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ABSTRACT 

Foot and mouth disease (FMD) is a major threat, not only to countries whose economies rely on agricultural exports, 
but also to industrialized countries that maintain a healthy domestic livestock industry by eliminating major infectious 
diseases from their livestock populations. In this paper a simple mathematical model is formulated and comprehen- 
sively analyzed to assess the impact of vaccination and culling on controlling FMD. Overally the study demonstrates 
that vaccination and culling are essential on controlling FMD if they are all implemented. Furthermore the study illus- 
trates that culling latently infected (early detection of infected animals) is extremely important on controlling FMD dy- 
namics. 
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1. Introduction 

Foot-and-mouth disease (FMD) is a highly infectious 
illness caused by an aphthovirus that affects cloven- 
hoofed animals such as pigs, cattle, and sheep [1,2]. Al- 
though not usually fatal, it causes suffering and vastly 
reduces animals’ commercial value by reducing their 
weight and milk output. Cattle, swine, sheep, goats, and 
deer are highly susceptible and can exhibit signs of 
clinical illness after an incubation period of only 2 to 14 
days; however, the incubation period may last longer and, 
especially in sheep and goats, signs of illness may go 
undetected altogether [3]. Clinical signs include fever 
and blister-like lesions followed by erosions on the 
tongue and lips; in the mouth, muzzle, and snout; on the 
teats; between the hooves; and around the digits. Exces- 
sive salivation, lameness, and decreased feed consump- 
tion may also be observed. There are seven different 
types and more than 60 subtypes of FMD virus, and there 
is no universal vaccine against the disease. Vaccines for 
FMD must match to the type and subtype present in the 
affected area. 

Mathematical models have become invaluable man- 
agement tools for epidemiologists, both shedding light on 
the mechanisms underlying the observed dynamics as 

well as making quantitative predictions on the effective- 
ness of different control measures. The literature and 
development of mathematical epidemiology is well docu- 
mented and can be found in [4]. Modeling the transmis- 
sion dynamics of FMD is an important and interesting 
topic for a lot of researchers (see, for example [5-11]). 
Here, we evaluate the impact of vaccination and culling 
on controlling Foot and mouth Disease. 

2. A Mathematical Framework and  
Approach 

Based on epidemiological status, the population of 
animals is sub-divided into the following subgroups: 
Susceptible S, vaccinated V, latently infected L and 
infectious animals I. Thus, the total population is given 
by N = S + V + L + I. We shall consider the following 
system of ordinary differential equations  
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Some notable features of the model: the birth rate and 
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the death rate are assumed to be equal (denoted by μ) and 
in consequence the total population is at an equilibrium; 
susceptible animals are vaccinated at rate , and the vac- 
cine wanes off at rate . Infectious hosts suffer an addi- 
tional disease-related mortality at rate d, γ denotes the 
rate of progression from latent stage to infectious stage. 
Heuristically, 1/ is the mean latent period. The incidence 
term is of the bilinear mass-action form IS. Latently 
infected animals are identified and culled at rate . Fur- 
thermore, infectious animal are culled at rate α. The dy- 
namical transfer of the hosts is depicted in the following 
Figure 1. 

For system (1) the first octant in the state space is 
positively invariant and attracting, that is solutions that 
start where all the variables are non-negative remain 
there. Thus, system (1) will be analyzed in a suitable 
region . The region 4
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which, is positively invariant and attracting. Existence, a 
uniqueness and continouation result for system (1) holds 
in this region. 

3. Analytical Results 

3.1. Disease-Free (DFE) Equilibrium 

Model system (1) has an evident DFE given by 
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Figure 1. Model flow diagram. 

3.2. The Reproductive Number 

The linear stability of  is obtained using the next gen- 
eration matrix [12] for system (1). Using the notation in 
[12] the non-negative matrix F, and the non-singular ma- 
trix V, for the new infection terms and the remaining 
transfer terms are respectively given (at the disease-free 
equilibrium) by 
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Thus, the basic reproductive number is given by the 
dimensionless expression: 
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The threshold quantity cv , measures the average 
number of new secondary FMD cases generated by a 
single FMD infective introduced in a population where 
the aforementioned control measures are in place. , 
implies that the epidemic dies out, while  de- 
monstrates the persistence of the epidemic. 

R
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the systems change point from the epidemic dying to 
epidemic persistence.  

3.3. Sensitivity Analysis of the Reproductive  
Number 

We now perform the sensitivity analysis of the reproduc- 
tive number following Arriola and Hyman [13]: 
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Analytical results on (3), demonstrates that parameters; 
,  are positively correlated to the reproductive number, 
while parameters ,  and  are inversely correlated to 
the reproductive number. According to results on Equa- 
tion (2) it is worth noting that the reproductive number is 
most sensitive to , since an increase in , by any mag- 
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nitude will result in an increase on the reproductive 
number by the same magnitude. The effectiveness of in- 
tervention strategies (medical or behavioural) is evalu- 
ated by the ability of the program to reduce the magni- 
tude of the reproductive number. Ideally, one would like 
to bring the system to the point where the reproductive 
number is less than unity. In the absence of vaccination 
and culling the reproductive number denoted by,  is 
given by 
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Using results on Equation (4),  can be rewritten a cvR
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1 , 2 , and 3  captures the impact of vaccination, 
culling of latently infected animals and culling of infec- 
tious animals, respectively. Since, , for 

 it follows that 0cv



1, 2



3



0 i  1
,i R R . This shows that the 

aforementioned FMD intervention strategies have a posi- 
tive impact on controlling FMD in the community. Fur- 
thermore it is worth noting that i j k i j i  
for  Thus, the combined use of the 
three intervention strategies have the most positive im- 
pact on controlling FMD that the use of either of the two 
methods or only one intervention strategy. Using Theo- 
rem 2 in [12], the following result is established. 
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Theorem 1. The disease-free equilibrium of system (1) 
is locally-asymptotically stable (LAS) if, 1cvR  , and 
unstable otherwise. 

3.4. Global Stability of the Disease-Free  
Equilibrium 

We now use the Comparison Theorem [13,14] to exam- 
ine the globally stability of the disease-free. We claim 
the following results. 

Theorem 2. The disease-free equilibrium of system (1) 
is globally-asymptotically stable (LAS) if, 1cvR   and 
unstable otherwise. 

Proof: Note that the equations of the infected com- 

ponents in system (1) can be written as 

  0 0 1

0 0

L L
F V S S

L

I I I


         
 

        
       

 

where, F  and  are as defined earlier in (on the 
computation of the reproductive number). Since, 
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Using the fact the eigenvalues of the matrix F V  
all have negative real parts, it follows that the linearized 
differential inequality system (5) is stable whenever 
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by Comparison Theorem [13]  
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 and, evaluating system (1) at  gives, 
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0S S 1cvR  . Hence, the disease-free equilib-

rium is globally-asymptotically stable for 1cvR  . 

3.5. Endemic Equilibrium 

System (1) has an endemic equilibrium state given by 
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Thus, System (1) has an endemic equilibrium state 
which makes biological sense whenever . This 
leads to Theorem 3 below. 

1cvR 

Theorem 3. The endemic equilibrium ( ) of system (1) 
exists whenever . 


1cvR 

4. Numerical Simulations 

In order to illustrate the results of the foregoing analysis 
in this study, numerical simulations of system (1) have 
been carried out, using a set of plausible parameter val- 
ues given in the Table 1 below. 

5. Concluding Remarks 

Foot-and-mouth disease (FMD) is a highly infectious 
animal disease that affects cloven hoofed animals (in- 
cluding cattle, sheep and pigs) and causes acute clinical      
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Table 1. Model parameters and their interpretations. 

Symbol Description Value Source 

μ Birth/mortality rate 200 day−1 Assumed 

γ Incubation period 0.26 day−1 [3,9] 

ω Vaccination rate 0.16 day−1 [9] 

 Waning rate 0.001 day−1 Assumed 

d Disease related mortality 0.001 day−1 Assumed 

δ Culling rate at latent stage 0.2 day−1 Assumed 

α Culling rate of infectious animals 0.25 day−1 Assumed 

β Transmissibility 0.33 [9] 

 

 
(a) 

 

 
(b) 

Figure 2. The impact of vaccination on controlling FMD transmission dynamics among animals is demonstrated over a 
period of time (in days). The rest of the parameters are fixed on their baseline values from Table 1. Simulations clearly shows 
that when vaccination rate increase, the size of infected subpopulation (L and I) decreases significantly, which leads to a 
decrease due to the reduction in the risk of exposure to FMD. An intervention which ensures higher rate of animal 

accination may have a positive impact on controlling FMD. v
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signs such as vesicular lesions in the foot and mouth, 
lameness, fever and pain; in more severe cases it can lead 
to death of young livestock. In areas where FMD is 
endemic, it is considered to be the main threat to animal 
health and economic development, while an outbreak of 
FMD in 2001 in the United Kingdom, a disease-free 
country, resulted in 6.5 million animals being slaughtered 
and losses of about 6 billion pounds. Persistence of FMD 
virus (FMDV) occurs in previously infected but appa- 
rently recovered animals, in the pharyngeal area, speci- 
fically in the dorsal soft palate [1]. In this paper a simple 
deterministic model to explore the impact of vaccina- 

tion and culling on controlling foot and mouth epidemic 
among animals. A dimensionless quantity known as the 
reproductive number, cv  (which measures the average 
number of new secondary FMD cases generated by a 
single FMD infective introduced in a population where 
the aforementioned control measures are in place, that is 

cv  measures the power of a disease to invade a popu- 
lation under conditions that facilitate maximal growth. 
The higher the reproductive number, the faster the in- 
fecting agent runs out of susceptible individuals) has 
been computed and qualitatively used to explore the 
condition for FMD control. Comparison Theorem ap-  

R

R

 

 
(a) 

 

 
(b) 

Figure 3. The impact of culling infected animals as an intervention strategy to control FMD transmission among animals is 
demonstrated over a period of time (in days). The rest of the parameters are fixed on their baseline values from Table 1. 
Numerical results demonstrate that culling has a positive impact on controlling FMD among animals. It is worth noting that, 
Figure 3 only demonstrates the role of culling infectious animal, in order to avoid repetition we did not present the numerical 
esults for culling animals at latent since the trend is similar. r   
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proach has been used to show that the model has glo- 
bally-asymptotically stable disease-free (DFE) whenever 
the reproductive number is less than unity (epidemic dies 
out). Robust analysis of the model has shown that the 
model has an endemic state which exists whenever the 
reproductive number is greater than unity. 

Qualitative analysis of the reproductive number on 
Equation (5) highlights that each of the intervention stra- 
tegies considered in this paper may be essential on con- 
trolling FMD, and this supported by simulation results on 
Figure 2 (demonstrates that animal vaccination may 
have a positive impact on controlling FMD) and Figure 
3 (demonstrates that culling infectious animals may be an 
important intervention strategy to control FMD). It is 
worth noting that the study also highlights that detection 
and culling of latently infected animals is crucial on 
FMD control. Over and above, the study demonstrates 
that FMD may be controlled effectively through imple- 
mentation of all the aforementioned intervention stra- 
tegies. 
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