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[1,2,4,11,15,16,17,21] have been proposed. AmongABSTRACT
all the models, BNs and PBNs have received much
attention. The approach is to model the genetic regu-In the post-genomic era, the construction and 
latory system by a Boolean network and infer the net-control of genetic regulatory networks using 
work structure from real gene expression data. Thengene expression data is a hot research topic.
by using the inferred network model, the underlyingBoolean networks (BNs) and its extension
gene regulatory mechanisms can be uncovered. This Probabilistic Boolean Networks (PBNs) have 
is particularly useful as it helps to make useful pre-been served as an effective tool for this pur-
dictions by computer simulations. We refer readers to pose. However, PBNs are difficult to be used 
the survey paper by Shmulevich et al. [18, 19] and the in practice when the number of genes is large 
book by Shmulevich and Dougherty [20].because of the huge computational cost.In this

The BN model was first introduced by Kauffmanpaper, we propose a simplified multivariate Markov 
[12, 13, 14]. The advantages of this model can bemodel for approximating a PBN. The new model
found in Akutsu et al. [1], Kauffman [14] andcan preserve the strength of PBNs, the ability to
Shmulevich et al. [17]. Since genes exhibit switching capture the inter-dependence of the genes in the
behavior [10], BN models have received much atten-network, and at the same time reduce the com-
tion. In a BN, each gene is regarded as a vertex of the plexity of the network and therefore the compu-
network and is quantized into two levels only (ex-tational cost. We then present an optimal con-
pressed (1) or unexpressed (0)). We remark that thetrol model with hard constraints for the purpose
idea and the model can be extended easily to the case of control/intervention of a genetic regulatory
of more than two states. The target gene is predictednetwork. Numerical experimental examples based 
by several genes called its input genes through a on the yeast data are given to demonstrate the 
Boolean function. If the input genes and the Booleaneffectiveness  of our proposed model and control 
functions are given, a BN is defined. The only ran-policy.
domness involved here is the initial system state. 
However, the biological system has its stochastic 
nature and the microarray data sets used to infer the
network structure are usually not accurate because of
the experimental noise in the complex measurement 
process. Thus stochastic models are more reasonable 

1. INTRODUCTION choices. To overcome the deterministic nature of a 
An important issue in systems biology is to under- BN, Akutsu et al. [1] proposed the noisy Boolean net-
stand the mechanism in which cells execute and con- works together with an identification algorithm. In 
trol a huge number of operations for normal functions, their model, they relax the requirement of consis-
and also the way in which the cellular systems fail in tency imposed by the Boolean functions. Regarding 
disease, eventually to design some control strategy to the effectiveness of a Boolean formalism, Shmulevich 
avoid the undesirable state/situation. Many mathe- et al. [17] proposed a PBN that can share the appeal-
matical models such as neural networks, linear model, ing rule-based properties of Boolean networks and it 
Bayesian networks, non-linear ordinary differential is robust in the presence of uncertainty. The model
equations, Petri nets, Boolean Networks (BNs) and parameters can be estimated by using Coefficient of
its generalization Probabilistic Boolean Networks Determination (COD) [8].
(PBNs), multivariate Markov chain model etc.
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(ij)The dynamics of the PBN can be studied in the con- Gene i. The matrix P  is a transition probability 
text of standard Markov chain [17, 18, 19]. This matrix for the transitions of states in Sequence j to 
makes the analysis of the network easy. However, the states in Sequence i in one step, see for instance [3]. 
number of parameters (state of the system) grows In matrix form we have
exponentially with respect to the number of genes n.
Therefore it is natural to develop heuristic methods
for model training or to consider other approximate 
model. Here we propose a simplified multivariate 
Markov model, which can capture both the intra- and 
inter-associations (transition probabilities) among
the gene expression sequences. The number of 

2
parameters in the model is only O(n ) where n is the where
number of genes in a captured network. We remark
that this order is already minimal. We then develop
efficient model parameters estimation methods based 
on linear programming. We further propose an opti-
mal control formulation for regulating the network so
as to avoid some undesirable states which may corre-
spond to some disease like cancer.

The rest of the paper is structured as follows. In
section 2, we present the simplified multivariate We note that the column sum of Q is not equal to one 
Markov model. In section 3, the estimation method (ij)

(the column sum of each P  is equal to one). The fol-for model parameters is given. In section 4, an opti-
lowings are two propositions [3] related to some prop-mal control formulation is proposed. In section 5, we 
erties of the model. apply the proposed model and method to some syn-
Proposition 2.1 If 0 for 1 i, j n , then the matrix thetic examples and also the gene expression dataset ij

of yeast. Concluding remarks are then given to Q has an eigenvalue equal to 1 and the eigenvalues of Q
address further research issues in section 6. have modulus less than or equal to 1.

(ij)
Proposition 2.2 Suppose that P  (1 i, j n ) are

2 .  T H E M U L T I VA R I A T E M A R K O V  
irreducible and 0 for 1 i, j n  . Then there is ijCHAIN MODEL
a vector

In this section, we first review a multivariate Markov 
chain model proposed in Ching, et al. [3] for model-
ing categorical time series data. We remark that the
model has been first applied to predicting demand of 
inventory of correlated products. Later the model such that
was applied to the building of genetic regulatory net-
works [4] from gene expression data. However, the 
number of parameters is still large and further reduc-
tion of the model parameters is necessary and a sim- and
plified model was proposed in [5]. In the remainder
of this section, we present the simplified multivariate 
Markov chain model.

Given n categorical time sequences, we assume 
they share the same state space M. We denote the where m is the number of states. 

(ij)state probability distribution of Sequence j at time t
In Proposition 2.2, we require all P  are irreduc-(j)

byV , j=1,2, ,n . In Ching, et al. [3], the following ible. But actually, if Q is irreducible, we can get thet

same conclusion. If the model is applied to gene first-order model was proposed to model the relation-
expression data sequences, one may take M={0,1}ships among the sequences:

(i)
and V  to be the expression level of the i-th gene att

the time t. From (1), the expression probability distri-
bution of the i-th gene at time (t+1) depends on the

(ij) (j)
weighted average of P V . We remark that this is aWhere t

first-order model and  actually give the weightingij

of how much Gene i depends on Gene j. In Ching, et
al. [4], this model has been used to find cell cycles. 
The most proper parent genes for the i-th gene

Here  is the non-negative weighting of Gene j to (i)ij
(i.e.,V ) can be retrieved from the corresponding t+1

(1)

(2)
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. The higher the value of  , the stronger the par-ij ij rence of each gene and we denote it by
ent and child relationship between i-th and j-th gene
will be. When this process is repeated for each j, the
whole genetic network can be constructed. Given a 

We therefore expect thatset of genes

If for any gene in this set, the rest genes are the only 
candidates being a corresponding parent gene, then 
this set of genes forms a cycle.

A simplified model was proposed in Ching et al. [5] 
by assuming

From the above equation, it suggests one possible V

way to estimate the parameters ={  } as follows:ij
The simplified model has smaller number of 

parameters and it has been shown to be statistically
better in terms of BIC, see for instance [5]. Moreover, 
Propositions 1 and 2 still hold for the simplified
model.

subject to 

3. ESTIMATION OF MODEL PARAME-
TERS

(ij)
In this section, we present methods to estimate P
and  . We estimate the transition probability matrixij We note that the following formulation of n linear 

(ij) programming problems can give the necessary solu-P  by the following method. First we count the tran-
tions of Problem (4). For each i:sition frequency of the states in the i-th sequence. 

After making a normalization, we obtain an estimate 
of the transition probability matrix. We have to esti-
mate n such m-by-m transition probability matrices to Subject to

(ij)
get the estimate for P  as follows:

Where

(ij) (ij)
From F , one can obtain the estimate for P  as 

follows:
and

V

Here is the i-th row of .ij

We remark that the estimation method can be 
applied to the simplified model (3). We remark that 

. .Where other vector norms such as  and  can also be 12

used but they have different characteristics. The for-
mer will result in a quadratic programming problem 
while       will still result in a linear programming
problem. The main computation cost comes from solv-
ing the linear programming problem. In the estima-
tion of    , it involves only counting frequencies of 
transitions and therefore the cost is minimal. Once 

Besides       , we need to estimate the parameters  . ij the model parameters are available, one can then con-
It can be shown that the multivariate Markov model struct the underlying genetic network easily. We will 
has a “stationary vector” V in Proposition 2. The vec- demonstrate this in the section of numerical exam-
tor V can be estimated from the gene expression ples. The model can also be further modified to 
sequences by computing the proportion of the occur- include extra conditions such as some are knownij
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where v(i i i represents all the possible net-to be zero. Such information can be included by add- t t-1 1

ing the constraints =0 . Furthermore, for large net- work state probability distribution vectors up to time ij
t. We definework, it is known that the in-degree follows the Pois-

son distribution while the out-degree follows the 
power-law, i.e., the number of out-degree to some 
negative power. These important properties can also 
be easily included in our proposed model [24].

4. THE OPTIMAL CONTROL FORMU- to be the set which contains all the possible state prob-
LATION ability vectors up to time t. We note that one can con-
In this section, we present the optimal control prob- duct a forward calculation to compute all the possible
lem based on the simplified multivariate Markov state vectors in the sets U(1),U(2), U(T) recursively.
model (3) and formulate it based on the principle of Here the main computational cost is the matrix-

2dynamic programming. In the simplified model (3) vector multiplication and the cost is O((2n) ) where n
we proposed above, the matrix Q can be regarded as a is the number of genes in the network. We note that 
“transition probability matrix” for the multivariate some state probability distribution actually does not 
Markov chain in certain sense, and V  can be regardedt exist because the maximum number of controls is K,
as a joint state distribution vector. We then present a the total number of vectors involved is only
control model based on the paper by Ching, et al.[6].
Beginning with an initial joint probability distribu-
tion V  the gene regulatory network (or the mult ivari ate0

Markov chain) evolves according to two possible tran-
For example if K=1, the complexity of the above algo-

sition probability matrices Q  and Q . Without any 20 1
rithm is O(T(2n) ).

external control, we assume that the multivariate 
Returning to our original problem, our purpose is 

Markov chain evolves according to a fixed transition
to make the system go to the desirable states. The

probability matrix Q  ( Q). When a control is0 objective here is to minimize the overall average of 
applied to the network at one time step, the Markov the distances of the state vectors v(i i ) (t=1,2, ,T)t 1chain will evolve according to another transition 

to the target vector z, i.e.,
probability Q  (with more favorable steady states or a 1

more favorable state distribution). It will then return
back to Q  again if there is no control. We note that 0

one can have more than one type of controls, i.e.,
To solve (6), we have to define the following cost more than one transition probability matrix Q  to 1

functionchoose in each time step. For instance, in order to sup-
press the expression of a particular gene, one can
directly toggle off this gene. One may achieve the 
goal indirectly by means of controlling its parent

as the minimum total distance to the terminal stategenes which have a primary impact on its expression 
at time T when beginning with state distribution vec-too. But for the simplicity of discussion, we assume
tor v(w ) at time t and that the number of controlsthat there is only one direct possible control here. We t

then suppose that the maximum number of controls used is k. Here W  is a Boolean string of length t.t
that can be applied to the network during a finite Given the initial state of the system, the optimization 
investigation period T (finite-horizon) is K where problem can be formulated as:
K T. The objective here is to find an optimal control
policy such that the state of the network is close to a
target state vector Z. Without loss of generality, here
we focus on the first gene among all the genes. 

(1)
subject to:Accordingly, we remark that the sub-vector Z

denotes the vector containing the first two entries in
Z. It can be a unit vector (a desirable state) or a prob-
ability distribution (a weighted average of desirable 
states). The control system is modeled as:

To solve the optimization problem, one may con-
sider the following dynamic programming formula-
tion:

SciRes JBiSE Copyright © 2008
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Here 0w  and 1w  are Boolean strings of size t.t-1 t-1

The first term in the right-hand-side of (8) is the cost 
(distance) when no control is applied at time t while 
the second term is the cost when a control is applied. 
The optimal control policy can be obtained during the 
process of solving (8). We remark that instead of con-
sidering the objective (6), one can consider 

and

With{ }a new weighting  and a different vector i
.norm  .Furthermore, it is interesting to study the l

case of infinite horizon. In this case is chosen to bet
t-1

(1- )  for some discount factor (0,1).

5. NUMERICAL EXPERIMENTS
5.1. A Simple Example
In this subsection, we consider a small five-gene net- The target here is to suppress the first gene but no 
work whose gene expression series can be found in preference on other genes. The control we used is to
the Appendix. shows the five-gene network. suppress the first gene directly.  Thus the control 
We note that Gene 1 and Gene 4 depends on all the matrix is as follows:
other genes, Gene 2 depends on Gene 1 and Gene 3 
only, Gene 3 depends on Gene 1 and Gene 2 only,
while Gene 5 depends on itself only.

To solve the linear programming problem in equa-
tion (5), infinity norm is chosen for all numerical Without loss of generality, we assume that the ini-V

experiments. The matrices  , P, and Q  (without con- tial state vector is the uniform distribution vector (for 0

trol) are obtained from the proposed model as follow: each gene), that is

Moreover, we assume that the total time T is 12 and 
we try several different numbers of controls 
K=1,2,3,4,5. shows the numerical results. All
the computations were done in a PC with Pentium D
and Memory 1GB with MATLAB 7.0. In ,
"Policy" represents the optimal time step at the endWhere
of which a control should be applied. For instance,
means that the optimal control policy is to apply the
control at the end of the t=1,2,3-th time step. From

, observable improvements of the optimal
value is obtained when K increases from 1 to 5.

5.2. The Yeast Example

Figure 1

Table 1

Table 1

Table 1

Figure 1. The Five-gene Network.

Table 1. Numerical results for the 5-gene network.

K
Control
Policy
Objective
Value
Time in
Seconds

   1 

[1]

0.5628

0.02

    2 

[2]

0.4277

0.02

    3 

[1,2,3]

0.3379

0.06

      4 

[1,2,3,7]

0.2717

0.15

        5

[1,2,3,7,8]

0.2090

0.23
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In this subsection, we apply our proposed simplified first gene in the first 4 steps, and will not control it in 
multiv ariate Ma rkov mode ls to the yeast data other steps. These experiments show that even the
sequences [23]. Genome transcriptional analysis is number of genes (384 genes in this data set) is com-
an important analysis in medicine, etiology and paratively large, the method still can find the control 
bioinformatics. One of the applications of genome policies fast.
transcriptional analysis is used for eukaryotic cell 
cycle in yeast. The fundamental periodicity in 6. CONCLUDING REMARKS
eukaryotic cell cycle includes the events of DNA rep-

In this paper, we proposed a simplified multivariate
lication, chromosome segregation and mitosis. It is 

Markov model for approximating PBNs. Efficient
suggested that improper cell cycle regulation leads to 

estimation methods based on linear programming
genomic instability, especially in the etiology of both 

method are presented to obtain the model parameters.
hereditary and spontaneous cancers [9, 22]. Eventu-

Methods for recovering the structure and rules of a 
ally, it is believed to play one of the important roles 

PBN are also illustrated in details. We then give an
in the etiology of both hereditary and spontaneous

optimal control formulation for control the network. 
cancers. The dataset used in our study is the selected 

Numerical experiments on synthetic data and gene 
set from Yeung and Ruzzo (2001) [23]. In the 

expression data of yeast are given to demonstrate the 
discretization, if an expression level is above (below)

effectiveness of our proposed model and formulation. 
a certain standard deviation from the average expres-

For future research, we will extend the control
sion of the gene, it is over-expressed (under-

problem to the case of having multiple control policy.
expressed) and the corresponding state is 1 (0) [4]. 

We will develop efficient heuristic methods for solv-
To solve the linear programming problem in (5), 

ing the control problem and genetic algorithm is a
infinity norm is chosen for all numerical experiments. V possible approach [7]. Extension of the study to the 
The matrices , P , and Q  (without control) are 0 case of infinite horizon is also interesting. Finally,
obtained from the proposed model. The initial state we will also apply our model to more real world 
vector is assumed to be the uniform distribution (for datasets.
each gene) vector 

APPENDIX
The five gene expression sequences. 

In addition, we assume that the total time T is 12
and several different maximum numbers of controls 
K=1,2,3,4,5  are tried in our numerical experiments. 
The target is to suppress the first gene but no prefer-

(1)
ence on other genes. That is the target state vector Z

T
is (1,0) . The control we used is to suppress the first
gene directly. Thus the control matrix Q  takes the1

same form as the following: 
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