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Abstract 
 
A comparative study is made among Laplace Transform Technique (LTT) and Fourier Transform Technique 
(FTT) to obtain one-dimensional analytical solution for conservative solute transport along unsteady ground- 
water flow in semi-infinite aquifer. The time-dependent source of contaminant concentration is considered at 
the origin and at the other end of the aquifer is supposed to be zero. Initially, aquifer is not solute free which 
means that the solute concentration exits in groundwater system and it is assumed as a uniform concentration. 
The aquifer is considered homogeneous and semi-infinite. The time-dependent velocity expressions are con-
sidered. The result may be used as preliminary predictive tools in groundwater management and benchmark 
the numerical code and solutions. 
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1. Introduction 
 

As we know, groundwater constituents are an important 
component of many natural water resource systems 
which supply water for domestic, industrial and agricul- 
tural purposes. It is generally a good source of drinking 
water. It is believed that groundwater is more risk free in 
compare to the surface water. But these days pollution of 
groundwater is growing continuously in the various de- 
veloping countries particularly India due to the indis- 
criminate discharge of waste water from the various in- 
dustries, especially coal based industries, which do not 
have sufficient treatment facilities. These industries dis- 
charge their waste water into the neighboring ponds, 
streams; rivers etc. The chemical constituents of the waste 
material often infiltrate from these ponds and mixed with 
the groundwater system causes groundwater contamina- 
tion [1-4]. Groundwater modeling is specially used in the 
hydrological sciences for the assessment of the resource 
potential and prediction of future impact under different 
conditions. Many experimental and theoretical studies 
were undertaken to improve the understanding, manage- 
ment, and prediction of the movement of contaminant 
behavior in groundwater system. These investigations are 
primarily motivated by concerns about possible contami- 

nation of the subsurface environment. Hydrologist, Civil 
engineers, Scientists etc. are doing their best to solve this 
type of serious problem by various means. The subsur- 
face solute transport is generally described with the ad- 
vection-diffusion (AD) equation. In the deterministic 
approach, explicit closed-form solutions for transport 
problem can often be derived if the model parameters are 
constant with respect to time and position [5]. Mathe- 
matical modelling is one of the powerful tools to project 
the existing problems and its appropriate solutions. Al- 
though many transport problems must be solved numeri- 
cally, analytical solutions are still pursued by many sci- 
entists because they can provide better physical insight 
into problems. Groundwater transport and its mathemati- 
cal models were presented significantly [6-11]. Analyti- 
cal approach of solute transport problems in ground- 
water reservoirs is explored [12-14]. In the present work, 
our objective is to find the analytical solutions using 
Fourier Transform Technique (FTT) and to compare the 
result with the solution obtained by Laplace Transform 
Technique (LTT). To predict the nature of the contami- 
nant concentration along unsteady groundwater flow in 
semi-infinite aquifer, a comparative study is made by the 
proposed methods. Time-dependent velocity expres- 
sions are considered to illustrate the obtained result.  
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2. Mathematical Formation of the Problem 
 

Consider a homogeneous semi-infinite aquifer. The time- 
dependent source of contaminant concentration is con- 
sidered at the origin, i.e., at 0x  and at the other end 
of the aquifer is supposed to be zero. The groundwater 
flow in the aquifer is unsteady where the velocity follows 
either a sinusoidal form or an exponential decreasing 
form. The sinusoidal form of velocity represents the sea-
sonal variation in a year often observed in tropical regions 
like Indian sub-continent. In order to mathematically for- 
mulate the problem, let  ,c x t  be the concentration of 
contaminants in the aquifer [ML–3], u  the groundwater 
velocity [LT–1], and D  the dispersion coefficient [L2T–1] 
at time t  [T]. Initially the groundwater is not supposed 
to be solute free i.e., at time 0t  , the aquifer is not 
clean which means that some initial background concen- 
tration exists in aquifer system. It is represented by uni- 
form concentration ic . The problem can be formulated as 
follows: 

2

2

c c c
D u

x tx

  
 

 
               (1) 

 0u u V t                      (2) 

where 0u  is the initial groundwater velocity [LT–1] at 
distance x  [L]. Here, two forms of  V t  are consid-
ered such as 

  1 sinV t mt   

and               exp , 1V t mt mt    

where m  is the flow resistance coefficient [T–1]. In aq- 
uifers in tropical regions, groundwater velocity and water 
level may exhibit seasonally sinusoidal behavior. In tropi- 
cal regions like in Indian sub-continent, groundwater ve- 
locity and water level are minimum during the peak of the 
summer season (the period of greatest pumping), which 
falls in the month of June, just before rainy season. 
Maximum values are observed during the peak of winter 
season around December, after the rainy season (the pe- 
riod of lowest pumping). In these regions, groundwater 
infiltration is from rainfall and rivers. However, exponen- 
tially decreasing velocity expression is taken into consi-  
deration, keeping the views of literature [15]. The initial 
and boundary conditions can be expressed as: 

 , ;  0, 0ic x t c x t                 (3) 

   0,  1 exp ;    > 0, 0 c x t c qt t x           (4a) 

0;   0,  t x                    (4b) 

0;  
c

x
x


 


                    (5) 

where ic  is the initial concentration [MT–3] describing 
distribution of the contaminant concentration at all point 
i.e., at 0x  , 0c  is the solute concentration [MT–3] and 

q  is the decay rate coefficients [T–1]. The physical sys- 
tem of the problem is shown in the Figure 1.  

The dispersion coefficient, vary approximately di- 
rectly to seepage velocity for various types of porous 
media [16]. Also it was found that such relationship es- 
tablished for steady flow was also valid for unsteady 
flow with sinusoidally varying seepage velocity [17]. Let 
D au  where the coefficient of dimension length is a  
and depends upon pore system geometry and average 
pore size diameter of porous medium. However, mo- 
lecular diffusion is not included in the present discussion 
only because the value of molecular diffusion does not 
vary significantly for different soil and contaminant com- 
binations and they range from 1 × 10–9 to 2 × 10–9 m2/sec 
[18]. 

Using Equation (2), we get  0D D V t  Here 0D  

0au  is an initial dispersion coefficient. Equation (1) 
can now be written as follows: 

 
2

0 02

1c c c
D u

x V t tx

  
 

 
           (6) 

A new time variable is introduced by the transforma-
tion [19] 

 *

0

dt
t

T V t                     (7) 

and Equation (6) becomes 
2

0 02 *

c c c
D u

xx T

  
 

 
             (8) 

Now the set of dimensionless parameters are defined 
as follows 

2
0 0 0

2
0 0 0 0

  *
, ,   ,

x u u T qDc
C X T Q

c D D u
       (9) 

The PDE (8) in the form of non-dimensional variable 
may be written as 

2

2

C C C

X TX

  
 
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             (10) 

 
0

, ; 0, 0ic
C X T X T

c
       (11) 

 

 

Figure 1. Physical system depicting the problem. 
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 , 2 ;   >  0, 0 C X T QT T X        (12a) 

0; 0,  T X              (12b) 

 ,
0;

C X T
X

X


 


            (13) 

 
3. Analytical Solutions 

 
As we all know analytical solution of the problem pro- 
vide closed form solution which gives more realistic re- 
sult rather than numerical solution which provide ap- 
proximate solution confining the percentage of error. 
These days, numerical solution of the complicated prob- 
lem for which analytical solution is not available, is be- 
ing obtained frequently by the various scientists and re- 
searchers in India and abroad. For example, the follow- 
ing contributions must be cited: A solution of the differ- 
ential equation of longitudinal dispersion in porous me- 
dium was presented [20]. Analytical solutions of one- 
dimensional convective-dispersion solute transport equa- 
tions were very well presented [21-22]. Dispersion of 
pollutants in semi-infinite porous media with unsteady 
velocity distribution was discussed [23]. Analytical solu- 
tions for convective dispersive transport in confined aq-
uifers with different initial and boundary conditions were 
obtained [24]. Analytical solution of a convection-dis- 
persion model with time-dependent transport coefficients 
was presented [25]. Analytical solution of one dimen- 
sional time-dependent transport equation was presented 
[26]. Analytical solutions of the solute transport equation 
with rate-limited desorption and decay was explored [27]. 
One-dimensional virus transport homogeneous porous 
media with time dependent distribution coefficient was 
presented [28]. A Solute transport in porous media with 
scale-dependent dispersion and periodic boundary condi- 
tions was also presented [29]. Analytical solution for 
solute transport with depth dependent transformation or 
sorption coefficient was presented [30]. Solute Disper- 
sion along unsteady groundwater flow in a semi-infinite 
aquifer was reported [31]. Analytical solutions for solute 
transport in saturated porous media with semi-infinite or 
finite thickness were presented [32]. A parametric study 
of one dimensional solute transport in deformable porous 
medium was explored [33]. In recent works, one-dimen- 
sional analytical approach of solute transport models in 
homogeneous as well as inhomogeneous aquifer are also  

explored [34,35]. Investigation of consolidation-induced 
solute transport: effects of consolidation on solute trans- 
port parameters were discussed and it was further ex- 
tended in which experimental and numerical results were 
explored [36,37]. Analytical solutions for contaminant 
diffusion in double-layered porous media were presented 
[38]. All these analytical solutions are having some limi- 
tations though significant contribution for the scientific 
community is very well reported.  

 
3.1. Solution Using Laplace Transform 

 
Using the transformation 

   , , exp
2 4

X T
C X T K X T    

 
         (14) 

The solution (15) of above problem was obtained with 
same initial and boundary conditions [35]. 
 
3.2. Solution Using Fourier Transform 

 
Using transformation given in (14) in Equations (10)-(13) 
and applying Fourier Transform, we can get the solution 
of given boundary value problem as follows: 
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where    
0

2
, , sin ,

π



 sK p T K X T pXdX       (17) 

Taking inverse Fourier Transform for (16) and substi-
tuting the value of ( , ) K X T in (14), we may obtained 
the desired solution is (See in Appendix)  
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4. Illustration and Discussion 
 
We consider the sinusoidally varying and exponentially 
decreasing forms of velocities which are valid fortran- 
sient groundwater flow too [15, 23]. Now from Equation 
(2) the velocity expressions are as follows: 

   0 1 sinu t u mt                 (19a) 

   0 exp ,  1u t u mt mt            (19b) 

where m(/day) is the flow resistance coefficient. For both 
the expressions, the non-dimensional time variable T 
may be written as 
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0

1 cos
u

T mt mt
mD

            (20a) 

 
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0

1 exp
u

T mt
mD

              (20b) 

where mt = 3k + 2, k is a whole number are chosen. For 
m = 0.0165 (/day), (19a) yields, t (days) =182k + 121, 
approximately. For these values of mt, the velocity u, is 
alternatively minimum and maximum. Hence it repre- 
sents the groundwater level and velocity minimum dur- 
ing the month of June and maximum during December 
just after six months (Approximately 182 days) in one 
year. The next data of t represents minimum and maxi- 
mum records during June and December respectively in 
the subsequent years. The sinusoidally varying and ex- 
ponentially decreasing form of velocity representations 
are made graphically with respect to time at different 
values of seepage velocity and dispersion parameters and 
shown in the Figures 2(a) and (b). As we increase the 
seepage velocity parameter, the peak of sinusoidal form 
of velocity increases which reveals in Figure 2(a). This 
representation can often be observed in tropical region of 
India. An analytical solutions (15) and (18) are computed 
for the values ci = 0.1, c0 = 1.0, u0 = 0.033 - 0.045 km/day, 
D0 = 0.33 - 0.45 km2/day, q = 0.0009(/day), and x  = 10 
km. The time-dependent concentration values are de- 
picted from the table 1(a-d) for sinusoidal form of veloc- 
ity expression 19(a) at the seepage velocity u0 ranging 
from 0.033 km/day to 0.042 km/day and dispersions pa- 
rameter D0 ranging from 0.33 km2/day to 0.42 km2/day. 
The concentration values at different positions are ob- 
tained for both the methods LTT and FTT in row (i) and 
row (ii) respectively shown in Tables 1and 2. It is ob- 
served that concentration values decreases rapidly in row 
(i) in comparison to row (ii). However, in Tables 3 and 4 
the concentration values also decreases rapidly in row (i) 
and slowly and gradually converges at a common point  
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Figure 2. Time-dependent (a) sinusoidally varying velocity and (b) exponentially decreasing velocity representations subject 
to seepage velocity u0 = 0.033 - 0.045 km/day. Curves No. 1 - 5 represent the contaminant concentrations in 5th year, 6th year, 
and 7th year December and June, respectively. 
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Table 1. Contaminant Concentration values in sinusoidal form of velocity with u0 = 0.033, D0 = 0.33 using (i) Laplace 
Transform Technique and (ii) Fourier Transform Technique. 

0 1 2 3 4 5 6 7 8 9 10 
X (km) 

mt = 26, t = 1576 days 

(i) 1.8477 1.4911 1.1343 0.8585 0.5759 0.3340 0.1887 0.1259 0.1058 0.1010 0.1001 

(ii) 1.8477 1.7564 1.4278 0.9765 0.5663 0.2966 0.1648 0.1165 0.1032 0.1005 0.1001 

 mt = 29, t = 1758 days 

(i) 1.8381 1.4816 1.0805 0.7616 0.4798 0.2692 0.1572 0.1146 0.1028 0.1004 0.1000 

(ii) 1.8381 1.7144 1.3475 0.8798 0.4859 0.2487 0.1441 0.1099 0.1017 0.1002 0.1000 

 mt = 32, t = 1940 days 

(i) 1.8109 1.4586 0.9673 0.5667 0.3056 0.1688 0.1167 0.1029 0.1004 0.1000 0.1000 

(ii) 1.8109 1.6049 1.1514 0.6648 0.3281 0.1681 0.1149 0.1024 0.1003 0.1000 0.1000 

 mt = 35, t = 2122 days 

(i) 1.8034 1.4531 0.9447 0.5296 0.2756 0.1541 0.1120 0.1019 0.1002 0.1000 0.1000 

(ii) 1.8034 1.5771 1.1048 0.6183 0.2981 0.1552 0.1111 0.1016 0.1002 0.1000 0.1000 

 mt = 38, t = 2304 days 

(i) 1.7745 1.4349 0.8833 0.4331 0.2031 0.1229 0.1036 0.1004 0.1000 0.1000 0.1000 

(ii) 1.7745 1.4783 0.9489 0.4762 0.2169 0.1251 0.1037 0.1004 0.1000 0.1000 0.1000 

 mt = 41, t = 2486 days 

(i)) 1.7683 1.4315 0.8745 0.4199 0.1938 0.1194 0.1028 0.1003 0.1000 0.1000 0.1000 

(ii) 1.7683 1.4584 0.9194 0.4516 0.2046 0.1212 0.1029 0.1003 0.1000 0.1000 0.1000 

 
Table 2. Contaminant Concentration values in sinusoidal form of velocity with u0 = 0.036, D0 = 0.36 using (i) Laplace 
Transform Technique and (ii) Fourier Transform Technique. 

0 1 2 3 4 5 6 7 8 9 10 
X(km) 

mt = 26, t = 1576 days 

(i) 1.8187 1.4536 0.9357 0.5190 0.2688 0.1514 0.1113 0.1018 0.1002 0.1000 0.1000 

(ii) 1.8187 1.5784 1.0993 0.6122 0.2944 0.1538 0.1107 0.1015 0.1002 0.1000 0.1000 

 mt = 29, t = 1758 days 

(i) 1.8074 1.4457 0.9057 0.4712 0.2321 0.1350 0.1066 0.1009 0.1001 0.1000 0.1000 

(ii) 1.8074 1.5354 1.0288 0.5455 0.2545 0.1381 0.1066 0.1008 0.1001 0.1000 0.1000 

 mt = 32, t =1940 days 

(i) 1.7750 1.4274 0.8548 0.3943 0.1777 0.1138 0.1017 0.1001 0.1000 0.1000 0.1000 

(ii) 1.7750 1.4245 0.8615 0.4045 0.1824 0.1148 0.1018 0.1001 0.1000 0.1000 0.1000 

 mt = 35, t = 2122 days 

(i) 1.7660 1.4234 0.8477 0.3845 0.1713 0.1117 0.1012 0.1001 0.1000 0.1000 0.1000 

(ii) 1.7660 1.3967 0.8227 0.3755 0.1698 0.1115 0.1012 0.1001 0.1000 0.1000 0.1000 

 mt = 38, t = 2304 days 

(i) 1.7317 1.4107 0.8400 0.3764 0.1665 0.1102 0.1010 0.1001 0.1000 0.1000 0.1000 

(ii) 1.7317 1.2989 0.6961 0.2903 0.1378 0.1046 0.1003 0.1000 0.1000 0.1000 0.1000 

 mt = 41, t = 2486 days 

(i) 1.7242 1.4085 0.8416 0.3793 0.1684 0.1109 0.1011 0.1001 0.1000 0.1000 0.1000 

(ii) 1.7242 1.2793 0.6726 0.2762 0.1333 0.1038 0.1003 0.1000 0.1000 0.1000 0.1000 
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Table 3. Contaminant Concentration values in sisoidal form of velocity with u0 = 0.039, D0 = 0.39 using Laplace Transform 
Technique and (ii) Fourier Transform Technique. 

0 1 2 3 4 5 6 7 8 9 10 
X(km) 

mt = 26, t = 1576 days 

(i) 1.7872 1.4274 0.8461 0.3846 0.1723 0.1121 0.1013 0.1001 0.1000 0.1000 0.1000 

(ii) 1.7872 1.4145 0.8395 0.3867 0.1744 0.1127 0.1014 0.1001 0.1000 0.1000 0.1000 

 mt = 29, t = 1758 days 

1.7739 1.4217 0.8384 0.3744 0.1658 0.1100 0.1010 0.1001 0.1000 0.1000 0.1000 (i) 
(ii) 1.7739 1.3719 0.7811 0.3446 0.1572 0.1085 0.1008 0.1000 0.1000 0.1000 0.1000 

 mt = 32, t = 1940 days 

(i) 1.7359 1.4098 0.8423 0.3830 0.1718 0.1122 0.1014 0.1001 0.1000 0.1000 0.1000 

(ii) 1.7359 1.2634 0.6459 0.2596 0.1281 0.1029 0.1002 0.1000 0.1000 0.1000 0.1000 

 mt = 35, t = 2122 days 

(i) 1.7254 1.4075 0.8482 0.3921 0.1777 0.1143 0.1018 0.1002 0.1000 0.1000 0.1000 

(ii) 1.7254 1.2365 0.6152 0.2427 0.1233 0.1022 0.1001 0.1000 0.1000 0.1000 0.1000 

 mt = 38, t = 2304 days 

(i) 1.6851 1.4014 0.8830 0.4424 0.2110 0.1269 0.1048 0.1006 0.1001 0.1000 0.1000 

(ii) 1.6851 1.1429 0.5172 0.1949 0.1118 0.1008 0.1000 0.1000 0.1000 0.1000 0.1000 

 mt = 41, t = 2486 days 

(i) 1.6763 1.4006 0.8925 0.4555 0.2199 0.1305 0.1058 0.1008 0.1001 0.1000 0.1000 

(ii) 1.6763 1.1243 0.4993 0.1872 0.1102 0.1006 0.1000 0.1000 0.1000 0.1000 0.1000 

 
Table 4. Contaminant Concentration values in sinusoidal form of velocity with u0 = 0.042, D0 = 0.42 using Laplace Transform 
Technique and (ii) Fourier Transform Technique 

0 1 2 3 4 5 6 7 8 9 10 
X(km) 

mt = 26, t = 1576 days 

(i) 1.7532 1.4130 0.8405 0.3824 0.1721 0.1124 0.1014 0.1001 0.1000 0.1000 0.1000 

(ii) 1.7532 1.2680 0.6441 0.2576 0.1274 0.1028 0.1002 0.1000 0.1000 0.1000 0.1000 

 mt = 29, t = 1758 days 

(i) 1.7378 1.4100 0.8513 0.3985 0.1825 0.1161 0.1022 0.1002 0.1000 0.1000 0.1000 

(ii) 1.7378 1.2270 0.5976 0.2326 0.1206 0.1018 0.1001 0.1000 0.1000 0.1000 0.1000 

 mt = 32, t = 1940 days 

(i) 1.6937 1.4055 0.8978 0.4640 0.2263 0.1333 0.1065 0.1009 0.1001 0.1000 0.1000 

(ii) 1.6937 1.1239 0.4923 0.1834 0.1095 0.1006 0.1000 0.1000 0.1000 0.1000 0.1000 

 mt = 35, t = 2122 days 

(i) 1.6816 1.4050 0.9133 0.4851 0.2410 0.1397 0.1084 0.1013 0.1001 0.1000 0.1000 

(ii) 1.6816 1.0986 0.4688 0.1739 0.1077 0.1004 0.1000 0.1000 0.1000 0.1000 0.1000 

 mt = 38, t = 2304 days 

(i) 1.6348 1.4055 0.9776 0.5718 0.3046 0.1706 0.1190 0.1039 0.1006 0.1001 0.1000 

(ii) 1.6348 1.0112 0.3945 0.1474 0.1036 0.1001 0.1000 0.1000 0.1000 0.1000 0.1000 

 mt = 41, t = 2486 days 

(i) 1.6246 1.4060 0.9921 0.5912 0.3196 0.1786 0.1221 0.1048 0.1008 0.1001 0.1000 

(ii) 1.6246 0.9940 0.3811 0.1431 0.1030 0.1001 0.1000 0.1000 0.1000 0.1000 0.1000 
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           (a)                                                                (b) 

Figure 3. Time-dependent contaminant source concentrations subject to (a) a sinusoidally varying velocity (b) exponentially 
decreasing velocity using LTT (solid line) and FTT (Dotted line) groundwater flow with longitudinal direction only. 
 
near by the source and after that it further decreases and 
reached towards minimum or harmless concentration. 
But in row (ii), the concentration values decreases and 
goes on decreasing towards minimum or harmless concen- 
tration. The concentration values are depicted graphically in 
the presence of time-dependent source of contaminant con- 
centration at mt = 3k + 2, 8 13k  which represents 
minimum and maximum records of groundwater level 
and velocity during June and December in 5th, 6th and 7th 
years respectively. The contaminant concentration dis- 
tribution behaviour along transient groundwater flow of 
sinusoidally varying velocity is shown in the Figure 3(a) 
at the seepage velocity u0 = 0.045 km/day and disper- 
sions parameter D0 = 0.45 km2/day. It is observed that the 
contaminant concentration decreases at the source and 
emerges at a point nearby origin. After emergence ten- 
ncy of the contaminant concentration is same reaching 
towards the minimum or harmless concentration. But the 
values of the contaminant concentration decreases andin- 
eases with time just before and after the emergence re- 
spectively. For example, before emergence 5th year Dec. 
concentration is less than 5th year June concentra- on 
while after emergence the trend is just reverse. For the 
same set of inputs except m = 0.0002 (/day) as mt < 1, 
equation (15) and (18) are also computed for exponent- 
tially decreasing form of velocity and shown in the Fig- 
ure 3(b). It is also observed that the trend of contaminant 
concentration is almost same as discussed in sinusoidally 
varying velocity but the de- creasing rate is little slower 
at the source and nearby the origin. The decreasing ten- 
dency of concentration values depicted through the Ta- 

bles 1 and 4 and the Figures 3(a) and (b) reveals that 
FTT is more effective in case of increasing the seepage 
velocity and dispersion parameters. However, LTT is 
preferable in the case of decreasing seepage velocity and 
dispersion parameters.  
 
5. Conclusions 
 
A comparative study is made to obtain the analytical 
solution of solute transport modeling in groundwater 
system using LTT and FTT. A solute transport model is 
formulated with time-dependent source concentration in 
one-dimensional homogeneous semi-infinite aquifer with 
suitable initial and boundary conditions. To predict con- 
taminants concentration along transient groundwater flow 
in homogeneous, semi-infinite aquifer FTT is more prefer- 
able than LTT with respect to sensitivity of seepage ve-
locity and dispersion parameters. The dispersion is di-
rectly proportional to seepage velocity concept is used. 
Analytical solution of the problems may help to model 
the numerical codes and solutions. It may be used as the 
preliminary predictive tools in groundwater manage- 
ment. 
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Appendix 
 
Analytical Solution using Fourier Transform Tech- nique 
(FTT): 
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c c c
D u

x tx
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 
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           (1) 

 0u u V t                  (2) 

The initial and boundary conditions can be expressed as: 

 , ;  0, 0ic x t c x t                    (3) 

   0,  1 exp ;    > 0, 0 c x t c qt t x         (4a) 

0;   0,  t x                 (4b) 

0 ;
c

x
x


 


               (5) 

Let D au , where the coefficient of dimension length 
is a  and depends upon pore system geometry and aver-
age pore size diameter of porous medium. Using Equation 
(2), we get 0 ( )D D V t .Here 0 0D au  is an initial dis-
persion coefficient. Equation (1) can now be written as 

2

0 02

1

( )

c c c
D u

x V t tx

  
 

 
           (6) 

A new time variable is introduced by the transforma-
tion [19] 

*

0

( )dt
t

T V t                     (7) 

And Equation (6) becomes 

2

0 02 *

c c c
D u

x Tx

  
 

 
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and initial condition (3) and boundary conditions 4(a, b) 
and (5) becomes 
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   * * *
0, 2 ;   >  0, 0 C x T c QT T x     (10) 

*0; 0,  T x              (11) 

 *,
0 ;

C x T
x

x


 


                (12) 

Now the set of non dimensional variables are defined 
as follows 

2
0 0 0

2
0 0 0 0

  *
, ,   ,

x u u T qDc
C X T Q

c D D u
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The PDE (8) in the form of non-dimensional variable 
may be written as 
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Using the transformation 

   , , exp
2 4

X T
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Then the Equations (14) to (18) can be written as 
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Since  ,K X T is specified at 0X  , thus Fourier 
sine transform is applicable for this problem. 

Taking the Fourier sine transform of the PDE (20) and 
using the notation 
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and using the conditions 
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as X   then equation (20) can take the form 
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[Using eqn.(22)] 
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Solving the differential equation (26) one can get the 
general solution as follows: 
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To remove the arbitrary constant 1c we use the initial 
condition (21) then the equation (27) takes the form (28). 
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Taking the inverse Fourier transform on both side of 
equation (28) and using the transformation given in 
equation (19), one can get (29). 

Hence,  ,C X T can now be written as follows (30): 
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                        
                 

     

   
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Q T X T T X
X X erfc Q X

T T


 
 


                

     

        (29) 
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(30) 

where 
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