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ABSTRACT 

In the Conjoint Analysis (COA) model proposed here—a new approach to estimate more than one response function— 
an extension of the traditional COA, the polytomous response variable (i.e. evaluation of the overall desirability of al- 
ternative product profiles) is described by a sequence of binary variables. To link the categories of overall evaluation to 
the factor levels, we adopt—at the aggregate level—an ordinal logistic regression, based on a main effects experimen-
tal design. The model provides several overall desirability functions (aggregated part-worths sets), as many as the 
overall ordered categories are, unlike the traditional metric and non metric COA, which gives only one response func-
tion. We provide an application of the model and an interpretation of the main effects. 
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1. Introduction 

Since the 1970s, Conjoint Analysis (COA) has received 
considerable attention as a major set of techniques for 
measuring buyers’ trade-offs among multiattributed pro- 
ducts and services [1].  

Since that time many new developments in COA have 
been reported. 

The purpose of this article is to give a new contri- 
bution to the problem of the conjoint measurement in 
order to quantify judgmental data.  

The model proposed here is an extension of the tradi- 
tional COA approach.  

While in the traditional full-profile COA [1] the re-
spondent expresses preferences by rating or ranking distinct 
product profiles, in our model we assume that the re-
spondent evaluative judgement Yk on the overall desir-
ability consists in a choice of one of the k (k = 1, 2, ···, K) 
desirability categories for each of S hypothetical product 
profiles, chosen from a sample of respondents. 

The proposed approach also differs from the 
“Choice-Based Conjoint” analysis (CBC) model in 
which the respondent expresses preferences by choos-
ing concepts from sets of concepts (discrete choice 
modelling).  

In the proposed approach the ordinal response variable 
is described by an ordered logit model, that directly in-
corporates the order of the categories of the Yk.  

To link the categories of overall evaluation to the fac-
tor levels, we adopt a cumulative logit model [2] at the 
aggregate level (pooled model) [3]. 

The main novelty value in our approach—which is a 
further development—is that one set of aggregated part- 
worths is estimated in connection with each category Yk, 
as many as the overall ordered categories are (K), unlike 
the traditional metric and non metric COA and CBC 
analysis, which give only one set of aggregated part- 
worths (response function).  

Thus with our approach it is possible to make a 
cross-check of the effects of the attribute levels on the 
different k categories of Yk. 

Moreover, the proposed model provides the following 
advantages: the use of the probability Pks as an average 
response, which does not require preliminary scale ad- 
justments to render the preference scale “metric” (in the 
non metric COA) and a cross-check of the effects of the 
attribute levels on the different categories of the overall. 
This allows us to verify the basic coherence of the re- 
sults of the model, unlike the classical approach adopted 
in literature. 

This paper is structured as follows: after the presen-
tation of the proposed model and the estimation method 
of response functions (the cumulative logit model), a 
concrete application of the approach follows; then the 
meaning of the proposed interpretative model and some 
empirical results are described, to conclude with a 
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statement of the benefits offered by the proposed 
model—compared to the approaches known in litera-
ture—as far as the methodology of the COA is con-
cerned.  

2. Estimation of Response Functions in the 
Conjoint Analysis: The Cumulative Logit 
Model 

The cumulative logit model proposed here (that directly 
incorporates the order of the categories of the overall 
desirability of alternative concepts of the product) con- 
cerns the full-profile coa. It is based on overall desirabil- 
ity categories chosen by a sample of respondents, for 
each of S hypothetical product profiles. 

The number of profiles S, resulting from the total 
number of possible combinations of levels of the M at- 
tributes or factors (X) of a product, constitute a full-fac- 
torial experimental design. 

The focus of our paper is to estimate the relationship 
between dependent and independent variables. 

It is assumed that the global or overall evaluation 
(polytomous dependent ordinal variable Y) of a product 
consists in the choice of one of the ordered categories k = 
1, 2, ··· K (in our application K = 5) on scale 1 - 5 (1 = 
“less desirable”, 5 = “most desirable”).  

In terms of probabilities, the effects of the factors ex-
press the variations of the probabilities Pks—if k is the 
overall category—associated with the vector sz  corre- 
sponding to the combination s (s = 1, 2, ··· , S) of  levels 
of the M factor, as follows: 
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where 

k  is the intercept term in regression; 
'

  is the unknown vector of regression coefficients of 
the factors; 

sz is the vector of the indicator explanatory variables 
relative to the combination or profile s;   

Fk( sz ) =  | sP Y k z is the cumulative probability for 
response category k, when the explanatory variables take 
the value sz . 

When we have a simple random sample of J respon-
dents, for the formula (1), the sample likelihood turns out 
to be: 
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where 

jz , j = 1, 2, ···, J, summarizes the underlying condi-
tions related to the generic j-th respondent of the sam-

ple;  
yj = 1 if the value of the dichotomized overall evalua-

tion is Yj = 1. This is obtained by placing in the first 
class all the evaluations with desirability judgement of 
class greater than or equal to a given category k and 
placing in the other the remaining ones (ordinal logistic 
regression). 

It is shown that, under suitable conditions, regarding 
the behaviour of the arrays jz  as long as J increases, if 
the system of likelihood ln L 0k   , k = 1, 2, … K, 
has a solution, this is of absolute maximum, and defines 
a consistent estimator   of the parametric vector  , 
asymptotically normally distributed. See, for example, 
[4]. 

To estimate said probabilities s  we use 
an aggregate level model across the J homogeneous re- 
search respondents [5], whose evaluations, on each 
product profile, are considered J repeated observations.  

 1|kP Y  z 

At this point it is necessary to estimate the relationship 
between Yk (k = 1, 2, ···, K) dependent variable (overall 
judgment category) and m = 1, 2, ..., M (in our applica-
tion M = 3) qualitative independent variables (product 
attributes or factors X), with levels l = 1, 2, ···, lm (in our 
application: l1 = 3; l2 = 2, l3 = 3).  

The K overall categories (Yk) are codified as K indica-
tor variables. Also the independent variables are codified 
as Z indicator variables (for each variable we have de-
fined a set of 0-1 indicator variables ( )m

lZ , l = 1, 2, ···, lm, 
so that—for one m factor – ( )m

lZ  = 1 if category lth is 
observed, while in the all other cases ( )m

lZ = 0).  
To obtain univocal estimates of the parameters, the 

column concerning the first variable of each set has been 
dropped. Therefore the kth cumulative response probability 
is: 
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where k( sz ) is the probability of the response k associ-
ated with the reduced vector 


sz = [1, 12 , 13 , 22 , 

32 , 33 ]
'
of the explicative variables that indicate the 

assessment values. 

z z z
z z

The cumulative probabilities reflect the ordering, with: 

( 1| ) ( 2 | ) ( |ks s ks s ks sP Y P Y P K )    z z   z  

where  | 1ks sP Y K z . 
The model for cumulative probabilities does not use 

the final cumulative probability  | KsP Y K z s , since it 
is necessarily equal to 1. 

In the configured model, owing to the interrelationship 
between the K dependent variables, the Kth equation can 
be drawn from the remaining q = K – 1 equations.  
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The cumulative logits of the first (K – 1) cumulative 
probabilities are: 
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with k = 1, 2, ···, K – 1; 
where 

sz is the vector of the reduced matrix  (in which it 
has been dropped out one of the indicator variables for 
each level of the M factors X); 

Z

k  is the constant term associated to the reference 
category (the k  are called cutpoint parameters. They 
are not decreasing in k, since the cumulative logit is an 
increasing function of , which is itself increasing 
in k for fixed 

 k sF z
sz ); 

'
  is the vector of the unknown coefficients. 
In Equation (3) 

'
 does not have a k subscript (Pro- 

portional Odd Assumption—POA; see [6]) , so the model 
assumes the same effects as  for all K – 1 on all cu-
mulative logit results, in a parsimonious model for ordi-
nal data. 

Z

When this model fits well it requires a single parameter 
rather than K – 1 parameters to describe the effect of . z

3. Application of the Cumulative Logit 
Model 

The model was applied to the overall desirability evalua- 
tions expressed on the K = 5 categories by a sample of J 
= 79 users on S = 18 new profiles of mobile phones. 

The M = 3 experimental factors and levels where: X1 = 
“weight” (with levels: 94 grams, 95 - 105 grams, >105 
grams); X2 = “autonomy” ( 200 h, >200 h); X3 = “price” 
(<200 €, 200 - 300 €, >300 €). 




The K overall categories (Yk) are codified as K indica- 
tor variables (Table 1); also the independent variables 
are codified as indicator variables (Z) (Table 2). 
 
Table 1. Disjunctive binary coding of overall evaluations (Yk) 
categories. 

Indicator 
variables 

Overall  
evaluation (Yk) 

Y1 Y2 Y3 Y4 Y5 

k = 1 1 0 0 0 0 

k = 2 0 1 0 0 0 

k = 3 0 0 1 0 0 

k = 4 0 0 0 1 0 

k = 5 0 0 0 0 1 

Table 2. Disjunctive binary coding of factors: “weight”, 
“autonomy”, “price”. 

Predictor variables and levels (l) Indicator variables 

Weight (1)

1
Z  

(1)

2
Z  

(1)

3
Z  

 94 grams 1 0 0 

95 - 105 grams 0 1 0 

>105 grams 0 0 1 

Predictor variables and levels (l) Indicator variables 

Autonomy ( 2 )

1
Z  

( 2)

2
Z  

 200 h 1 0 

>200 h 0 1 

Predictor variables and levels (l) Indicator variables 

Price (3)

1
Z  

(3)

2
Z  

(3)

3
Z  

<200 € 1 0 0 

200 - 300 € 0 1 0 

>300 € 0 0 1 

 
The reduced matrix of the indicator variables of the 

experimental design is as follows (see § 2): 
Z

1 | 0 0 | 0 | 0 0

1 | 0 0 | 0 | 1 0

1 | 0 0 | 0 | 0 1

1 | 0 0 | 1 | 0 0

1 | 0 0 | 1 | 1 0

1 | 0 0 | 1 | 0 1

1 | 1 0 | 0 | 0 0

1 | 1 0 | 0 | 1 0

1 | 1 0 | 0 | 0 1

1 | 1 0 | 1 | 0 0

1 | 1 0 | 1 | 1 0

1 | 1 0 | 1 | 0 1

1 | 0 1 | 0 | 0 0

1 | 0 1 | 0 | 1 0

1 | 0 1 | 0 | 0 1

1 | 0 1 | 1 | 0 0

1 | 0 1 | 1 | 1 0

1 | 0 1 | 1 | 0 1

 
 
 
 
 






















 

Z























  

Copyright © 2011 SciRes.                                                                                   IB 



Ordinal Logistic Regression for the Estimate of the Response Functions in the Conjoint Analysis 386 

The application was made using the Proportional Op- 
tion Assumption—POA; the model is estimated with a 
PLUM-Ordinal regression procedure, available in SPSS 
10 and the following ones. 

The parameters were estimated using the maximum 
likelihood method linked to the POA hypothesis (the 
Fisher’s Scoring optimisation algorithm, [7]).  

The judgement evaluations are pooled across re- 
spondents (pooled model) and the novelty value in our 
approach is that one set of aggregated part-worths is es- 
timated in connection with each overall category Yk (see 
Table 3). 

4. Meaning of the Proposed Interpretative 
Model and Some Empirical Results 

Model (3) can be expressed as follows (the coefficients 
were estimated as shown in the §2, with reference to 
(2)): 
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Table 3. Estimates of four set of the aggregated part-worths 
utilities of the COA model ordinal logistic regression. 

 Equations 
Estimated 
coefficient 

Standard 
error 

df Wald 2 p-value

Intercept Y = 1 –4.409 0.171 1 662.647 0.000

 Y = 2 –2.600 0.144 1 327.567 0.000

 Y = 3 –0.610 0.126 1 23.470 0.000

 Y = 4 1.512 0.140 1 116.584 0.000

Factor Levels      

Weight z12 –0.944 0.122 1 59.439 0.000

 z13 –1.930 0.129 1 223.215 0.000

Autonony z22 1.041 0.101 1 105.829 0.000

Price z32 –1.197 0.124 1 93.015 0.000

 z32 –2.355 0.134 1 310.179 0.000
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Out of a reading of the coefficients (effects) in Table 3, 
we can see the modalities of the factors that contribute to 
the increase/decrease the  values (k = 1, 2, 3, 4, 5) 
and, consequently, the relative importance of each attrib-
ute as well as which levels of each attribute are most 
preferred.  

ˆ kp

Table 3 points out that the intercept value related to 
the fourth equation, associated to the global evaluation Y4, 
is of opposite compared to the algebraic sign of the first, 
second and third equation (associated, respectively, to the 
1, 2 and 3 judgement categories).  

This allow us to verify the basic coherence of the results 
of the model (at least with regard to the main effects). 

The factor that influences the logit more is Price, fol- 
lowed by Weight; less important is Autonomy. 

The probabilities relative to the five overall categories 
are expressed, respectively, as follows: 
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In order to empirically assess the predictive capacity 
of the estimated model, Table 4 shows the probabilities 
estimated for all the modality combinations (experiment- 
tal conditions “s”) of the explanatory variables and the 
corresponding values of the observed proportions. 

We notice a satisfactory model fitting, as the predicted 
probabilities turn out to be very near the corresponding 

proportions for all the modality combinations of the ex- 
perimental design.  

Table 5 supplies, for each product profile “s”, the odds 
value relative to the four probability functions , that 
is, the values: 
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Table 4. Comparison of the predicted probabilities, estimated by the COA model, and the corresponding proportions for all 
the modality combinations of the experimental design. 

 Y1  Y2  Y3  Y4  Y5  

s Probability Proportion Probability Proportion Probability Proportion Probability Proportion Probability Proportion

 
1
π ( )

s
z  p 1  2

π ( )
s

z  p  2 3
π ( )

s
z p  3 4

π ( )
s

z p  4 5
π ( )

s
z  p  5

1 0.01 0.01 0.06 0.04 0.28 0.30 0.47 0.46 0.18 0.19 

2 0.04 0.04 0.16 0.20 0.45 0.41 0.29 0.30 0.06 0.05 

3 0.11 0.13 0.33 0.29 0.41 0.46 0.13 0.11 0.02 0.01 

4 0.00 0.00 0.02 0.01 0.14 0.14 0.45 0.44 0.38 0.41 

5 0.01 0.03 0.07 0.06 0.31 0.25 0.45 0.49 0.16 0.16 

6 0.04 0.06 0.17 0.15 0.45 0.49 0.28 0.24 0.06 0.05 

7 0.03 0.01 0.13 0.16 0.42 0.39 0.34 0.35 0.08 0.08 

8 0.09 0.08 0.29 0.28 0.43 0.49 0.15 0.14 0.03 0.01 

9 0.25 0.24 0.42 0.39 0.27 0.30 0.06 0.06 0.01 0.00 

10 0.01 0.00 0.05 0.06 0.27 0.24 0.47 0.51 0.20 0.19 

11 0.04 0.04 0.15 0.14 0.44 0.47 0.31 0.33 0.07 0.03 

12 0.10 0.13 0.31 0.33 0.42 0.35 0.14 0.19 0.02 0.00 

13 0.03 0.03 0.12 0.14 0.42 0.44 0.35 0.29 0.08 0.10 

14 0.09 0.04 0.29 0.33 0.44 0.46 0.16 0.14 0.03 0.04 

15 0.24 0.22 0.42 0.44 0.28 0.24 0.06 0.09 0.01 0.01 

16 0.08 0.08 0.26 0.29 0.45 0.44 0.18 0.13 0.03 0.06 

17 0.22 0.23 0.41 0.41 0.30 0.28 0.07 0.06 0.01 0.03 

18 0.47 0.49 0.37 0.29 0.13 0.18 0.02 0.03 0.00 0.01 



Ordinal Logistic Regression for the Estimate of the Response Functions in the Conjoint Analysis 388 

Table 5. The odds of the 18 combinations of the experimental design. 

s c z  12 z  13 z  22 z 32 z  33 1
L  odds1 

2
L  odds2 

3
L  odds3 

4
L  odds4 

1 1 1 1 1 1 1 –4.409 0.012 –2.6 0.074 –0.61 0.543 1.512 4.536 

2 1 1 1 1 0 1 –3.212 0.04 –1.403 0.246 0.587 1.799 2.709 15.014 

3 1 1 1 1 1 0 –2.054 0.128 –0.245 0.783 1.745 5.726 3.867 47.799 

4 1 1 1 0 1 1 –5.45 0.004 –3.641 0.026 –1.651 0.192 0.471 1.602 

5 1 1 1 0 0 1 –4.253 0.014 –2.444 0.087 –0.454 0.635 1.668 5.302 

6 1 1 1 0 1 0 –3.095 0.045 –1.286 0.276 0.704 2.022 2.826 16.878 

7 1 0 1 1 1 1 –3.465 0.031 –1.656 0.191 0.334 1.397 2.456 11.659 

8 1 0 1 1 0 1 –2.268 0.104 –0.459 0.632 1.531 4.623 3.653 38.59 

9 1 0 1 1 1 0 –1.11 0.329 0.699 2.012 2.689 14.72 4.811 122.85 

10 1 0 1 0 1 1 –4.506 0.011 –2.697 0.067 –0.707 0.493 1.415 4.116 

11 1 0 1 0 0 1 –3.309 0.037 –1.5 0.223 0.49 1.632 2.612 13.626 

12 1 0 1 0 1 0 –2.151 0.116 –0.342 0.71 1.648 5.197 3.77 43.38 

13 1 1 0 0 1 1 –3.52 0.029 –1.711 0.181 0.279 1.322 2.401 11.034 

14 1 1 0 0 0 1 –2.323 0.098 –0.514 0.598 1.476 4.375 3.598 36.525 

15 1 1 0 0 1 0 –1.165 0.312 0.644 1.904 2.634 13.93 4.756 116.28 

16 1 1 0 1 1 1 –2.479 0.084 –0.67 0.512 1.32 3.743 3.442 31.249 

17 1 1 0 1 0 1 –1.282 0.277 0.527 1.694 2.517 12.39 4.639 103.44 

18 1 1 0 1 1 0 –0.124 0.883 1.685 5.392 3.675 39.45 5.797 329.31 

 
The odds1 of the profile 4 (the best: weight   94 g; 

autonomy > 200 h, price  200 €) it is much lower 
(0,004) and indicates that  the probability to assign 1 is 
0,004 times the probability to give another response (Ta-
ble 4).The probability to assign 1 or 2 is 0.026 times the 
probability to assign 3, 4, 5. 



The odds1 of the profile 18 (the worst: weight > 105 g; 
autonomy  200 h, price > 300 €) it is much higher 
(0.883) and indicates that the probability to assign 1 is 
0.883 times the probability to give an other response. 



The probability to assign 1 or 2 exceeds 5.392 times 
the probability to assign 3, 4, 5. 

5. Final Remarks 

Besides these positive features, the model here pro- 
posed provides the following remarkable advantages: 

1) the use of the probability  as an average re- 
sponse, which does not require scale adjustments to ren- 

der the preference scale “metric”;  

ksp̂

2) the estimate of one set of aggregated part-worths in 
connection with each overall category k; 

3) a cross-check of the effects of the attribute levels on 
the different k categories of Yk; this allows us verify the 
basic coherence of the results of the model; 

4) the proposed model, at the aggregate level, offers 
the prospect of more accurate estimation, unlike the tra-
ditional conjoint methods which estimate part-worth 
utilities at an individual level.  

Moreover, we can argue that an aggregate analysis 
permits the estimation of subtle interaction effects due to 
its ability to leverage a great deal of data across respon- 
dents.  
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