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Abstract 
 
In this work, a mathematical model of generalized porothermoelasticity with one relaxation time for poroe-
lastic half-space saturated with fluid will be constructed in the context of Youssef model (2007). We will 
obtain the general solution in the Laplace transform domain and apply it in a certain asphalt material which 
is thermally shocked on its bounding plane. The inversion of the Laplace transform will be obtained numeri-
cally and the numerical values of the temperature, stresses, strains and displacements will be illustrated 
graphically for the solid and the liquid. 
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1. Introduction 
 
Due to many applications in the fields of geophysics, 
plasma physics and related topics, an increasing attention 
is being devoted to the interaction between fluid such as 
water and thermo elastic solid, which is the domain of 
the theory of porothermoelasticity. The field of poro-
thermoelasticity has a wide range of applications espe-
cially in studying the effect of using the waste materials 
on disintegration of asphalt concrete mixture. 

Porous materials make their appearance in a wide va-
riety of settings, natural and artificial and in diverse 
technological applications. As a consequence, a variety 
of problems arise while dealing with static and strength, 
fluid flow, heat conduction and the dynamics of such 
materials. In connection with the later, we note that 
problems of this kind are encountered in the prediction of 
behavior of sound-absorbing materials and in the area of 
exploration geophysics, the steadily growing literature 
bearing witness to the importance of the subject [1]. The 
problem of a fluid-saturated porous material has been 
studied for many years. A short list of papers pertinent to 
the present study includes Biot [2,3], Gassmann [4], Biot 
and Willis [5], Biot [6], Deresiewicz and Skalak [7], 
Mandl [8], Nur and Byerlee [9], Brown and Korringa  
[10], Rice and Cleary [11], Burridge and Keller [12], 
Zimmerman et al. [13,14], Berryman and Milton [15], 
Thompson and Willis [16], Pride et al. [17], Berryman 
and Wang [18], Tuncay and Corapcioglu [19], Alexander 
and Cheng [20], Charlez, P. A., and Heugas, O. [21], 
Abousleiman et al. [22], Ghassemi, A. [23] and Diek, A 

S. Tod [24].  
The thermo-mechanical coupling in the poroelastic 

medium turns out to be of much greater complexity than 
that in the classical case of impermeable elastic solid. In 
addition to thermal and mechanical interaction within 
each phase, thermal and mechanical coupling occurs 
between the phases, thus, a mechanical or thermal 
change in one phase results in mechanical and thermal 
changes throughout the aggregate of asphaltic concrete 
mixtures. Following Biot, it takes one physical model to 
consist a homogeneous, isotropic, elastic matrix whose 
interstices are filled with a compressible ideal liquid both 
solid and liquid form continuous (and interacting) re-
gions. While viscous stresses in the liquid are neglected, 
the liquid is assumed capable of exerting a velocity-  
dependent friction force on the skeleton. The mathe-
matical model consists of two superposed continuous 
phases each separately filling the entire space occupied 
by the aggregate. Thus, there are two distinct elements at 
every point of space, each one characterized by its own 
displacement, stress, and temperature. During a thermo- 
mechanical process they may interact with a consequent 
exchange of momentum and energy. 

Our development Proceeds by obtaining, the stress- 
strain-temperature relationships using the theory of the 
generalized thermo elasticity with one relaxation time 
“Lord-Shulman” [25]. Moreover, to the usual isobaric 
coefficients of thermal expansion of the single-phase 
materials, two coefficients appear which represent meas-
ures of each phase caused by temperature changes in the 
other phase.  
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As a result of the presence of these “coupling” coeffi-
cients, it follows that coefficient of thermal expansion of 
the dry material which differs than that of the saturated 
ones and the expansion of the liquid in the bulk is not the 
same as of the liquid phase. Putting into consideration 
the applications of geophysical interest, it takes the coef-
ficient of proportionality in the dissipation term to be 
independent of frequency, that is, we confine ourselves 
to low-frequency motions. The last constituent of the 
theory is the equations of energy flux. Because the two 
phases in general, will be at different temperatures in 
each point of the material, there is a rise of a heat-source 
term in the energy equations representing the heat flux 
between the phases. It has been taken this “interphase 
heat transfer” to be proportional to the temperature dif-
ference between the phases. Finally, by using the 
uniqueness theorem the proof has been done.  

Recently, Youssef has constructed a new version of 
theory of porothermoelasticity, using the modified Fou-
rier law of heat conduction. The most important advan-
tage for this theory, is predicting the finite speed of the 
wave propagation of the stress and the displacement as 
well as the heat [26]. 

In this work, a mathematical model of generalized 
porothermoelasticity with one relaxation time for poroe-
lastic half-space saturated with fluid will be constructed 
in the context of Youssef model. We will obtain the gen-
eral solution in the Laplace transform domain and apply 
it in a certain asphalt material which is thermally 
shocked on its bounding plane. The inversion of the 
Laplace transform will be obtained numerically and the 
numerical values of the temperature, displacement and 
stress will be illustrated graphically. 
 
2. Basic Formulations 
 
Starting by Youssef model of generalized porothermoe-
lasticity [26], the linear governing equations of isotropic, 
generalized porothermoelasticity in absence of body 
forces and heat sources, are 

1) Equations of motion 
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3) Constitutive equations 
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3. Formulation the Problem 
 
We will consider one dimensional half-space 0 x    
is filled with porous, isotropic and elastic material which 
is considered to be at rest initially. The displacement will 
be considered to be in one dimensional as follows: 

     1 2 3, , , , 0u u x t u x t u x t   ,       (9) 

     1 2 3, , , , 0U U x t U x t U x t   .    (10) 

Then the governing Equations (1)-(8) will take the 
forms: 

1) Equations of motion 
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2) Equation of heat 
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3) The constitutive relations 
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.                  (18) In the above equation, we dropped the prime for con-
venient. 
 

Using the non-dimensional variables as follows: 
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4. Formulation the Problem in Laplace  
Transform Domain 

     
 

     

    



 

 
Applying the Laplace transform for the both sides of the 
Equations (19)-(24) which is defined as follows: 
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By using Equations (25)-(28), we get 
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To get the values of the parameters 
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apply the boundary conditions as follo

1) The thermal conditions 
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e H(t) is the Heaviside unite step function and
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We will consider the bounding plane surface of the 
medium at x = 0 has been thermally load

ock as follows: 
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2) The mechanical conditions 
We will consider the bounding plane surface of the 

um at x = 0 has been connected to a rigid surface 
h prevents any displacement to accrue on that sur-

face, i.e.,  
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oundary conditions in (53), (54), (57) 
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Those complete the solution in the Laplace transform 

domain. 
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5  Numerical Inversion of the Laplace  

Transforms 
 
In order to invert the Laplace transforms, we ad
numerical inversion method based on a Fourier se

pansion [27]. e
By this method the inverse  f t  of the Laplace 

transform  f s  is approximated by  
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1 exp ,
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where N is a sufficiently large integer representing the 
number of terms in the truncated Fourier series, chosen 

such that 

e 1ct 

  1
1 1

π π
exp 1 exp

iN iN t
c t R f c

t t


    
     

     
, 

where 1 is a prescribed small positive number that cor-
responds to the degree of accuracy required. The pa-
rameter c is a positive free parameter that must be greater 
than the real part of all the singularities of  f s . The 
optimal choice of c was obtained according to the criteria 
described in [27]. 
 
6. Numerical Results and Discussion 
 
The Ferrari’s method has been constructed by using the 
FORTRAN program to solve Equation (41). The mate-
rial properties of asphaltic material saturated by water 
have been taken as follow [28,29].     
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Figure 1. Asphalt temperature distribution. 
 

 

Figure 2. Water temperature distribution. 
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Figure 3. Asphalt stress distribution.  
 

 

Figure 4. Water stress distribution. 
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F
 

igure 5. Asphalt strain distribution. 

 

Figure 6. Water strain distribution.  
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Figure 7. Asphalt displacement distribution. 
 

 

Figure 8. Water displacement distribution. 
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We will take the non-dimensional x variable to be in 
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 0,1x  
 same instance 

sity 

and all the results will be calculated 
at the for two different values of 
the poro

0.1t   
  of th terial whene ma  0.25   and 

0.35  . 
The temperature, the stress, the strain and the dis-

placement for the solid and the liquid have been shown 
in Figures 1-8 respectively. We can see that, the value of 
the porosity has a significant effect on all the studied 
fields. 
 
7. Conclusions 

his work was dealing with studying
porosity of isotropic and poroelastic one dimensional 
half-space which is saturated with fluid. The mathemati-
cal model of generalized porothermoelasticity with one 
relaxation time has been constructed in the context of 
Youssef model. The general solution has been obtained 
in the Laplace transform domain and applied it in a cer-
tain asphalt material which is thermally shocked on 
bounding plane. The inversion of the Laplace transform 
has been obtained numerically and the numerical values 
of the temperature, stresses, strains and displacements 
have been presented graphically for the solid and the 
liquid and the graphs shown the significant effect of the 
porosity value. 
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Nomenclature 
 

,iu Ui  The displacements of the skeleton and fluid 
phases 

, , ,R Q   The poroelastic coefficients 

11 12 21 22, , ,R R R R
s sT T  

 The mixed and thermal coefficients 

0  The temperature increment of the solid 
where sT

f f
is the solid  

0  The temperature increment of the fluid 
where 

T T  
fT is the fluid  

0T  The reference temperature  
  The porosity of the material 

* , *s f   The density of the solid and the liquid 
phases respectively 

  *1s s     The density of the solid phase per 
unit volume of bulk 

*f f   The density of the solid phase per unit 
volume of bulk 

11 12
s   
f

 The mass coefficient of solid phase 

22 12     The mass coefficient of fluid phase 

12  The dynamics coupling coefficient 
* , *s fkk  The thermal conductivity of the solid and the 

fluid phases  
  *1s sk   k  The thermal conductivity of the solid 

phase 
*f fk k  The thermal conductivity of the fluid 

phase 
k The interface thermal conductivity 

,s f
o o   The relaxation time of the solid and the fluid 

phases 

ij  The stress components apply to the solid surface 

  The normal stress apply to the fluid surface 

ije  The strain component of the solid phase 
 The strain component of the fluid phase 

,s f   The coefficients of the thermal expansion of 
the phases 

,sf fs   The thermoelastic couplings between the 
phases 

,s f
E EC C  The specific heat of the solid and the fluid 

phases 
sf
EC  The specific heat couplings between the phases 

s s
s E

s

C

k


   The thermal viscosity of the solid 

f f
f E

f

C

k


   The thermal viscosity of the fluid 

12
sf
EC

k


   The thermal viscosity couplings between 

the phases  
3 2P     

11
s fsR p   Q

Q

P

  

22 3f sfR R    

12
f sfR Q    

11
s s

EF C  

22
f f

EF C  

 12 12 223 s fs
oF R R    T  

 21 11 213 sf f
oF R R    T  
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