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ABSTRACT 

The distribution of Pallet Packing Problem is to load a set of distinct boxes with given dimensions on pallets or in con- 
tainers to maximize volume utilization. This problem is still in its early stages of research, but there is a high level of 
interest in developing effective models to solve this NP-hard problem to reduce the time, energy and other resources 
spent in packing pallets. In this paper, the three-dimensional pallet loading with mixed box sizes model has been devel-
oped. This loading model allows many boxes of various sizes to be placed onto the same pallet. The model also consid-
ers the number or proportion of each box size that can be loaded on a pallet. No restrictions are placed on the dimen-
sions of the boxes, the pallets, or the number of different box sizes that can be considered. Therefore, the objective of 
this work is to determine how to most efficiently load a given pallet by maximizing the volume occupied by its load of 
boxes. Tests on several problems were implemented using OR library in order to show the validation of the proposed 
model. The results showed that the formulated mixed 0 - 1 models provide exact solutions for the pallet-packing prob-
lem. The computational time requirements of the developed model prevent its use in real-time palletizing applications. 
As microcomputer chip technology continues to evolve the lengthy computation time may prove to be less of a problem 
in real time applications. 
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1. Introduction 

Everyday many items are shipped from one place to an-
other. These items are put in containers or pallets. To ship 
more items while spending less energy, time, and money, 
the items should be packed optimally or at least near op- 
timally [1]. This problem becomes even more important 
in the field of air shipping [2]. The pallet-loading prob- 
lem is a problem with many different variants. The early 
form of this type of problem was the one-dimensional 
loading or packing problem, in which a set of  posi-
tive values 

n

jw , e.g. weight values, must be partitioned 
into the minimum number of subsets so that the total va- 
lue in each subset does not exceed a given pallet capacity 

. The two-dimensional of pallet-loading problem ex- 
tends the one-dimensional pallet-loading problem. Instead 
of considering only one set of positive values, two diffe- 
rent sets of positive values are considered, namely two 
different dimensions, e.g. width and length of the rec- 
tangular pieces to be cut out. As expected, this problem is 
harder to solve than the one or two-dimensional pallet- 
loading problems [3-5]. 

W

These pallet-loading problems are NP-hard problems. 
NP stands for ‘non-deterministic polynomial’. NP-hard 
means the solution time increases exponentially as the si- 
ze of the problem increases. The three-dimensional pallet- 
loading problem is strongly NP-hard because the three- 
dimensional pallet-loading problem is a special case of 
the one-dimensional problem [6,7]. 

The three-dimensional packing problem is a natural 
generalization of the classical one- and two-dimensional 
problems. In general, optimal solutions are computationa- 
lly impractical to achieve [8]. For this reason, most of the 
studies have focused on the practical aspects of loading a 
container and developing heuristic solutions based on the 
concept of filling out the container with boxes organized 
in layers, walls, and columns. In other cases, two-dimen- 
sional pallet packing heuristics are applied to the general 
three-dimensional container-loading problem. These heu- 
ristics are, in general, on-line packing algorithms, which 
mean they pack boxes one-by-one in a given order. More 
precisely, when the algorithm is packing a box, it has 
information only about the boxes previously packed, and 
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once a box is packed, it cannot be moved to another pla- 
ce. This technique is not efficient and is also not applica- 
ble, when applying the load balance and other constraints. 
Since the pallet-packing problem has a large solution spa- 
ce, it is extremely difficult to prove that a solution is the 
global optimum. Only with many different sets of boxes 
can an algorithm be tested and its performance evaluated. 

2. Review of Relevant Literature 

Gehring et al.’s paper [9] presents a heuristic for packing 
non-identical items within a container. They, like George 
and Robinson [4], utilized the idea of packing sections of 
the container across the full width and height. They utili- 
zed an ordering based on decreasing volume, having 
placed the first block in a section (layer), and the layer 
determining box (LDB). They also developed a packing 
across the container floor first and then upwards. This 
tends at first to produce something of a decreasing wedge 
across the width of the container. This approach does en- 
sure that cargo sections can be moved around so as to 
provide appropriate weight redistribution, but it will clear- 
ly lead in some instances to reduced volume utilization. 
A further aspect associated with not allowing boxes to 
straddle sections is that of load stability. Packing where 
boxes do straddle between layers can produce a more 
cohesive load. Han, Knott and Egbelu [10] showed that 
the idea of walls needs not to be restricted to the vertical 
sides of the container. They described an algorithm in 
which the container (major prism) is packed with identi- 
cal boxes (minor prisms). The algorithm as described is 
designed for only a single box type that is constant in 
both size and shape and no practical constraints are con- 
sidered. The approach is to produce packing of L-shaped 
modules, with the initial module considered spanning the 
whole of the container base, and one of the container 
walls. The arrangement within the “L” is determined by 
dynamic programming (similar to the approach of Steu- 
del [11], which maximizes the edge utilization). The idea 
of building walls along any of the six faces of the con- 
tainer is an interesting one; however, the example they 
used fits one less box than that obtained by stacking mul- 
tiples of two different ‘wall’ arrangements on the floor of 
the container. 

The weakness in the approach of Han et al. [10] is a 
result of maximizing the utilization of the perimeter of 
the “L” module. No evidence was presented to suggest 
why an L-shaped module approach should be adopted. 
Their example consists of packing a container of size 48'' 
by 42" and 40" with boxes 11" by 6" by 6". They were 
able to fit 195 boxes, a 95.16% volume utilization of the 
container. They quoted the US General Services Admini- 
stration whose published results (1966) for the same pro- 
blem only provide 82.5% utilization). 

Mohanty et al. [12] proposed a multi-dimensional kna- 
psack problem approach to the three-dimensional pack- 
ing problem dealing with filling up various containers 
with boxes. Their objective was to maximize utilization 
of the space in the containers or the value of the contents 
of the containers. They used a column generating proce- 
dure which heuristically uses a “greedy approach” to ge- 
nerate columns one at a time, without considering any 
constraints other than overlapping and dimensions of the 
containers. Since they used a “greedy approach”, their app- 
roach was not robust and was strongly affected by the 
number of different items to be packed. 

Kocjan and Holmstrmِ [13] developed a model produ- 
cing a high degree of stability. The results obtained dur- 
ing evaluation showed great improvement in the number 
of stable patterns in comparison with results reported 
earlier. Moreover, most of the solved cases also ensured 
optimality in terms of utilization of a pallet. Recently, 
Junqueira et al. [14] developed mixed integer linear pro- 
gramming models for the container loading problem that 
consider the vertical and horizontal stability of the cargo 
and the load bearing strength of the cargo. The models 
can also be used for loading rectangular boxes on pallets 
where the boxes do not need to be arranged in horizontal 
layers on the pallet. A comprehensive performance ana- 
lysis using optimization software with 100s of randomly 
generated instances showed that those developed models 
are able to handle only problems of a moderate size. 

Terno et al. [15] employed a different heuristic algori- 
thm. In addition to the dimension and overlapping con- 
straint, they took total weight limit of the pallet and the 
stability constraints into account. They employed a laye- 
ring approach while packing each layer by using a branch 
and bound solution method. They solved 700 problem 
sets among the problems that Bischoff et al. [16] solved 
and made comparisons with past work. Their solutions 
were better than Bischoff et al.’s solutions, but since their 
model was mainly designed for the “Manufacturer’s Pal- 
let Packing Problem”, as the number of different items 
increases the volume utilization declines. 

Martello et al. [6] developed a branch-and-bound me- 
thod to solve the three-dimensional packing problem. 
They tried to orthogonally pack all the items into the mi- 
nimum number of pallets. A computational test was pre- 
sented showing that problems with the number of boxes 
less than 30 and 50 were solved. One weakness of their 
method is that when the average number of items per 
pallet gets bigger, the problem becomes harder to solve. 
Another weakness was that they assumed that the items 
might not be rotated. They considered only basic type of 
constraints (overlapping and pallet dimension limits). 

Ballew [17] developed a mathematical formulation si- 
milar to the analytical method of Chen et al. [18], by us- 
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ing nonlinear integer programming on a simplified ver- 
sion of the problem. He developed a general mathemati- 
cal formulation. Unfortunately, when implemented, the 
solver package hyper lingo found a local optimum to a 
very simplified and small problem of just three boxes wi- 
thout considering several important constraints. The formu- 
lation of a bigger problem with more boxes was unrealis- 
tic because the number of variables and constraints in- 
creases incredibly fast as the number of boxes increases. 

3. Statement of the Problem 

The problem is a three-dimensional pallet-packing prob- 
lem which is related to the two general types of pallet pa- 
cking problems. These types are the “manufacturer’s pa- 
llet packing problem” and the “distributor’s pallet pack- 
ing problem.” The ‘manufacturer’s pallet packing prob- 
lem’ is easier to solve since it seeks the optimum layout 
of identical rectangular boxes on a rectangularly shaped 
pallet. On the other hand, the “distributor’s pallet pack- 
ing problem,” is more difficult to solve since the object- 
tive is to load boxes of varying dimensions onto as few 
pallets as possible [19]. This objective changes to mini- 
mize unused pallet space for the case in which only one 
pallet is loaded. However, most of the time, the items pa- 
cked are rectangular, and this property makes the prob- 
lem easier to solve, compared to trying to pack items wi- 
th different shapes. 

The problem at hand is to pack as many boxes as pos- 
sible from a given set of rectangular-shaped items into a 
three-dimensional rectangular pallet. The objective is to 
minimize the unused pallet volume while considering 
many different kinds of constraints. These constraints are 
explained in the Scope and Methodology Section. The 
purpose of this paper is to develop a three-dimensional 
pallet-packing model that can be solved using LINDO 
software. 

4. Solution Methodology 

This paper proposes a zero-one mixed integer linear pro- 
gramming model for the general three-dimensional con-
tainer-loading problem. The problem involves packing a 
set of non-uniform cartons into unequal-sized containers. 
The model considers the issues of carton orientations, mul- 
tiple carton sizes, multiple container sizes, avoidance of 
carton overlapping, and space utilization. This model is a 
modified version of the general pallet-packing model. 
The modification to the general model is represented by 
introducing to the model other concerns of the container- 
loading problem such as weight restriction. 

4.1. The Proposed Three-Dimensional Pallet 
Loading Model 

The three-dimensional pallet-loading model is a mixed 0 

- 1 integer-programming model which generates an exact 
optimal solution. The solution of the mixed 0 - 1 model 
explicitly defines the desired number of boxes of each 
size and the x, y, z coordinates of each box’s placement 
location on the pallet. A branch-and-bound technique is 
employed to solve the mixed 0 - 1 integer-programming 
model. 

4.2. The Mixed 0 - 1 Model 

Consider a collection of boxes, expressed by set n S   
 1 2, , , nb b b

h
W

 Each box  has length il , width i , and 
height i . A loading of into a pallet of length , wid- 
th , and height limit 

ib
S

w
L

H is an assignment of boxes to 
a position within the pallet such that: 

1) No two boxes in the pallet overlap. 
2) Each box is contained entirely with the pallet, with 

its sides parallel to the sides of the pallet. 
3) The proportion of the number of boxes of a given si- 

ze to the total number of boxes of a full pallet load 
must closely approximate the user’s specification. 

4) The total of boxes’ weights must be less than the wei- 
ght allowed to be in the pallet. 

An optimal loading is achieved if the use of pallet spa- 
ce is maximized under the consideration of the above 
constraints. 

Boxes in set  may or may not have the same dimen- 
sions. In addition, the orientations of the boxes in set  
are fixed permanently. The length, width, and height of a 
box must be aligned with the length, width, and height of 
the pallet, respectively. Length is defined as the dimen- 
sion along the X-axis. Width is the dimension along the 
Y-axis, and height is the dimension along Z-axis in Car- 
tesian coordinate space. In this paper, the orientation of 
box height is assumed to be fixed. Only the length and 
width of a box are interchangeable. Thus, a box can be 
placed either in the (

S
S

l w h  ) or ( ) directions on 
the pallet. Individual elements representing these two orien- 
ttations must be separately included in set . In addition, 
the placement location of a box in Cartesian coordinate 
space is measured relative to the front bottom left corner 
of the box. 

w l h 

S

4.3. Initial Notation 

The following notation defines all symbols used for the 
formulations of three-dimensional model. Denote: 

S : A collection of  boxes to be considered, in par-
ticular, it is 

n
 , nb1 2, ,b b  . 

 , ,i i il w h : The dimensions of  in set , and 
they are length, width, and height, respec-
tively. 

 i ibox b S

 , ,L W H : The dimensions of a pallet cube, and they 
are length, width, and height, respectively. 

 , ,X Y Z   : Pallet location in Cartesian coordinate 
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space along the x-, the y-, and the z-axis, 
respectively. 

 , ,i i i x y z : Decision variables; the x, y, z coordinates 
of placement location of the front bottom 
left corner of box . i

k
P : A binary decision variable associated with the - 

th box in set . 
k

S
Where 

1kP   if Box k  is loaded onto the pallet  
0kP   if Box  is discarded from set  k S 

V : The volume of the pallet  L W H  

kV : The volume of box i ik l w hi    

gR : The desired box proportion of type g . 

kG : The weight of box . k

G : Total boxes’ weight allowed. 

gC : A subset of ; consists of all boxes of size S g  

regardless of box orientation. 

   
 
|

,1

g k k k k g g g

g g g

C b l w h l w h

or w l h k n

     

   
 

M : An extremely large number. 
r : Total number of box types, . r n
Each box with different orientations, either in l w h 

S
 

or  must be individually considered in set . w l h 

4.4. Preventing Box Overlaps 

This section describes the process of converting the re- 
quirements of box overlap avoidance into mathematical 
constraints. Consider two partially overlapped boxes, A 
and B shown in Figure 1 (a). The projections of these 
boxes on the x-y, the x-z and the y-z planes are illustrated 
in Figures 1 (b), (c) and (d), respectively. 

 

 

Figure 1. Boxes Overlaps. (a): Two overlapped boxes; (b): 
Illustrates overlap condition in X and Y; (c): Illustrates o- 
verlap condition in X and Z; (d): Illustrates overlap condi-
tion in Y and Z. 

Suppose the location of box A is fixed, and that box B is 
free to move arbitrarily in Cartesian coordinate space. To 
avoid overlap of these two boxes, the following conditions 
must be satisfied: 

–B A Ax x l                  (1) 

or 

A B Bx x l                   (2) 

B Ay y wA                  (3) 

or 

A By y wB                  (4) 

B Az z hA                   (5) 

or 

A B Bz z h                   (6) 

where 

,A Bl l : Lengths of boxes A and B, respectively. 

,A Bw w : Widths of boxes A and B. 

,A Bh h : Heights of boxes A and B. 

 , ,A A Ax y z : Front bottom left corner coordinate of 

box A. 

 , ,B B Bx y z : Front bottom left corner coordinate of 

box B. 
At least one of these six constraints must hold to pre-

vent overlap of the two boxes. 

4.5. Determination of Proportion of Assigned 
Number of Boxes in a Pallet 

The number of boxes of each type to be considered in set 
S can be determined using the following two equations. 

g in n Rg                   (7) 

1 1

r r

i i
i i

n v V
 

                  (8) 

where 

gn : The number of boxes of type g to be considered 
in set . S

Equation (7) states that the ratio of the number of type 
g  boxes to the total number of boxes on a pallet should 
equal to gR , the desired box proportion of type g . E- 
quation (8) indicates that the total cumulative box volu- 
mes should equal to the pallet’s volume. By solving 
Equations (7) and (8), the number of boxes for type g  
can be obtained as: 

1

g
g r

i i
i

R V
n

R v





                (9) 
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4.6. Formulation of Three-Dimensional Model 

The three-dimensional pallet loading problem can now be 
formulated as a mixed 0 - 1 integer programming model. 

Maximize 
1

n

k k
k

Z v P


                  (10) 

Subject to: 
1) Avoid overlap of boxes 

– –j i jx x l     ij                (11) 

or 

– –i j ix x  l     ij                (12) 

or 

j iy y w   j     ij                (13) 

or 

i jy y w   i     ij                (14) 

or 

j iz z h   j     ij                (15) 

or 

i jz z h   i     ij                (16) 

2) Confine placement boundary 

k kx X P      k                (17) 

k ay Y P      k                (18) 

kz Z P 
k     k                (19) 

( )k kx X L l                   (20) k

( )k ky Y W w                   (21) k

( )kz Z H h  
k k                (22) 

3) Weight limitation 

1 1

n

k k m
k m

G P G P
 

  
 

  


g

             (23) 

4) Proportion of boxes assigned 

g

m
m C

P R


                      (24) 

 0,1kP   

, , 0k k kX y x   

1,2, , 1i n   

1, 2, ,j i i n     

1,2, ,k n   

1,2, ,g r   
The front bottom left corner of the pallet is located at 

the coordinate  , , X Y Z    in Cartesian coordinate spa- 

ce. The location of the pallet  , , X Y Z    is selected 
such that all boxes in set  can be completely placed 
into the large cube. 

S

The values of , ,X Y Z    may be determined using the 
following expressions: 

 max ,iX n l

 x ,iw

 x i

     

    

 

maY n   

maZ n h

1kP 

        . 

The objective function, Equation (10), maximizes the 
total pallet volume occupied by boxes to be loaded. 

In the final solution, any box having  is used to 
construct a pallet pattern. Any box having 0kP   is 
discarded from consideration. This formulated mixed 0 - 
1 integer-programming model for the three-dimensional 
pallet-loading problem thus gives the required number of 
boxes of each type, i.e., every box whose associated k  
equals to one. It also generates the exact placement of a 
box on the pallet, namely the coordinate  

P

, ,k k kx y z . 

4.7. Converting Multiple-Choice Constraints 

Equations (11) - (16) in the model make the problem one 
of multiple-choice programming. To apply existing algo- 
thms for mixed 0 - 1 integer programming, the multiple 
choice (either/or) constraints must be converted to stan- 
rd “AND” constraints. The conversion can be accomli- 
shed by introducing additional binary variables (Table 1) 
for each set of multiple-choice constraints. 

The six possible combinations of different binary values 
are: 

u1 u2 u3 
1 0 0 
0 1 0 
0 0 1 
1 1 0 
0 1 1 
1 0 1 

 
Table 1. Binary variable and associated RHS values. 

Binary variables RHS values of equations 

U1 U2 U3 (25) (26) (27) (28) (29) (30) 

Applicable 
Constraint 
Equation

1 

0 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

0 

1 

0 

1 

1 

–lj

M

M

M

2M

M

M

–li

M

M

M

2M

M 

M 

–wj 

2M 

M 

M 

M 

M 

2M 

–wi 

M 

M 

2M 

M 

M 

M 

–hj 

M 

M 

2M 

M 

M 

M 

–hi 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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The multiple choice constraints of Equations (11) - (16) 
in the model are equivalent to: 

 2 3j i jx x l M u u                (25) 

 1 3i j jx x l M u u                 (26) 

 1 2j i jy y w M u u                (27) 

 1 22i j iy y w M u u                (28) 

 2 32j i jz z h M u u      


        (29) 

 1 32i j iz z h M u u              (30) 

where:  1 2 31 2u u u   

 1 2 3, , , 0,1u u u  

4.8. Box Proportions 

Users of the proposed developed model can determine 
the value of gR  (box proportions) by using the follow-
ing equation: 

1

Number of boxes of type

Number of boxes of type
g n

i

g
R

i





     (30) 

Where ( ) is the number of distinct box types. r
Since different box orientations must be considered 

separately in set , set  contains en- 
tries which exceed the value of . If 

 1 2, , , nB b b b 
r
 B

gR  s not placed in 
the model’s constraints, the optimal solution may generate 
a pallet pattern that contains only identical boxes. 

5. Testing and Validating the Proposed 
Model 

In order to test the efficiency of the proposed model, an 
illustrative example is presented first to explain how the 
model formatted. Then, the model is tested utilizing five 
problems randomly selected from the OR library that is 
shown in the reference. 

5.1. Numerical Example 

Consider a distribution warehouse using 36" by 24" pal-
lets for shipment. The stacking height limit of a pallet 
load is 16". The maximum load capacity allowed is 60 lb. 
A customer order requests 100 units of product A and 200 
units of product B. Product A is packaged using 

carton with the height of 16" and weigh 15 lb. 
Product B uses carton with the height of 8" 
and weigh 20 lb. 

12" 24"
24" 24"

Prior to formulating the 3-dimensional model, a colle- 
ction of cartons, sets, and the location of the pallet in 
Cartesian coordinate space  , ,

Table 2. Example parameter. 

Box Product Length Width Height Volume Coordinate iP

ib  ib  ib  ib  ib    

1b A 12 24 16 4608  1 1 1, ,x y z 1P

2b A 24 12 16 4608  2 2 2, ,x y z 2P

3b B 24 24 8 4608  3 3 3, ,x y z 3P

4b B 24 24 8 4608  4 4 4, ,x y z 4P

 
 1 100 100 200 1 3R     and carton proportion of B is 

equal to;  2 200 100 200 2 3R    . The number of 
boxes of individual types to be considered in set S can 
also determined 1, 2A Bn n 

12" 24"
. 

Since a carton   is not square, a carton with 
dimensions 24" 12"  must be included in set S, there-
fore: 

 1 2 3 4, , ,S b b b b  

Where: 

1 12" 24" 16"b     

2 24" 12" 16"b      

3 24" 24" 8"b     

4 24" 24" 8"b     

Let    , , 100,100,100X Y Z     and  500M 

The model will be as following: 
Maximize 1 2 34608 4608 4608 4608 4Z P P P P     
Subject to: 

 2 1 12 1324 500x x u     u  

 1 2 11 1312 500x x u     u  

 2 1 11 1212 500y y u     u  

 1 2 11 1224 500 2y y u u         

 2 1 12 1316 500 2z z u u         

 1 2 11 1316 500 2z z u u         

11 12 131 2u u u     

 3 1 22 2324 500x x u     u  

 1 3 21 2312 500x x u     u  

 3 1 21 2224 500y y u     u  

 1 3 21 2224 500 2y y u u         

 3 1 22 238 500 2z z u u         

 1 3 21 2316 500 2z z u u         X Y Z    must be deter-
mined. Carton proportion of product A is equal to;  21 22 231 2u u u     
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 4 1 32 3324 500x x u     u  

 1 4 31 3312 500x x u     u  

 4 1 31 3224 500y y u     u  

 1 4 31 3224 500 2y y u u         

 4 1 32 338 500 2z z u u         

 1 4 31 3316 500 2z z u u         

31 32 331 2u u u     

 3 2 42 4324 500x x u     u  

 2 3 41 4324 500x x u     u  

 3 2 41 4224 500y y u     u  

 2 3 41 4212 500 2y y u u         

 3 2 42 438 500 2z z u u         

 2 3 41 4316 500 2z z u u         

41 42 431 2u u u     

 4 2 52 5324 500x x u     u  

 2 4 51 5324 500x x u     u  

 4 2 51 5224 500y y u     u  

 2 4 51 5212 500 2y y u u         

 4 2 52 538 500 2z z u u         

 2 4 51 5316 500 2z z u u         

51 52 531 2u u u     

 4 3 62 6324 500x x u     u  

 3 4 61 6324 500x x u     u  

 4 3 61 6224 500y y u     u  

 3 4 61 6224 500 2y y u u         

 4 3 62 638 500 2z z u u         

 3 4 61 638 500 2z z u u         

61 62 631 2u u u     

1 1100x P  

1 1100y P  

1 100z P  

 1 1100 36 12x     

 1 100 24 24y     

 1 100 16 16z     

2 2100x P  

2 2100y P  

2 2100z P  

 2 100 36 24x     

 2 100 24 12y     

 2 100 16 16z     

3 3100x P  

3 3100y P  

3 3100z P  

 3 100 36 24x     

 3 100 24 24y     

 3 100 16 8z     

4 4100x P  

4 4100y P  

4 4100z P  

 4 100 36 24x     

 4 100 24 24y     

 4 100 16 8z     

    1 2 1 2 3 41 3P P P P P P      

    3 4 1 2 3 42 3P P P P P P      

1 2 3 415 15 20 20 60P P P P     

 1 2 3, , 0,1i i iu u u   

 1 2 3, , 0,1i i iu u u   

, , 0i i ix y z   

1,2,3,4i   
One of possible optimal solutions for the formulated 

problem is: 

   1 2 3 4, , , 1,0,1,1P P P P    

   1 1 1, , 124,100,100x y z   

   2 2 2, , 100,100,84x y z   

   3 3 3, , 100,100,108x y z   

   4 4 4, , 100,100,100x y z   

   11 12 13, , 0,1,1u u u   

   21 22 23, , 1,0,0u u u   

   31 32 33, , 1,0,0u u u   

   41 42 43, , 1,0,1u u u   

   51 52 53, , 1,0,1u u u   

   61 62 63, , 0,1,1u u u   

Note that 2 0P   and    , , 100,100,84x y z 2 2 2 . This 
indicates that box 2  

 ,b b 4and b
2 is placed outside the valid pallet 

space. Therefore, only boxes 1, 3 and 4 1 3  are 
considered in the resulting pallet loading pattern. 

b

Recall that the pallet’s corner is placed at coordi-
nate    , , 100,100,100X Y Z    . By subtracting  , ,X Y   
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Z   the resulting placement location of a box  , ,i i ix y z  
can be converted back to the original coordinates. This 
yield the following results that are illustrated in Figure 2: 

  1 1 1, , 24,0,0x y z  





 

   3 3 3, , 0,0,8x y z   

  4 4 4, , 0,0,0x y z   

and 

  2 2 2, , 0,0, 16x y z    

5.2. The Efficiency of the Proposed Model 

Another four problems were randomly selected from OR 
library that is shown in the reference and run in LINDO 
software. It was noticed with increasing number of boxes 
included in the pallet, the execution time is significantly 
increased so that in the last problem the execution time 
exceeds 3 hours and the computer stopped running showing 
out a sign “out of memory.” All problems were running 
in Pentium(R) 4 CPU 1.7 GHz with 256 MB of RAM. 
The following table shows the change in the num- ber of 
orientations associated with execution time. (Table 3). 

Therefore, another six problems were chosen in which 
2 problems with two different box sizes, another two 
problems with three different box sizes and finally two 
problems with four different box sizes. All have different 
orientations forming 12 positions shapes. Unfortunately, 
none of them succeed to present a solution except when 
one of the constraint is removed such eliminating propor-
tion constraints. It may get a reasonable solution in a rea- 
sonable time. 

 

 
Figure 2. The optimal pallet pattern of the numerical exam-
ple. 

Table 3. Execution time for selected problems. 

Problem 
number

Number of
orientation

Execution time Result 

1 4 5 seconds Optimum solution is obtained

2 6 15 seconds Optimum solution is obtained

3 10 24 minutes Optimum solution is obtained

4 12 
3 hours and 
40 minutes 

Stopped because of 
“out of memory.” 

 

6. Results and Discussions 

The developed mixed 0 - 1 integer model for the three di- 
mensional problem has been solved by using a branch- 
and bound procedure, which employed linear program- 
ming techniques to solve for continuous solutions. The 
branch-and-bound procedure did not destroy the primal 
feasibility of the LP solution. As a result, less computer 
memory and computation time were required. 

The formulated mixed 0 - 1 models provided exact so- 
lutions for the pallet-packing problem. However, use of 0 
- 1 integer variables and multiple choice constraints may 
require extremely long computation times to reach final 
optimal solutions. The issue of the developed model’s com- 
putation time requirements is addressed in more detail in 
the following: 

Computation Time Requirements 

The developed model has robust computation time re-
quirements. The computation time increases significantly 
as the number of boxes increases. The size of the mixed 0 
- 1 integer-programming problem is related to both the 
number of different box sizes and the number of different 
entries in set , previously described. Recall that. S

n  = the number of different boxes in set S, and 
r  = the number of different box sizes. 
The developed model considers the location relation-

ship between every pair of entries in set S for each box 
size. Each pair of placement alternatives for each box 
may be denoted as: 

ib , and jb , < ; i j , 1,2, ,i j n  
 

. 
It follows that there are 1n n  2  combinations to 

be formulated. The problem size may now be formulated 
in terms of the number of variables and constraint equa-
tions. The problem size is a function of both the number 
of different box sizes and the number of elements in set S. 
If only one box orientation is permitted, the number of 
elements in set S may be reduced by half. Alternatively, 
if only boxes with identical lengths or widths or heights 
are considered, the problem may be reduced to two di-
mensions. Computation time increase exponentially as 
the number of different box sizes increases. 
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An illustrated example was conducted to evaluate the 
effectiveness of the developed model. Two different box 
sizes corresponding to four elements in set S were used. 
Computation times rang exceeds 45 seconds of processor 
time on a microcomputer. Also, it was obvious from Ta-
ble 3 that it was hard to get appropriate answer for the 
problems with four different box sizes forming 12 dif-
ferent positions shapes because of memory limitations. 
Therefore, these computational requirements limit the mo- 
del’s use in real-time palletizing applications. The model 
was responsive to significant and immediate changes in 
the distributions of box sizes to be loaded. The continu-
ing evolvement of faster microcomputer hardware may 
remove the model’s limitation for use in real-time pallet-
izing applications in the foreseeable future. 

7. Conclusions 

This paper has presented a transformation procedure for 
converting the three dimensional pallet loading problem 
to an exact mixed 0 - 1 integer programming model in 
which all position relationships among boxes must be 
considered. The position constraints can be determined 
by establishing the constraints specified by Equations (1) 
- (6). Since only two boxes are considered in each con-
straint set of Equations (1) - (6), there are n(n-1)/2 com-
binations to be formulated. 

The developed model does not address the issue of 
load stability. Use of some sets of carton dimensions may 
result in some partial voids in the pallet pattern. These 
voids can be minimized or eliminated thorough the use of 
filler cartons or standardized carton dimensions. The com- 
putational time requirements of the developed model pre- 
vent its use in real-time palletizing applications. As mi- 
crocomputer chip technology continues to evolve the len- 
gthy computation time may prove to be less of a problem 
in real time applications. 
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