
Wireless Sensor Network, 2009, 1, 300-305 
doi:10.4236/wsn.2009.14037 Published Online December 2009 (http://www.scirp.org/journal/wsn). 

Copyright © 2009 SciRes.                                                                                 WSN 

Blending Sensor Scheduling Strategy with Particle 
Filter to Track a Smart Target 

Bin LIU1, Chunlin JI1, Yangyang ZHANG2, Chengpeng HAO3 
1Department of Statistical Science, Duke University, Durham, U. S. A 

2Adastral Park Research Campus, University College London, London, UK  
3Institute of Acoustics, Chinese Academy of Sciences, Beijing, China 

Email: {bin.liu2, chunlin.ji}@duke.edu, y.zhang@adastral.ucl.ac.uk, haochengp@sohu.com 
Received April 17, 2009; revised July 20, 2009; accepted July 21, 2009  

Abstract 

We discuss blending sensor scheduling strategies with particle filtering (PF) methods to deal with the prob-
lem of tracking a ‘smart’ target, that is, a target being able to be aware it is being tracked and act in a manner 
that makes the future track more difficult. We concern here how to accurately track the target with a care on 
concealing the observer to a possible extent. We propose a PF method, which is tailored to mix a sensor 
scheduling technique, called covariance control, within its framework. A Rao-blackwellised unscented Kal-
man filter (UKF) is used to produce proposal distributions for the PF method, making it more robust and 
computationally efficient. We show that the proposed method can balance the tracking filter performance 
with the observer’s concealment. 
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1. Introduction 
 
The problem of target tracking has received considerable 
attention from both academic and engineering communi-
ties. Generally, people formulate this problem as a state 
estimation or filtering problem, focusing on the tracking 
filter’s performance. A limitation of such works in the 
literature is that it assumes that any changes in the be-
havior of the target are unconnected to the action of the 
target tracking process. However, in many real-world 
situations, this is an unrealistic assumption. Taking a 
sonar application as an example, where the observer is an 
autonomous underwater vehicle (AUV), the target, e.g., a 
submarine equipped with elaborate detection instruments, 
is able to detect, and, once it is aware it is being tracked, 
it can modify its behavior quickly to escape from this 
track and make the future track more difficult. 

A complete solution to the problem of tracking a smart 
target is still an open problem. However, some initial 
results are available. Kreucher et al perform a reinforce-
ment learning approach to schedule a multi-modality 

sensor to detect and track smart targets [1]. For their ap-
proach, a multi-step ahead scheduling policy is essential 
to provide sensible performance. Savage et al. consider 
an idealized problem where the target has a set of possi-
ble motion models and selects the one to best reduce the 
sensor’s tracking performance, and treat this problem in 
the framework of game theory [2]. Gittins and Roberts 
use game theory to investigate the case in which a target 
is trying to escape detection [3,4]. We consider the prob-
lem of tracking a smart target with a care on concealing 
the observer to an extent and propose a smart tracker by 
mixing a sensor scheduling technique with particle fil-
tering (PF) methods [5]. 

This paper is an expanded version of [5]. Here we 
assume there are two sensors to be used by the observer, 
with passive and active modalities, respectively. The 
passive sensor measures the energy that has already ex-
isted in the environment, without emitting any energy 
outside. Such a quite mode makes the observer conceal 
itself well, but cannot guarantee the tracking perform-
ance, especially when the SNR is small. Differing from 
the passive sensor, the active one emits energy to the 
environment and before collecting reflected energy to do 
detection. Such an active mode has substantially better 
detection and tracking capabilities than the passive one, 
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however, it makes the observer easily detected by the 
target. So, employing these two sensors, there is a   
contradiction between the tracking filter’s performance 
and the concealment of the observer. The goal of this 
paper is actually to design a method, which can both 
guarantee the tracking filter’s performance and conceal 
the observer to a reasonable extent. We resort to sensor 
scheduling strategies and particle filtering (PF) methods 
to seek a balance between these two aspects. 

Sensor job (time) scheduling is within the context of 
multi-sensor management. It has become increasingly 
important in the research and development of modern 
multi-sensor systems. Sensor scheduling lies in the first 
level of a top-down policy of sensor management with 
the role of assigning each sensor with a detailed 
schedule on what to do [6]. PF is a Sequential Monte 
Carlo method which founds great research and applica-
tions in the last decade (see [7–9] and references 
therein). It beats Kalman filter, a classical method used 
in the target tracking discipline, in dealing with 
nonlinear dynamical and measurement models and 
non-Gaussian noises in the model. Theoretically, em-
ploying enough particles, PF can provide an approxi-
mate optimal Bayesian solution to any state-space 
based estimation problem. In this paper we mix a spe-
cific sensor scheduling technique, namely covariance 
control [10], with PF methods to deal with the problem 
of tracking a smart target. We use a Rao-blackwellised 
unscented Kalman filter (UKF) [11] to produce pro-
posal distributions for the PF, making it more robust 
and computationally efficient. It is shown that the 
proposed method provides a balance between the 
tracking filter’s performance and the observer’s con-
cealment, hence it satisfies our needs for the problem 
under consideration. 

The remaining of this paper is organized as follows. 
Section 2 describes the dynamic models involved. Sec-
tion 3 presents the sensor scheduling technique, covari-
ance control. The proposed PF algorithm is illustrated in 
Section 4 and its performance is evaluated in Section 5. 
Finally we conclude this paper in Section 6. 
 
2. Models 

In this section, we describe the models involved in this 
paper. First the dynamic model for the target is presented. 

Then the measurement models are derived for both the 
passive and the active sensors. 

The evolution of the target state, , is modeled by a 
discrete time linear Gaussian: 

xk

1 x Fxk k vk                 (1) 

where  0,Qkv N . Here the target state vector is com-

posed of the position and velocity items in the x  and 
 coordinates and is defined as follows: y
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where the dot denotes the operation of first order deriva-
tive and the superscript T  denotes transposition of a 
matrix. We use a constant-velocity process model for the 
target, so that 
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where T is the sampling period, sq is the power spectral 
density of the acceleration noise in the spatial dimen-
sions. 

Defining  , ,, k o k o kx y

k

 as the observer’s position 

at time step , we derive measurement functions for 
both the passive and the active sensors in the following. 
We consider the case where the passive sensor only pro-
vides relative bearings measurements originated from the 
target, then the associated measurement function is 

, ,
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where . (0, )Rk bn N

We assume the observer adopts a track-while-scan 
sensor [10] to do active sensing, which can measure both 
the bearings and the ranges. The associated measurement 
function is denoted as 

k z  , ,

, ,

2 2

, , , ,atan , ( ) ( ) ,



  

  
   

  
t k o k

t k o k

T

t k o k t k o k

T

k k

x x

y y
x x y y n r

                 (6) 

where  denotes the noise item in the range. 

So the covariance matrix of the measurement noise is 

. Here  denotes the operation of dia- 

gonalization. 
(0, )Rkr N d [ , ]R Rb ddiag diag
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3. A Sensor Scheduling Technique:  

Covariance Control  
 
In this section we present the sensor scheduling tech- 
nique, called covariance control, which will be embed-
ded in the PF framework described in Section 4. 

Covariance control begins with a desired covariance 
matrix, which is this approach differs from many other 
sensor management algorithms. A desired covariance 
matrix for an -dimensional state estimate, n PD , is de-
fined by all  elements of that matrix. The goal is to 
find a specific sensor combination  that produces co-
variance matrix P , assuring the difference 

nn
i

i PD Pi

 is 
positive semi-definite. To properly evaluate that differ-
ence, a scalar metric is needed. A variety of these exist, 
including functions based on the determinant or the trace 
of the matrix. However, these metrics rely on the positive 
definiteness of the matrix to provide accurate evaluations. 
If a difference is only semi-definite, then the determinant 
is zero, possibly masking a large difference in a different 
direction (note that a covariance can be represented as an 
ellipsoid, whose axes directions can be indicated by the 
eigenvectors of the covariance matrix). A similar prob-
lem exists with the trace, where a large positive differ-
ence can mask a large negative difference along a dif-
ferent direction. To avoid these problems, M. Kalandros 
and L. Y. Pao, examined other techniques, such as the 
eigenvalue/minimum sensors algorithm, the matrix norm 
algorithm and the norm/sensors algorithm [10]. The 
norm/sensors algorithm relaxes the requirements of the 
matrix norm technique, allowing the norm of the covari-
ance difference to vary within a predefined boundary 
 . So we borrow the idea of the norm/sensors algo-

rithm and propose the following sensor scheduling strat-
egy: 

 
·If 

2D  P Pk                (7) 

select the active sensor to work for next time step; 
·Else 
select the passive sensor to work for next time step. 
( kP  denotes the covariance matrix associated with the 

estimate for the target state at the k th time step) 
Note that the aim of this sensor scheduling strategy is to 

select an appropriate sensor for use for next iteration of the 
tracking process, other than to search a sensor combination 
that can work with the fewest sensors involved, which is 
the purpose of the methods proposed in [10]. 

4. Particle Filtering Algorithm 

This section presents our proposed PF algorithm. First 
we give a brief introduction for a basic PF method. Then 

we describe the Rao-blackwellised UKF [11], which is 
used to produce proposal distributions for our PF method. 
Finally we mix the sensor scheduling technique pre-
sented in Section 3 with the PF algorithm, leading to the 
proposed method for tracking a smart target. 

Particle filter is a Sequential Monte Carlo method, 
whose basic idea is very simple: the target distribution is 
represented by a weighted set of Monte Carlo samples. 
These samples are propagated and updated using a se-
quential version of importance sampling as new meas-
urements become available. We summarize a basic PF 
algorithm as follows, while referring the reader to [7–9] 
for detail discussions on PF methods. 

 
Algorithm 1: Basic Particle Filter Algorithm 
 Initialization. Sample N  equally weighted parti-
cles from the initial pdf  of the target state,  0xp : 

 For 1, , i N  

 0 0 0
1

;     x xi ip
N

 

 Set 0k  
 Iteration 1k  
 Sampling new particles from proposal distribution 
 q  , i.e., 
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k q  
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
11   

ii
kk , and  1

1

1 



N

i
k

i

 Selection step: Multiply/Suppress particles with 
high/low importance weights respectively, resulting in a 

set of equally weighted particles, . 1 , 1, , x i
k i N
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The design of the proposal distribution, i.e.,  q , is of 

paramount importance for the PF algorithm. It has been 
shown that UKF can be used to produce good proposal 
distributions, particularly when the observation model is 
nonlinear [12]. The idea is that one treats a Guassian 
distribution outputted by the UKF as the PF’s proposal 
distribution. It is shown that Rao-blackwellization tech-
nique can be used to improve the UKF’s computational 
efficiency [11]. So here we adopt the Rao-blackwellised 
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UKF (RB-UKF) to generate the PF’s proposal. An im-
plementation of RB-UKF based on the models described 
in Section 2 is summarized as follows. 
 
Algorithm 2: RB-UKF Algorithm 
Assume we have got the estimate for the target state at 
time step k, , with its corresponding covariance, , 
the goal is to solve  and , as a new measure-
ment  arrives. 

xk Pk

1xk 1Pk

1zk

 Linear State Prediction: 
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for  1, , 2  i n n

where  is the dimension of the state vector, and n  , 
 , and   are parameters prescribed beforehand for the 
UKF. 
 Nonlinear measurement update based on Unscented 
Transform 
 n . (  , ,  0,1, , 2 z i u ih i h  denotes the meas-

urement function) 

  
2

,

0




 z z
n

c
u i i u

i

 z    , ,

0




  P z z z  T
c

u uu i i u i u

i

  
2

,    P z
n T

c
uc i i p i u

2n

1 1  z

 z  
0i

1K P Pc u  

  z uk   x Kk p

  1  P P KP KT
k p u

Next we use such RB-UKF algorithm to generate 
proposal distributions for the PF, and mix the sensor 
scheduling technique proposed in Section 3 into the PF 
framework, leading to the proposed PF algorithm. 
 
Algorithm 3: The Proposed PF Algorithm for Smart 
Target Tracking 
 Initialization. 
 Sample N  equally weighted particles from the 
initial pdf of the target state,  0xp  

 Assign specific values for the desired covariance 

matrix, Pd , and   

 Set 0k  
 Sensor scheduling for the next time step: use the 
active sensor while keep the passive one idle 

1k   Iteration 
 For 1, , i N  
 Perform RB-UKF algorithm to xi

k  to get 
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 Selection step: Multiply/Suppress particles with 
high/low importance weights respectively, resulting in a 
set of equally weighted particles, , ,  . 1k

 Output: 
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 Sensor scheduling for the next time step: 
N

 

 If  
2

D 1  P xkCov  

select the active sensor to work while keep the passive 
one idle; 
 Else, select the passive sensor to work while keep 
the active one idle. 
 
5. Performance Evaluation 
 
In this section, we evaluate the performance of our pro-
posed method in Section 4 by simulations. First, we 
compare the tracking performance of our method with 
those of two other trackers, one adopting the passive 
sensor for detection and the other utilizing the active 
sensor for detection, based on a set of Monte-Carlo (MC) 
simulations. The purpose of this comparison is to dem-
onstrate the effect of the sensor scheduling technique in 
the aspect of concealing the observer. Next, we investi-
gate the effects of the parameter   on our method’s 
performance. This parameter is used to measure the dif-
ference between the desired covariance and the current  
estimation covariance in the sensor scheduling stage of  
our method. 
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The scenario to be investigated is shown in Figure 1. 
The observer travels at a fixed speed of 10m/s and exe-
cutes 2 maneuvers. The observation period lasts 40 sec-
onds. The target motion, described by (1) in this simula-
tion, is subjected to an amount of process noise with 

. The initial position and speed of the target are 

 
and 

1sq

300 , 300m m  12.25 , 12.25m s m s , respectively. The 

other parameters for simulation initialization are summa-
rized in Table 1. 

For performance comparison, we take the root-mean 
square (RMS) position error as the index: 

   2 2
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where , ,( ,i i
t k t kx y

 
and 

,,( ,
t k

i i
t k )yx

 
denote the true and the 

estimated target positions at time step k at the ith MC run, 
and M is the total number of independent MC runs. Here 

 runs are done for the following three trackers, 
the proposed sensor scheduling based PF (SS-PF) tracker, 
the passive/active mode PF (PaPF/AcPF) tracker which 
only use the passive/active sensor in the filtering process. 
As shown in Figure 2, the performance of the proposed 
SS-PF tracker is comparable to that of the AcPF tracker, 
and it is much better than that of the PaPF tracker. For 
the SS-PF tracker, the average number of time epochs, 
when the active sensor is used during the whole tracking 
process, is only 13. It means that the SS-PF tracker gets a 
similar filtering performance as that of the tracker which 
uses the active sensor all the time, while concealing the 
observer to an extent by reducing the use of the active 
sensor. A specific estimation result of this SS-PF for the 
target’s trajectory is shown in Figure 1; the associated 
sensor scheduling result is also illustrated in Figure 4. As 
can be seen, at first, the SS-PF tracker selects the active 
sensor to do detection to get a good enough tracking ini-
tialization, then it dynamically switch the uses of the 
passive and the active sensors online. The sensor switch 

50M

uses of the passive and the active sensors online. The sen- 

Table 1. Parameters used for initialization. 

Symbol Quantity Value 

T Sampling period 1s 

σb
 Standard error of bearing noise 1˚

 

σd
 Standard error of range noise 5m 

N Particle Number 
200 

 

PD  desired covariance matrix diag([5 0.25 0.2]) 

δ predefined boundary for 
the norm of covariance 

 
5 

 

Figure 1. The observer’s and the target’s movement trajec-
tories in this experiment. 
 

 
Figure 2. RMS position error versus time. PaPF and AcPF 
denotes passive mode and active mode PF tracker respectively, 
and SS-PF denotes the proposed tracker in this paper. 
 

 
Figure 3. The true target trajectory against the estimated 
one by the proposed PF tracker. 
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the latter may react in a manner that makes the future 
track more difficult. We analyze the relationship between 
the tracking filter performance and the observer’s con-
cealment. Based on such analysis, we propose a novel 
tracking method, in which a sensor scheduling technique, 
covariance control, is blended with an elaborately de-
vised PF algorithm. Both theoretical analysis and simula-
tion results demonstrate the efficiency of this method in 
dealing with the problem under consideration. It is 
shown that this method can balance the state filtering 
performance with the concealment of the observer well. 
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