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ABSTRACT 

Epilepsy is one of the most common neurological 
disorders-approximately one in every 100 people 
worldwide are suffering from it. The electroencepha-
logram (EEG) is the most common source of infor-
mation used to monitor, diagnose and manage neu-
rological disorders related to epilepsy. Large amounts 
of data are produced by EEG monitoring devices, 
and analysis by visual inspection of long recordings 
of EEG in order to find traces of epilepsy is not rou-
tinely possible. Therefore, automated detection of 
epilepsy has been a goal of many researchers for a 
long time. Until now, reviews of epileptic seizure de-
tection have been published but none of them has 
specifically reviewed developments of automatic 
medical support systems utilized for EEG-based epi-
leptic seizure detection. This review aims at filling 
this lack. The main objective of this review will be to 
briefly discuss different methods used in this research 
field and describe their critical properties. 
 
Keywords: Electroencephalogram; Epileptic Seizure; Au- 
tomatic Diagnostic Systems; Feature Analysis; Recogni- 
tion 
 
1. INTRODUCTION 

Epilepsy is a neurological disorder affecting around 1% 
of the world’s population (about 50 million people) [1]. 
An epileptic seizure can be characterized by means of 
paroxysmal occurrence of synchronous oscillations. This 
kind of seizures can mainly be divided into two classes 
in terms of the extent of connection of different brain 
fields: partial seizures and generalized seizures. Partial 
seizures begin from a circumscribed field of the brain, 
usually called epileptic foci. Determined by their type, 
they may or may not impair consciousness. Generalized 
seizures involve most fields of the brain and may cause 
loss of consciousness and muscle contractions or stiff-
ness. Electroencephalography (EEG) is an important 

clinical tool, monitoring, diagnosing and managing neu-
rological disorders related to epilepsy. In comparison 
with other approaches such as Magnetoencephalography 
(MEG) and functional Magnetic Resonance Imaging 
(fMRI), EEG is a clean, cost effective and safe technique 
for monitoring brain activity. 

In spite of available dietary, drug and surgical treat-
ment options, currently nearly one out of three epilepsy 
patients cannot be treated. They are completely subject 
to the sudden and unforeseen seizures which have a 
great effect on their daily life, with temporary impair-
ments of perception, speech, motor control, memory 
and/or consciousness. Many new therapies are being 
investigated and among them the most promising are 
implantable devices that deliver direct electrical stimula-
tion to affected areas of the brain. These treatments will 
greatly depend on robust algorithms for seizure detection 
to perform effectively. Because the onset of the seizures 
cannot be predicted in a short period, a continuous re-
cording of the EEG is required to detect epilepsy. How-
ever, analysis by visual inspection of long recordings of 
EEG, in order to find traces of epilepsy, is tedious, 
time-consuming and high-cost. Therefore, automated 
detection of epilepsy has been a goal of many research-
ers for a long time. Computers have long been suggested 
for handling this problem and thus, automatic medical 
support systems for identifying electroencephalographic 
changes have been under study for many years. The 
whole procedure can be divided into two modules: fea-
ture extraction and classification (shown in Figure 1). 
The performance of automatic diagnosis systems de-
pends on both the feature extraction methods and the 
classification algorithms applied. Until now, although 
many methodologies have been developed for automatic 
epileptic seizure detection, there is no literature specifi-
cally contributing to the review of development of 
automatic medical support systems utilized for EEG- 
based epileptic seizure detection. In this review, we 
briefly investigate different approaches used in this re-
search field and describe their critical properties. 
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Figure 1. Schematics of the proposed di-
agnostic expert system: the whole system 
can be mainly divided into two modules, 
namely developing feature extraction meth- 
ods and developing classification models. 

 
The review is organized as follows: Section 2 de-

scribes the EEG database launched by [2] which is wide- 
ly used in epileptic seizure detection. Section 3 discusses 
the characteristics of different feature extraction and clas- 
sification methods for automatic epileptic seizure diag-
nosis and detection. Section 4 presents some results of 
studies on automatic epileptic seizure diagnosis and de-
tection using EEG databases except for EEG database 
described in [2]. Section 5 discusses predictability of 
epileptic seizure from human EEGs. Section 6 concludes 
the paper. 

2. EEG DATABASE 

In The most popular and widely used database for the 
study of EEG-based epileptic seizure detection was 
launched by University of Bonn [2] which is described 
as follows: 

The whole EEG data is composed of five sets (de-
noted A-E), each containing 100 single-channel EEG 
data of 23.6 s duration. Sets A and B were taken from 
surface EEG recordings of five healthy volunteers with 
eyes open and closed, respectively. Sets C, D and E 
originated from the EEG archive of presurgical diagno-
sis. Signals in Set C were recorded from the hippocam-
pal formation of the opposite hemisphere of the brain, 
and signals in Set D were recorded from within the epi-
leptogenic zone. While Sets C and D contain only brain 
activity measured during seizure free intervals, Set E 
contains only seizure activity. All EEG signals were 
recorded with the same 128-channel amplifier. The data 
were digitized at 173.6 samples per second at 12-bit 
resolution. Band pass filter was set to 0.53 - 40 Hz. Fig-
ure 2 describes the electrode placement for recording of 
EEG signals. Figure 3 describes examples of EEG sig-
nals of Set A, Set D and Set E, where the difference can 
be seen in terms of the value of amplitudes and waveform. 

A summary of the EEG data set is shown in Table 1. 

3. DEVELOPMENT OF  
METHODOLOGIES FOR  
AUTOMATIC EPILEPTIC SEIZURE 
DIAGNOSIS AND DETECTION 

Development of EEG signal processing techniques is 
closely related to its characteristics. EEG is a random 
and unstable signal. Abnormal EEG recordings can be 
divided into EEGs with non-paroxysmal abnormality 
and EEGs with paroxysmal abnormality according to 
their appearance form [3]. EEGs with paroxysmal ab-
normality are composed of spike wave, spike-and-slow- 
wave and sharp wave. Spike wave is the basic form of 
EEGs with paroxysmal abnormality and its time length 
is 20 ms ~ 70 ms. Most spike wave appears with nega-
tive phase but sometimes it appears with positive phase, 
diphasic waveform and triphasic waveform [3]. Spike- 
and-slow-wave which has duration of 200 ms ~ 500 ms 
appears after spike wave. Sharp wave is similar with 
spike wave but its duration (generally 70 ms ~ 200 ms) 
is longer than that of spike wave. The extraction of epi-
leptic characteristic wave is of great importance in epi-
leptic diagnosis, localization and epileptic seizure detec-
tion. In order to choose the most suitable methods for an 
automatic epileptic seizure detection system, it is neces-
sary to understand what features are employed and their 
corresponding properties. Next, several feature extrac-
tion methods widely used in epileptic seizure detection 
are described.  
 

 

Figure 2. Scheme of the locations of surface electrodes in 
terms of the international 10 - 20 systems for recording EEG 
patterns. Names of the electrode are derived from their ana-
omical locations [2]. t   
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Figure 3. Sample EEG recordings. (a) Normal EEG; (b) Interictal EEG; (c) Ictal EEG. 

JBiSE 



Y. D. Song / J. Biomedical Science and Engineering 4 (2011) 788-796 791

Table 1. Summary of the clinical data: The whole EEG data is composed of five sets (denoted A-E), each containing 100 sin-
gle-channel EEG data of 23.6 s duration. Sets A and B were taken from surface EEG recordings of five healthy volunteers with eyes 
open and closed, respectively. Sets C D, and E originated from the EEG archive of presurgical diagnosis. Signals in Set C were re-
corded from the hippocampal formation of the opposite hemisphere of the brain, and signals in Set D were recorded from within the 
epileptogenic zone. While Sets C and D contain only brain activity measured during seizure free intervals, Set E contains only sei-
zure activity. 

 Data Set A Data Set B Data Set C Data Set D Data Set E 

Subjects Five healthy subjects Five healthy subjects Five epileptic patients Five epileptic patients Five epileptic patients

Electrode type Surface Surface Intracranial Intracranial Intracranial 

Electrode-placement 
International 10 - 20 

system 
International 10 - 20 

system 
Opposite to  

epileptogenic zone 
Within epileptogenic 

zone 
Within epileptogenic 

zone 

Patient’s state 
Awake and eyes open 

(Normal) 
Awake and eyes closed 

(Normal) 
Seizure-free  
(Interictal) 

Seizure-free  
(Interictal) 

Seizure activity  
(Ictal) 

Number of epochs 100 100 100 100 100 

Epoch duration (s) 23.6 23.6 23.6 23.6 23.6 

 
3.1. Frequency Domain Analysis and 

Time-Frequency Domain Analysis 

Frequency domain analysis is based on Fourier trans-
form which decomposes EEG signals into different fre-
quency domains. Epileptic EEG recordings can be de-
tected in terms of the difference between epileptic EEG 
data and normal EEG data in frequency domain [4,5]. In 
most cases slow wave appears in epileptic patients’ EEG 
recordings, hence epileptic abnormality which cannot be 
detected in time domain is revealed by means of fre-
quency analysis. However the weakness of frequency 
analysis is that by means of Fourier analysis, the ob-
tained signals is its total spectrum and it cannot be used 
for local analysis. Furthermore, since methods based on 
Fourier transform cannot provide important EEG dy-
namic information in time domain and frequency do-
main simultaneously, it is not suitable for analyzing time 
series signals like EEG signals which have characteris-
tics of instability and randomness. In recent years, 
time-frequency domain analysis has been increasingly 
used for feature extraction of epileptic EEG. The most 
widely-used approach is Wavelet Transform [6-8]. 
Wavelet transform can be utilized for analyzing signals 
in different sub-bands in a selective way, which is suit-
able for extracting epileptic characteristics and increases 
detection performance of the system. Contrary to Fourier 
transform, wavelet transform supplies a more flexible 
approach of time-frequency representation of a signal by 
means of using analysis windows with varied size. The 
important characteristic of wavelet transform is that it 
supplies precise time information at high frequencies 
and precise frequency information at low frequencies. 
This characteristic is of great importance, since signals 
in biomedical applications usually include low frequency 
information with long time duration and high frequency  

information with short time duration. By means of wav- 
elet transform, transient characteristics are accurately 
captured and it is localized in both time and frequency 
domain. In [9], wavelet transform was employed for 
detecting and characterizing epileptiform discharges in 
the form of 3-Hz spike and wave complex in patients 
with absence seizure. [10] extracted features in time- 
domain as well as frequency-domain of the EEG re-
cordings and fed them into a recurrent neural network. 
[11] developed a system on the basis of deciding the 
seizure probability of a set of EEG recordings; wavelet 
decomposition and data segmentation were integrated 
for calculating a priori probabilities required for the 
Bayesian formulation applied in training and testing op-
eration. On the whole, for the feature analysis using 
wavelet transform-based methods, the main problem lies 
in the choice of mother wavelet. The general choice is 
Daubechies wavelets which have similar waveform with 
spike wave [12].  

3.2. Complex Analysis 

After EEG signals are analyzed in time-frequency do-
main, nonlinear measures such as largest Lyapunov ex-
ponent [13,14] and entropy [15-17] are utilized for quan-
tifying the degree of complexity within a time series. 
When utilized with EEG, those measures help compre-
hending EEG dynamics and underlying chaos in the 
brain. Lyapunov exponents are a quantitative measure 
for differentiating among different kinds of orbits on the 
basis of their sensitive dependence on the initial condi-
tions, and are employed for deciding the stability of any 
steady-state behaviour. Entropy is a concept handling 
predictability and randomness, with higher values of 
entropy always related to less system order and more 
randomness. In [15], different entropy-based features  
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that are utilized to normal and epileptic electroencepha-
logram recordings were compared and then were tested 
by applying the adaptive neuro-fuzzy inference systems. 
The above-mentioned feature extraction methods used 
for EEG signal analysis include an assumption that the 
underlying signal dynamic mechanism is composed of a 
linear superposition of complex exponentials. But the 
intrinsic basis functions are usually presumed a priori 
rather than extracted from the EEG recordings in an 
adaptive way. The obtained power spectrum derived 
from the analysis involves spurious power readings if the 
EEG time series signals we are interested in include 
more than pure low frequency functions, and contain 
energy that always stands for nonlinearities in the ana-
lyzed EEG recordings. The reason is that nonlinearity in 
the EEG data will be stand for within the power spec-
trum as higher-order harmonics because the transform 
itself employs an accumulation of trigonometric func-
tions. As long as the signal transform is formed, it is 
hard to discriminate true power-frequency EEG signals 
from spurious energy representation because of nonlin-
earities. Hence every time-varying frequency representa-
tion will be averaged out within the power spectrum. 
Therefore some novel signal decomposition approaches 
are required to obtain underlying oscillators originated 
from a seizure signal without any assumptions of the 
underlying waveform or specific time-scales of the os-
cillatiors, which is capable of presenting the dynamic of 
EEG signals in an adaptive way. 

3.3. Classification Models 

After features in EEG signals are extracted utilizing the 
above-mentioned signal processing methods, different 
techniques based on pattern recognition are then devel-
oped for classifying these obtained feature vectors. In 
order to select the most suitable classifier for a set of 
features, the properties of the available classifiers have 
to be understood. In recent years, several classification 
models have been developed for handling EEG signals 
classification for epileptic seizure detection, and among 
these methods, Neural Network-based methods and 
Support Vector Machine-based methods (SVM) are two 
widely-used classification paradigms. Artificial Neural 
Networks (ANN) has been widely used in pattern recog-
nition, signal prediction and feature extraction due to its 
excellent self-learning capability, self-adaptive capabil-
ity and strong parallel processing mechanism. A variety 
of algorithms on the basis of ANN have been employed 
in EEG signal classification and epileptic seizure detec-
tion [18-22]. The learning mechanism of neural net-
works can be mainly divided into two categories, namely 
supervised learning and unsupervised learning. Super-
vised learning needs prior knowledge of the analysed 

data and the back-propagation methods are implemented 
for the training of weights in neural networks. The un-
supervised learning paradigm, on the contrary, has fewer 
requirements for the prior knowledge of data, and pat-
terns with similar characteristics are clustered together 
by systems. Initial EEG data points and some extracted 
features using other methods such as waveform charac-
teristic parameters detected by utilizing time domain 
analysis, results of wavelet decomposition, etc., can be-
come inputs of neural networks. However the use of 
neural network refers to many parameters and options 
such as training parameters, network structures and ini-
tial weights and so on, which may have great impact on 
the training procedure of neural networks. A large num-
ber of experiments are thus required to choose optimal 
parameter sets and a large amount of data is also needed 
for testing performance of neural networks. The conflict 
between performance and computation complexity in 
artificial neural networks is usually figured out by means 
of trial and the problem regarding how to select optimal 
number of hidden nodes in neural networks still remains 
unsolved. In [23], a method based on iteration was de-
veloped to handle EEG signals piecewise, which reduces 
the computation time and cost of neural networks.  

The Support Vector Machine (SVM) is a supervised 
machine learning paradigm capable of solving linear and 
non-linear classification and regression problems [23]. 
SVM paradigm was first proposed in [24] based on the 
ideas of statistical learning theory and structural risk 
minimization. Due to its accuracy and capability of han-
dling a great number of predictors, it has been widely 
used in EEG signal classification and epileptic seizure 
detection [25-29]. Most of classification models divide 
categories utilizing hyperplanes which separate the 
categories by means of a flat plane in the predictor space. 
Support vector machines expand the concept of hyper-
plane separation to data which cannot be divided linearly, 
through mapping the predictors into a higher-dimen- 
sional space where data can be divided linearly. SVM 
classification models have many advantages. A special 
global optimum for its parameters, such as the degree d 
of the kernel function and misclassification trade-off 
factor c controling the trade-off between the maximum 
margin and the minimum training error, can be found by 
means of quadratic programming optimization. Nonlin-
ear boundaries are able to be utilized without much extra 
computational effort. Furthermore the performance of 
SVM is very competitive with other classification mod-
els. A weakness SVM has is that the problem complexity 
is related to the order of the number of patterns rather 
than the order of the dimension of the patterns. The gen-
eral quadratic programming algorithm will usually fail 
and unique-purpose optimizers employing problem- 
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Y. D. Song / J. Biomedical Science and Engineering 4 (2011) 788-796 793

specific speedups need to be utilized for resolving the 
optimization problems. 

The above-mentioned methods for automatic epileptic 
seizure detection have their own characteristic; the per-
formance of detecting epileptic seizure using these de-
veloped systems will be increased if we can integrate 
these methods for enhancing their self- adaptive capabil-
ity. In order to obtain power spectra in patients with sei-
zures, multiple signal classification methods were de-
veloped in [30]. Methodologies on the basis of the com-
bination of statistical time series analysis, k-nearest 
neighbour clustering and chaos theory were proposed in 
[31]. Although many methods for EEG-based epileptic 
seizure detection have been developed recently and have 
shown good experimental results, there are still some 
problems which need to be solved when applied in 
clinical settings. In the study of EEG-based epileptic 
seizure detection, due to the lack of publically available 
EEG databases and the limitation of clinical data sam-
ples, most proposed methods were developed using only 
EEG databases with small number of data samples and it 
is very likely that they are not applicable in real situa-
tions, which makes it difficult to conduct an in-depth 
investigation of adaptive methodologies for clinical ap-
plication. In addition, the EEG data compression is also 
a problem in this research field. In clinical epileptic sei-
zure detection from human Electroencephalograms, the 
systems used usually have 8, 16, 32 or more electrode 
channels and the duration of EEG recordings are very 
long. Huge number of data processing tasks will have 
direct impact on the applicability of the developed algo-
rithms, making it difficult to detect epileptic seizures in a 
real-time situation efficiently. 

4. STUDIES ON EPILEPTIC SEIZURE 
DIAGNOSIS AND DETECTION USING 
OTHER EEG  

Most studies about developing epileptic seizure diagno-
sis and detection systems that were mentioned above are 
mainly based on the EEG database described in [2]. In 
addition to this EEG database, some studies are also 
conducted using other EEG resources. [32] developed a 
fuzzy rule-based seizure detection system on the basis of 
knowledge from experts’ reasoning. A total of 302.7 
hours of intracranial EEG data recordings obtained from 
21 patients with 78 seizures was employed for assessing 
the system. Spectral, temporal and complexity features 
were extracted from IEEG recordings and joined by 
utilizing the fuzzy rule-based system in a spatio-tempo- 
ral way for detecting epileptic seizures. The system 
showed an excellent performance with a sensitivity of 
98.7%, an average detection latency of 11 seconds and a 
false detection rate of 0.27/h. [33] defined a generalized 

nonlinear method for identifying seizure EEG segments 
from non-seizure segments using nonlinear decision 
functions with the flexibility in selecting any degree of 
complexity and with any number of dimensions. A per-
formance assessment of the correlation sum according to 
sensitivity, specificity and accuracy in its capability of 
discriminating seizure signals from non-seizure signals 
was supplied. A total of 126 EEG signals from 11 se-
quential patients were handled and the correlation sum 
was calculated from non-overlapping scrolling windows 
with 1 second duration. The experimental observations 
showed a significant decrease in the amplitude of the 
correlation sum prior to the onset of seizures. The ap-
proach with k-fold cross validation conducted with a 
sensitivity of 92.31%, a specificity of 91.67% and an 
accuracy of 91.84%, which shows its suitability for off-
line seizure detection. [34] tried to identify the seizure 
onset patterns by using an evolutionary scheme which 
searches for optimal kernel types and parameters for 
support vector machine. They considered the fractal di-
mension, Lyapunov exponent and wavelet entropy for 
feature extraction and the classification accuracy of this 
method was evaluated using the CHB-MIT dataset. A 
comparison of experimental results revealed that the 
proposed approach outperformed that of general support 
vector machine, and the accuracy rate achieved 96.29% 
for sensitivity and 100% for specificity. In [35], a novel 
algorithm based on wavelet analysis was proposed for 
detecting epileptic seizures from scalp EEG signals. 
They used wavelet packet transform to decompose the 
EEG data from each channel. In terms of the obtained 
wavelet coefficients, a patient-specific measure was de-
veloped for quantifying the separation between non- 
seizure and seizure signals within the frequency range of 
1 - 30 Hz. The measure was utilized for determining a 
normalized index called combined seizure index which 
is obtained for each EEG channel. Significant increase 
during seizure onset is observed using combined seizure 
index and channel alarms were then generated by one- 
sided cumulative sum test on the basis of this normalized 
index. The approach was evaluated on EEG recordings 
originated from fourteen patients with sixty-three sei-
zures during 75.8 hours. The results showed a low false 
detection rate of 0.51/h, a high sensitivity of 90.5% and 
a median detection delay of seven seconds. 

5. PREDICTABILITY OF EPILEPTIC 
SEIZURES FROM HUMAN EEGS  

The human brain is considered as a dynamic system, 
because epileptic networks in human beings are compli-
cated nonlinear architectures and the interactions are 
supposed to reveal nonlinear behaviour. These ap-
proaches support the point that quantification of changes 
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in the human brain originating from EEG may predict 
epileptic seizures, but conventional approaches are not 
able to identify particular change before seizure happens. 
[36] utilized nonlinear dynamics methods into clinical 
epilepsy analysis and their point is that seizure can be 
thought of as a change of the brain with epilepsy from 
chaotic to a more regular circumstances. Hence the spa-
tial-temporal characteristics of the brain with epilepsy 
are not the same for various clinical circumstances. They 
conduct more investigations on the basis of temporary 
evolution of a nonlinear dynamic analysis method called 
the largest Lyapunov exponent for patients having tem-
porary lobe epilepsy [37] and concluded that the EEG 
action is growingly less chaotic when the seizure moves 
towards. Because of these pioneering researches, non- 
linear approaches originated from dynamical system the- 
ory have been used for quantifying the transitions of 
human brain dynamics prior to the beginning of seizures. 
[38] performed investigation on the increase of nonlinear 
complexity from human neuronal networks before sei-
zure happens on the basis of the information from 
changes in the neuronal complexity loss, which outlining 
the complicated content of the correlation dimension. 
[39] noticed that the alterations in the correlation integral 
can be utilized for pursuing precisely the beginning of 
seizure for a patient with temporal lobe epilepsy, where- 
as [40] showed that by means of changes of the fre-
quency and amplitude, those alterations in the correla-
tion integral can be fully explained. In [41], a sudden 
decrease in the dynamical similarity during the period 
before seizure happens was observed and that action was 
getting more and more noticeable when the beginning of 
seizure moved forwards. [42] found that the energy in 
human EEG signals raises before seizure happens, and in 
their following studies the proof of epileptic seizure pre-
dictability on the basis of the choice of diverse of nonlin-
ear and linear characteristics of the EEG was supplied 
[43,44] made use of 4 different nonlinear quantification 
approaches under the framework of the Lyapunov theory 
and observed important preictal changes. Most of the 
above-mentioned researches in epilepsy prediction are 
conducted on the basis of intracranial EEG recordings. 
However two problems need to be considered and solved 
when it comes to the study of scalp EEG recordings. 1) 
scalp EEG data are more subject to eye and muscle arte-
facts as well as environmental noise than the intracranial 
EEG data; 2) the significant information in EEG signals 
are weakened and mixed in the propagation by means of 
soft bone and tissue. Conventional nonlinear analysis 
approaches like sample entropy or the Lyapunov expo-
nents are influenced by the above-mentioned two prob-
lems and hence they cannot be used to discriminate be-
tween slightly different chaotic rules in the scalp EEG 

[45]. One method for handling those problems is to de-
fine various nonlinear measures generating better results 
in comparison with the conventional nonlinear analysis 
methods for the scalp EEG recordings. [46] followed 
this method for analyzing scalp EEGs and developed an 
approach on the basis of the phase-space dissimilarity 
measures to predict epileptic events from human scalp 
EEG recordings. The method developed on the basis of 
dynamical entrainment has revealed good results as well 
on human scalp EEG recordings for epileptic seizure 
predictability [47,48]. 

6. CONCLUSIONS  

Diagnosing epilepsy needs acquisition of patients’ EEG 
recording and collecting additional clinical information. 
Large amounts of data are produced by EEG monitoring 
devices and analysis by visual inspection of long re-
cordings of EEG in order to find traces of epilepsy is not 
routinely possible. Research into automatic detection 
systems for epilepsy has been increasingly popular dur-
ing these years. The problem of signal classification for 
epileptic seizure detection is considered as a typical pat-
tern-recognition problem which includes feature extrac-
tion and classification. In this paper, we briefly reviewed 
different methods developed for automatic epileptic sei-
zure detection and describe their critical properties. 
Various feature extraction techniques on the basis of 
frequency domain analysis, time-frequency domain ana- 
lysis and complex analysis were discussed; respectively 
and classification models employed for designing medi- 
cal support systems of automatic epileptic seizure detec- 
tion were also discussed. On the other hand, although 
predictability of epileptic seizure originating from hu-
man intracranial and scalp EEGs has been approved, 
more studies need to be conducted for increasing the 
accuracy of prediction.  
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