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Abstract 
Most of the important and powerful theorems in General Relativity such as 
singularity theorems and the theorems applied for null horizons depend 
strongly on the energy conditions. However, the energy conditions on which 
these theorems are based on, are beginning to look at less secure if one takes 
into accounts quantum effects which can violate these energy conditions. 
Even there are classical systems that can violate these energy conditions which 
would be problematic in validation of those theorems. In this article, we revi-
sit to a class of such important theorems, the laws of black hole mechanics 
which are meant to be developed on null like killing horizons using null 
energy condition. Then we show some classical and quantum mechanical 
systems which violate null energy condition based on which the above theo-
rem stands. 
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1. Introduction 

General Relativity, one of the successful theory in modern physics which 
describes gravity successfully in terms of introducing the concepts of spacetime 
manifolds, is often considered to be tremendously complex theory when one is 
looking for solutions of Einstein equation 

4

8πGG T
cµν µν=

                         
(1) 

Left hand side of this equation comes from description of geometry of 
spacetime manifolds which by itself is complicated covariant tensor of rank 2 but 
it is at least universal function of spacetime geometry. On the other hand, right 
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hand side describes the matter part of theory which is not universal at all rather 
it depends upon our choice. Based on above one can have two choices of which 
first is to do special-case calculations, one for each conceivable matter action or 
second is develop general theorems based on some generic features which 
reasonably all stress-energy should satisfy. 

One such feature that most matter seems to share (found mostly through 
experiments) is that energy densities (almost) always seem to be positive. Energy 
conditions in General Relativity are a variety of different ways of imposing the 
fact that energy density is positive definite locally. The energy conditions 
basically say that what are the possible linear combination of components of 
stress-energy tensor at any specified point would be positive. 

Almost all the powerful theorems in General Relativity requires some form of 
energy condition (some notion of positivity of stress-energy tensor) as an input 
hypothesis and the variety of such energy conditions have been used in 
community driven largely based on how easily one can prove certain theorems. 

Due to the progress of Quantum Field Theory in curved spacetime, people 
started realizing that quantum matter in classical geometry often violates various 
energy conditions. But still since violation of these energy conditions arise due to 
quantum effects which are typically proportional to � , sometimes people don’t 
take it seriously [1]. It has also become clear that there are in fact classical field 
theories [2] [3] that violate energy condition but compatible with all known 
experiments. Because these are now classical violations of energy conditions they 
can be made arbitrarily large. 

In this article, our goal is to show how laws of black hole thermodynamics or 
more specifically four theorems on null killing horizons strongly depends on 
null energy condition. To do that we systematically develop the mathematical 
idea to reach at those theorems and give their proofs. 

Then we look at some examples of both classical and quantum field theories 
where null energy condition is actually violated. And we also comment on why 
these features of stress-energy tensor is not universal. This directly concludes 
that above theorems are weakly valid and any spacetime whose source stress- 
energy tensor violates null energy condition for them such theorems does not 
hold unless statements of the theorems are suitably corrected. 

2. Energy Conditions 

Before proceeding further towards the mathematical development for the said 
theorems, we first look at all possible energy conditions, their statements and 
their current status in physics. 

To familiar with basic nomenclature, the pointwise energy conitions often 
used in General relativity are [4] [5]: 
• Trace energy condition (TEC) which states that trace of stress-energy 

tensor at most equal to zero which mathematically states 0T g T µν
µν= ≤  

• Strong energy condition (SEC) which states that for every future-pointing 
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timelike vector field X , the trace of the tidal tensor measured by the 
corresponding observers is always non-negative which in mathematics is to  

say 1 0
2

T g T X Xµ ν
µν µν

 − ≥ 
 

. 

• Null energy condition (NEC) which states that for every future-pointing 
null vector field n , the quantity 0T n nµ ν

µν ≥ . 
• Weak energy condition (WEC) which states that for every future-pointing 

timelike vector field X  the matter density observed by the corresponding 
observers is always non-negative which in mathematical terms simply means 
that 0T X Xµ ν

µν ≥ . 
• Dominant energy condition (DEC) which states that in addition to the 

weak energy condition holding true, for every future-pointing causal vector 
field (either timelike or null) Y , the vector field T Yµ ν

ν−  must be a future- 
pointing causal vector. In other words to say, mass-energy can never be 
observed to be flowing faster than light. 

The above conditions are often described in terms of considering a perfect 
fluid as the chosen matter of the system whose stress-energy tensor is  

( )T P u u Pgµν µ ν µνρ= + +  (in 1c = =�  unit) where fluid is at rest in comoving 
coordinates. Then one can write above conditions as follows 
• Trace energy condition (TEC):— 3 0Pρ − ≥ . 
• Strong energy condition (SEC):— 3 0Pρ + ≥ . 
• Null energy condition (NEC):— 0Pρ + ≥ . 
• Weal energy condition (WEC):— 0, 0, 0p Pρ ρ≥ ≥ + ≥ . 
• Dominant energy condition (DEC):— [ ]0, ,Pρ ρ ρ≥ ∈ −  

Then, these are linear relationships or rather inequalities between the energy 
density and the pressure of the matter of fields that is believed to generate the 
spacetime curvature. 

Violations of these energy conditions have often been treated as only being 
produced by unphysical stress energy tensors. If the null energy condition is 
violated, and then weak energy condition is violated as well in some system, then 
negative energy densities and so negative masses are thus physically admitted. 
However, although the energy conditions are widely used to prove theorems 
concerning singularities and black holes thermodynamics, such as the area 
increase theorem, the topological censorship theorem, and the singularity theorem 
of stellar collapse as presented by Visser (1996) they really lack a rigorous proof 
from fundamental principles. Moreover, several situations in which they are 
violated are known, perhaps the most quoted being the Casimir effect [6] [7]. 
Although observed violations are produced by small quantum systems, resulting in 
the order of �  but it can be used to eliminate certain energy conditions. 

One particular energy condition, the trace energy condition has been 
completely abandoned and forgotten. The trace energy condition says that the 
trace of stress-energy tensor must always be negative or positive depending on 
metric conventions, and was popular for a while during the 1960s. However, 
once it was found that stiff equations of state, such as those for neutron stars, 
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violate the trace energy condition, this energy condition fell into disfavour. It has 
been now completely abandoned and is no longer put as example in literature. 

This is also general agreement that the strong energy condition is dead: 1) The 
most naive scalar field theory we may write down, the minimally coupled scalar 
field, violates the strong energy condition and indeed curvature-coupled scalar 
field theories also violate the strong energy condition. The specific models of 
point-like particles with two-body interactions also violate the strong energy 
condition [8]. 2) The strong energy condition must be violated during the 
inflationary epoch [9], and need for this strong energy condition violation is why 
inflationary models are typically driven by scalar inflation fields. 3) The 
observational data regarding the accelerating Universe, the strong energy 
conditions are violated on cosmological scales. 

Over the last decade, or so it has started becoming obvious that quantum 
effects are capable of violating all the energy conditions, even the weakest of the 
standard energy conditions. Despite the fact that they are moribund, because of 
the lack of successful replacements, the null energy conditions, weak energy 
conditions, and dominant energy conditions are still extensively used in general 
relativity. The weakest of these is the null energy condition, and it is in many 
cases also the easiest one to work with and analyse. 

The aim of this article is to show by through laws of black hole thermodynamics 
that how strong statements of such powerful theorems depends completely on 
the existence of such energy conditions. And we want to break the standard 
wisdom for many years which is that all reasonable forms of matter should at 
least satisfy the null energy condition through showing some examples where 
quantum effects can indeed show violation of such energy conditions and even 
in classical cases also we have found such violations. 

3. Geometry of Null Hypersurfaces 
3.1. Introduction to Null Hypersurfaces 

Since black hole event horizon is a null hyperrsurface, we should go through the 
geometry of null-hypersurfaces. The mathematical definitions and ideas are 
mainly based on [10] [11] [12]. 

So let us first recall what are hypersurfaces of a manifold ( ), g  where g  
is the metric of the spacetime  . So a hypersurface is an embedded manifold 
of   of codimension 1. 

And this leads us to our next definition which is, what are null hypersurfaces. 
On a Lorentzian manifold ( ), g , a hypersurface Σ  can locally be classified 
into 3 categories of which null-hypersurface is one and this classification 
depends on the type of metric induced by g  on Σ  which is nothing but the 
restriction g Σ  to g  of vector fields tangent to Σ . And a hypersurface Σ  
is said to be null-hypersurface iff g Σ  is degenerate and that is iff  

( )sign 0, ,g Σ = + + . Null hypersurfaces have a distinctive feature which is that 
their normals are also tangent to them according to the definition of null vector. 
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hypersurface as level sets:—As any hypersurface   can be locally consi- 
dered as a level set: around any point of  , ∃  an open subset   of   
and a smooth scalar field :u →   such that 

( ), 0p p u p∀ ∈ ∈ ↔ =                     (2) 

and 

0u∇ ≠                             (3) 

Second condition actually ensures that   is a regular hypersurface and 
without it   may be self intersecting. 

A very simple example of null hypersurface is a null hyperplane in 4-dimension 
Minkowski spacetime which are labelled by function ( ), , ,u t x y z t x= − . 

From now onwards we denote null hypersurface by  . 
Null normals:—Let l  be a vector field normal to  , since   is a null 

hypersurface, l  is a null vector 

0g l lµ ν
µν⋅ = =l l                         (4) 

And we also choose l  to be future-directed for mathematical convenience in 
later. Note that as a consequence of the definition there is no natural norma- 
lization of null vectors unlike in the case of time-like and space-like hyper- 
surfaces. Therefore, we can always define null normal upto a scaling function 
which is strictly positive. 

We consider null normal vector field not confined in   but rather defined 
in some open subset of   around  , so that we can define spacetime 
covariant derivative ∇l . A simple way to achieve this is to consider not only a 
single hypersurface   but a foliation of   by a family of null hypersurfaces 
labelled by scalar field u, denote them as ( )u  and null hypersurface   is 
nothing but the element 0u= =  . 

Since   is a hypersurface where u is constant, then by definition  

pT∀ ∈v  , v  is tangent to   
0 , 0 0u u u∇ = ⇒ ∇ = ⇒ ⋅ =v v v∇                 (5) 

where u∇  is the gradient vector field of the scalar field u, which in index 
notation can be written as follows 

uu g u g
x

α αµ αµ
µ µ

∂
∇ = ∇ =

∂                     
(6) 

Note that property (5) implies that u∇  is normal vector field of  . By 
uniqueness condition of the normal direction to hypersurface, it must be 
collinear to l . Therefore, there must exists a scalar function ρ  such that 

e uρ= −l ∇                           (7) 

The minus sign ensures that in the case of u increasing toward future, l  is 
future-directed. 

3.2. Null Geodesic Generators 

Consider e uρ= −l ∇ . Then note that using covariant derivative, anti-symmetrizing 
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lα β∇  and the torsion-free property of ∇  (i.e. 0u uα β β α∇ ∇ −∇ ∇ = ), we will 
find 

l l l lα β β α α β β αρ ρ∇ −∇ = ∇ −∇                    (8) 

which we can write in terms of exterior derivative and wedege product of 
1-forms 

d dl lρ= ∧
                          

(9) 

This is known as Frobenius identity. 
Let contract Frobenius identity with l , then we will get 

�
00

,

,

l l l l l l l l

l l l l
l l

µ µ µ µ
µ α α µ µ α µ α

µ µ
µ α α µ

ρ ρ

κ κ ρ

κ κ ρ

==

∇ − ∇ = ∇ − ∇

⇒ ∇ = = ∇

⇒∇ = = ∇l l

���

              

(10) 

This equation shows that the field lines of l  are geodesics. To demonstrate 
this we rescale the vector field α′ =l l l�  and we demand that 0′ ′∇ =l l . If 
one evaluate ′ ′∇l l  he/she will find 

( )α α κα′ ′∇ = ∇ +l ll l                      (11) 

Therefore, 0′ ′∇ =l l  demands that lnα κ∇ = −l . Therefore, it suffices to 
solve this 1st order differential equation to ensure that ′l  is a geodesic vector 
field. 

Because of 0′ ′∇ =l l , the field lines of ′l  are null geodesics and ′l  is the 
tangent vector to them associated with some affine parameter λ . On the other 
hand if 0κ ≠ , l  is not a geodesic vector fields and therefore we can’t associate 
it with some affine parameter. And that’s why we call κ  non-affinity 
coefficient of null-normal l . 

Since l  is collinear to ′l , it is obviously shares the same field lines which 
just have been shown to be null geodesics. These field lines are called null 
geodesic generators. 

Any null hypersurface   is ruled by a family of null geodesics, called the 
null generators of   and each vector field l  normal to   is tangent to 
these null geodesics. 

3.3. Cross-Sections 

A key parameter is expansion of null hypersurfaces, which we will discuss once 
we will go through discussion about Cross-section. 

From now on we assume that spacetime dimension n obeys 3n ≥ . We define 
then a cross-section of the null hypersurfaces   as a submanifold   of   
of codimension 2 (i.e. dim 2n= − ), such that 1) the null normal l  is 
nowhere tangent to   and 2) each null geodesic generator of   intersects 
  once and only once. 

Indices relative to cross-section will range from 2 to 1n −  and will be 
denoted by a latin letters. 
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To encompass the idea that an event horizon delimitates some region of 
spacetime, we shall assume that the clear the cross-sections are closed manifolds, 
i.e. compact without boundary. Having the definiton of a cross-section  , the 
topology of   is ×  . For 4-dimensional Schwarzschild black hole this is 

×�   . 
Without giving a detailed proof we make the statement here that any cross- 

section   is spacelike, i.e. all vectors tangent to   are spacelike. 
Let q be the metric induced on   by g, then we can write 

( ) ( ) ( ), , q , g ,p pT T∀ ∈ × =u v u v u v 
              

(12) 

And   is spacelike is equivalent to saying that metric q  is positive-definite 
and ( ), q  is a Riemannian maniold. 

An important consequence of   being spacelike is that at each point   
the tangent space pT   has an orthogonal complement pT ⊥  which is a 
timelike hyperplane such that pT   is a direct sum of pT   and pT ⊥ : 

, p p pp T T T ⊥∀ ∈ = ⊕                      (13) 

And the metric induced by g on pT ⊥  is Lorentzian. 
Note that since ⊂  , therefore, the null normal l  to   is orthogonal 

to any tangent vector to  , so pT ⊥∈l  . Because of Lorentzian signature, 

pT ⊥  has 2 independent null directions, which can be seen as 2 intersections of 
the null cone at p with 2-plane pT ⊥ . Let denote by k , a future directed null 
vector which is in null direction of pT ⊥  but not along l . We can always do a 
rescaling such that we can always make k  to satisfy condition 1⋅ = −k l . 
Given l  and   with the last condition determines the null vector k  
uniquely. And since ,l k  are linearly independent therefore we can write  

( )span ,pT ⊥ = l k . 
Having a priori definition of q , defined on pT  , using orthogonal 

decomposition, we can extend it to all vectors of pT   by requiring 

( ), q ,. 0pT ⊥∀ ∈ =v v
                     

(14) 

Therefore, for any two vector ( ), p pT T∈ ×u v    we can write 
⊥

⊥

= +

= +

u u u
v v v

�

�
                         

(15) 

where , pT∈u v� �   and , pT⊥ ⊥ ⊥∈u v  . Using the bilinearity and the 
requirement in (14), we can write that 

( ) ( ) ( ), , q , ,p pT T q∀ ∈ × =u v u v u v� � 
             

(16) 

This is equivalent to express q  as 
q g l k k l

q g k l l kαβ αβ α β α β

= + ⊗ + ⊗

= + +
                     

(17) 

3.4. Expansion along the Null Normal 

The expansion of the cross-section   along the vector field l  (which is null 
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normal to  ) as follows. Given an infinitesimal small parameter 0≥ , take a 
point p∈  and displace it by infinitesimal vector l  to get a new point p  
which is close to p. Since l  is also tangent to   and p∈ , we have 
p ∈  . By repeating same process for each point on  , keeping the value of 
  fixed, we define a new codimension-2 surface denoted by  . And we call 
this process of getting new surface as Lie-dragging along l  by parameter  . 

Note that since p ∈   for every p∈  therefore ⊂  . And because 
null direction l  is transverse to   by construction, it follows that   is 
spacelike. 

At each point p∈ , the expansion of   along l  is defined from the 
rate of change ( ( )θ l ) of the area Aδ  of an element of surface Sδ  of   
around p: 

( ) 0

1lim A A
A

δ δθ
δ→

−
=l



                       
(18) 

In the above formula Aδ   stands for the area of the surface element  
Sδ ⊂   that is obtained from Sδ  by Lie-dragging along l  by the parameter 
 . 

Let us consider in some neighborhood of   a coordinate system 

( )2 1, , , , nx u x xα ε −= �
                     

(19) 

that is adapted to   and l  is defined as 

ε
∂

=
∂

l
                           

(20) 

and the points on   are defined by ( ) ( ), 0,0uε = . Then according to the 
definition of Lie-dragging we will have 

( ) ( )( ) ( ){ }0 1, , ,0p x p x pε ε= ∈ = 
              

(21) 

and ( )2 1, , nx x −�  can be viewed as coordinate system on each such  . 
Therefore area Aδ  of element Sδ  becomes 

2 1d d nA q x xδ −= �                       (22) 

According to the definition of Lie-dragging, the surface element Sεδ  on 

ε  is defined by the same values of coordinates ( )2 1, , nx x −�  as Sδ . In par- 
ticular, the small coordinate increaments 2 1d , ,d nx x −�  take the same values as 
on  . Therefore, the area of Sεδ  is 

( ) 2 1d d nA q x xεδ ε −= �
                    

(23) 

where ( )q ε  stands for the determinant of the components of the metric ( )q ε  
induced on ε . And since ε  is spacelike ( )q ε  is positive definite. 

And therefore, according to the definition of the expansion, we can write 

( )
( ) ( )

( )0

01 1 d 1lim ln ln
2 d 20

q q
q q

qε

ε
θ

ε ε→

−
= = = ll

          
(24) 

Using the general law of variation of a determinant we can write 
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( ) ( )11 tr
2

Q Qθ −= ll 
                      

(25) 

where Q is the matrix representing the components of q  w.r.t coordinates 

( )2 1, , nx x −� . In index notation, we have ab abQ q=  and ( )1 ab

ab
Q q− = . Hence, 

we can write 

( )
1
2

ab
abq qθ = ll 

                       
(26) 

There is a good discussion in [10] about the Lie-derivative of metric q  along 
l  and Lie-derivative of its extension also denoted by q  along l . Without 
going into details from now onwards we take the definition which is extended to 
T  (tangent space) mentioned in Equation (17) which is identified with 
orthogonal projector onto   denoted by q  (in short tensorial notation) 
which is index notation can be written as qµ

α . 
Now let’s substitute the Equation (17) into the definition of ( )θ l  which will 

give 

( ) ( )

( )

1
2
1
2

q g l k l k k l k l

q l l q l

µν
µν µ ν µ ν µ ν µ ν

µν µν
µ ν ν µ µ ν

θ = + + + +

= ∇ +∇ = ∇

l l l l ll     

         

(27) 

where we have used the definition of orthogonal projection 

0q l q kµν µν
ν ν= =                        (28) 

and g l lµν µ ν ν µ= ∇ +∇l . Note that we also used the fact that qµν  is symmetric 
in both index. 

We can go further and simplify it in following manner 

( ) ( )

( )

g l k k l l

l k l l k l l

l k l l

µν µ ν µ ν
µ ν

µ ν µ µ ν
µ µ ν µ ν

µ ν µ
µ ν µ

θ

κ κ

θ κ

= + + ∇

= ∇ + ∇ + ∇

= ∇ + = ∇ −

⇒ = ∇⋅ −

l

l l
                

(29) 

We note that r.h.s of above equation is independent of choice of any particular 
cross-section and clearly both ,κ∇⋅ l  depends only on the null normal l  of 
 . This justifies our notation that ( )θ l  does not refer to any ε . 

One can easily check that under rescaling αl l� , ( ) ( )θ αθl l� . 

3.5. Deformation Rate and Shear Tensor 

Let us consider a cross-section   of the null hypersurface  . The defor- 
mation rate Θ  of   is defined from the Lie derivative of the induced metric 
q  of   along l  

*1 q
2

Θ = lq 
                         

(30) 

where *q  stands for the action of the orthogonal projector q  onto   on 
the bilinear form ql . This action extends ql , which is defined a priori on 
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vectors of pT   to all vectors of pT  , for any p∈ , via 

 
( ) ( ) ( ) ( )( )*, ; q , q ,p pT T∀ ∈ × =l lu v q u v q u q v   

        
(31) 

Accordingly, the index notation version of Equation (30) is 

1
2

q q qµ ν
αβ α β µνΘ = l

                      
(32) 

Note since q  is symmetric in indices, therefore Θ  is a symmetric bilinear 
form. After expressing Lie-derivatives in terms of covariant derivative ∇ , we 
get 

q q lµ ν
αβ α β µ νΘ = ∇                        (33) 

where we have used different orthogonality relations. We can further simplify 
this by writing the projector q  explicitly 

( )( )l k k l l k k l l

l l l k l

k l k k l l

µ µ µ ν ν ν
αβ α α α β β β µ ν

µ
α β αβ α β α µ β

µ µ ν
α α µ µ ν α

δ δ

ω

ω

Θ = + + + + ∇

⇒ ∇ = Θ + − ∇

= − ∇ − ∇            

(34) 

where we have used the fact that κ∇ =l l l . The 1-form ω  is sometimes called 
the rotation 1-form of the cross-section  . 

By comparing Equation (26) an Equation (30), we notice that trace of Θ  is 
nothing but the expansion ( )θ l : 

( ) g qµν µν µ
µν µν µθ = Θ = Θ = Θl                   

(35) 

The trace-free part of the Θ  is called the shear tensor of   

 
( )

1
2

q
n

σ θ= Θ−
− l

                      
(36) 

or in index notation 

( )
1

2
q

nαβ αβ αβσ θ= Θ −
− l

                    
(37) 

Note that by definition ,σΘ  are tensor fields tangent to  , in the sense 
that 

( ) ( ), ,. 0 ,.pT σ⊥∀ ∈ Θ = =v v v                  (38) 

One can check above using Equation (33). 
Note that contrary to ( )θ l , which depends only on l  the tensor fields Θ  

and σ  depend on the specific choice of the cross-section  , in addition to 
l . 

3.6. Null Raychaudhuri Equation 

Next the natural thing to do is to derive an evolution equation for the expansion 

( )θ l  along the null generators of  , i.e. to evaluate the quantity ( )θ∇l l , where 
l  is by hypothesis is future directed. 

We start from the definition of Ricci-tensor 
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l l R lµ µ µ
µ α α µ µα∇ ∇ −∇ ∇ =                    (39) 

Now we do substitution which will give following set of equations 

( ) ( )( )
( )( ) ( )( )

( )

l l k l R l

l

k l k l k l k l l R l

µ µ ν µ µ
µ α α α ν α µα

µ µ
µ α µ α α α

ν µ ν µ ν µ ν µ µ
αµ ν µ ν µ ν µ ν α µα

ω θ κ

ω θ κ θ κ ω

ω

∇ Θ + − ∇ −∇ + =

⇒∇ Θ + ∇ −∇ + + +

−Θ ∇ − ∇ +∇ ∇ + ∇ ∇ =

l

l l

    

(40) 

Now we contract above equation with lα  

( )( ) ( )( )l l l l l R l lν µ ν µ µ µ µ ν
µ ν µ ν µ µ µνω θ κ θ κ ω∇ Θ + ∇ − ∇ + + + =l l      

(41) 

On can further simplify the first two terms on l.h.s and get following 
expression 

( ) ( )( ) ( )l l l l R l lµν µ ν µ µ µ ν
µν µ ν µ µ µνω θ κ θ ω−Θ Θ + ∇ − ∇ + + =l l       

(42) 

Now note that 

l k l l k k l l l k lα µ α µ ν α µ
α α µ µ ν α αω κ κ= − ∇ − ∇ = − =           (43) 

Therefore, Equation (42) implies following expression 

( ) ( )l R l lµν µ µ ν
µν µ µνθ κθ−Θ Θ − ∇ + =l l                

(44) 

One can further simplify the firt term in l.h.s to get 

( ) ( )
2 21 1

2 2
ab

abn n
µν µν

µν µνσ σ θ σ σ θΘ Θ = + = +
− −l l

          
(45) 

Hence, we can write 

( ) ( ) ( ) ( )21 ,
2

R
n

µν
µνθ κθ σ σ θ∇ = − − −

−l l l l l l
             

(46) 

The above equation is known as Raychaudhuri equation. 
If the spacetime ( ), g  is ruled by General Relativity, i.e. if g  obeys 

Einstein equation, we can write 

( ) ( ) ( ) ( ) ( )2 1, , 8π , , 8π ,
2 2

R g T T g T
n n

 = Λ + − = − − 
l l l l l l l l l l

    
(47) 

where Λ  is cosmological constant. 
Then null Raychaudhuri equation becomes 

( ) ( ) ( ) ( )21 8π ,
2

T
n

µν
µνθ κθ σ σ θ∇ = − − −

−l l l l l l
            

(48) 

3.7. Killing Horizons 

A Killing horizon is a null hypersurface   in a spacetime ( ), g  admitting 
a Killing vector field ξ  such that, on  , ξ  is normal to  . 

From the above definition it is clear that Killing horizon requires that 
spacetime ( ), g  has some continuous symmetry. And a definition 
equivalent to above one is following: 

A Killing horizon is a null hypersurface   whose null geodesic generators 
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are orbits of a one-parameter group of isometries of ( ), g . 
The above definition also implies that Killing vector field ξ  is null 

0⋅ =


ξ ξ  and it is non-vanishing on  , 0≠


ξ . 
Let   be a Killing horizon with cross-sections that are closed manifolds. 

And let us select null normal l  that coincides with the Killing vector on  : 
=
l ξ  then one can easily show that the expansion rate tensor Θ  vanishes 

identically. 
Let κ  be the non-affinity coefficient of the bull normal l  coinciding with 

the Killing vector ξ  on a Killing horizon  . Then we can write κ∇ =


ξξ ξ . 
Using the Killing equation one can show that 

( )
( )

2

2d

µ
α µ αξ ξ κξ

κ

∇ = −

⋅ = −




ξ ξ ξ                       

(49) 

Another interesting relation one can find using Frobenius identity, which is 
2 2 ν µ ν

µκ ξ ξ= − ∇ ∇


. 

4. Laws of Black Hole Mechanics 
4.1. The Zeroth Law of Black Hole Mechanics 

We are now ready to establish a result of great importance in black hole physics 
which states that non-affinity coefficient κ  defined earlier is constant on a 
Killing horizon, provided some mild energy condition holds. 

Let us denote by l  the null normal to   that coincides with the Killing 
vector field =

l ξ . The vector field l  is then a symmetry generator on  , 
which implies 

0κ =l                            (50) 

which means that κ  is constant along the field lines of l . Now the only thing 
that remains to show is that κ  also does not vary from one field line to 
another field line. 

To show that, let us consider a cross-section   of   and project the 
contracted Ricci identity in Equation (40) onto it via the orthogonal projector 
q  introduced earlier 

( )( )
( )( )

q l q q

q k l R l q

µ ν µ ν ν
µ ν α µ ν α ν α

ν ν µ µ ν
ν α αµ ν µν α

ω θ κ

θ κ ω

∇ Θ + ∇ −∇ +

+ + −Θ ∇ =

l

l              

(51) 

Now using the properties of the projector and the fact that   is a 
non-expanding horizon which means we can set 0Θ =  and ( ) 0θ =l , the above 
equation reduces to 

l q q q R l qµ ν ν ν µ ν
µ ν α ν α ν α µν αω κ κω∇ −∇ + =               (52) 

Using the definition of Lie-derivative we can write l lµ µ
ν µ ν µ νω ω ω= ∇ + ∇l  

but since l  is a symmetry generator of  , we have 0ω =


l , which implies 
that l lµ µ

µ ν µ νω ω∇ = − ∇


. Using this property and the Equation (34), we can 
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simplify the above equation in following form 

q R l qν µ ν
ν α µν ακ−∇ =                       (53) 

In the above equation appears the covariant derivative of κ  along  , 
which we denoted by    and defined by qνν ακ≡ ∇  . 

Using Einstein equation 

 

0 0

2 18π
2 2

8π

g l q T l q T g l q
n n

T l q

µ ν µ ν µ ν
α µν α µν α µν α

µ ν
µν α

κ

κ
= =

 
 = − Λ − −
 − − 

⇒ = −

������� �������







      

(54) 

We shall assume that matter obey null dominant energy condition: 

( ),.W T

W g T l T lα αν µ α µ
µν µ

= −

= − = −

l

                   
(55) 

is future directed null or time-like for any future directed null vector l . 
Note that null dominant energy condition implies the null energy condition 

since 

( ), 0T = − ⋅ ≥l l W l                       (56) 

this inequality holds because both W  and l  are future directed. 
Now note that on r.h.s of Equation (54) we have orthogonal projection of W  

onto  . If we assume null dominant energy condition, the null energy 
condition holds, and we have according to Equation (48) for non-expanding 
horizon ( ), 0T = = ⋅l l W l . This implies that W  is tangent to   and since 
  is a null-hyperrsurface W  is either null or spacelike vector. Now according 
to null dominant energy condition W  can’t be spacelike which implies W  is 
null-like and it is collinear to l . Therefore, 0q Wα ν

ν =  and which implies 

0κ =                            (57) 

which shows κ  is constant over  . Therefore, we are able to show that κ  
is indeed a constant on the horizon  . 

4.2. The First Law of Black Hole Mechanics 

The event horizon area is related to properties of a stationary black hole which are 
like its mass, angular momentum and surface gravity. First law of black hole exactly 
gives us a simple equation which governs how a small change in one of the above 
properties will influence others once the black hole reach to equilibrium state. 

Under a small amount of perturbation in terms of matter, the local value of 
stress-energy tensor Tµν  near black hole horizon will change slightly by an 
amount denoted by Tµνδ . The resulting change in black hole area can be 
calculated from the null Raychaudhuri equation. The change in ( )

2 , ab
abθ σ σl  

will only come from changes in local curvature through Einstein’s equation 
which can be neglected compare to Tµνδ  and so the Raychaudhuri equation 
simplifies to 
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( )
d 8π
d

T l lµ ν
µν

θθ δ
λ

∇ = = −l l
                   

(58) 

where λ  is an affine parameter. Another property of κ  that will be stated 
without proof [5] is that it represents a proportionality factor between the 
affinely parametrized null geodesics that generate the event horizon and the 
Killing vector field parametrization. If we label the affine parameter λ , then 
each component of the affinely parametrized null geodesic generators l  a and 
the Killing vector χ  is 

1λ
κ

=l χ
                          

(59) 

The most general black hole solution to the Einstein equation contains a black 
hole orthogonal to a Killing vector field composed of a timelike and a periodic 
spacelike part. In this case, the black hole event horizon is a null hypersurface 
orthogonal to a linear combination of two Killing vectors written as [13] 

( )1a a a a a alχ ξ φ ξ φ
κλ

= +Ω = +Ω
                

(60) 

To get the effect of perturbation Tµνδ  on the black hole once it reaches in 
equilibrium, we need too integrate both side of Raychaudhuri equation over the 
event horizon surface and over all future values of λ  

( )

2 2 2
0 0 0

2 2 2
0 0 0

dd 8π d d d d
d

d d 8π d d d d

8π

S S T l S T l

S S T l S T l

A M J

µ ν µ ν
µν µν

µ ν µ ν
µν µν

θκ λ λ δ ξ λ δ φ
λ

κ θ λ λ δ ξ λ δ φ

κδ δ δ

∞ ∞ ∞

∞ ∞ ∞

 = − +Ω  
 ⇒ = +Ω  

⇒ = −Ω

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

   

(61) 

where from to go second line from first line we have used integration by parts 
and throw away the boundary term. To get third line from second line, we have 
used the fact that l.h.s is nothing but the integral of the expansion of each 
infinitesimal area element of event horizon over the surface of event horizon 
which is nothing but the infinitesimal change in event horizon surface Aδ  
(according to the definition of ( )θ l ) caused by Tµνδ . 

On the r.h.s we have action of vector fields on Tµνδ  is simply project onto 
one of its complonents. Since ,kξ

��
 both are future directed in time the first 

integral will be an integral of the 00T  component, which is for an asymptotic 
observer nothing but the change in mass Mδ  of the system. The T lµ ν

µνδ φ  is 
a projection onto the time-φ  component of Tµνδ , which is just the negative of 
angular momentum J for an asymptotic observer. 

Note that first law also depends on zeroth law in a sense because we have used 
the fact that κ  is constant to do the integral. 

4.3. The Area Increase Theorem or The Second Law  
of Black Hole Mechanics 

Another important geometric quantity is the area of the event horizon which we 
have not discussed yet. This theorem states that the area of a black hole event 
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horizon as viewed by a distant observer must never decrease with time. If we 
assume null-energy condition and since ab

abσ σ  is positive definite we can write 
(in 4-dimension with affine parametrization and for geodesic congruences men- 
tioned in [14] where basically first term in Equation (48) got removed) 

( )
( )

( )
( )

2

2

d 1
d 2

d 1
d 2

ab
abT l lµ ν

µν

θ
θ σ σ

λ
θ

θ
λ

= − − −

⇒ ≤ −

l
l

l
l

                

(62) 

which we can write in following ways(we just omit l  from subscript) 

( )

0

2

2 0

0

d
d 2

d 1 d
2

1 1 1
2

θ λ

θ

θ θ
λ
θ λ
θ

λ
θ λ θ

≤ −

≤ −

≥ +

∫ ∫

                       

(63) 

Note that if 0 0θ <  then there exists a value of λ  for which r.h.s of above 
equation vanishes and therefore ( ) ( )θ λl  at that particluar value of λ  diverges 
which is unphysical therefore 0θ  must be positive definite 0 0θ ≥  which means 
that ( )θ λ  is always positive which shows that area of event horizon never 
decreases under time evolution according to the definition Equation (18). 

4.4. The Third Law of Black Hole Mechanics 

Third law states that surface gravity defined earlier is positive definite that is 
0κ ≥  which comes from the fact that if 0κ <  then black hole seem repulsive 

from distant observer, going against all geometric property of metric of black 
holes have. 

This law can also be proven by calculating the value of κ  for most general 
situation which is the case for stationary black hole metric, the Kerr metric. The 
non-negativity property of κ  is guranteed by the physical dmand that the 
solution does not have any closed timelike curves [5]. 

As we have told earlier laws of black hole mechanics strongly depend on 
null-energy condition and people consider these laws seriously often without 
being bothered by the strong assumption of null energy condition behind it. 
Now we will look at why often people do think that null energy condition might 
be guranteed always. First we will look at the classical matter description of it. 

5. Null Energy Condition 
5.1. Perfect Fluid Description 

When we thin of classical matters the first thing that comes to our mind is a 
perfect fluid system which is most often taken in General Relativity to describe 
the matter that governs the geometry of spacetime. Stress-energy tensor of 
perfect fluid system is given by 
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( )T P u u Pgµν µ ν µνρ= + +                    (64) 

where ρ  is the matter energy density and P is the isotropic pressure exerted by 
the system. Let’s take a arbitrary null vector denoted by nµ  which by definition 
satisfies 0n nµ

µ = . Therefore 

( )( ) ( )( )2 2
T u u P u n Pg n n P u nµ ν µ µ ν µ
µν µ µν µρ ρ= + + = +

       
(65) 

Since, most of the time we physically admit that 0ρ ≥  and 0P ≥  which 
implies from the above equation that 

0T u uµ ν
µν ≥                          (66) 

for perfect fluid which means perfect fluid satisfies null energy condition. (But 
0P ≥  may not be the case always because pressure can be thought as the 

response of the system under compression or expansion of the system size in 
terms of change in energy of the system according to first law of thermodynamics 
and therefore it can be negative too. There is absolutely no problem in having 
negative pressure just like negative heat capacity is also not problematic at all.) 

5.2. Minimally Coupled Real Scalar Field Theory 

Now let’s consider a minimally coupled real scalar field theory which is also 
often treated as a matter in different context of comology and in other sub- 
branches of General Relativity. 

Action of such system is given by 

( )4 2 21 1d
2 2

g x g m Uµν
µ νφ φ φ φ = − − ∂ ∂ + +  ∫

          
(67) 

where gµν  is the metric of the background classical geometry and ( )U φ  is 
an arbitrary self interacting potential. And the stress-energy tensor of this system 
is given by as follows 

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 2

2

1
2

1
2

T x
g xg

T x x x g x g x x x

g x m x g x U

µν µν

ρσ
µν µ ν µν ρ σ

µν µν

δ
δ

φ φ φ φ

φ φ

= −
−

⇒ = ∂ ∂ − ∂ ∂

− −



     

(68) 

Now as earlier for an arbitrary null vector nµ  we will get 

( ) ( ) ( ) ( )( ) ( )( )2 2
T x n n x x n n n x xµ ν µ ν µ
µν µ ν µφ φ φ φ= ∂ ∂ = ∂ = ∇n     

(69) 

Now note that since φ  is a real scalar field therefore we also expect that 
φ∇n  is also real at any spacetime point therefore we find that  
( ) ( )0, space time manifoldT x n n xµ ν

µν ≥ ∀ ∈  null energy condition also holds 
for this system. 

5.3. Minimally Coupled U(1) Gauge Field 

Next system which is often used as a matter is minimally coupled gauge fields 
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which describes electromagnetism in curved spacetime. This description is 
required to deal with charged matter in curved spacetime for example to derive 
reissner nordstrom metric in General Relativity such matter has been used 
which describes geometry of a charged black hole. 

Action is given by(without any sources or external currents) 

4
EM

1 d
4

g x F F g gµρ νσ
µν ρσ= − −∫

               
(70) 

where field strength tensor Fµν  is defined by F A A A Aµν µ ν ν µ µ ν ν µ= ∇ −∇ = ∂ − ∂ . 
As ealier using the definition we will find that stress-energy tensor of this 

matter is following 

( ) ( ) ( ) ( ) ( ) ( ) ( )1
4

T x g x F x F x g x F x F xαβ αβ
µν αµ βν µν αβ= −

      
(71) 

Here we will find that for any arbitrary null vector nµ  

( ) ( ) ( ) ( )T x n n g x F x F x n nµ ν αβ µ ν
µν αµ βν=              (72) 

Let’s define vector field ( ) ( )V x F x nµ
α αµ≡  and in terms of this vector field 

we can write 

( ) ( ) ( ) ( )T x n n g x V x V xµ ν αβ
µν α β=                 (73) 

as norm of this vector field. 
Now note that ( ) ( ) 0V x n F x n nµ µ ν

µ µν= =  which means that ( )V xµ  is 
orthogonal to the chosen null vector and therefore this vector field ( )V xµ  
must be a spacelike or null vector field which means  

( ) ( ) ( ) ( )= 0,T x n n g x V x V x xµ ν αβ
µν α β ≥ ∀ ∈ . Therefore, for this matter field 

theory also null energy condition of stress-energy tensor holds. 

5.4. Fermionic Matter 

Action of a fermionic or spinor field theory is given by 

( )

4d

,

2

S g x

T V
iT

µ
µ

µ µ µ

ψ ψ

ψ ψ

γ

= −

= +

= ∇/

∇ = ∇/

∇ = ∂ + Γ

∫

�





                       

(74) 

where µΓ ’s are spin connection which are derived in [15] in terms of tetrads. 
Stress-energy tensor of this matter is given by as follows 

( )

( ) ( )

2
2

1
2 4 4

c

c

c
d

S E ST
g e eg

e S iT g
e E

µ
µν

µν ν

µ
µν µ ν µ ν µνν

δ δ µ ν
δ δ

δ µ ν ψ γ γ µ ν
δ

= − = − + ↔
−

 = + ↔ = ∇ −∇ + ↔ − 
����


   

(75) 

where ceν  and cEµ  are the components of the transformation matrix between 
tetrad and coordinate(or canonical) basis. 
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For an arbitrary null vector denoted by nµ , we will find 

2
iT n n n n n nµ ν µ ν µ ν

µν µ ν µ νψ γ γ = ∇ − ∇ 
����

              
(76) 

Now note that 

( ) { }2

0

1 1, ,
2 2

1 2 0
2
0

n n n n n n n

n n g

n

µ µ ν µ ν µ ν
µ µ ν µ ν µ ν

µ ν
µν

µ
µ

γ γ γ γ γ γ γ

γ

=

 = = + 

= × =

⇒ =

�����������

       

(77) 

Therefore, we found that ( ) 0,T x n n xµ ν
µν = ∀ ∈  which means for this 

case also null energy condition is satisfied by the matter. 

5.5. Classical QED with Fermionic Current 

If we add to action EM  following term 
4

source dg xg A jµ ν
µν= − −∫

                  
(78) 

where jµ  is the source or external current, then we get correction term in 
stress-energy tensor which is of following form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2T x j x A x j x A x g x j x A xρ
µν µ ν ν µ µν ρ= + −

      (79) 

Note that therefore 

( ) ( ) ( )( ) ( )( )2 2T x n n j x n A x nµ ν µ ν
µν µ ν=

              
(80) 

For an arbitrary source term we can’t comment on the sign of above quantity 
but if the source term is ( ) ( ) ( )j x x xµ µψ γ ψ= . then according to Equation (77), 
we will find that ( ) ( )2 0,T x n n xµ ν

µν = ∀ ∈  which means atleast for this par- 
ticular source matter satisfies null-energy condition but other-wise for any 
arbitrary current NEC might be violated. 

5.6. Few Remarks on Classical Matter 

• As we have see in last couple of subsections that most often used classical 
matters indeed satisfy null-energy condition. So, considering such examples 
one can safely apply laws of black hole mechanics in any situation. 

• But there are examples even in classical matters where null-energy condition 
does not hold, one such example is show in last subsection and we will see 
few more examples of classical field theories where matter does not hold 
null-energy condition with out facing any unphysical problems. 

• Except fermionic case if we look at the quantum version of above given field 
theories we will find in obvious manner that null-energy condition does not 
hold because there through quantization procedure fields at any spacetime 
point becomes operators therefore our previous arguments does not work 
there. Therefore, in QFT in curved spacetime theorems or laws like laws of 
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black hole mechanics face serious problem. 
One of the reason that people often hesitate to consider violation of null-energy 

condition condition because it has its own standpoint in cosmological models. So, 
let’s go through that importance first. 

Standard FLRW metric is given by 

( ) ( )
2

2 2 2 2 2 2 2
2

dd d d sin d
1

rs t a t r
kr

θ θ ϕ
 

= − + + + −           
(81) 

Only non-trivial components of Einstein equations are 
2

2 2

2

2

3
8π

1 2
8π

a k
G a a

a a kp
G a a a

ρ
 

= + 
 
 

= + + 
 

�

�� �

                    

(82) 

And the conservation law gives that 

( )3 a p
a

ρ ρ= − +
�

�
                       

(83) 

Holding NEC condition means that ( ) ( )sign sign aρ = −� �  which basically 
says that density of universe decreases as its size increases which is physically 
consistent. Therefore, violation of NEC demands an unphysical situation and 
that is also independent of whether universe is open, closed or flat. 

But note that the above consequence strongly depends on the assumption that 
we can model the matter of entire universe as a perfect and homogeneous fluid 
which is a strong assumption. 

5.7. Cosmology with NEC Violation 

We now give an physically consistent toy example of a universe modelled by 
viscous fluid. So for mathematical convenience we choose 0k =  (spatially flat 
FRW spacetime). In standard perfect fluid case as we know that 

( )

2

2 2

2

3
8π

1 2 3 ,
8π

21
3eff

H
G

ap H H H
G a

p H
H

ρ

ω
ρ

=

= − + =

⇒ = = − −

��

�

                

(84) 

It is well-known that ordinary matter and radiation are decoupled and 
separately satisfy the same form of energy conservation law, but it is not 
necessarily true for other kind of energy. We already know Dark matter is an 
important component we require to describe visible universe correctly. We will 
consider a model where a viscous fluid and dark matter are coupled [16] [17]. 
Their energy conservation laws are given by(assuming 0DMp ≈ ) 

( )3
3

F F F F

DM DM F

H p Q
H Q

ρ ρ ρ
ρ ρ ρ

+ + = −

+ =

�

�                   
(85) 

https://doi.org/10.4236/jhepgc.2019.51004


S. Mandal 
 

 

DOI: 10.4236/jhepgc.2019.51004 101 Journal of High Energy Physics, Gravitation and Cosmology 
 

Now for simplicity we assume here Q to be a constant. 
Note that from above set of equation that NEC will be violated if  

0F FQρ ρ+ >�  which means ( )0 e Qt
F Fρ ρ −>  where ( )0

Fρ  is some positive con- 

stant. And ( )sign signF F
aQ
a

ρ ρ+ =
�

�  if NEC is violated which means  

( )sign signF F
a Q
a

ρ ρ = − 
 

�
�  which could also generate negative sign for Fρ�  

even if NEC is violated. 
The fluid equation of state that we consider here is of following form 

( ) ( )F F F Fp Hω ρ ρ ζ ρ= −                    (86) 

where 3H being 4-velocity of cosmic fluid and ( )Fω ρ  for time being an 
arbitrary function of Fρ . ( )Fζ ρ  is the bulk viscosity which generally depends 
on Fρ  which is physically reasonable. On the thermodynamical basis, in order 
to have positive entropy change in an irreversible process we need ( ) 0Fζ ρ > . 
Note that such viscous fluid is a special case of more general inhomogeneous 
fluid introduced in [18]. 

Note that from Equation (85) that here because of the presence of the coupling 
Q on r.h.s we can have NEC violataion depending on the value of coupling Q. 

We go little more into discussion to get to know whether there is any physical 
restriction on the value of Q or not. By taking into account Equation (86), we 
can rewrite first equation in Equation (85) as follows 

( )( ) ( )23 1 9F F F F FH Q Hρ ρ ω ρ ρ ζ ρ+ + + =�
           

(87) 

For simplicity let assume ( )Fω ρ ω=  to be some constant and the bulk 
viscosity is in the form 0Hαζ ζ=  where α  is a real number(Note that from 
the Friedman equation we can write H in terms of Fρ ). In this case general 
solution of Equation (87) is given by 

( )

( )

( )

( )
( ) ( ) ( ) ( )

3 ln3 ln
3 ln 20

0 3 3

9 ee d e
Qt a tQt a t

t Qt a t
F F t a t a t H t

a t a t

ωω
ω αζ

ρ ρ
− −− −

′ ′+′ ′ ′ ′= + × ∫ � (88) 

(mentioned in [17]) where 0Fρ  is a positive integration constant. And note 

that we can write pre-factors of each term as ( )3 1

e Qt

a ω

−

+
 which would be more than  

e Qt−  if 1ω < −  which is consistent with our previous analysis(in this case 
because of exponential prefactor Fρ  is decraesing as universe increases in its 
size which is consistent). 

One important case that we may study is de Sitter solution with 0h H=  with 
present value of accelerated universe 33

0 10H −≈  eV in order to reconstruct 
standard cosmology. In that case we will find 

( )( )
( )

0
2

3 1 0 0
0

0

9
e

3 1
t Q H

F F
H

Q H

α
ω ζ

ρ ρ
ω

+
− + += +

+ +               
(89) 

and it follows the solution of dark matter 

( )( )
( )

00
1

3 13 0 0
0 0

0 0

3
e e

3 3 1
t Q HH t

DM DM F
H QQ

Q H Q H

α
ω ζ

ρ ρ ρ
ω ω

+
− + +−= − +

+ + +     
(90) 
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where 0DMρ  is a positive constant. And one can check easily that if 0 0ζ ≠ , 
then only way to satisfy Friedmann equations is to set 0 00F DMρ ρ= =  in which 
case 

0

1
3 3

DM

F

Q
H

ρ
ρ

= �  ration determined from experiments      (91) 

which shows that value of Q must be 0Q H= . 
Using Friedmann equations one can also derive that 

( )1
0 0

4 4 8π
3 3

H Gαω ζ−= − +
                   

(92) 

which shows that 1ω = −  which means de-Sitter solution iff 0 1
0

1
32πGHαζ −= . 

So this is one of the simple examples where one can show violation of NEC 
without physical inconsistencey. 

Similarly a detailed calculation how universe exits from matter dominatd era 
and reach de Sitter scenarion is described in [16] by considering 2 appro- 
ximations 0Q H H= �  and F DMρ ρ� . Accordingly modify the conservation 
equations with scaling factor ( )

2
3

0a t a t= . 

5.8. Violation of NEC in Non-Minimal Coupled Scalar Field 

When a classical non-minimally coupled scalar field acts as a source of gravity, 
null energy conditions can be violated depending on the form and the value of 
the curvature coupling. 

If we consider matter action to be of following form [19] [20] 

( )4 21 1d
2 2

g x g V Rµν
µ ξ ν ξ ξ ξφ φ φ ξ φ = − − ∂ ∂ + + 

 ∫
         

(93) 

Then, the form of the scalar field energy-momentum tensor that we find is 
following 

( ) ( ) ( )
( ) ( )

2

2

1
2
2 2

T g g V

G g

ξ
µν µ ξ ν ξ µν ξ µν ξ

λ
µν ξ µ ξ ν ξ µν ξ λ ξ

φ φ φ φ

ξ φ φ φ φ φ

= ∇ ∇ − ∇ −

 + − ∇ ∇ + ∇ ∇          

(94) 

Note that since the above form of energy-momentum tensor has a term that 
depends algebraically on the Einstein tensor. By grouping all the dependence of 
Gµν  on the left hand side of Einstein equations we can rewrite them, alter- 
natively, by using an effective energy-momentum tensor which is following 

( ) ( ) ( )

( ) ( )

2eff
2

1
2

12 2 ,
8π

T g g V

g
G

µν µ ξ ν ξ µν ξ µν ξ
ξ

λ
µ ξ ν ξ µν ξ λ ξ

κ φ φ φ φ
κ ξφ

ξ φ φ φ φ κ

= ∇ ∇ − ∇ −− 

 − ∇ ∇ − ∇ ∇ =        

(95) 

This is the relevant expression for the our analysis of the null energy con- 
dition. 

Like earlier we arrive at the following expression for the NEC, considering an 
arbitrary null vector nµ  
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( ) ( )

( )
( )( ) ( ) ( )( )

( )
( ) ( )( )

eff

2

2

2 2
2

2

T x n n

n x n n x x
x

x x
x

µ ν
µν

µ µ ν
µ ξ µ ξ ν ξ

ξ

ξ ξ
ξ

κ φ ξ φ φ
κ ξφ

κ φ ξ φ
κ ξφ

 = ∇ − ∇ ∇  −

 ′′′= − −         

(96) 

where prime denotes nµ
ξ µ ξφ φ′ = ∇ . 

Now note that for 0ξ <  values, any local maximum of 2
ξφ  violate NEC, 

similarly for 0ξ > , any local minimum of 2
ξφ  with 2

ξ
κφ
ξ

<  violates NEC and 

finally for 0ξ > , any local maximum of 2
ξφ  with 2

ξ
κφ
ξ

> . 

Average null energy condition (ANEC) which often people suggest as a way to 
get out of this violation also does not hold here [19]. 

Thus we have at least found a simple and apparently quite harmless scalar 
field theory can in many cases violate NEC. Violating all the pointwise energy 
conditions is particularly simple, and violating the averaged energy conditions, 
though more difficult, is still generically possible. 

We now show another example of non-minimal coupling classical scalar field 
theory where action is following 

4
2

1dg x R µ ν
µν φ φ= − − ∇ ∇

Λ∫
                 

(97) 

where Λ  is a length scale introduced in the action to make the factor 
2

Rµν

Λ
 

dimensionless quantity like metric. 
We know Palatini identity [21] 

( ) ( )R µ µ
σν µ νσ ν µσδ δ δ= ∇ Γ −∇ Γ

                 
(98) 

which we can further simplify and can write 

1
2

R g g g g gαβ
µν α ν µβ α µ νβ µ ν αβ α β µνδ δ δ δ δ = ∇ ∇ +∇ ∇ −∇ ∇ −∇ ∇     

(99) 

which implies 

( )(
)

21 2 2
2

R

g

g

µ ν
µν

ρ
µ ν ρ µ ν µν

ρ σ ρ σ ρ σ µν
ρ σ ρ σ ρ σ

δ φ φ

φ φ φ φ φ

φ φ φ φ φ φ δ

− ∇ ∇

= ∇ ∇ + ∇ ∇ ∇ ∇ −

+∇ ∇ ∇ ∇ +∇ ∇ ∇ ∇ +∇ ∇ ∇ ∇ 

   

( )(
)

2
2

1 2 2
2

T g

g R

ρ
µν µ ν ρ µ ν µν

ρ σ ρ σ ρ σ
ρ σ ρ σ ρ σ

α β
µν αβ

φ φ φ φ φ

φ φ φ φ φ φ

φ φ

⇒ = − ∇ ∇ + ∇ ∇ ∇ ∇ −Λ
+∇ ∇ ∇ ∇ +∇ ∇ ∇ ∇ +∇ ∇ ∇ ∇ 

− ∇ ∇

 

     

(100) 

Now we go back to our analysis. Here for any arbitrary null vector nµ  
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( )

2 2

2 2

2

1 1

1 1

1

n n

T n n n n n nµ ν µ ν µ ν ρ
µν µ ν ρ µ ν

ρ
ρ

ρ
ρ

φ φ φ φ

φ φ φ φ

φ φ

= − ∇ ∇ − ∇ ∇ ∇ ∇
Λ Λ

= − ∇ ∇ − ∇ ∇ ∇ ∇
Λ Λ

= − ∇ ∇ ∇ ∇
Λ

� �



 n n

n n
      

(101) 

So, as we can see this is not positive definite quantity therefore, in this case 
also NEC can be violated by matter depending on the dynamics of real scalar 
field. 

5.9. Few Additional Comments 

• Most of the time violation of NEC is avoided because analysing the stability 
of the scalar, vector theories in minimally coupled field theories, people 
found that the condition for the absence of ghosts is the same as the 
requirement of satisfying NEC. Thus one argue based on minimal coupling 
actions that we cannot escape the presence of ghosts and instabilities in 
solutions where NEC is violated [22] [23] [24] [25] and therefore, can 
conclude that the violation is not healthy. 

• But Analyzing above examples of non-minimally coupled field theories we 
saw that violation of NEC indeed can possible. Cosmolosist after studying 
inflation confirms that NEC violation can be possible [26] [27]. In [28] 
author gave a short review of scalar field theories with second-derivative 
Lagrangians, whose field equations are second order among which some of 
these theories admit solutions violating the Null Energy Condition and 
having no obvious pathologies. 

• People also have studied that formation of trasversable of wormholes require 
such exotice matters which violate NEC [29] [30] [31] [32] [33]. 

6. Violataion of NEC in Quantum Field Theory 
6.1. Real Scalar Field Theory in Minkowski Spacetime 

We consider following action 

( ) ( )4 1= d
2

x x xµν
µ νη φ φ− ∂ ∂∫

                
(102) 

where ( )diag 1,1,1,1µνη = −  and the stress-energy tensor is given by 

( )
( )

( ) ( ) ( ) ( )

2

1
2

T x
g xg

x x x x

µν µν

λ
µ ν µν λ

δ
δ

φ φ η φ φ

= −
−

= ∂ ∂ − ∂ ∂



          

(103) 

We will not consider the part proportional to the metric. This is simply 
because ultimately we will contract the expectation value of the full stress tensor 
twice with a null vector, thus the second term on the r.h.s. will vanish. 

We can write down the scalar field operator ( )xφ  in terms of creation, 
annihilation operator in the basis of solutions of Klein Gordon equation which is 
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the classical equation of motion 

( ) 0xλ
λ φ∂ ∂ =                        (104) 

A solution to the above equation are set of plane wave of following form 

( ) ( )1 e ,
2

i t
kf x

V
ω ω

ω
⋅ −= =kk x

k
k

k
               

(105) 

Therefore, in terms of these solutions we can write 

( ) ( ) ( )† *ˆ ˆ ˆx a f x a f xφ  = + ∑ k k k k
k                 

(106) 

From the equal time commutation relations between field and its conjugate 
momentum operator one can find that 

[ ]
( ) ( )

† †

3† †

ˆ ˆ ˆ ˆ, 0 ,

ˆ ˆ,

a a a a

a a δ

 = =  
  = − 

k l k l

k l k l
                    

(107) 

We also define the vacuum as the state annihilated by annihilation operators 
âk  and denoted by 0  

ˆ 0 0,a = ∀k k                        (108) 

Higher excited states can be formed by acting creation operators { }†âk  on 
the vacuum state. 

From the algebra of creation, annihilation operators one can easily find the 
action of creation, annihilation operators on the state belong to Fock space. For 
example if we have a state containing n particles with momentum k  denoted 
by kn  then 

( ) ( )†ˆ ˆ1 , 1 1a n n n a n n n= − = + +k k k kk k          
(109) 

We will compute the stress-energy tensor operator of each component of T̂µν  
separately so that the negative energy density contribution becomes manifest 
from the start. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

†

,

† † †

†

,

† † †

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

tt

i j
ij ij

T x a a f x f x a a f x f x

a a f x f x a a f x f x

T x k l a a f x f x a a f x f x

a a f x f x a a f x f x

ω ω

δ

∗

∗ ∗ ∗

∗

∗ ∗ ∗

= − +

+ − 
= − +

+ − 

∑

∑

k l k l k l k l k l
k l

k l k l k l k l

k l k l k l k l
k l

k l k l k l k l       

(110) 

where ,i j  are not summed over. 
Now we follow normal ordering to get rid of infinity coming from the vaccum 

expectation value of stress-energy tensor due to zero-point energy. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

†

,

† † †

†

,

† † †

ˆ ˆ ˆ ˆ ˆ: :

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ: :

ˆ ˆ ˆ ˆ

tt

i j
ij ij

T x a a f x f x a a f x f x

a a f x f x a a f x f x

T x k l a a f x f x a a f x f x

a a f x f x a a f x f x

ω ω

δ

∗

∗ ∗ ∗

∗

∗ ∗ ∗

= − +

+ − 
= − +

+ − 

∑

∑

k l k l k l k l k l
k l

k l k l k l k l

k l k l l k k l
k l

k l k l k l k l       

(111) 
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Note that during the calculation of stress-energy tensor operator we did not 
consider the term proportional to µνη  which is irrelevant for our purpose. 

With the normal ordered version of stress-energy tensor operators, one can 
easily that vacuum expectation value of these operators are zero. 

Now we consider a different state which is of following form 

3 10 2
2 2

ψ = + k
                    

(112) 

and w.r.t this state expectation value of stress-energy tensor operators are 
following 

( ) ( ) ( ) ( )

( )

2 2 2 *2 2 *

ˆ: :

3 3 1ˆ ˆ ˆ0 : : 2 2 : : 0 2 : : 2
4 4 4

6 6
4 4

61 cos
2 2

tt

tt tt tt

T

T T T

f x f x f x f x

t
V

ψ ψ

ω ω ω

ω
ω

= + +

= − − +

 
= − ⋅ − 

 

k k k k

k k k k k k k

k
kk x

 

( )

( )
( )

2

6ˆ: : 1 cos
2 2

6ˆ: : 1 cos
2 2

i j

ij ij

i

ii

k kT t
V

k
T t

V

ψ ψ δ ω
ω

ψ ψ ω
ω

 
= − ⋅ − 

 

 
⇒ = − ⋅ − 

 

k
k

k
k

k x

k x
           

(113) 

We can clearly seen that for certain combination of ( )tω⋅ − kk x   
ˆ ˆ: : , : :tt iiT Tψ ψ ψ ψ  could be negative and therefore, if we consider a null 

vector ( )1,0,0,1=n  then we can clearly see that ˆ: :T n nµ ν
µνψ ψ  could be 

negative which clearly shows the violation of NEC. 
Now at this point one may ask why not we restrict ourselves to the vacuum 

expectation value of stress-energy tensor operator instead of considering its 
expectation value w.r.t an arbitrary state. The reason is although vacuum state is 
stable but because of having finite non-zero temperature or any external 
perturbation state of any system actually becomes linear combination of vacuum 
and higher excited states with some suitable probability distribution. That’s why 
one should also consider NEC w.r.t these kind of states. 

6.2. Formalism in Curved Spacetime 

For an arbitrary background geometry we can write down the action for a 
minimally couple real scalar field theory as follows 

( ) ( ) ( ) ( )4 1d
2

g x x g x x xµν
µ νφ φ= − ∂ ∂∫

            
(114) 

Let us consider a complete set of mode solutions { }*,j jf f  of the Klein- 
Gordon equation coming from the minimizing the variation of action, with { }j  
being a set of discrete or continuous labels distinguishing between independent 
solutions. These modes are normalised with respect to following inner product 
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( ) ( ) ( )3 * 0, d , ,f g g x x f t g t = − ∂  ∫
���

x x
            

(115) 

such that 

* *

* *

, , ,

, , 0

j j jj j j jj

j j j j

f f f f

f f f f

δ δ′ ′ ′ ′

′ ′

= = −

= =
                

(116) 

The above inner product is well-defined since it is time-independent which 
one can easily check. 

And the corresponding completeness relation can be written as: 

( ) ( ) ( ) ( )

( )
( ) ( )

0 * * 0

3

, , , ,j j j j
j

f t f t f t f t

i
g x

δ

 ′ ′∂ − ∂ 

′= − −
−

∑ x x x x

x x
           

(117) 

The field operator ( )ˆ xφ  can be written in terms of above basis solution as 
follows 

( ) ( ) ( )†ˆ ˆ ˆj j j j
j

x a f x a f xφ ∗ = + ∑
                

(118) 

where using the canonical comuutation relations one can establish that 
† † †ˆ ˆ ˆ ˆ ˆ ˆ, 0 , , ,j j j j j j jja a a a a a δ′ ′ ′ ′     = = =                   

(119) 

And vacuum state 0  is as usual defined by 

ˆ 0 0,ja j= ∀                        (120) 

Applying products of creation operators { }†ˆ ja  to the vacuum state creates 
multiparticle states, which form a basis of the Fock space: 

( )
3

†21 2
1

ˆ! 0
i

n

n

n j
S i

j j j n a
σ

σ

−

∈ =

= ∑∏�
                

(121) 

The normalisation factor is chosen such that the vectors obey the normalisation 
condition: 

1 1 ,
1! i i

n

n
nm

m n j j
S i

j j j j
n σ

σ

δ
δ ′

∈ =

′ ′ = ∑∏� �
               

(122) 

In terms of one-particle operators, the stress-energy tensor operator can be 
written as follows 

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

†

,

† † †

* ?

,

† † †

ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ: : , ,

ˆ ˆ ˆ ˆ, ,

,

i j i j i j i j
i j

i j i j i j i j

i j i j i j j i
i j

i j i j i j i j

i j i j

T f f a a f f a a

f f a a f f a a

T f f a a f f a a

f f a a f f a a

f f f f

µν µν µν

µν µν

µν µν µν

µν µν

µν µ ν

∗

∗ ∗ ∗

∗ ∗ ∗

= +

+ + 
= +

+ + 

= ∂ ∂

∑

∑

 

 

 

 


          

(123) 
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6.3. Rigidly Rotating Minkowski Spacetime 

Metric of rigidly rotating Minkowski spacetime is following 

 ( )2 2 2 2 2 2 2 2 2d 1 d 2 d d d d ds t t zρ ρ ϕ ρ ρ ϕ= − − Ω + Ω + + +
      

(124) 

Mode solutions of Klein-Gordon equation in this background spacetime 
derived in [34] [35] are following 

( ) ( )
2

1 e ,
8π

mi t ikz im
km m mf x J q mω ϕ

ω ρ ω ω
ω

− + += = − Ω� �

       

(125) 

where 2 2q kω= −  and ( ){ }mJ qρ s are the bessel functions with argument 

qρ . 

The inner-product is 

( )2π

0 0
, d d d tf g z f i i gϕρ ρ ϕ

∞ ∞

−∞
= ∂ + Ω∂∫ ∫ ∫

��� ���

            
(126) 

And the field operator is given by 

( ) ( ) ( )†
0

ˆ ˆ ˆd d k m k m k m k m
m

x k a f x a f x
ω

ω ω ω ωω
φ ω ω

∞ ∞ ∗

−
=−∞

 = + ∑ ∫ ∫
       

(127) 

and the vacuum state 0  is defined by 

ˆ 0 0k ma ω =                         (128) 

Here also we will find that ˆ0 : : 0Tµν ψ =  and if we take as earlier a state 

3 10 2
2 2 kmωψ = + , we will find that 

( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

22 2 2 *2 2

2
2
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3 3ˆ ˆ0 : : 2 2 : : 0

4 4
1 ˆ2 : : 2
4

6 6
4 4

61 cos
28π
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tt km km tt

km tt km

m km m km m km
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m m

T x

T x T x

T x

f x f x f x

J q kz m t

ω ω

ω ω

ω ω ω

ψ ψ

ω ω ω

ω
ρ ϕ ω

ω

= +

+

= − − +

 
= − + − 

 

� � �

�
�

 

 
( ) ( ) ( )

2
2

2

6ˆ: : 1 cos
28πzz m m

kT x J q kz m tψ ψ ρ ϕ ω
ω

 
= × − + − 

 
�

   
(129) 

Note that both ( ) ( )ˆ ˆ: : , : :tt zzT x T xψ ψ ψ ψ  can be negative for a certain 
combinations of mkz m tϕ ω+ − � . 

Now we choose a null vector ( )2 21,0,0, 1 ρ= − Ωn  then 

( )
( ) ( ) ( )

( )
( ) ( )

2 2

2 2 2 2
2

2

ˆ: :
ˆ ˆ: : : : 1

1 61 cos
28π

tt zz
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T x T x
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J q kz m t

µ ν
µνψ ψ

ψ ψ ψ ψ ρ

ρ ω
ρ ϕ ω

ω

= + − Ω

− Ω +  
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 

�
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(130) 
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Note that the prefactor solely depends on the coordinate ρ  and if we 

choose 1ρ <
Ω

, then we can see that depending on the value of mkz m tϕ ω+ − �  

we will get wither positive or negative answer which shows that for certain 
spacetime points NEC condition does not hold. 

Note that the state ψ  that we have chosen to show that in Quantum field 
theory NEC is indeed violated, is nothing special. One can choose a certain class 
of state which are linear combinations of vacuum and excited states w.r.t which 
one can show that NEC is indeed violated and these states can be thought of 
quantum state of the system which can be thought as perturbation around 
vacuum because of some external perturbations like temperature and other 
sources. 

7. Conclusions 

Quantum version of NEC is violated in QFT. In many cases, the NEC violating 
states are superpositions, whose interference takes the form of an oscillatory 
term responsible for the violation. However, not all representatives of these 
classes violate NEC. Whether the oscillatory term leads to violations of NEC or 
not, depends on the normalization of the state; an example where this becomes 
apparent is the vacuum + 2 particles states, for which exactly half of the phase 
space covered by these states gives rise to NEC violations and the other half does 
not [36]. 

Note that violation of NEC in QFT certainly shows that laws of black hole 
mechanics are not certainly valid in Quantum domain. Often people compare 
black hole with a thermodyncamical macroscopic system with first law of black 
hole mechanics to be identified with first law of thermodynamics and second law 
of black hole mechanics is identified with second law of thermodynamics. This 
can’t be the case if the microscopic states of the matter which form the geometry 
itself violate the NEC. Even we have found there are certain class of classical 
matter which can also violate NEC therefore, in presence of such matter in 
classical background also enforce that we can’t apply laws of black-hole me- 
chanics. 

Apart from violation of NEC, we found that there must be an inequality in 
QFT in curved spacetime for different classical backgrounds which put res- 
triction on the state of matter based on which we can make certain comments on 
different physical processes. So far, there exists no bound in QFT that allows us 
to generalize all the theorems in General Relativity and exclude Wormholes and 
other exotic spacetimes. Quantum NEC is a local QFT bound that does not 
restrict the amount by which NEC is violated enough to do the above. 
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