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Abstract 
 
A century old methodology for deriving statistical distribution using approximate Stirling’s formulation of 
the factorial becomes questionable. By avoiding the use of exaggerated approximations, a new picture of the 
energy distribution of fermions and bosons are presented. Energy distribution among fermions (or bosons) in 
systems with finite degeneracy are found to be degeneracy dependent. The presented point of view explains, 
successfully, presence of degeneracy pressure in ultra-cooled Fermi gas and predicts the minimum accessible 
temperature for finite degeneracy fermions system. 
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1. Introduction 
 
Energy distribution among limited number of particles 
with finite degeneracy was a confusing issue when deal-
ing with nuclear reaction/interaction. It is of the interest 
in pre- equilibrium reaction [1,2] in which low degener-
acy states are occupied by finite number of excitons that 
exist together for very short time compared to the total 
reaction time; very long as compared to the nucleon- 
nucleon interaction time. As a matter of quantum nature 
of physical system, non-degenerate and low degeneracy 
systems are considered finite; which means that systems 
from nuclei to nanoparticle are finite and their properties 
may be comparable. Credibility in the formulations for 
the asymptotic Maxwell-Boltzmann (MB), Fermi-Dirac 
(FD) and Bose-Einstein (BE) distribution functions guided 
the physicists through a century to great findings. How-
ever, modern science needs more precise expressions for 
these distributions [3-6]. In general, the current statistical 
description of the physical ensemble needs adjustment in 
order to follow proper justification of the definition of 
number and equivalence (or even non-equivalence) of a 
priori probabilities. One way to attain such objective is to 
avoid approximation. In the present work, more precise 
methodology is used to avoid usage of Stirling’s ap-
proximation that is used to derive the asymptotic MB, 

FD, and BE formulae. 
 
2. Formulation 
 
2.1. Dilemma of the Factorial 
 
The explicit expression of the factorial function n! for 
integer value of n is given as; 
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This summation is valid for any integer value of . 
For other non-integer values of n,  function repre-
sents monotonic interpolation of the factorial function. 
The asymptotic behavior of the  function with con-
tinues argument, x, is expected to follow the Stirling’s 
approximation; 
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This formula fails to give acceptable representation for 
the range in which the argument x is small. Several other 
formulae are proposed [7-10] which works well as the 
argument approach small values. Acceptable approxima-
tion of the   function is given as [10] 
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2.2. Maximum Entropy and Energy Distribution 
 
Considering identical fermions and bosons gases in 
which the mutual interactions is neglected to apply ex-
tensive forms of entropy [11]. If strong correlation exists, 
Tsallis entropy formulation [12] may be more helpful. 
The number of ways that the states i is filled up with  
fermions is given by the Fermi-Dirac count, 

in
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where ig  and i  are the degeneracy and occupancy 
number of the level i. Similarly for Bose-Einstein count, 
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According to Boltzmann-Gibbs formalism for entropy; 

ln ,S k W                 (6) 

Using exact formula 1, maximization of entropy re-
quire the differentials  

,          (4) 

 

   

 
  

 
   

22 1

0 0 0

ln
ln 1 ln ln 1 ,

b b
jii i gn g n

b bBE
i i i ib b

i r s tj j

W
n g r n s g t

n n

  

  

           
    

                (7) 

     
 

  
 

 
111

0 0 0

ln
ln ln ln ,

ff
j ii i g nng

fFD
i i i if f

i r s tj j

W fg r n s g n
n n

 

  

          
    

    t             (8) 

 
to be zero. Here, the superscripts b and f refer to bosons 
and fermions, respectively. The constraint of total num-
ber of particles and total energy is used to adjust the La-
grange multipliers   and   (see [7] for details.) So, 
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One directly reaches to the following result 
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for bosons, and 
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for fermions. Each of these summations represents a  

harmonic-number function of the form  
1

1
n

r

rH n


  .  

Hence, Equations (7) and (8) are reduced to: 

      1 ,b b
j j j jH n g H n           (12) 

       .f f

To get values of  b
jn  and  f

jn , Equations (12) and 
(13) are reformulated using our intention of the har-
monic-number function of being approximated to a se-
quence including logarithmic term [13]; 

     4
2
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Here,   is the Euler-Mascheroni number. Adding 
and subtracting suitable logarithmic functions of the  

form      ln 1 lnb
j j jn g n  

 

b  in Equation (12) and of 

the form     ln lnf
j j jg n n  f  in Equation (13) shall  

preserve the exactness of the formulae. Equations (12) 
and (13) are rewritten as;  

    ,b bbU V               (15) 

    ,f fbU V               (16) 

where   exp jb     ,   is related to the Fermi  

energy, and i  is the energy of a state i, 

      1 1b
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Values of the harmonic-number function are calcu-
lated by evaluation of the integration [14]; 

means of high magnetic field is usually done. Fermions 
are atoms with odd number of neutrons like 6Li and 40K 
wh e bo ons are ato with m ne
lik 7Li, 23Na, and 87R     1

0
1 1 d .nH n x x x            (21) 

 
3. Results and Discussion  

near functions of
 
Equations (15) and (16) are nonli  jn  

hical and are difficult to be solved analytically and grap
r

istribution is extending 
 very low energy without limit. Contradiction that may 

technique is used instead; the resultant distribution fo  
fermions and bosons are given in Figure 1. 
 
3.1. Case of Fermions 
 
It is known that the formal FD d
to
appear in the present fermions-distribution may be con-
fusing. According to the results given in Figure 1(a), the 
fermions-distribution (as I shall call) is degeneracy de-
pendent. In this fermions-distribution, there are bounds 
for the particle energy. Let us assign the high energy 
bound at Fb    and the low energy bound at Fb   . 
Some fermions low energy limits are given in Table 1 
together w associated 1-dimensional temper n 
the unit of Fermi temperature. 

Let us recall experiments of evaporative cooling of 
diluted fermions gas. The cooli

ith its ature i

ng process is usually me-
di

 

on-degenerate (gi = 1) and low degeneracy Fermi gas. Here 

ated by bosons gas (sympathetic cooling cf. [21].) In 
such experiments, introduction of Zeeman splitting by 
 
Table 1. The lower bound of accessible temperature for 
n
d  is the degeneracy of the fermion state. D is the number 
of degree of freedoms in which the measurements are taken 

 and in FT T   (Expec.) = 2  ln 1Fδ D  . 

FT T  
d  ln F

  D 
Expec. Measured System Ref.

10 2.93 1 0.15 - - - 

5 2.29 1 0.18 - - - 

3 1.84 1 0.21 - - - 

2 1.5 1 0.27 - - 

7

- 

1 1 1 0.33 

il s ms  even nu ber of utrons 
e b.  
The degeneracy pressure prevents cooling of the fer-

mion gas to temperature less than certain value, say T   
in present case. Two main techniques had been used to 
determine the temperature; the first is the optical density 
for specific wavelengths absorbed through the gas cloud 
[15-18] which measure the one-dimensional kinetic en-
ergy, 2kT  . The second technique uses spatial di-
mension of the cloud shadows [19,20] which measure the 
two-dimensional kinetic energy, kT  . The high 
magnetic field ensures the non-degeneracy of these states, 
i.e. 1ig  . According to my results, the lowest tem-
perature for non-degenerate Fermi gas should be 3FT  
in one-dimensions which is equivalent to 2FT  in two 
dimensions. These result are exactly the minimum tem-
perature ever reached until now for non-degenerate Fer-
mi gas, see Table 1 for comparison with experimental 
results. 
 
3.2. Case of Bosons 
 
Similar degeneracy effect is apparent for the bosons- 

istribution (as I shall call) as shown in Figure 1(b). At 
sons-distribution coincide with 

perimental evidence for the ab-

d
very low energy, the bo
he BE-distribution. Ext

sence of low energy bound is observed during synpa-
thetic cooling of fermions and bosons mixture. Truscott 
et al. [20] give definite evidence that continues to cool 
down. There is a certain high-energy limit for the bos-
ons-distribution (no-solution could be found for Equa-
tions (15) and (16)), typically at Bb  . The high en-
ergy limit of the of the bosons-distribution ( Bb  ) 
may give attributes of the “maximum” accessible energy 
for the bosons in the system. 

The limitations F
 , F

 , and B  can be estimated 
for a good approximation by applying the principle of 
maximum entropy and Lagrange multipliers technique 
using Equation (3). One gets directly the most probable 
distribu y; tion in energ
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0.33 ± 0.005 6Li- Li [15] 

6

6

40 87

0.5 ± 20% 

6Li-7 i

  3 0.6 - - - 

  1 0.33 <0.5 Li- Na

23

23 [16] 

  1 0.33 0.3-1 Li- Na [17] 

  1 0.33 0.35 K- Rb

40

[18] 

  2 0.5 K [19] 

  2 0.5 0.5 ± 3% L [20] 
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for fermions and bosons, respectively. Here, 

     (24)  
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(a) 

 

 
(b) 

Figure 1. Connected symbols refer to graphical solutions of
Equations (15) and (16) (a) for fermions and (b) for bosons;
while for the FD and BE distributions are represented by
solid line without symbols. In part (a), the intersections with
the horizontal axis at and 1 give the reciprocal
values of
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The asterisk indicates that the variables are derived 
using approximation 3. The limits F

 , F
 , and B  

that satisfies Equations (22) and (23) is obtained by giv-
    ing , and resp at is; * 0,1f

jn  * 0b
jn  , ectively. Th
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  1 exp 1 2 1 12 7 .B j jg g g       (2  

which satisfies the equality 1F F   . As the value of 

jg  the valu

2 12j 7)

increases, e of    increases. Hence, highly 
nerate Fermi system follow FD distribution. 

 
4. Conclusions 
 
The applicability of the formal FD and BE statistical 
distributions become questionable in finite sys
small degeneracy in spite of its success in describing 

ore precis
but

 
onsidered, there is a minimum temperature limit that the 

ach upon, without violation of Pauli 
xclusion Principle. 

dege  should 

tems of 

common physical system. M e quantum distri-
ion functions need to be used if the degeneracy of the 

state of the system is low. If a system of fermions gas is
c
system cannot encro
E
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