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Abstract 
 
A Walker n-manifold is a semi-Riemannian n-manifold, which admits a field of parallel null r-planes, with r ≤ 

2

n
. It is well-known that semi-Riemannian geometry has an important tool to describe spacetime events. 

Therefore, solutions of some structures about 4-Walker manifold can be used to explain spacetime singulari-
ties. Then, here we present complex and paracomplex analogues of Lagrangian and Hamiltonian mechanical 
systems on 4-Walker manifold. Finally, the geometrical-physical results related to complex (paracomplex) 
mechanical systems are also discussed. 
 
Keywords: Walker Manifolds, Lagrangian and Hamiltonian Mechanics 

1. Introduction 
 
As is well known, modern differential geometry plays an 
important role to explain the dynamics of Lagrangians. 
So, if Q is an m-dimensional configuration manifold and 

 is a regular Lagrangian function, then it is 
well-known that there is a unique vector field X on TQ 
such that dynamics equation is given by  

:L TQ  R

=X L Li d E                 (1) 

where L  indicates the symplectic form. The triple (TQ, 

L , X) is called a Lagrangian system on the tangent bun-
dle TQ. 

Also, modern differential geometry provides a good 
framework in which develop the dynamics of Hamilto-
nians. Therefore, if Q is an m-dimensional configuration 
manifold and  is a regular Hamiltonian 
energy function, then there is a unique vector field X on 
T*Q such that dynamics equation is given by  

:H T Q  R

=Xi d H                 (2) 

where Φ indicates the symplectic form. The triple (T*Q, 
Φ, X) is called a Hamiltonian system on the cotangent 
bundle T*Q. 

Nowadays, there are many studies about Lagrangian 
and Hamiltonian dynamics, mechanics, formalisms, sys-
tems and equations [1-5] and there in. There are real, 
complex, paracomplex and other analogues. As we know 

it is possible to produce different analogues in different 
spaces. 

Let 2nM  be a Riemannian manifold with a neutral 
metric, i.e. with a semi-Riemannian metric g of signature 
(n, n). By a Walker n-manifold, we mean a semi-Rie-
mannian manifold which admits a field of parallel null  

r-planes, with .
2

n
r   The canonical forms of the met- 

rics were investigated by Walker [6]. Special interest 
manifolds are Walker manifolds of even dimensions (n = 
2m) admitting a field of null planes of maximum dimen-
sionality(r = m). An application of such a 4-dimensional 
Walker metric is given in [7]. Since the observation of 
the existence of almost complex structure on Walker 
4-manifolds in [8], the Walker 4-manifolds and the al-
most Hermitian structures on the four-manifolds have 
been intensively studied, e.g., [9-14], etc. In this study, 
we present complex (paracomplex) analogues of Lagran-
gian and Hamiltonian mechanical systems on 4-Walker 
manifold. In the end, some geometrical-physical results 
about the obtained complex (paracomplex) mechanical 
systems are also given. 

Throughout this paper, all mathematical objects and 
mappings are assumed to be smooth, i.e. infinitely dif-
ferentiable and Einstein convention of summarizing is 
adopted. Denote by 4M  a Walker manifold. Then 
 4M ,  4M  and  4 1 M  are the set of func-
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


tions on M4, the set of vector fields on M4 and the set of 
1-forms on M4, respectively. 
 
2. Walker Manifold M4 
 
2.1. Walker Metric 
 
A neutral metric g on a 4-manifold M4 is said to be 
Walker metric if there exists a 2-dimensional null distri-
bution D on M4, which is parallel with respect to g. From 
Walker theorem [6], there is a system of coordinates with 
respect to which g takes the local canonical form  

 
0 0 1 0

0 0 0 1
,

1 0

0 1

ijg g
a c

c b

 
 
 

 
 

            (3) 

where a, b, c are smooth functions of the coordinates (x1, 
x2, x3, x4). The parallel null 2-plane D is spanned locally  

by  1 2,  , where  are the abbreviated forms of i
i




,  

i = x1, x2, x3, x4. 
 
2.2. Proper Almost Complex Structure φ 
 
Let φ be a proper almost complex structure on a Walker 
manifold M4, which satisfies  

    

2

1 2 2 1

1)

2) , , Hermitian property ,

,

3) π
induces a positive rotation on

2

I

g X Y g X Y

D


 

 



 
 

     

  
 

 

We easily see that the above three properties defines φ 
uniquely, i.e.  

 

 

1 2

2 1

3 1 2

4 1 2

1) ,

2) ,

1
3) ,

2
1

4) ,
2

c a b

a b c

4

3








  
  

        

       

       (4) 

If we write as  then from (4) we can 
read off the nonzero components 

4

1 1
,j

i jj
 


  

j
i  as follows:  

 

2 1 4 3
1 2 3 4

2 1
4 3

2 1
3 4

1,

,

1
,

2

c

a b

   

 

 

     

  

  

 

i.e.,   has the local components  

 

 

 

1
0 1

2
1

1 0
2

0 0 0 1

0 0 1 0

j
i

c a

a b c 

    
 
    
 
 
  

b

 

 

with respect to the natural frame  [14]. 1 2 3 4

Similarly, we define a unique proper almost complex 
structure 

{ , , , }   

  as follows:  

 
 

   

   

1 2

2 1

3 1 2

4 1 2

1) ,

2) ,

1
3) ,

2
1

4) ,
2

d d

d d

d cd a b d d

d a b d cd d

















 

    

   

4

3

4

    (5) 

where di are the abbreviated forms of dxi, i = x1, x2, x3, x4. 
 
3. Lagrangian Mechanical Systems 
 
Now, our purpose is to obtain complex Euler-Lagrange 
equations for relativistic, quantum and classical mechan-
ics on 4-dimensional Walker manifold M4. 

Let M4 be a Walker manifold and {x1, x2, x3, x4} be its 
coordinate functions. Let the semispray be the vector 
field X determined by  

1 2 3 4
1 2 3 ,X X X X X               (6) 

where 1
1X x  , 2

2X x  , 3
3X x  , 4

4X x   and the 
dot indicates the derivative with respect to time t. By 
means of the proper almost complex structure φ given by 
(4), the vector field is defined by  

 

 

 

1 2
2 1

3
1 2

4
1 2 3

1

2

1
,

2

V X X X

X c a b

X a b c

     

 
4        

 
        
 

 

which is named Liouville vector field on the Walker 
manifold M4. The maps given by  such  4, :T P M  R

that   = iP m gh2 2 2 2
1 2 3 4

1
=

2 iT m x x x x      ,  are said to  

be the kinetic energy and the potential energy of the sys-
tem, respectively. Here mi, g and h stand for mass of a 
mechanical system having m particles, the gravity accel-
eration and distance to the origin of a mechanical system 
on Walker manifold M4, respectively. Then  
is a map that satisfies the conditions; 1)  is a 
Lagrangian function, 2) the function determined by  

4:L M  R
L T P 

Copyright © 2011 SciRes.                                                                                 JMP 
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  ,LE V L L
 

i
 is energy function. manifold M4 is the closed 2-form determined by  

 such that  L dd L
  The function   induced by   and denoted by  

   1
1

, , , , ,
r

r i
i

X X X X  


     1
4 4: ,d M M    

1 2, ,i X X ,r  

 

 

2 1 1 2 1 2 4 3

1 2 3 4

1

2

1
.

2

d d d c a b

a b c d


             
 

        
 

is called vertical derivation, where 4 ,r M
d

  
 The vertical differentiation 

d

 (7)  4 .iX M   is given 
by  

, ,d i d i d di         

where d is the usual exterior derivation. For the almost 
complex structure   given by (4), the form on Walker  

Through a direct computation using (7), the closed 2- 
form L

  is seen to be as follows:  
 

 

 

   

2 2
1 1 1 1 1 1 1 2 1 1 2 4 1 3

2 2
1 1 2 3 1 4 2 2 2 1 2 1 2 2

2 1 2 4 2 3 2 1 2 3 2

2
3 2 3

1
=

2

1

2

1 1

2 2 4

Ld d Ld d c L a b L L d d

a b L c L L d d Ld d Ld d

c L a b L L d d a b L c L L d d

Ld

     

     

   

 

                
 

                
 
                        
   

 

L


 

 

   

2
1 3 1 3 2 3 1 2 4 3 3

2 2
3 1 2 3 3 4 4 2 4 1 4 1 4 2

4 1 2 4 4 3 4 1 2 3 4 4

1

2

1

2

1 1

2 2

d Ld d c L a b L L d d

a b L c L L d d Ld d Ld d

c L a b L L d d a b L c L L d d

   

     

   

               
 

                
 
                        
   

          (8) 

Then the energy function .LE  is found as follows:  

   1 2 3 4
2 1 1 2 4 1 2 3

1 1
.

2 2L
E X L X L X c L a b L L X a b c L

                         
   

          (9) 

 
be an integral curve of semispray X. According to (1), 
using (7) and (9) then we find the following equations: 

Suppose that a curve 

4: M R  

 

   

   

2 1 1 2 2 3

1 2 1 2 3 4

1
0, 0,

2

1
0, 0,

2

t t

t t

L L c L a b L L L

L L a b L c L L L

                 

                
 


                    (10) 

 
By means of Theorem 2 and Theorem 3 (p. 387 and 

p. 388) in [14], we can derive the following corollaries: 
such that the equations calculated in (10) are named com- 
plex Euler-Lagrange equations constructed on Walker 
manifold M4 if 2-form L


)

 is symplectic structure. Thus 
the triple 4 L

Corollary 2: If a and b satisfy the following PDEs:  
( , , XM 

 
 

 

 

 is named a complex mechanical 
system on Walker manifold M4.  1 1 2 20, 0,a b a b     

then the equations in (10) are  Now we obtain some corollaries about the equations 
raised in (10) thinking Remark (p. 387) in [14] and 
Proposition 4 in [8] and Corollary 4 in [15]:    

   

2 1 2 2 3

1 2 1 3 4

1
0, 0,

2

1
0, 0,

2

t t

t t

L L a b L L L

L L a b L L L

              
 
              
 

  

(12) 

Corollary 1: In (10), if c = 0 and a = b we find the 
equations as follows:  

2 1 2 3

1 2 3 4

0, ( ) 0,

0, ( ) 0.

t t

t t

L L L L

L L L L

       

       
      (11) 

and have a solution. 
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,

Corollary 3: If the following PDEs hold:  

1 1 2 2 2 12 0, 2 0a b c a b c       

then the equations in (10) have a solution. 
 
4. Hamiltonian Mechanical Systems 
 
This section is devoted to present complex Hamiltonian 
equations and Hamiltonian mechanical systems for rela-
tivistic, quantum and classical mechanics constructed on 
Walker manifold M4. 

Assume that a Liouville form and a 1-form on Walker 
manifold M4 are shown   and  , respectively. 

Let us consider 

1 1 2 2 3 3 4 4 .x d x d x d x d             (13) 

Using (5), we have  

 

 

*
1 2 2 1 3 1 2 4

4 1 2 3

1
( )

2

1
.

2

x d x d x cd a b d d

x a b d cd d

            
 

     
 

 

(14) 

Assume that the vector field X determined by (6) is 
Hamiltonian vector field associated with Hamiltonian 
energy function H. Then we find  

 

  

2 1 4 3 3 1 2 4

2 3 1 4

2 2

1
,

2

d d d d d c d d d d

a b d d d d

          

    
  

(15) 

and  

 
 
 

2 1 4
1 2 3

3 1 2 4
1 3 4 2

2 3 1 4
3 2 4 1

2 2 2 2

1
.

2

Xi X X d X d X d X

c X d X d X d X d

a b X d X d X d X d

      

   

     

3
4d






14

,

 (16) 

Furthermore, the differential of Hamiltonian energy 
function is obtained by  

1 1 2 2 3 3 4 4 .dH Hd Hd Hd Hd             (17) 

With respect to (2), if (16) and (17) are equaled, the 
Hamiltonian vector field is found as follows:  



 


3 4 4 2

4 3 3 1 2

1 2 2 4 3

2 1 1 3 4

2

2 4

2 4

2 4

X c H a H b H H

c H a H b H H

c H a H b H H

c H a H b H H

          
        

        

          

  (18) 

where 
 22

2
.

16 4c a b
 

  
 

Suppose that a curve 

4: I M  R  

be an integral curve of the Hamiltonian vector field X, 
i.e.,  

   , .X t t   I            (19) 

In the local coordinates, taking  

   1 2 3 4, , ,t x x x x   

we find  

  31 2 4
1 2 3 .

dd d d
t

dt dt dt dt
 4             (20) 

Using (19), (18), (20), it holds  

 

 

 

 

1
3 4 4 2

2
4 3 3 1

3
1 2 2 4

4
2 1 1 3

2 4

2 4

2 4

2 4

d
c H a H b H H

dt
d

c H a H b H H
dt
d

c H a H b H H
dt
d

c H a H b H H
dt









        

       

       

        

,

,

,

.

  (21) 

As is known that if Φ is a closed form on Walker 
manifold M4, then Φ is also a symplectic structure on 
Walker manifold M4 [14]. Hence, the equations intro-
duced in (21) are named complex Hamiltonian equations 
on Walker manifold M4 if Φ is a symplectic structure.  

Then the triple  4 , ,M X


  is named a complex Ham-

iltonian mechanical system on Walker manifold M4. 
We obtain the following corollary considering the 

equations found in (21) using Remark (p. 387) in [14] 
and Proposition 4 in [8] and Corollary 4 in [15]. 

Corollary 4: In (21), if c = 0 and a = b we find the 
equations as follows: 

1 2
2 1

3 4
4 3

1 1
, ,

2 2
1 1

, .
2 2

d d
H H

dt dt
d d

H H
dt dt

    

    
         (22) 

Taking Theorem 2 and Theorem 3 (p. 387 and p. 388) 
in [14], we can derive some corollaries as follows: 

Corollary 5: If a and b satisfy the following PDEs:  

1 1 2 20, 0,a b a b     

then the equations in (21) are  
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 
 

 
 

 
 

 
 

1
4 4 22

2
3 3 12

3
2 2 42

4
1 1 32

2
4 ,

16

2
4 ,

16

2
4 ,

16

2
4 ,

16

d
a H b H H

dt a b

d
a H b H H

dt a b

d
a H b H H

dt a b

d
a H b H H

dt a b

    
 

    
 

      
 

      
 





,

  (23) 

and have a solution. 
Corollary 6: If the following PDEs hold:  

1 1 2 2 2 12 0, 2 0a b c a b c       

then the equations in (21) have a solution. 
 
5. Paracomplex Lagrangian and 

Hamiltonian Mechanical Systems 
 
In this section, we produce a paracomplex analogues of 
Lagrangian and Hamiltonian mechanical systems on a 
Walker manifold M4. 

Let   be a proper almost paracomplex structure on a 
Walker manifold M4, which satisfies 

   

2

1 1 2 2

1)

2) , , Hermitian property ,

3) ,

I

g X Y g X Y


 

 


 

     
  

Associated to any Walker metric (3) we consider a 
proper almost para-Hermitian structure   defined by  

1 1

2 2

3 1

4 2 4

1) ,

2) ,

3) ,

4) ,

a

b







  
  

     
    

3

          (24) 

where , i = x1, x2, x3, x4. denotes the coordinate 
bases [9]. 

{ }i

If we write as jj
 then from (24) we 

can read off the nonzero components 

4

1
,j

i i 


  
j

i  as follows:  
1 2 3 4 1 2
1 2 3 4 3 41, , ,a b                 

i.e.,   has the local components 

 
1 0 0

0 1 0

0 0 1 0

0 0 0 1

j
i

a

b
 

  
 
  
 
 

 

 

with respect to the natural frame .  1 2 3 4, , ,   
According to the proper almost paracomplex structure 

 , the 2-form L
  is given by as follows: 
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By means of L
 , using similar method in Section 3, 

we get 

   
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 
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2 4 4
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    (25) 

such that the equations calculated in (25) are named a 
paracomplex Euler-Lagrange equations constructed on 
the Walker manifold M4 if the 2-form L


)

 is symplectic 
structure. Hence the triple 4 L( , ,M X  is named a para- 
complex mechanical system on the Walker manifold M4. 

Now, let us consider the proper almost paracomplex 
structure  :  
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For the proper almost paracomplex structure * , the 

2-form 


  is given by  

2 1 3

4 1 2 3

2 2

,

d d d d

ad d bd d

 4d      

   
       (26) 

By using similar method in section 4, by means of 


 , we have  
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       (27) 
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Hence, the equations introduced in (27) are named a 
paracomplex Hamiltonian equations on the Walker 
manifold M4 if the 2-form L

  is symplectic structure.  

Then the triple  4 , , M X


  is named a paracomplex  

Hamiltonian mechanical system on the Walker manifold 
M4. 
 
6. Discussions 
 
From above, complex and paracomplex Lagrangian me-
chanical systems have intrinsically been described on a 
Walker manifold M4: The paths of semispray X on Walker 
manifold M4 are the solutions of complex and paracom-
plex Euler-Lagrange equations raised in (10) and (25). 

Also, complex and paracomplex Hamiltonian me-
chanical systems have intrinsically been described on a 
Walker manifold M4. The paths of Hamilton vector field 
X on the Walker manifold M4 are the solutions of com-
plex and paracomplex Hamiltonian equations raised in 
(21) and (27). 

One easily see that the complex (paracomplex) Euler- 
Lagrange and Hamilton equations introduced in [4,5] are 
equivalent those in (10) and (21) ((25) and (27)) if a = b 
= 0.  

One can be proved that the here obtained equations are 
very important to explain the space-time mechanical- 
physical problems. Therefore, the found equations are 
only considered to be a first step to realize how complex 
(paracomplex) structures on a Walker manifold has been 
used in solving problems in different physical areas. 

For further research, the complex (paracomplex) La-
grangian and Hamiltonian mechanical equations derived 
here are suggested to deal with problems in electrical, 
magnetical and gravitational fields of relativistic, quan-
tum and classical mechanics of physics. 
 
7. References 
 
[1] M. De Leon and P. R. Rodrigues, “Methods of Differen-

tial Geometry in Analytical Mechanics,” North-Holland 
Mathematics Studies, Elsevier, Amsterdam, 1989. 

[2] M. De Leon and P. R. Rodrigues, “Second-Order Differ-
ential Equations and Non-Conservative Lagrangian Me-
chanics,” Journal of Physics A: Mathematical and Gen-
eral, Vol. 20, 1987, pp. 393-5396. 

[3] M. Zambine, “Hamiltonian Perspective on Generalized 
Complex Structure,” Communications in Mathematical 

Physics, Vol. 263, 2006, pp. 711-722.  
doi:10.1007/s00220-005-1512-5 

[4] M. Tekkoyun and M. Görgülü, “Higher Order Complex 
Lagrangian and Hamiltonian Mechanics Systems,” 
Physical Letters A, Vol. 357, 2006, pp. 261-269.  
doi:10.1016/j.physleta.2006.04.049 

[5] M. Tekkoyun, “On Para-Euler-Lagrange and Para-Ham-
iltonian Equations,” Physical Letters A, Vol. 340, No. 1-4, 
2005, pp. 7-11. 

[6] A. G. Walker, “Canonical Form for a Rimannian Space 
with a Paralel Field of Null Planes,” Quarterly of Applied 
Mathematics Oxford, Vol. 1, No. 2, 1950, pp. 69-79. 

[7] R. Ghanam and G. Thompson, “The Holonomy Lie Al-
gebras of Neutral Metrics in Dimension Four,” Journal of 
Mathematical Physics, Vol. 42, 2001, pp. 2266-2284.  
doi:10.1063/1.1362284 

[8] Y. Matsushita, “Four-Dimensional Walker Metrics and 
Symplectic Structures,” Journal of Geometry and Physics, 
Vol. 52, 2004, pp. 89-99.  
doi:10.1016/j.geomphys.2004.02.009 

[9] J. Carlos Diaz-Ramos, E. Garcia-Rio and R. Vazquez- 
Lorenzo, “Osserman Metrics on Walker 4-Manifolds 
Equipped with a Para-Hermitian Structure,” Matematica 
Contemporanea, Vol. 30, 2006, pp. 91-108. 

[10] M. Chaichi, E. Garca-Ro and Y. Matsushita, “Curvature 
Properties of Four-Dimensional Walker Metrics,” Clas-
sical and Quantum Gravity, Vol. 22, No. 3, 2005, pp. 
559-577. doi:10.1088/0264-9381/22/3/008 

[11] J. Davidov and O. Mukarov, “Self-DualWalker Metrics 
with Two-Step Nilpotent Ricci Operator,” Journal of 
Geometry and Physics, Vol. 57, 2006, pp. 157-165.  
doi:10.1016/j.geomphys.2006.02.007 

[12] J. C. Diaz-Ramos, E. Garca-Ro and R. Vazquez-Lorenzo, 
“New Examples of Osserman Metrics with Nondiago-
nalizable Jacobi Operators,” Differential Geometry and 
Its Applications, Vol. 24, 2006, pp. 433-442.  
doi:10.1016/j.difgeo.2006.02.006 

[13] E. Garca-Ro, Z. Raki and M. E. Vazquez-Abal, “Four- 
Dimensional Indefinite Kähler Osserman Manifolds,” 
Journal of Mathematical Physics, Vol. 46, 2005, p. 
073505 (11 Pages). 

[14] Y. Matsushita, “Walker 4-Manifolds with Proper Almost 
Complex Structures,” Journal of Geometry and Physics, 
Vol. 55, 2005, pp. 385-398.  
doi:10.1016/j.geomphys.2004.12.014 

[15] E. Garca-Ro, S. Haze, N. Katayama and Y. Matsushita, 
“Symplectic, Hermitian and Kähler Structures on Walker 
4-Manifolds,” Journal of Geometry, Vol. 90, 2008, pp. 
56-65. doi:10.1007/s00022-008-1999-y 

 

http://dx.doi.org/10.1007/s00220-005-1512-5
http://dx.doi.org/10.1016/j.physleta.2006.04.049
http://dx.doi.org/10.1063/1.1362284
http://dx.doi.org/10.1016/j.geomphys.2004.02.009
http://dx.doi.org/10.1088/0264-9381/22/3/008
http://dx.doi.org/10.1016/j.geomphys.2006.02.007
http://dx.doi.org/10.1016/j.difgeo.2006.02.006
http://dx.doi.org/10.1016/j.geomphys.2004.12.014
http://dx.doi.org/10.1007/s00022-008-1999-y

