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Abstract

A variety of alternating direction methods have been proposed for
solving a class of optimization problems. The applications in com-
puted tomography (CT) perform well in image reconstruction. The
reweighted schemes were applied in [;-norm and total variation min-
imization for signal and image recovery to improve the convergence
of algorithms. In this paper, we present a reweighted total varia-
tion algorithm using the alternating direction method (ADM) for
image reconstruction in CT. The numerical experiments for ADM
demonstrate that adding reweighted strategy reduces the compu-
tation time effectively and improves the quality of reconstructed
images as well.
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1. Introduction

In many applications, the problem of recovering a sparse unknown vec-
tor = from a set of measurements b is presented. The [; minimization,

(1)

where A represents a measurement matrix, has been widely used in
solving the problem [1-5]. This method has a unique sparsest solution
x under certain conditions [6]. However, the l1-norm regularization
provides a less sparsity representation than the lp-norm regulariza-
tion and may lose some detailed features and contrast. One major
improved [y minimization algorithm for finding the sparsest solution
efficiently is the reweighted [; minimization [7]. Some modification-
s of the reweighted l;-minimization algorithms have been studied in
recent years. A more general form of the reweighted [;-minimization,

min [|z]|; subject to Az =b,
x
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in which the weights are raised to a certain power between 0 and 1,
was considered in [8,9]. Numerical experiments in the areas of sparse
signal recovery, the error correction in sample transition and the total
minimization for sparse image gradients have shown that the perfor-
mance of recovery using reweighted /3 minimization is better than the
regular /3 minimization [7].

In computed tomography (CT), algebraic approaches for image re-
construction involves solving a consistent system of linear equations

Of +e=u, (2)

where ® is an m x n? projection matrix, f € R™ represents a 2D nxn
image to be reconstructed, e an additive noise with ||e||2 < € for some
known € > 0, and v € R™ the noisy projection data. For limited-
view reconstruction, the system is underdetermined with m < n? and
has infinitely many solutions. Optimization_based Iterative methods
are usually used to find an optimal solution representing the original
image.

The image f in System (2) can be reconstructed by solving the fol-
lowing total variation (TV) minimization with an lo-norm constraints,

mfianHTV subject to [|®f —ul|* <e, (3)

where || * || stands for || * ||o for simplicity. Tomography images can
be approximately modeled to be essentially piecewise constant so the
gradients are sparse. As ||f||rv is the l;-norm of the gradient of f,
the TV minimization is also known as the [;-minimization method.
A generalized [; greedy algorithm in the compressed sensing frame-
work [10] was introduced to incorporate the threshold feature of the
Iy greedy algorithm [11] and the inversely proportional weights used
in the reweighted [;-minimization algorithm for CT. Error analysis of
reweighted [; greedy algorithm for noisy reconstruction was studied
in [12]. The reweighted {;-norm was incorporated into non-local TV
minimization to streghten the structural details and the tissue contrast
and thus to enhance the CT reconstructing performance [13].

The alternating direction method (ADM) is a variant of the clas-
sic augmented Lagrangian method for structured optimization. For
a convex optimization problem where variables appearing separate-
ly are coupled in the constraint, the minimization with respect to
all variables are time-consuming. The ADM minimizes the augment-
ed Lagrangian function with respect to variables separately via iter-
ation to reduce computation time, widely used in /;-norm minimiza-
tion [14,15]. An ADM with fast convergence under certain strong con-
ditions was proposed in [16]. A unified alternating direction method by
majorization minimization was proposed and its convergence was an-
alyzed [17]. The nonmonotone alternating direction method (NADA)
was proposed for solving a class of equality-constrained nonsmooth
optimization problems and applied to the total variation minimiza-
tion effectively [18,19]. The advantage of the NADA lies in that the
objective function is not required to be differentiable while reducing
the computation complexity and improving the efficiency.

In this paper, we present a reweighted TV algorithm using ADM
in CT. The rest of this paper is organized as follows. Notations and
preliminary are introduced in Section 2. A reweight scheme corpo-
ration into the total variation algorithm using NADA is developed
in Section 3. Numerical experiments in Section 4 show the adopt of
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weights improves the performance of the TV algorithm using NADA
in computational time and error measurements. Finally a discussion
in Section 5 concludes the paper.

2. Preliminary

In this section we introduce notations and review approaches for solv-
ing a TV minimization problem (3) using the reweight scheme and
ADM in the literature, respectively.

In the case of sparse signal recovery, it is extremely important to
identify the locations of nonzero entries of a sparse vector z. After a
few iterations, the larger entries in magnitude are naturally considered
to be nonzero entries. The process should concentrate on other entries
smaller in magnitude. The idea of the reweighted [; minimization is
to make the weights small for the entries of z larger in magnitude
and the weights large for those smaller in magnitude. In other words,
the weights are roughly inversely proportional to the magnitude of the
previous iterate solution. So reweighted /; minimization speeds up the
convergence of recovery. The minimization problem (1) is modified as

min [|[Wz||; subject to Az =b,
x

where at the k-th iteration W = diag{wgk), ...,wfﬁ)} is the diagonal
w____1___
b et |lath]

In the case of image reconstruction in CT, the total variation of an
image f is defined as

weight matrix with each w and € > 0.

fllev = 1941 =2 1D/,

where V f is the gradient of f, and D; is a forward difference operator
at a pixel ¢ in both horizontal and vertical directions. The gradi-
ent Vf of an essentially piecewise constant image f is sparse so a
reweighted scheme could be adopted to speed up the convergence and
improve the efficiency of image reconstruction. Thus, the term to be
minimized in (3) is revised as ||[WV f||;, where at the k-th iteration
W = dzag{wgk), ceey wfﬁ)} with all wgk) = W

Minimization (3) with constraints can be expressed as the mini-
mization of an augmented Lagrangian function as, with Lagrangian
multipliers J;, auxiliary vectors v;, and regularization parameters (3,
>0,

L0, 2) = 10 f—ul3+ 30 (ol +AT (Dsf —vo)+llDif —ul P,
@

where \;, v; € R2. Given f*, v*, and A* in the k-th iteration, ADM
minimizes L(f,v,\) with respect to f and v separately, then updates
A. In other words, ADM iterates as

P4 = argmin L(f, 0¥, \Y);
P = argmin L(f*1, v, \F);

)\k+1 _ Ak +ﬂ(ka+1 o ’Uk+1).
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3. Reweighted TV Algorithm Using NADA

In this section we develop a new reweighted TV algorithm using NADA
for solving the following minimization

mfinHWVle subject to  ||®f —ul|* < e, (5)

where the [;-norm ||[WV f]|; is a weighted total variation of f, and W
is a weight matrix with all positive diagonals.

Dealing with the constraint as usual ADM, we first rewrite the min-
imization above with a penalty parameter p > 0 as

min WV ||y + 12 — ull?
or

i 0 . .
mflnzi:leiHJriH(I)fquz subject to w;D;f =v;, 1<1i<n?

(6)

Applying Lagrangian vectors \; € Rz, for 1 <i < n?, we define
Lu(fs v, A)
2
Iz n B
=5llef - ul|* + Zi:1(||vi||2 — A (wiDi f — ;) + 5 llwiDif — vil[?).-
(7)

Thus, Minimization (6) is converted to minimizing the objective
function in (7),
mfian(f,v,)\). (8)

For given f*,v*, and A\*, the proposed algorithm iterates as

fH = argmin Ly (f,0%,45), 9)
v = argmin Ly, (f*11, v, A¥), (10)
NHL — arg m}%an(ka,ka,)\). (11)

In this new algorithm, a modified reweighted scheme is incorporat-
ed after a few non-weighted iterations in order to speed up the con-
vergence of the algorithm and improve the efficiency. The standard
reweighted scheme adopts a matrix W = diag{wy, ..., w2}, where w; is
essentially inversely proportional to the norm || D; f¥||. In this project,
the values of wis need to be rescaled so that the weights of four terms
in the objective function L, (f,v, A) remain close to the case where W
is the identity matrix. The standard reweighted scheme is modified

1

to calculating a vector w with w; = —————— (1 < i < n?) and
= g )

2 The reweighted matrix W in this

mean(w)

rescaling w by a factor r =
paper is obtained this way.

Minimizations (9) and (10) are solved by adopting the nonmonotone
line search scheme in the framework of NADA though there is an extra
reweighted matrix W in the objective function L., (f, v, A). The detail-
s are as follows. After choosing a direction d* = —%Lw(fk, vk, AR,
search a step size s, uniformly bounded above such that L., (f* +
spd® v AF) < Oy — s1.0|dF||3, for a scalar Cp and 0 < § < 1.
Then update f**! = f* 4 5,d* and compute a scalar Cy 1 such that
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Ly (fF1 0% AF) < Opy1 < Ck. Combined with solution of (10), the
sequence { L, (f*,v¥, AF)} is bounded above by a monotonically non-
increasing sequence {Cy} though {L,,(f*,v¥, A\¥)} itself is not decreas-
ing. The advantages of the NADA remain so that L,,(f,v,\) is not
required to be differentiable and that the usage of the nonmonotone
line search scheme reduces the computation complexity and improves
the efficiency.
To find v*+! = argmvin Ly (f**1 v, AF) in (10), we solve

0Ly, i
o = D\ — BuDif + Bu; = 0.
dvi vl
So vi(14+ =) = wiDif — 2% Tt follows that |[vi]| = |[w;Dsf
0 v; =w;D;f — —. ollows that ||v;|| = ||w; V] —
\ X Bllvi| s
Y] Thus, we have
gl 3

Aip 1 w D f = %

—=, 00— 1<i<n® (12
BH g }||szzf_%|| -

v; = max{||w;D; f —

Similarly, the solution of (11) is given by
AL = 2\E 4 B(w D P — R, 1< <n? (13)

Now we present a new algorithm to solve m}n Ly (f,v,\) using NA-
DA.

Algorithm (Reweighted Total Variation Algorithm Using
NADA)
1. input @, u,¢c
2. initialize 3, pu, f0, 0%, A%, ¢, tol, k, mazxit
3. perform a few iterations of regular TV algorithm without weight
using NADA
4. while k < maxit
4.1 set a reweighted matrix W
4.2 update fF+! = arg mfin Lo (f,v*, A\¥) by NADA

4.3 update vF ! by (12)
4.4 update \F+1 by (13)
4.5 if error < tol then output f**!, stop
4.6 increase k =k + 1
end

4. Numerical Experiments

In this section, the reweighted TV algorithm using NADA for CT
reconstruction is implemented in MATLAB. The reweighted TV min-
imization (5) (or (8)) is compared with the regular TV minimization
(3) (or minimization of (4)) for their performances. The numerical
experiments are conducted with the 2D Shepp-Logan phantom [20] of
size 128 x 128 on an Intel Core i7 3.40 GHz PC. The MATLAB code
is developed based on the software package TVAL3 [19].

In cach test, a random matrix ® € R™*" (m =~ 0.3n?) is generated
and u = ®f + e is set, where the noise e = 0.05*mean(® f)*randn(m).
The parameters are taken as 8 = 2* and p = 2. The values of € in the
weight matrix is 0.01. If the relative error ||f — freconl||7/||f]|F of the
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reconstructed image frecon i Frobenius norm is less than tol = 0.05
then the iteration is terminated. For the reweighted TV algorithm,
15 iterations of the standard total variation minimization are set as
the initial solution for the reweighted TV-minimization. The average
results from 100 tests of the proposed algorithm and non-weighted TV
regularization are used in the following table and figure for evaluations.

Let fuve denote the average of the pixel values of a 2D image f. Ex-
perimental results are also evaluated using the root-mean-square error
(RMSE), the normalized root mean square deviation (NRMSD), and
the normalized mean absolute deviation (NMAD) which are defined
as follows:

||f B freconHF
RMSE = —r~———
VI x N ’
||f - frecon”F
NRMSD = 12— Jreconl[F
Hfave - fHF

Z ‘f(m’n) - fTecon(manN
AD — m,n
NALAD > 170m, )

These measurements reflect different aspects of the quality of the
recovered images. RMSE evaluates the reconstruction quality on a
pixel-by-pixel basis. NRMSD emphasizes large errors in a few pixels
of the recovered image. NMAD focuses on small errors in the recovered
image.

The original and reconstructed images are shown in Figure 1. The
experimental results are summarized in Table 1. The CPU time is
measured by MATLB built-in functions. The values of RMSE, N-
RMSD, and NMAD for the reweighted TV minimization are improved
from the corresponding values for the TV minimization. The CPU
time is saved 34.9%. The numerical experiments demonstrate that
the reweighted TV minimization is superior to the regular TV mini-
mization.

Original phantom TV using NADA Reweighted TV using NADA

Figure 1. Shepp-Logan phantom and reconstructed images.

Table 1. Experimental data with shepp-logan phantom.

Algorithm CPU Time RMSE NRMSD NMAD

TV Using NADA 14.4 sec  0.0085 0.0088 0.0353
Reweighted TV using NADA 9.4 sec  0.0066 0.0069 0.0294

There are three important parameters in this proposed algorith-
m: f, u, and rescaling factor r for w. Similar to a regular NADA
without reweight, the values of 8 and u should be between 2* and
213, The rescaling factor r is adopted between m and m
in the experiments. It is a challenging question how to optimize the
reconstructed images by reweighed TV using NADA. More extensive

numerical experiments will be performed in future investigation.
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5. Conclusion

The reweighted TV minimization has shown its capability of speed-
ing up the convergence of sparse image reconstruction in CT since
it was proposed more than ten years ago. In recent years the ADM
was widely applied to a class of equality-constrained nonsmooth op-
timization problems and particularly image reconstruction in CT. As
far as the authors are aware, the ADM hasn’t been used to solve the
reweighted TV minimization in the literature. This paper develops a
reweighted total variation algorithm using the ADM method for image
reconstruction in CT, as the major novelty of our work. The usage of
the nonmonotone line search scheme reduces complexity and improves
efficiency. Numerical simulation indicate that the proposed algorith-
m can effectively incorporate the reweighted scheme and improve the
efficiency for image reconstruction in CT.
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