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Abstract

A Walker n-manifold is a semi-Riemannian n-manifold, which admits a field of parallel null -planes, with » <

> It is well-known that semi-Riemannian geometry has an important tool to describe spacetime events.

Therefore, solutions of some structures about 4-Walker manifold can be used to explain spacetime singulari-
ties. Then, here we present complex and paracomplex analogues of Lagrangian and Hamiltonian mechanical
systems on 4-Walker manifold. Finally, the geometrical-physical results related to complex (paracomplex)

mechanical systems are also discussed.
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1. Introduction

As is well known, modern differential geometry plays an
important role to explain the dynamics of Lagrangians.
So, if Q is an m-dimensional configuration manifold and
L:TO — R is a regular Lagrangian function, then it is
well-known that there is a unique vector field X on 7Q
such that dynamics equation is given by

i, ®, =dE, (1)

where @, indicates the symplectic form. The triple (70,
®,, X) is called a Lagrangian system on the tangent bun-
dle 7Q.

Also, modern differential geometry provides a good
framework in which develop the dynamics of Hamilto-
nians. Therefore, if Q is an m-dimensional configuration
manifold and H:7°Q — R is a regular Hamiltonian
energy function, then there is a unique vector field X on
T"Q such that dynamics equation is given by

i, ®=dH @)

where @ indicates the symplectic form. The triple (70,
®, X) is called a Hamiltonian system on the cotangent
bundle T"0.

Nowadays, there are many studies about Lagrangian
and Hamiltonian dynamics, mechanics, formalisms, sys-
tems and equations [1-5] and there in. There are real,
complex, paracomplex and other analogues. As we know
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it is possible to produce different analogues in different
spaces.

Let M,, be a Riemannian manifold with a neutral
metric, i.e. with a semi-Riemannian metric g of signature
(n, n). By a Walker n-manifold, we mean a semi-Rie-
mannian manifold which admits a field of parallel null

. n .
r-planes, with r SE. The canonical forms of the met-

rics were investigated by Walker [6]. Special interest
manifolds are Walker manifolds of even dimensions (n =
2m) admitting a field of null planes of maximum dimen-
sionality(r = m). An application of such a 4-dimensional
Walker metric is given in [7]. Since the observation of
the existence of almost complex structure on Walker
4-manifolds in [8], the Walker 4-manifolds and the al-
most Hermitian structures on the four-manifolds have
been intensively studied, e.g., [9-14], etc. In this study,
we present complex (paracomplex) analogues of Lagran-
gian and Hamiltonian mechanical systems on 4-Walker
manifold. In the end, some geometrical-physical results
about the obtained complex (paracomplex) mechanical
systems are also given.

Throughout this paper, all mathematical objects and
mappings are assumed to be smooth, i.e. infinitely dif-
ferentiable and Einstein convention of summarizing is
adopted. Denote by M, a Walker manifold. Then
F(M,), x(M,) and A'(M,) are the set of func-
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tions on M,, the set of vector fields on A, and the set of
1-forms on M,, respectively.

2. Walker Manifold M,
2.1. Walker Metric

A neutral metric g on a 4-manifold M, is said to be
Walker metric if there exists a 2-dimensional null distri-
bution D on M,, which is parallel with respect to g. From
Walker theorem [6], there is a system of coordinates with
respect to which g takes the local canonical form

0 010

0 0 01
g=(g,-j)= 1 0 a cf @)

01 ¢ b

where a, b, ¢ are smooth functions of the coordinates (x,
X2, X3, X4). The parallel null 2-plane D is spanned locally

by {0,,0,}, where 0, are the abbreviated forms of g,

I = X1, X2, X3, X4.
2.2. Proper Almost Complex Structure ¢

Let ¢ be a proper almost complex structure on a Walker
manifold M}, which satisfies

1) o =1

2) g(pX.,Y)=-g(X,pY)(Hermitian property),
@0, =0,, ¢p0, =—0,

3)

. .. W .
[w induces a pos1t1ve3—rotat10n on Dj

We easily see that the above three properties defines ¢
uniquely, i.e.

1) ¢ﬁ] =629
2) @0, =—0,,
3) @0, =—co, +%(a—b)62 +0,, “4)

1
4) @0, :E(a—b)ﬁ1 +c0, —0,,

If we write as @0, = Zj:l 9/0;, then from (4) we can
read off the nonzero components ¢’ as follows:

o ==, =9y =—¢] =1,
@ =-0\ =c,

1
o5 =, =—(a=b),

i.e., @ has the local components
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0 -1 —c —(a—b)
Q):((ol.j): 1 0 —(a—b) C

0 0 0 1

0 0 -1 0

with respect to the natural frame {0,,0,,0,,0,} [14].
Similarly, we define a unique proper almost complex
structure ¢" as follows:

1) ¢)* (dl ) = d2’
2) @ (dz):_dl’
3) ¢'(d,)=—cd, +%(a—b)d2 +d,, )
. 1
4) o (af4)=5(a—b)a’1 +cd, —d,,
where d; are the abbreviated forms of dx;, i = x1, x5, X3, X4.
3. Lagrangian Mechanical Systems

Now, our purpose is to obtain complex Euler-Lagrange
equations for relativistic, quantum and classical mechan-
ics on 4-dimensional Walker manifold A4,.

Let M, be a Walker manifold and {xi, x,, x3, x4} be its
coordinate functions. Let the semispray be the vector
field X determined by

X=X'9,+X%,+X0,+X"0,, (6)

where X'=%, X’ =x,, X’ =x,, X'=4x, and the
dot indicates the derivative with respect to time ¢. By

means of the proper almost complex structure ¢ given by
(4), the vector field is defined by

V,=p(X)=X'd,- X%,

+X° (—ca1 +%(a—b)62 +64J

+Xx* (%(a—b)al +c0, —83}

which is named Liouville vector field on the Walker
manifold M,. The maps given by T,P: M, - R such

1 . . . . .
that T=5mi(xf+x22+x32+xf), P=m,gh are said to

be the kinetic energy and the potential energy of the sys-
tem, respectively. Here m;, g and % stand for mass of a
mechanical system having m particles, the gravity accel-
eration and distance to the origin of a mechanical system
on Walker manifold M,, respectively. Then L:M, - R
is a map that satisfies the conditions; 1) L=7-P is a
Lagrangian function, 2) the function determined by
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Ef =V,(L)-L, isenergy function.
The function i, inducedby ¢ and denoted by

i(pa)(X]’XZ’“.’Xr):za)(X]"“’(DX[’.“’Xr)’
i=1
is called vertical derivation, where e A"M,,
X, e ;((M 4). The vertical differentiation d, is given
by
d,=i,.d]|=i,d-di,

where d is the usual exterior derivation. For the almost
complex structure ¢ given by (4), the form on Walker

manifold M, is the closed 2-form determined by
®f =-dd,L such that

d, (F (M) > A'M,,

1
d,=0,d -0, +[—c61 +5(a—b)62 +84Jd3
: ™)
+[5(a—b)6, +c0, —63}1'4.

Through a direct computation using (7), the closed 2-
form @Y is seen to be as follows:

@9 =02 Ld, nd, +3’,Ld, ndy—0, (—c61L+%(a—b)82L+64LJd, ~d,

-0, (%(a —b)alL+cazL—a3Ljd], ~d, —0%Ldy nd, +0% Ldy Ad,

~0, (—c81L+%(a—b)82L+a4Ljd2, ~dy—0, (%(a—b)alL+c82L—63Ljd2, ~d,

®)
-03,Ldy Ad, +03,Ldy nd,— 0, [—calL +%(a -b)o,L+ 64L)d3, A
-0y (%(a —b)0,L+c0,L— @Ljdy nd, —03,Ld, nd, +05,Ld, nd,
-0, (—c@lL +%(a -b)0,L+ 84Ljd4, Ady =0, (%(a —b)o,L+co,L —63Ljd4, nd,
Then the energy function E7. is found as follows:
E/ =X'0,L-X"0,L+X° (—CGIL-i-%(a —b)62L+64Lj+X4 G(a—b)a1 +¢0, —83J—L. Q)

Suppose that a curve
a:R—>M,

6,(0,L)=0,L = 0,0, [—calL +La-p)ouL +62LJ—63L “o,

be an integral curve of semispray X. According to (1),
using (7) and (9) then we find the following equations:

(10)

0,(3,L)+0,L=0,, G(a _B)oL+corL —83L)—84L “o,

such that the equations calculated in (10) are named com-
plex Euler-Lagrange equations constructed on Walker
manifold M, if 2-form @9 is symplectic structure. Thus
the triple (M,,®?,X) is named a complex mechanical
system on Walker manifold M,.

Now we obtain some corollaries about the equations
raised in (10) thinking Remark (p. 387) in [14] and
Proposition 4 in [8] and Corollary 4 in [15]:

Corollary 1: In (10), if ¢ = 0 and a = b we find the
equations as follows:

0,(0,L)=0,L=0,0,(0,L)— ;L =0,

11
8,(8,L)+8,L =0,8,(0,L)+d,L =0. (an
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By means of Theorem 2 and Theorem 3 (p. 387 and
p- 388) in [14], we can derive the following corollaries:
Corollary 2: If a and b satisfy the following PDEs:

a,+b =0,a,+b, =0,
then the equations in (10) are

8,(0,L)-8,L =00, G(a ~b)o,L+ azLj—@L ~0,

8,(8,L)+0,L = 0,3, (%(a—b)@,L—@L)—@L ~0,
(12)

and have a solution.
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Corollary 3: If the following PDEs hold:
a,—b —2c,=0,a,-b,+2c, =0,

then the equations in (10) have a solution.
4. Hamiltonian Mechanical Systems

This section is devoted to present complex Hamiltonian
equations and Hamiltonian mechanical systems for rela-
tivistic, quantum and classical mechanics constructed on
Walker manifold M,.

Assume that a Liouville form and a 1-form on Walker
manifold M, are shown A and @, respectively-

Let us consider

o =xd, +x,d, +x,d; +x,d,. (13)

Using (5), we have

A=¢ (0)=xd,—x,d, +x, (—cd1 +%(a—b)d2 +d4j

+x, (%(a—b)dl +cd, —d3j.
(14)

Assume that the vector field X determined by (6) is
Hamiltonian vector field associated with Hamiltonian
energy function H. Then we find

O =—dA=2d, nd, +2d, ndy+c(d; nd, +d, nd,)

+o(a=b)(d, ndy+d, nd,),

(15)
and
i ®=0(X)=2X"d -2X'd,+2X"d,-2X°d,
+e(X’d, - X'd,+ X°d, - X*d,) (16)

+%(a —b)(X’dy-X’d, + X'd, - X*d,).

Furthermore, the differential of Hamiltonian energy
function is obtained by

dH = ,Hd, +0,Hd, +0,Hd, +0,Hd,. (17)

With respect to (2), if (16) and (17) are equaled, the
Hamiltonian vector field is found as follows:

X =0[(-2c0;H +ad,H —bd,H —43,H )0,
+(2¢0,H +ad,H —bd,H +40,H)0,
+(2081H—a82H+b82H—484H)53
+(—2¢0,H —ad,H +b0,H +40,H)d, |,

(18)
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2
16+4¢* +(a—b)’
Suppose that a curve

B:IcR->M,

where 6=

be an integral curve of the Hamiltonian vector field X,
ie.,

X(B(1))=p.tel (19)
In the local coordinates, taking

ﬂ(t) :(x],xz,x3,x4)

we find

d . d,. d,. d
=10 +-20,+—=0,+—0,. 20
dt ' dt P odr C odt *? (20)

Using (19), (18), (20), it holds

% = 0(~2c0,H +ad,H - bd,H —40,H ),

A1)

D _ (260, H + a0, H ~ b3, H + 40,1,
j’ @1)
= 0(2c0,H ~ad,H +b0,H ~40,H).

% =0(-2c0,H —ad,H +bo H +40,H ).

As is known that if ® is a closed form on Walker
manifold M,, then @ is also a symplectic structure on
Walker manifold M, [14]. Hence, the equations intro-
duced in (21) are named complex Hamiltonian equations
on Walker manifold M, if ® is a symplectic structure.

Then the triple (M 4,<I)(p* , X ) is named a complex Ham-

iltonian mechanical system on Walker manifold M,.

We obtain the following corollary considering the
equations found in (21) using Remark (p. 387) in [14]
and Proposition 4 in [8] and Corollary 4 in [15].

Corollary 4: In (21), if ¢ = 0 and @ = b we find the
equations as follows:

d_ o d Loy
dt 2 dt 2 22)
d, 1 d

GS_ lomds_Lom
i 2 7 dt 2

Taking Theorem 2 and Theorem 3 (p. 387 and p. 388)
in [14], we can derive some corollaries as follows:
Corollary 5: If a and b satisfy the following PDEs:

a,+b =0,a,+b, =0,

then the equations in (21) are
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d, 2

S 2 (ad0,H-bd,H-43,H),

dt 16+(a—b)2( b0 ~40,H)

d, 2

L 2 (a0,H-bd,H+40,H),

dt 16+(a—b)2( ’ ’ ) o)
ﬁ:%(—aaﬁwazlf—wﬂ),

di 16+ (a—b)

s _ %(—a61H+b8]H+483H),

dt 16+ (a-b)

and have a solution.
Corollary 6: If the following PDEs hold:

a,—b -2¢,=0,a,-b,+2¢, =0,

then the equations in (21) have a solution.

5. Paracomplex Lagrangian and
Hamiltonian Mechanical Systems

In this section, we produce a paracomplex analogues of
Lagrangian and Hamiltonian mechanical systems on a
Walker manifold M,.

Let ¢ be a proper almost paracomplex structure on a
Walker manifold M,, which satisfies

1) o' =1
2) g(pX.Y)=-g(X,pY)(Hermitian property),
3) @0, =0, 90, =0,

Associated to any Walker metric (3) we consider a
proper almost para-Hermitian structure ¢ defined by

1) (pal = _als

) (24)
3) @0, =-ad, +0;,
4) (/’84 = baz _84’

where {0,}, i = X1, X3, X3, x4. denotes the coordinate

bases [9].
If we write as @0, = ijl 9/0;, then from (24) we
can read off the nonzero components ¢/ as follows:
O ==, =3 ==, ==L, ¢, =—a,¢; =b,

i.e., ¢ has the local components

10 —a 0
o1 0 b
o=(o')= 00 1 0
00 0 -1

with respect to the natural frame {0,,0,,0,0,} .
According to the proper almost paracomplex structure
@, the 2-form @Y is given by as follows:

Copyright © 2011 SciRes.

®¢ =0, Ld, nd, —0;,Ld, nd,

~(-ad},L+0},L)d, nd,—(b0},L—0},L)d, nd,
+03,Ldy Ad, —03,Ld, nd,

(a0 L+, L) dy ndy—(b03,L—83,L)dy Ad,
+03,Ldy nd, —03,Ldy Nd,

~(~ad},L+03,L)dy nd, ~(b03,L-03,L)dy Ad,
+0%,Ld, Ad, — 32, Ld, Ad,

—(ady L +83L)dy Ady— (b0, L —03,L)dy Ad,.

By means of @7, using similar method in Section 3,
we get

2 d
—(BL)+8,L=0,—(8,L)-0,L. =0,
%(—a61L+83L)—63L =0, (25)

%(bazL—a4L)—a4L —0,

such that the equations calculated in (25) are named a
paracomplex Euler-Lagrange equations constructed on
the Walker manifold M, if the 2-form ®% is symplectic
structure. Hence the triple (M,,®P7,X) is named a para-
complex mechanical system on the Walker manifold M,.

Now, let us consider the proper almost paracomplex
structure ¢ :

1 ¢ (d)=—d,,
2) ¢ (dy)=4d,,
3) ¢'(dy)=-ad, +d,,
4) ¢ (d,)=bd,—d,.
For the proper almost paracomplex structure ¢ , the
2-form (qu* is given by
D, =-dA=2d,nd +2d, nd,
! (26)
+ad, nd, +bd, nd,,

By using similar method in section 4, by means of
CD(/]* , we have

d 1
;; =T (—20,H —bd,H),
d, 1
—2=——(20,H +ad;H),
;lt 44iab @7)
d—j = 4+ab(—a82H+284H),
% =%b(b61H—263H).
+a
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Hence, the equations introduced in (27) are named a
paracomplex Hamiltonian equations on the Walker
manifold M, if the 2-form @®Y is symplectic structure.

Then the triple (M 4,(13(; , X ) is named a paracomplex

Hamiltonian mechanical system on the Walker manifold
M.

6. Discussions

From above, complex and paracomplex Lagrangian me-
chanical systems have intrinsically been described on a
Walker manifold M,: The paths of semispray X on Walker
manifold M, are the solutions of complex and paracom-
plex Euler-Lagrange equations raised in (10) and (25).

Also, complex and paracomplex Hamiltonian me-
chanical systems have intrinsically been described on a
Walker manifold M,. The paths of Hamilton vector field
X on the Walker manifold M, are the solutions of com-
plex and paracomplex Hamiltonian equations raised in
(21) and (27).

One easily see that the complex (paracomplex) Euler-
Lagrange and Hamilton equations introduced in [4,5] are
equivalent those in (10) and (21) ((25) and (27)) ifa=Db
=0.

One can be proved that the here obtained equations are
very important to explain the space-time mechanical-
physical problems. Therefore, the found equations are
only considered to be a first step to realize how complex
(paracomplex) structures on a Walker manifold has been
used in solving problems in different physical areas.

For further research, the complex (paracomplex) La-
grangian and Hamiltonian mechanical equations derived
here are suggested to deal with problems in electrical,
magnetical and gravitational fields of relativistic, quan-
tum and classical mechanics of physics.
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