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Abstract 
 
Software projects generally have to deal with producing and managing large and complex software products. 
As the functionality of computer operations become more essential and yet more critical, there is a great 
need for the development of modular software system. Component-Based Software Engineering concerned 
with composing, selecting and designing components to satisfy a set of requirements while minimizing cost 
and maximizing reliability of the software system. This paper discusses the fuzzy approach for component 
selection using “Build-or-Buy” strategy in designing a software structure. We introduce a framework that 
helps developers to decide whether to buy or build components. In case a commercial off-the-shelf (COTS) 
component is selected then different versions are available for each alternative of a module and only one 
version will be selected. If a component is an in-house built component, then the alternative of a module is 
selected. Numerical illustrations are provided to demonstrate the model developed.  
 
Keywords: Modular Software, Software Reliability, Software Components (COTS and In-House), Fault 

Tolerance & Fuzzy Optimization 

1. Introduction 
 
Computer software is very important in today’s world. In 
particular, science and technology demand high quality 
software for making improvements and breakthroughs. 
The software development companies are continuously 
developing/modifying/updating their software according 
to the changing needs and requirements. The concept of 
“software reliability” and its measurement is receiving 
much attention in the software development community. 
Software reliability is one of the important parameters of 
software quality and system dependability. Software re- 
liability engineering balances customer needs in the ma- 
jor quality characteristics of reliability, availability, de- 
livery time and cost more effectively. The reliability of 
software can be controlled during the development life 
cycle through the application of reliability improvement 
techniques. Two of the best-known fault tolerant soft- 

ware design methods are N-version programming and 
Recovery block scheme. The basic mechanism of both 
the schemes is to provide redundant software to tolerate 
software failures. Software whose failure can have bad 
effects afterwards can be made fault tolerant through 
redundancy at module level [1].  

When the design of software architecture reaches a 
good level of maturity, software engineers have to take a 
decision on the selection of software components. Non 
functional aspects play a significant role in determining 
software quality. Given the fact that lack of proper han- 
dling of non functional aspects of a software application 
has led to a series of software failures [2], nonfunctional 
attributes such as reliability security and performance 
should be considered during the component selection 
phase of software development. This paper discusses a 
framework that helps developers to decide whether to 
buy or build components of software architecture on the 
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basis of cost and non functional factors. While develop- 
ing software, components can be both bought as com- 
mercial off-the shelf (COTS) products, and probably 
adapted to work in the software system, or they can be 
developed in-house. This decision is known as “build-or- 
buy decision”. This decision affects the overall cost and 
reliability of the system. Most of the current software 
systems include one or more COTS products. COTS are 
pieces of software that can be reused by software pro- 
jects to build new systems. Benefits of COTS based de- 
velopment include significant reduction in the develop- 
ment cost, time and improvement in the dependability 
requirement. The components, which are not available in 
the market or cannot be purchased economically, can be 
developed within the organization and are known as in- 
house built components. Reference [3] discussed issues 
related to reliability of systems, caused by integrating 
COTS components. The optimal selection is achieved 
through weighted maximization of system quality subject 
to budget as a constraint in which an upper limit is 
placed over the constraint.  

This paper discusses the issues related to reliability of 
the software systems and cost caused by integrating 
COTS or in-house built components. Fault tolerance is 
achieved through redundancy in Recovery Block model 
and redundancy results in additional cost. We assume 
that for all the alternatives available for a module, cost 
increases if higher reliability is desired. Several alterna- 
tives of a software module may be available as COTS, 
almost equivalent from the functional viewpoint. Pur- 
chase of high quality COTS products can be justified by 
the frequent use of the module. Large software systems 
possess the modular structure to perform a set of func- 
tions. Each function is performed by different modules 
having different alternatives for each module. In case, a 
COTS component is selected then different versions are 
available for each alternative of a module and only one 
version will be selected. If a component is an in-house 
built component, then the alternative of a module is se- 
lected. A schematic representation of the software sys- 
tem is given in Figure 1. 

In the existing research related to the software deci- 
sion, it is assumed that all the parameters of the problem 
are known precisely. Various objectives and restrictions 
are set by the management and cost coefficients involved 
in the cost function are determined based on past experi- 
ence and the available data base. This makes it difficult 
for the management to provide precise values of the var-
ious cost coefficients and objectives to be met. More- 
over due to changing customer specifications, lack of 
experience of testing team or novelty, changing testing 
environment, complexity in the project involved, un- 
known emerging factors at the start of the project adds  

 

Figure 1. Structure of the software. 

imprecision and ambiguity to the above-mentioned defi- 
nitions. It may also be possible that the management it- 
self does not set precise values in order to provide some 
tolerance on these parameters due to competitive consid- 
erations. All this leads to uncertainty (fuzziness) in the 
problem formulation. Crisp mathematical programming 
approaches provide no such mechanism to quantify these 
uncertainties. Fuzzy optimization is a flexible approach 
that permits more adequate solutions to real problems in 
the presence of vague information, providing well-de- 
fined mechanisms to quantify the uncertainties directly. 
The idea of fuzzy programming was first given by [4] 
and then developed by [5-7]. A number of researchers 
thereafter have contributed to the development of fuzzy 
optimization technique [8,9]. Today, similar to the de- 
velopments in crisp optimization, different kinds of ma-
thematical models have been proposed and many practi-
cal applications have been implemented by using the 
fuzzy set theory. Reference [10] formulated fuzzy multi 
objective optimization models for selecting the optimal 
COTS software products in the development of modular 
software system. Recently, Reference [11] de- velops a 
crisp multi-objective programming model from the fuzzy 
basic data. When a feasible solution to the problem exists, 
single and multiple objective fuzzy opti- mization pro-
cedure are used to solve the problem. How- ever, it is 
assumed that a crisp or a constant value of all the pa-
rameters is known. However, in practice, it is not possi-
ble for a management to obtain a precise value of reli-
ability and cost for a software system. Or they may de-
cide not to set precise levels due to the market consid- 
erations and are ready to have some tolerance of their 
objectives. When the precise values of parameter of the 
problem are not known, the problem becomes a fuzzy 
optimization problem and the solution so obtained is a 
fuzzy approximation.  

This paper proposes two fuzzy multi-objective opti- 
mization models for selecting the best software product 
for each module. The first optimization model (optimiza- 
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tion model-I) of this paper is a joint optimization prob- 
lem that maximizes the system reliability with simulta- 
neous minimization of the cost. The second optimization 
model (optimization model-II) considers the issue of 
compatibility between different alternatives of modules 
as it is observed that some COTS components cannot 
integrate with all the alternatives of another module. We 
apply fuzzy optimization procedure to solve the problem, 
when a feasible solution of the problem exists, but in 
case we reach the infeasibility case, then we apply fuzzy 
goal programming optimization technique to provide a 
compromised solution for the same. The rest of this pa- 
per is organized as follows. Section 2 consists of pro- 
posed notations. In Section 3, we discuss the assump- 
tions of optimization models and we develop a crisp 
model for reliability and cost and in Section 4, we de- 
scribe Fuzzy Multi-Objective Optimization Model for 
software products selection. In Section 5, Fuzzy optimi- 
zation technique is discussed to solve the problem with 
numerical illustration. In Section 6, we furnish our con- 
cluding observations.  
 
2. Notations 
 

R : System quality measure 

lf : Frequency of use, of function  l

ls : Set of modules required for function  l

i

L
R : Reliability of module  i

: Number of functions, the software is required to 
perform  

n : Number of modules in the software 

im
V

: Number of alternatives available for module  i

ij : Number of versions available for alternative  
of module  

j
i

tot
ij : Total number of tests performed on the in-house 

developed instance (i.e. alternative of module ) 
N

i
suc
ij : Number of successful (i.e. failure free) test per- 

formed on the in-house developed instance (i.e. alterna- 
tive  of module ) 

N

j i

1 : Probability that next alternative is not invoked 
upon failure of the current alternative  

t

2t
t

: Probability that the correct result is judged wrong. 

3 : Probability that an incorrect result is accepted as 
correct. 

ijX : Event that output of alternative  of module  
is rejected. 

j i

ijY
i
: Event that correct result of alternative  of mod- 

ule  is accepted. 
j

ijs : Reliability of alternative  of module  j
j

i

ij

C
r : Reliability of alternative  for module i  

ijk : Cost of version  of alternative  for module 
 

k j
i

ijkr : Reliability of version k  of alternative  for 

module   

j

i

i

i

ijk : Delivery time of version  of alternative  
for module  

d k j
i

ij : Unitary development cost for alternative  of 
module   

c j

ij : Estimated development time for alternative  of 
module   

t j

ij : Average time required to perform a test case for 
alternative  of module i   j

πij : Probability that a single execution of software 
fails on a test case chosen from a certain input distribu- 
tion 

ty :  
0,

1,





1





if  constraint is active

if  constraint is inactive

th

th

t

t

:  

if the  alternative of  module is

in-house develoep.

0 otherwise

th thj i

ijy

ijkx :  

1,

0,







1



if the  version of  COTS alternative 

of the  module is chosen

otherwise

th th

th

k j

i

ijz : Binary variable taking value 0 or 1 
if alternative  is present in module 

0 otherwise

j i
 

 
3. Optimization Models 
 
The first optimization model is developed for the fol- 
lowing situations, which also holds good for the second 
model, but with additional assumptions related to com- 
patibility among alternatives of a module.  

The following assumptions are common for optimiza- 
tion models: 

1) Software system consists of a finite number of mod- 
ules.  

2) Software system is required to perform a known 
number of functions. The program written for a function 
can call a series of modules . A failure occurs if a 
module fails to carry out an intended operation. 

 n 

3) Codes written for integration of modules do not 
contain any bug. 

4) Several alternatives are available for each module. 
Fault tolerant architecture is desired in the modules (it 
has to be within the specified budget). Independently 
developed alternatives (primarily COTS/In-House com- 
ponents) are attached in the modules and work similar to 
the recovery block scheme discussed in [12,13]. 

5) The cost of an alternative is the development cost, if 
developed in house; otherwise it is the buying price for 
the COTS product. 
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6) Different In-house alternatives with respect to uni- 
tary development cost, estimated development time, av- 
erage time and testability of a module are available.  

7) Cost and reliability of an in-house component can 
be specified by using basic parameters of the develop-
ment process, e.g., a component cost may depend on a 
measure of developer skills, or the component reliability 
depends on the amount of testing.  

8) Different versions with respect to cost, reliability 
and delivery time of a module are available. 

9) Other than available cost-reliability versions of an 
alternative, we assume the existence of virtual versions, 
which has a negligible reliability of 0.001, zero cost and 
zero delivery time. These components are denoted by 
index one in the third subscript of ijkx ,  and  ijk . 
for example 1  denotes the reliability of first version of 
alternatives  for module . 

Cijk r

ijr
j i

 
3.1. Model Formulation 
 
Let  be a software architecture made of  modules, 
with a maximum number of i  alternatives available 
for each module and each COTS alternatives has differ- 
ent versions. 

S n
m

 
3.1.1. Build versus Buy Decision 
For each module , if an alternative is bought (i.e. some 

) then there is no in-house development (i.e. 
) and vice versa. 

i
1ijkx 
0ijy 

1

=1
ijV

ij ijk
k

y x


 ;  and  1, 2, ,i n  1, 2, , ij m 

 
3.1.2. Redundancy Constraint 
The equation stated below guarantees that redundancy is 
allowed for the components. 

2

ijV

ij ijk ij
k

y x


 

1 1ij ijx z 

1

im

j


z 1, 2, ,i n 

1, 2, ,i n 

1ij  1, 2

;  and  

;  and  

; 

1, 2, , ij m 

1, 2, , ij m 

z , ,i n   

 
3.1.3. Probability of Failure Free In-House 
Developed Components  

The possibility of reducing the probability that the  
alternative of  module fails by means of a certain 
amount of test cases (represented by the variable ). 
Reference [14] define the probability of failure on de- 
mand of an in-house developed  alternative of  
module, under the assumption that the on-field users’ 

operational profile is the same as the one adopted for 
testing [15]. 

thj

tot
ij

thi

thi
N

thj

Basing on the testability definition, we can assume 
that the number suc

ijN
thj

 of successful (i.e. failure free) 
tests performed on  alternative of same module. 

 1 πsuc tot
ij ij ijN N  ; 1, 2, ,i n   and   1, 2, , ij m 

Let A be the event “ suc
ijN  failure-free test cases have 

been performed ” and B be the event “ the alternative is 
failure free during a single run”. If ij  is the probability 
that the in-house developed alternative is failure free 
during a single run given that suc

ijN  test cases have been 
successfully performed, from the Bayes theorem we get 
the following. 

     
       ij

P A B P B
P B A

P A B P B P A B P B
  


 

The following equalities come straightforwardly: 

 
 

   
 

• 1

• 1 π

• 1 π

• π

suc
ij

ij

N

ij

ij

P A B

P B

P A B

P B



 

 



 

therefore, we have 

   
1 π

1 π π 1 π
suc
ij

ij
ij N

ij ij ij





  

;  

1, 2, ,i n   and   1, 2, , ij m 

 
3.1.4. Reliability Equation of Both In-House and 

COTS Components  
The reliability ( ijs ) of  alternative of  module of 
the software. 

thj thi

ij ij ij ijs y r  ; 1, 2, ,i n   and  1, 2, , ij m 

where  

1

ijV

ij ijk ijk
k

r r x


  ; 1, 2, ,i n   and   1, 2, , ij m 

 
3.1.5. Delivery Time Constraint 
The maximum threshold  has been given on the de- 
livery time of the whole system. In case of a COTS 
components the delivery time is simply given by ijk , 
whereas for an in- house developed alternative the deliv- 
ery time shall be expressed as .  

T

d

 tot
ij ij ijt N

ijV

 
1 1 1

imn
tot

ij ij ij ij ijk ijk
i j k

y t N d x
  

T
 

    
 

   
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3.2. Objective Function 
 
3.2.1. Reliability Objective Function 
Reliability objective function maximizes the system 
quality (in terms of reliability) through a weighted func- 
tion of module reliabilities. Reliability of modules that 
are invoked more frequently during use is given higher 
weights. Analytic Hierarchy Process (AHP) can be effec- 
tively used to calculate these weights. 

 
1

Maximize 
l

L

l i
l i s

R X f R
 

    

where i  is the reliability of module  of the system 
under Recovery Block stated as follows. 

R i

   
1

1 1

i
ijij

m j zz

i ij ik ij
j k

R z P X P Y


 

 
  

 
 

     1 31 1 1ij ijP X t s   

 

;  

 

1, 2, ,i n 

  2ijs t  t

 2 1ij ijP Y s t    

 
3.2.2. Cost Objective Function 
Cost objective function minimizes the overall cost of the 
system. The sum of the cost of all the modules is selected 
from “build- or -buy” strategy. The in-house develop- 
ment cost of the alternative  of module  can be 
expressed as  

j i

ijV

 tot
ij ij ij ijc t N

mn

   
1 1 1

Minimize
i

tot
ij ij ij ij ij ijk ijk

i j k

C X c t N y C x
  

 
    

 
   

 
3.3. Optimization Model I 
 
In the optimization model it is assumed that the alterna- 
tives of a module are in a Recovery Block. In a Recovery 
block, more than one alternative of a program exist. For 
COTS based software, multiple alternatives of a module 
can be purchased from different vendors. Each module 
works under a recovery block. Upon invocation of a 
module the first alternative is executed and the result is 
submitted for acceptance test. If it is rejected, the second 
alternative is executed with the original inputs. The same 
process continues through attached alternative until a 
result is accepted or the whole recovery block (module) 
fails. Fault tolerance in a recovery block is achieved by 
increasing the number of redundancies. 

Problem (P1) 

 
1

Maximize
l

L

l
l i s

R X f R
 

   i          (1) 

   
1 1 1

Minimize
iji Vmn

tot
ij ij ij ij ij ijk ijk

i j k

C X c t N y C x
  

 
    

 
  (2) 

subject to 

 and  are binary variableijk ijX S x y   

   
1

1 1

i
ijij

m j zz

i ij ik ij
j k

R z P X P Y


 

 
  

 
  ;   (3) 1, 2, ,i n 

      1 31 1 1ij ij ijP X t s t s t2
        

   2 1ij ijP Y s t   

 1 πsuc tot
ij ij ijN N  ; 1, 2, ,i n   and  

(4) 

1, 2, , ij m 

   
1 π

;
1 π π 1 π

1,2, ,  and 1, 2, ,

suc
ij

ij
ij N

ij ij ij

ii n j





  

   m

        (5) 

ij ij ij ijs y r  ; 1, 2, ,i n   and  (6) 1, 2, , ij m 

1

1
ijV

ij ijk
k

y x


  ; 1, 2, ,i n  1, 2, ,j m

z

 and  (7) i

2

ijV

ij ijk ij
k

y x


  ; 1, 2, ,i n 1, 2, ,j m and  (8) i

1 1ij ijx z  ; 1, 2, ,i n   and  (9) 1, 2, , ij m 

1

1
im

ij
j

z


 ;           (10) 1, 2, ,i n 

 
1 1 1

 
iji Vmn

tot
ij ij ij ij ijk ijk

i j k

y t N d x T
  

 
    

 
    (11) 

  

where X  is a vector of component ijkx  and ;  ijy
1, 2i n, ,  ; 1, 2, , ij m  ; . 1, ijk V 2, ,

 
3.4. Optimization Model II 
 
As explained in the introduction, it is observed that some 
alternatives of a module may not be compatible with 
alternatives of another module [16]. The next optimiza- 
tion model II addresses this problem. It is done, incorpo- 
rating additional constraints in the optimization models. 
This constraint can be represented as 

tgsq hu cx x , which 
means that if alternative s  for module g  is chosen, 
then alternative , tu 1, ,t z   have to be chosen for 
module . We also assume that if two alternatives are 
compatible, then their versions are also compatible. 

h

tgsq hu c tx x My   

2, , gsq V  , 2, ,
thuc V  , 1, , gs m     (12) 
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 2
tt huy z V       (13)        

Constraint (12) and (13) make use 





subject to 

of binary variable 

ty  
fer

to choose one pair of alternatives from among dif- 
ent alternative pairs of modules.  
Finally, model can be re-written as 
Problem (P2) 

 
1

ximize
l

l i
l i s

R X f R
 

    

   
1 1

= 
imn

tot
ij ij ij ij ij

i j

C X c t N y
 


 




Ma
L

1

Minimize
ijV

ijk ijk
k

C x

  

X S

t

  

gsq thu cx x My    

2, , gs , 
thu , q V  2, ,c V  1, , gs m , 

 



2

atible co

 u  tt hy z V

If more than one alternative comp mponent is 
to be c

  

 
4. Fuzzy Multi-Objective Optimization 

r is the concept 

sed on 
va

tion model for software 
roducts selection based on maximizing the fuzzifier 

x

subject to 

hosen for redundancy, constraint (13) can be re- 
laxed as follows. 

  2
tt huy z V 

Model for Software Products  
 

inciple to multi-objective optimization P
of an “efficient solution”, where any improvement of one 
objective can only be achieved at the expense of another. 
The fuzzy approach can be used as an effective tool for 
quickly obtaining a good compromise solution. Conven- 
tional optimization methods assume that all parameters 
and goals of an optimization model are precisely known. 
However, for many practical problems there are incom- 
pleteness and unreliability of input information. This has 
resulted in use of fuzzy multi-objective optimization 
method with fuzzy parameters. For instance, a designer 
is required to minimize the system cost while simultane- 
ously maximizing the system reliability. Therefore mul- 
tiple objective functions become an important aspect in 
the reliability design of the engineering systems. 

In general reliability optimization problem is solved 
with the assumption that the coefficients or cost of com- 
ponents is specified in a precise way. In real life, there 
are many diverse situations due to uncertainty in judg- 
ments, lack of evidence, etc. Sometimes it is not possible 
to get relevant precise data for the reliability system. 
This type of imprecise data is not always well repre- 
sented by random variable selected from a probability 

distribution. Fuzzy number may represent this data, so 
fuzzy optimization method with fuzzy parameters is 
needed for a fuzzy reliability optimization model. 

Therefore, we formulate fuzzy multi-objective opti- 
mization model for software products selection ba

gue aspiration levels, the decision maker may decide 
his aspiration levels on the basis of past experience and 
knowledge possessed by him. To express vague aspira- 
tion levels of the decision, various membership functions 
have been proposed [6,7]. A fuzzy mathematical pro- 
gramming problem with non linear membership function 
results in a non linear programming problem. Usually, a 
linear membership function is employed to avoid non- 
linearrity. Further, if membership function is interpreted 
as the fuzzy utility of the decision maker, which describes 
the behavior of indifference, preference or aversion to- 
wards uncertainty, a non linear membership function is a 
better representation than a linear membership function. 
 
4.1. Problem Formulation 
 
Fuzzy multi-objective optimiza
p
reliability function and minimizing the fuzzifier cost 
function subject to crisp constraints are stated as follows.  

Problem (P3) 

L

1

ximize ( )
l

l i
l i s

R X f R
 

    Ma

 
1 1 1

Minimize (X) =
iji Vmn

tot
ij ij ij ij ij ijk ijk

i j k

C c t N y C
  

 
   

 
 


 

X S  
Here, we have defined the two objective functions, the 

and cost that are considered to be vague and 
un

tion 

sed to solve the fuzzy mathe- 
atical programming problem. 

 function. Same defuzzi- 
fic

reliability 
certain (i.e. fuzzy in nature) and the constraints are of 

crisp nature. Cut-throat competition in the existing mar- 
ket, system complexity, and intended flexibility makes it 
difficult for the management to precisely define their 
goals and constraints. Moreover a slight shift on bounds 
can provide a more efficient solution. Hence, we have 
used fuzzy optimization technique (fuzzy mathematical 
programming) to solve the fuzzy multi-objective opti- 
mization problem.  
 
4.2. Problem Solu
 
The following steps are u
m

Step 1. Compute the crisp equivalent of the fuzzy pa- 
rameters using a defuzzification

ation function is to be used for each of the parameters. 
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Here we use the defuzzification function of the type  

   2

1 2 32 4F A a a a    

where are the triangular fuzzy numbers. 
Step I e the objective function of the fuzzi- 

n (max n 
(a

1a , 
 2. 

2a , 
ncor

3a  
porat

fier mi ) as a fuzzy constraint with a restrictio
spiration) level. The above problem (P3) can be re- 

written as  
Problem (P4) 

Find X  subject to   0
1 l

L

l i
l i s

R X f R R
 

   
 

    0
1 1 1

ijV
tot

ij ij ij ij ij ijk ijk
i j k

C X c t N y C x C
  

  


  
 

imn  



X S  

Step 3. Define appropriate membership functions for 
each fuzzy inequalities as well  constraint correspond- 
in

as
g to the objective function. The membership function 

for the fuzzy less than or equal to and greater than or 
equal to type are given as  

 
    

 

0

*
0 *

0 0*
0 0

*
0

1; R X R

;

0;

R

R X R
X R R X R

R R

R X R

   


 

 

where is the aspiration level and is the toler- 
fuzzy reliability obj function con-






0R  
ance level to the 

*
0R  

ective 
straint. 

 

     

0

*
0 *

0 0*
0 0

*
0

1; C X C

;

0; ( )

C

C C X
X C C X C

C C

C X C




  


 

 

where is the restriction level and is the toler- 
he fuzzy budget constraint. 

 4.  to
 mathematical 

pr



0C  
ance level to t

*
0C  

Step  Extension principle is used  identify the 
fuzzy decision, which results in a crisp

ogramming problem given by 
Problem (P5) 
Maximize   subject to 

X R  ,  C X  , X S  

can be solved by the standard crisp mathem
gramming algorithms. 

onstraint. Each constraint is 
co

atical pro- 

Step 5. While solving the problem, the objective of the 
problem is also treated as a c

nsidered to be an objective for the decision maker and 
the problem can be looked as a fuzzy multiple objective 
mathematical programming problem. Further each objec- 

tive can have a different level of importance and can be 
assigned weights according to their relative importance. 
The resulting problem can be solved by the weighted 
minmax approach. The crisp formulation of the weighted 
problem is given as 

Problem (P6) 
Maximize   subject to 

  1R X w  , C   2X w  , X S   

where, 

1 2w w, 0 , 1 2 1w w   

  represents the gree up to which the aspira- 
tion of the decision maker is met. If th nstraints are 

de
e co

fuzzy as well as crisp, then in the equivalent crisp ma-
thematical programming problem, there will be no 
change in the original crisp constraints since their toler- 
ances are zero except for those constraints which are 
fuzzy in nature. The problem (P6) can be solved using 
standard mathematical programming approach. 

Step 6. On substituting the values for  R X  and 
 C X  the problem becomes  

Problem (P7) 
mize Maxi   subject to 

    *
1 0w R R   0 1R R  X 0

     *
0 2 01C X C w C C    0   

X S   0,1    

1 2, 0w w  , 1 2 1w w   

Step 7. If a feasible solution is not o tainable for the 
problem (P7) then we can use fuzzy go ogramming 
ap

aving two modules with 
ore than one alternative for each module. The data sets 

b
al pr

proach to obtain a compromised solution [9]. The me-
thod is discussed in detail in the numerical illustration. 
 
5. Illustrative Examples 
 
Consider a software system h
m
for COTS and in-house developed components are given 
in Table 1 and Table 2, respectively.  

Let 3L  ,  1 1, 2,3s  ,  2 1,3s  ,  3 2s  ,  

1 0.5f  , 2 0.3f  , 3 0.2f  . It is also assumed that  

1t 0.01 , 2t 0.05  and 
ent of weig

3t
 is based on the expert’s
0.01 . 

tsThe assignm h  
judgment for the reliability and the cost criteria. Weights 
as

nimum and Maximum Level of 
Reliability and Cost 

First liability and cost values are 
omputed using fuzzied values of these parameters and  

signed for reliability and cost are 0.7 and 0.3 respec- 
tively. 
 
5.1. Mi

 
ly, the triangular fuzzy re

c
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Table 1. Data set for COTS components. 

Version 1 
Modules Alternatives 

Cost Reliability Delivery Time
1 0 0.0 0 01 
2 0 0.001 0 1 
3 0 0.001 0 
1 0 0.001 0 
2 0 0.001 0 2 
3 0 0.001 0 
1 0 0.001 0 
2 0 0.001 0 3 
3 0 0.001 0 

Version 2 
Modules Alternatives 

Cost Reliability Delivery Time
1 14 0.90 3 
2 12.5 0.86 4 1 
3 17 0.90 2 
1 13 0.87 4 
2 11 0.91 5 2 
3 18 0.89 2 
1 13 0.86 4 
2 16 0.85 3 3 
3 16 0.89 3 

Version 3 
Modules Alternatives 

Cost Reliability Delivery Time
1 11 0.88 4 
2 18 0.92 2 1 
3 15 0.88 3 
1 17.5 0.86 2 
2 12 0.89 4 2 
3 15 0.86 3 
1 14 0.88 3 
2 18 0.90 2 3 
3 17 0.87 2 

Table 2. Data set n-h omponen

Mo

for i ouse c ts. 

dule i  Alternatives ijt  ij  ijc ij  

1 8 0.005 5 0.002

2 6 0.005 4 0.00

2 

3 

 21 

3 7 0.005 4 0.002

1 9 0.005 5 0.002

2 5 0.005 2 0.002

3 6 0.005 4 0.002

4 5 0.005 3 0.002

1 6 0.005 4 0.002

2 5 0.005 3 0.002

 
then defuzzied using H n’ s f  th il- 
ble reliability and cost are specified as TFN (triangular 

The aspiration level of reliability is  and 
the restriction on cost is 

eilper de uzzier. If e ava
a
fuzzy number) given as follows  

 0 0.93,0.95,0.97R  ;  C  . 0 70,75,80

0 0.95R 
0 75C  . The tolerance 

*
0 85C  . 

level 
fo

ming

 (P7) 
 not feasible; hence the management goal cannot be 

r reliability and cost is *
0 0.85R   and  

5.2. Fuzzy Goal Program  Approach 
 
On solving the problem, we found that the problem
is
achieved for a feasible value of  0,1  . Now we use 
fuzzy goal programming technique to obtain a compro- 
mised solution. The approach is  the goal pro- 
gramming technique for solving crisp goal programming 
problem (Mohamed, 1997). The maximum value of any 
membership function can be 1; maximization of  

based on

 0,1   is equivalent to making it as close to 1 as best 
as possible. This can be achieved by minimizi

deviational variables of goal programming (i.e. 
) from 1. The fuzzy goal programming formulation for 
the given problem (P7) introducing the negative and pos-
itive deviational variables 

ng the 
negative 

j  and j  is given as 
Minimize u subject to 

  1 1R 1X       2 2 1C X       

j ju w   ; 0j j   ; , 0j j     

1, 2j   X S ;  0,1  ;  

1 2 1w w1 2, 0w w  ;   ; 1 u    

 
5.3. Optimization Model I 

for optimization model I. 
he problem is solved using software package LINGO 

l for compatibility, we 
se previous results.  

ond alternative of first module is 
co econd 
m    

 
Table 3 presents the solution 
T
[17]. The solution to the model gives the optimal com- 
ponent selection for the software system along with the 
corresponding cost and reliability of the overall system. 
The sensitivity analysis to the delivery time constraint 
has been performed. It is clearly seen from the table that 
in case 1, when the delivery time was 15 units then one 
in-house and other COTS components were selected 
while in all other cases when the delivery time increases 
along with in-house components there will be a corre-
sponding change in reliability and cost. In case 2, when 
the delivery time was 18 units, our system reliability and 
cost also increases and in case 3 as compared to case 2, 
when delivery time was 20 units, system reliability in-
creases and cost decreases. Therefore, if the customer is 
ready to wait then case 3 is an optimal solution. Redun-
dancy is also present in all the three cases.  
 
5.4. Optimization Model II 
 
To illustrate optimization mode
u

Case 1. Delivery time is assumed to be 15 units. 
We assume that sec
mpatible with second and third alternative of s
odule. Following solution was obtained using LINGO. 
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Case No. Delivery Time In-House ty Overall System Cost α Value

 
Table 3. Solution for optimization model I. 

COTS System Reliabili

1 15 y32 = 1 
x111 =  = 1  

x21  0.92 75 0.84 
x123 = x132

1 = x223 = x232 = x241 = 1 
x311 = 1 

2 18 y24 = y32 = 1 
111 2

0.93 77.5 0.86 

3 20 y24 = y32 = 1 
111 2

0.94 76 0.90 

x  = x123 = x13  = 1  
x211 = x223 = x232 = 1  

x311 = 1 

x  = x123 = x13  = 1  
x211 = x223 = x232 = 1  

x311 = 1 

 
  

It is observed that due to the com atibility condition, 
th

32 1y   

223x  
111 123 132 1x x x  

233 241 1x x x   311x211 1

p

 

ird alternative of second module is chosen as it is 
compatible with second alternative of first module. The 
system reliability for the above solution is 0.86 and cost 
is 85 units. The achievement level of the membership 
function is 0.40  .  

Case 2. Deli e me is assumed to be 20 units. v ry ti
odule 

is
We assume that second alternative of second m

 compatible with second and third alternative of first 
module. Following solution was obtained using LINGO. 

24 32 1y y   111 123 133 1x x x     

211 222x x  231 1x   311 1x   

It is observed that due to the compatibility condition, 
third alternative of first module is chosen as it is com- 
patible with second alternative of second module. The 
system reliability for the above solution is 0.93 and cost 
is 77 units. The achievement level of the membership 
function is 0.90  .  
 

. Conclusions 

ptimization models that supports the 

and cost. This developed approach can effectively deal 

efully acknowledges 
nt of Maharaja Agrasen In- 
ir permission to publish this 

adrzejowicz, “An Approach to Reliability 
oftware with Redundancy,” IEEE Transac-
re Engineering, Vol. 17, No. 3, 1991, pp. 

310-312. 

6
 

e have presented oW
decision whether to buy software components for soft- 
ware architecture or to build them in-house. We have 
formulated bi-criteria optimization models based on de- 
cision variables indicating the set of structural compo- 
nents “to buy” and “to build” in order to minimize the 
software cost with simultaneous maximization of system 
reliability. The problem is formulated for Recovery 
Block fault-tolerant software system. It may be appreci- 
ated that when different alternatives of the same module 
are available with variations in the attributes of reliability 
and cost, then it involves multi-objective decision mak- 
ing environment that befits more of fuzzy approximation 
than deterministic formulation. Therefore, we have drawn 
on fuzzy methodology for the estimation of reliability 

with the vagueness and subjectivity of expert’s informa-
tion. Fuzzy predictions of the triangular fuzzy statistical 
data have been defuzzified using Heipern’s defuzzifier 
and a crisp multi-objective model has been developed 
using the defuzzified values. The component selection 
problem is formulated as a multi-objective programming 
problem and fuzzy goal programming technique is used 
to provide a feasible solution.  
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