4 

1E  2E  

E2 

3E

5E

 

Figure 2. Levels of efficient froutiers for DMUs with exact 
data and interval data. 
 

Output

Input 

3E

 3S E

 

Figure 3. Region of  3
S E . 
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with respect to efficiency level 
4

E , and   *
11 4H  score of 1DMU  lies in the following interval: 

and  *
11 3H  are taken from Table 2. 

 
 

 
*
1* *

1 1

1 1
4

4 3
A

H H
   

Therefore, without direct calculation of attractiveness 
scores of these DMUs (which have exact data) we must 
have where  is the attractiveness degree of  *

1 4A 1DMU   

 

    *

2 2 1,3.33A     

   *

1 3 1.67,3.33A      *

2 3 1,3.33A     

   *

1 4 1.67,10A      *

2 4 1,10A       *

4 4 1,3A   

   *

1 5 12,24A      *

2 5 7.2,24A      *

3 5 2.4,12A      *

4 5 2.4,7.2A   

 
However, if we calculate attractiveness of this set of 

DMUs we have the Table 4 which shows that the above 
statement is true. 

4.2. Example 2: Empirical Data 

Consider a performance measurement problem of manu-
facturing industry, in which there are eight manufactur-
ing industries from different cities (DMUs) participating 
in the evaluation, each consuming two inputs (Labor and 
working funds) and producing three outputs (Gross in-
dustrial output value, profit and taxes, and retail sales). 
The data are all estimated and are thus imprecise and 
only known within the prescribed bounds, which are 
listed in Table 5. 

By using the DEA models (3) and (4) and by same 
manner as shown in example 1, we obtain the following 
levels of efficient frontiers: 

        1
1 1 2 2 7 7 8 8, , , , , , ,L U L U L U L UE X Y X Y X Y X Y   

      2
4 4 5 5, , ,L U L UE X Y X Y

        3
1 1 3 3 6 6 8 8, , , , , , ,L U L U L U L UE X Y X Y X Y X Y   

        4
2 2 3 3 5 5 7 7, , , , , , ,U L U L U L U LE X Y X Y X Y X Y   

    5
4 4,U LE X Y

     6
6 6,U LE X Y

Therefore, we see that for these DMUs, 6 efficient lev-
els are identified, that is . 6L 

If we apply models (5) and (6) for these DMUs, we 
obtain interval attractiveness of each DMU as Table 6. 

For instance, consider 1  which has interval 
data. By Table 6, one can see that interval attractiveness 
of 1  with respect to efficiency level  is [1.18, 
1.5]. Nevertheless, if one can find the exact value of 

 and again calculate the attractiveness score of 

1  with respect to , it must lie in interval [1.18, 
1.5]. For more details see discussion presented in exam-

ple 1. 

DMU

4

DMU

1DMU
DMU

4E

E

Note: All the computations in this example are carried 
out by a computer program using GAMS software. 

5. Conclusions 

We developed in this paper an approach for dealing with 
interval data in context dependent DEA. It is done by 
considering each DMU (which have interval data) as two 
DMUs (which have exact data) and then we obtain in-
terval attractiveness for each DMU. For this reason, we 
introduced some DEA models for evaluating these  
DMUs, and in the next step to obtain the interval attrac-
tiveness we merge the results of these models. Also we 
show that, if we choose n arbitrary DMUs with exact 
data, then the attractiveness of these DMUs are belong to 
that intervals. After this manager decided that, what 
combination of each interval is appropriate. 

2n

Although the proposed method presented in this paper 
is illustrated by a personal selection data, however, it can 
also be applied to many problems of decision manage-  

 
Table 4. Exact attractiveness for exact data of Table 3. 

DMU j  Levels Attractiveness 

1 3

E  2 

 4

E  2.4 

 5

E  15 

2 2

E  1.11 

 3

E  2.22 

 4

E  2.67 

 5

E  16.67 

3 3

E  6.25 

4 4

E  1.2 

 5

E  7.5 
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Table 5. Data for eight DMUs. 

DMU Input  Output   

 Labor Working Funds GIO Profit and Taxes Retail Sales 

1 [66, 73] [1354, 1540] [3200, 3800] [1100, 1200] [1000,1150] 

2 [54, 70] [1205, 1425] [3000, 3350] [1000, 1150] [800,930] 

3 [65, 80] [950, 985] [2800, 3000] [800, 900] [650, 700] 

4 [55, 63] [850, 1000] [2500, 2750] [800, 850] [600, 850] 

5 [72, 85] [1105, 1200] [3050, 3700] [950, 1150] [1000, 1050] 

6 [63, 80] [1250, 1380] [2700, 2900] [800, 950] [700, 750] 

7 [57, 72] [950, 1150] [2950, 3250] [950, 1200] [800, 900] 

8 [60, 71] [800, 970] [2700, 2800] [800, 950] [900, 1000] 

 
Table 6. Interval attractiveness of Example 2. 

DMU j  k-degree Efficiency Levels k-degree interval attractiveness 

1 Zero-degree 3E  [1, 1.31] 

 First-degree 4E  [1.18, 1.5] 

 Second-degree 5E  [1.43, 1.83] 

 Third-degree 6E  [1.56, 2] 

2 Zero-degree 4E  [1, 1.51] 

 First-degree 5E  [1.2, 1.81] 

 Second-degree 6E  [1.42, 2.13] 

3 Zero-degree 4E  [1, 1.2] 

 First-degree 5E  [1.14, 1.26] 

 Second-degree 6E  [1.45, 1.63] 

4 Zero-degree 5E  [1, 1.67] 

 First-degree 6E  [1.39, 1.96] 

5 Zero-degree 4E  [1, 1.3] 

 First-degree 5E  [1.39, 1.58] 

 Second-degree 6E  [1.64, 1.86] 

6 Zero-degree 6E  [1, 1.51] 

7 Zero-degree 4E  [1, 1.58] 

 First-degree 5E  [1.17, 1.66] 

 Second-degree 6E  [1.42, 2.18] 

8 Zero-degree 3E  [1, 1.4] 

 First-degree 4E  [1.11, 1.5] 

 Second-degree 5E  [1.55, 2.08] 

 Third-degree 6E  [1.83, 2.5] 
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ment. By the same manner one can use the proposed 
procedure to calculate interval progress for each DMU. 
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