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Abstract

In this work, a mathematical model of generalized porothermoelasticity with one relaxation time for poroe-
lastic half-space saturated with fluid will be constructed in the context of Youssef model (2007). We will
obtain the general solution in the Laplace transform domain and apply it in a certain asphalt material which
is thermally shocked on its bounding plane. The inversion of the Laplace transform will be obtained numeri-
cally and the numerical values of the temperature, stresses, strains and displacements will be illustrated

graphically for the solid and the liquid.
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1. Introduction

Due to many applications in the fields of geophysics,
plasma physics and related topics, an increasing attention
is being devoted to the interaction between fluid such as
water and thermo elastic solid, which is the domain of
the theory of porothermoelasticity. The field of poro-
thermoelasticity has a wide range of applications espe-
cially in studying the effect of using the waste materials
on disintegration of asphalt concrete mixture.

Porous materials make their appearance in a wide va-
riety of settings, natural and artificial and in diverse
technological applications. As a consequence, a variety
of problems arise while dealing with static and strength,
fluid flow, heat conduction and the dynamics of such
materials. In connection with the later, we note that
problems of this kind are encountered in the prediction of
behavior of sound-absorbing materials and in the area of
exploration geophysics, the steadily growing literature
bearing witness to the importance of the subject [1]. The
problem of a fluid-saturated porous material has been
studied for many years. A short list of papers pertinent to
the present study includes Biot [2,3], Gassmann [4], Biot
and Willis [5], Biot [6], Deresiewicz and Skalak [7],
Mandl [8], Nur and Byerlee [9], Brown and Korringa
[10], Rice and Cleary [11], Burridge and Keller [12],
Zimmerman et al. [13,14], Berryman and Milton [15],
Thompson and Willis [16], Pride et al. [17], Berryman
and Wang [18], Tuncay and Corapcioglu [19], Alexander
and Cheng [20], Charlez, P. A., and Heugas, O. [21],
Abousleiman et al. [22], Ghassemi, A. [23] and Diek, A
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S. Tod [24].

The thermo-mechanical coupling in the poroelastic
medium turns out to be of much greater complexity than
that in the classical case of impermeable elastic solid. In
addition to thermal and mechanical interaction within
each phase, thermal and mechanical coupling occurs
between the phases, thus, a mechanical or thermal
change in one phase results in mechanical and thermal
changes throughout the aggregate of asphaltic concrete
mixtures. Following Biot, it takes one physical model to
consist a homogeneous, isotropic, elastic matrix whose
interstices are filled with a compressible ideal liquid both
solid and liquid form continuous (and interacting) re-
gions. While viscous stresses in the liquid are neglected,
the liquid is assumed capable of exerting a velocity-
dependent friction force on the skeleton. The mathe-
matical model consists of two superposed continuous
phases each separately filling the entire space occupied
by the aggregate. Thus, there are two distinct elements at
every point of space, each one characterized by its own
displacement, stress, and temperature. During a thermo-
mechanical process they may interact with a consequent
exchange of momentum and energy.

Our development Proceeds by obtaining, the stress-
strain-temperature relationships using the theory of the
generalized thermo elasticity with one relaxation time
“Lord-Shulman” [25]. Moreover, to the usual isobaric
coefficients of thermal expansion of the single-phase
materials, two coefficients appear which represent meas-
ures of each phase caused by temperature changes in the
other phase.
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As a result of the presence of these “coupling” coeffi-
cients, it follows that coefficient of thermal expansion of
the dry material which differs than that of the saturated
ones and the expansion of the liquid in the bulk is not the
same as of the liquid phase. Putting into consideration
the applications of geophysical interest, it takes the coef-
ficient of proportionality in the dissipation term to be
independent of frequency, that is, we confine ourselves
to low-frequency motions. The last constituent of the
theory is the equations of energy flux. Because the two
phases in general, will be at different temperatures in
each point of the material, there is a rise of a heat-source
term in the energy equations representing the heat flux
between the phases. It has been taken this “interphase
heat transfer” to be proportional to the temperature dif-
ference between the phases. Finally, by using the
uniqueness theorem the proof has been done.

Recently, Youssef has constructed a new version of
theory of porothermoelasticity, using the modified Fou-
rier law of heat conduction. The most important advan-
tage for this theory, is predicting the finite speed of the
wave propagation of the stress and the displacement as
well as the heat [26].

In this work, a mathematical model of generalized
porothermoelasticity with one relaxation time for poroe-
lastic half-space saturated with fluid will be constructed
in the context of Youssef model. We will obtain the gen-
eral solution in the Laplace transform domain and apply
it in a certain asphalt material which is thermally
shocked on its bounding plane. The inversion of the
Laplace transform will be obtained numerically and the
numerical values of the temperature, displacement and
stress will be illustrated graphically.

2. Basic Formulations

Starting by Youssef model of generalized porothermoe-
lasticity [26], the linear governing equations of isotropic,
generalized porothermoelasticity in absence of body
forces and heat sources, are

1) Equations of motion

fuui,jj +(’1+/“)uj,ij +QUi,ii - R“Q? - R12 9: (1)
=Pl +plzui’

RU;; +Qu;; — RZIQ,? -Ry, 0: = ppli + oY (2)

2) Heat equations

s s 0 s 62 S f

k*gs = Frader (Fu0° +Fu0" +T,R g +T,Ry¢)
A3)
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3) Constitutive equations

oy =2ue; + 18,5 +(Qe —R,0° ~R,0" )5, ()

oc=Re+Qe, —R,0' —R,,6°. (6)
1

& ZE(Ui,j +uj,i) > G = €=U (7

e=U,;. (8)

3. Formulation the Problem

We will consider one dimensional half-space 0< X <o
is filled with porous, isotropic and elastic material which
is considered to be at rest initially. The displacement will
be considered to be in one dimensional as follows:

u =u(xt), u,(xt)=u;(x,t)=0, 9)
U, =U(xt), U,(xt)=U,(xt)=0.  (10)

Then the governing Equations (1)-(8) will take the
forms:
1) Equations of motion

82_u+ Q U R, 96 R, a6
ox> (A+2u)ox* (A+2u) 0x (A+2u) Ox
—_Pu 4, Po
(A+2u) (A+2u)
an
U QU RO Radl' _puy pay
ox> Rox* R 9x R ox R R
(12)
2) Equation of heat
o’0° o 0
=|—+7,—
ox> ot ot
13)
Fug Fapr TRy OU TR, 0U
k® k® kS ax  k® ax )
' (0,17
ox> ot 7ot
(14)
Fug Fogr TRy U TR, 0U
k' k' k' ox k' ox
3) The constitutive relations
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On __0OU Q odU Ry

— = o°
(ﬂ+2,u) ox (/1+2,u) o0 X (/1+2,u) (15)
_ RIZ Hf
(/1+2,u)
9 _ 8U ga_u_&gf _&95_ (16)
R ax Rox R R
ou
o a7
ou
E =—". 18
o (18)
Using the non-dimensional variables as follows:
(u’,U’,X’):COU(u,U,X), (t’,r(;)zcgn(t,ro),
s orf) _ s f r_ O-ij O
(0°.0")=T,(¢°.0 ),aij_mzﬂ,a ==
where
2 _A+2u £.Ce
c, = ,n= .
P2 k
Then, we get
62u+ Q U TR, 9¢° TR, 06
ox> (A+2u)0x* (A+2u) 0x (A+2u) Ox a
=Py,
P2
9)
U Qd'u TR, 6° TR, 06’
ox* Rox* R ox R ox
A+2 A+2 (20)
_(A42u) o pyy (A424) 4
R Py R
20 (0, .0
ox* (ot ‘ot
S @1
77_65+ F, o'+ R\ 6U+ Ry ou
n k°n ki ox k' ox )

where

_Aczlj L =(C12_Aczlj
s 12 ’

1- AB 1- AB

-BC,,
1- AB j L
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0" (o &
= —J,-TO —_
ox* ot ot’
F f R, 0 @2
%95+77—9f +%—u 2 -— |
k'n n kinox k'nox
_6_u Q ﬂ_ TRy s TR f
=—+ o 7
ox (/1+2,u) ox (ﬁ,+2,u) (ﬂ+2,u)

LR au]

XX >

(23)

_ﬂjLQau_TOR22 o _TOR
0X ROX R R

In the above equation, we dropped the prime for con-
venient.

2L e (24)

4. Formulation the Problem in Laplace
Transform Domain

Applying the Laplace transform for the both sides of the
Equations (19)-(24) which is defined as follows:

=[f(t)e™dt,
0

then, we get
42T -~ - deo® do’
T LU L = L (25)
20 _ - dos de'
v L,0+L,0 +L23K+ L“K’ (26)
dzes
=L,0°+L,0' +L33 +L34 . @D
dzgf . - du du
™ =L,0 +L429f+L43&+L44E, (28)
_ do ,du = —
O'xx=&+A—X—A“9 _Alzef, (29)
_ dlj du ot
=—— +B—-AO°-A 08", 30
g=— +B— A" = A, (30)
du
e = 31
™ (€2Y)
du
cg=—. 32
™ (32)
LA (A AA
a 1-AB )" 1-AB )’

C,, —BCy, L. = A, —BA, L. = A, —BA,
> =23 > 24 >
1-AB 1-AB 1-AB
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(s+738 )" (s+735%)F, (s+7357)R, (s+7357 )Ry,
1= > b = s > b33 = s s b = S >
n k'n k*n k*n
(s+7,87)F, (s+7,5 )7 (s+7,5" )Ry (s+7,57)Ry,
L, T > b = > L43:+7 44 = 1 ¢
k'n n k'n k'n
Q TRy TR, _Pu 2
= = 5 = , C , C =
Ge2a) ™ " Ge2n) ™ T lr2ay 17,5 27
2 2
529’ A21:T0R21’A22_T0R22’ C21:(/1+ ,u)s , 22:&(/14— ,u) ,
R R R R o, R

By using Equations (25)-(28), we get

1105

[ D} —aD{ +bD; —cD; +d |u = (33)
[ Df —aD{ +bD; —cD; +d |U =0, (34)
[ D} —aD{ +bD; —cD; +d [6° =0, (35)
[ D} —aD{ +bD; —cD; +d 6" = (36)
where
a= L11 + L13L33 + I—14|-43 + I-zz + I—23L34 + I-24'—44 + le + L42
b= L11 (Lzz + L23L34 + L24L44 + L31 + L42)_ L12 (L21 + L23L33 + L24L43)
L13 (L21L34 - L22 L33+ |-24(L34 L43 - L33 L44) + L32 L43 - L33 L42)
- L14 (L21L44 - L22L43 + L23 (L33L44 - L34L43)_ I-31'—43 + L33L41)
+Ly (L31 + L42)+ Los (Lsy Ly = Ly L) + Ly, (L31L44 - L34L41)+ Ly Ly, — Ly Ly
c=Ly, (LZZ(LSI + L42)+ L (L34L42 - L32L44)+ L24(L31L44 - L34L41))+ Ly Ly — L32L41)
(LZI(LSI + I—42)+ L23(L33L42 - L32L43)+ L24(L3 L43 _L33L41))
+ I-13 (I-z1 (L32L44 - I-34L42)+ L, (I-33L4z L32|-43 ))
(LZI (L31L44 - |-34|-41)+ I—zz (L33 L41 - L31L43 )+ L22 L41)
d= L11L22 (L31L42 - L32L41)+ L12L21 (L32L41 - L31L42),
d" ki § —Jix
and D::d —. 0 (X,S)zZa)ie S (40)
X i
According to Equations (33)-(36) and to bounded state . )
where *4, 1=1,2,3,4 are the roots of the characteris-

of functions at infinity, we can consider the following
forms

u(x,s)= Zae (37)

A —ai®+bAt —cAt+d =

tic equation of the system (33)-(36) which takes the form

(41

'41 To get the relations between the parameters /f,,7,, @,
V] (X, S) - Z B e A (38) and ¢; , we will use Equations (26)-(28) in the following

i1 forms
_ 4
0°(%,5)=Y p e, (39) [D}-L,]0-1,D,0°-L,D,0" =L, (42)
i=1
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(43) L,AB — Ly, +(ﬂ’|2 - L42)wi =-Ls4a , 1=1,2,3,4,
(47)

_L34U+|:Df - |-31:|§S - Lszgf =L,D,u,

-L,DU-L,0°+|D>-L,, |6" =L,,D.u, (44)
e B By solving the system in (45)-(47), we obtain
Inserting the formulas in (37)-(40) into Equations

(42)-(44), we get
(4 - L) B+ Ludri + Lo = Lya;, 1=1,23,4,

H; .
B :Wlai , 1=1,2,3,4,

G .
) g 11234,
-L.,A +(ﬂﬁ2_|-31)7i -Lyo =-L ke, 1=1,2,3,4, _F 12134
(46) yi _Wai s 1= 9Ly Iy Ty

I
where

Hi :_(&4“‘21 + L23L33 + L24L43)_ﬂ’|2(L21(L31 + I-42)"' L23 (L33L42 - L32L43)+ L24(L31L43 - L33L41))
+L21 (L31L42 - L32L41 ))> i =12,3,4

Gi = L33ﬂ“|5_ﬂ“|3(|-22|-33+ L24L33L44_L32L43 + L33L42)_L34/1|2(L21 +L24L43)
+1(L21|—32L44+L22(|-33L42_L32L43))+L21L34L42 > i:1»253>4

F = I—432’5 + ﬁ“ﬁ (L21L44 - L22 L43 + L23 L33 L44 - L31L43 + L33 L41)+ L23 L43 |-34ﬂ’|2

—4 (L2||-3|L44 + L22(|~33L4| - L31L43))_ Ly L, Ly i=123,4

W, = _/7“6 +i4 (Lzz + L24|-44 + L31 + L42)_ L23 |-34ﬂ’|3 _/112 ( Lzz (L31 + L42)_ L23 Lc«z L44 + L24L31L44 + L31L42 - I-32 L41)

+ L34/7“| (L23L42 - L24L41)+ I-22 (L31L42 - L32L41 )), i=123,4

Hence, we have

U (x s)—iia e (48)
2 “ Wi i s

7 (x5) =Y ot a ¢ (49)
] “ Wi i >

_ 4 F

0" (x5)=> Lo e, (50)

i=1 YV

To get the values of the parameters ¢;, we have to
apply the boundary conditions as follows;

1) The thermal conditions

We will consider the bounding plane surface of the
medium at X = 0 has been thermally loaded by thermal
shock as follows:

6° (0,t)=(1-B)G,H (1), (51)
and
0" (0,t) =BG,H(t), (52)

where H(t) is the Heaviside unite step function and 6,
is constant which gives after using the Laplace transform
the following conditions

Copyright © 2011 SciRes.

7 (O,s)=—(1_’f)0° , (53)
and
7' (0.5)= 22, (54)

2) The mechanical conditions

We will consider the bounding plane surface of the
medium at X = 0 has been connected to a rigid surface
which prevents any displacement to accrue on that sur-
face, i.e.,

u(O,t):O, (55)
and

u(0,t)=0, (56)

which gives after using the Laplace transform the fol-
lowing conditions

u(0,5)=0, (57)

and
U (0,s)=0. (58)
ENG
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After using the boundary conditions in (53), (54), (57) 4G, (1— ﬁ)ﬁo
and (58), we get the following system ;W“i = S ’ (61)
4
a, =0, 59) 4 F
2 Shg 2% (62)
4 H i:lWi S
.Z:;W P= (60) Then we get
A
1= OAl 2[(ﬂ(F3H4_F4H3+GaH4_G4H3)_F3H4+F4H3)
_W3(ﬂ(F2H4—F4H2+GZH4—G4H2)—F2H4+F4H2)+W4(ﬂ(F2H3—F3H2+GZH3—G3H2)—F2H3+F3H2)J,
OW.
a,= - °A2[Wl(ﬂ(F3H4—F4H3+G3H4—G4H3)—F3H4+F4H3)
_W3(ﬂ(F1H4—F4H1+GIH4—G4H1)—F1H4+F4H1)+W4(,6’(F1H3—F3H1+GIH3—G3H1)—F1H3+F3H1)J,
O, W.
o= (;A3[Wl(ﬂ(F2H4—F4H2+GZH4—G4H2)—F2H4+F4H2)
_Wz(ﬁ(F]H4—F4HI+G1H4—G4H,)—F,H4+F4H,)+W4(ﬁ(F,H2—F2H1+G,H2—GQH,)—FIH2+F2HI)],
O, W.
a,=— OSA“[Wl(ﬁ(F2H3—F3H2+GZH3—G3H2)—F2H3+F3H2)
_Wz(ﬂ(FlH3—F3H1+GIH3—G3Hl)—F1H3+F3H1)+W3(,8(F1H2—F2H1+G1H2—GZH1)—F1H2+F2Hl)},
where

A=-W,(F,(G,H, -G,H,)+F,

(G,H, —G,H,)+F,

(G,H,-G;H,))
)

+W2(F1(W3H4_G4H3)+F3(G4H1_GlH4)+ F (G H G H )

w3(Fl (G,H, -G, H,)+
+W4(F, (G,H, -G;H, )+

Those complete the solution in the Laplace transform
domain.

5. Numerical Inversion of the Laplace
Transforms

In order to invert the Laplace transforms, we adopt a
numerical inversion method based on a Fourier series
expansion [27].

By this method the inverse f(t) of the Laplace
transform f(s) is approximated by

0 :%Bf‘(cp RIS f‘(c+”t‘_1“j exp[”:—]ntﬂ,

0<t <2t

where N is a sufficiently large integer representing the
number of terms in the truncated Fourier series, chosen

Copyright © 2011 SciRes.

Fz (G4H1 _G1H4)
Fz (G3H1 _GIHS)

,(GH, -G,H,))
F,(GH,-G,H,)).

such that

exp(ct) Rl {f_[c+”:|_n] exp( ”\tlntﬂ <e,
1 1

where & is a prescribed small positive number that cor-
responds to the degree of accuracy required. The pa-
rameter c is a positive free parameter that must be greater
than the real part of all the singularities of f_(s) The
optimal choice of ¢ was obtained according to the criteria
described in [27].

6. Numerical Results and Discussion

The Ferrari’s method has been constructed by using the
FORTRAN program to solve Equation (41). The mate-
rial properties of asphaltic material saturated by water
have been taken as follow [28,29].
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Figure 1. Asphalt temperature distribution.
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Figure 2. Water temperature distribution.
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Figure 3. Asphalt stress distribution.
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Figure 5. Asphalt strain distribution.
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Figure 6. Water strain distribution.
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Figure 7. Asphalt displacement distribution.
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Figure 8. Water displacement distribution.
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T, =27"C, Q=0.4853x10" dyne-cm,
R=0.0362x10" dyne-cm™,

A=0.2160x10" dyne-cm™

10=0.0926x10" dyne-cm™, a® =2.16x107>°C™",
P =235gm-cm™, p,, =0.002gm-cm™

k® =0.8W-m"k, CZ =800 J.-kg™' -~ C,
2=0.02 5, k=0.001W-m ™"k

a'=a =a®=0.0001"C", p™" =0.82 gm-cm™,
k" =03 W-m'k”, C/ =1.9cal.gm™ -~ C",

! =0.00001 s,

We will take the non-dimensional x variable to be in
interval X e [0,1] and all the results will be calculated
at the same instance t=0.1 for two different values of
the porosity [ of the material when S =0.25 and
£ =0.35.

The temperature, the stress, the strain and the dis-
placement for the solid and the liquid have been shown
in Figures 1-8 respectively. We can see that, the value of
the porosity has a significant effect on all the studied
fields.

7. Conclusions

This work was dealing with studying the effect of the
porosity of isotropic and poroelastic one dimensional
half-space which is saturated with fluid. The mathemati-
cal model of generalized porothermoelasticity with one
relaxation time has been constructed in the context of
Youssef model. The general solution has been obtained
in the Laplace transform domain and applied it in a cer-
tain asphalt material which is thermally shocked on its
bounding plane. The inversion of the Laplace transform
has been obtained numerically and the numerical values
of the temperature, stresses, strains and displacements
have been presented graphically for the solid and the
liquid and the graphs shown the significant effect of the
porosity value.
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Nomenclature

U;, U, The displacements of the skeleton and fluid
phases

A, i,R, Q The poroelastic coefficients

R> R, Ry, Ry, The mixed and thermal coefficients

6° =T° —T, The temperature increment of the solid
where T°is the solid

0" =T" —T, The temperature increment of the fluid
where T is the fluid

T, The reference temperature

S The porosity of the material

P, p'" The density of the solid and the liquid
phases respectively

p°=(1-B)p°" The density of the solid phase per
unit volume of bulk

p'=pp"" The density of the solid phase per unit
volume of bulk

P =p° —p, The mass coefficient of solid phase

Py =p' —p, The mass coefficient of fluid phase

P, The dynamics coupling coefficient

k*", k™" The thermal conductivity of the solid and the
fluid phases

k®=(1-B)k*" The thermal conductivity of the solid
phase

k" =pk' The thermal conductivity of the fluid
phase

k The interface thermal conductivity

2,7 The relaxation time of the solid and the fluid
phases

oy The stress components apply to the solid surface
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o The normal stress apply to the fluid surface
e. The strain component of the solid phase

]

& The strain component of the fluid phase

a’,a" The coefficients of the thermal expansion of

the phases

a®,a® The thermoelastic couplings between the

phases

C:,C! The specific heat of the solid and the fluid

phases

Céf The specific heat couplings between the phases

n = o The thermal viscosity of the solid

n = o The thermal viscosity of the fluid

s_pPCe
i _P'Ce
y=PuCe

the phases
P=31+2u
R,=a’p+a”Q
R, =a'R+3a"Q
R,=a'Q+a”P
Fi=pCe
F,=p'C|

F,=-(3a°R, +a"R, T,
F=—(32"R, +a'R, )T,

(o]

The thermal viscosity couplings between
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