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Abstract

An alternative option pricing model is proposed, in which the asset prices follow the jump-diffusion model
with square root stochastic volatility. The stochastic volatility follows the jump-diffusion with square root
and mean reverting. We find a formulation for the European-style option in terms of characteristic functions

of tail probabilities.
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1. Introduction

Let (Q,F,P) be a probability space with filtration
F=(F)
section will be defined in this space. An asset price

model with stochastic volatility has been defined by
Heston [1] which has the following dynamics:

ds, =S, (udt+v,dw® ), (1)

dv, =x(0-v,)dt+o v, dW,,

where S, is the asset price, u <R is the rate of return of
the asset, v, is the volatility of asset returns, x>0 is
a mean-reverting rate, & € R is the long term variance,
o >0 is the volatility of volatility, W,*> and W, are
standard Brownian motions corresponding to the proc-
esses S, and V,, respectively, with constant correlation
p . In 1996, Bate [2] introduced the jump-diffusion sto-
chastic volatility model by adding log normal jump Y,
to the Heston stochastic volatility model. In the original
formulation of Bate, the model has the following form:

dS, =S, (udt+ v dW? )+ S, YdN? 2

vt - All processes that we shall consider in this

dv, =x(0-Vv, )dt+ o v, dW,",

where N is the Poisson process which corresponds to the
underlying asset S,, Y, is the jump size of asset price
return with log normal distribution and S, means that
there is a jump the value of the process before the jump
is used on the left-hand side of the formula. Moreover, in
2003, Eraker Johannes and Polson [3] extended Bate’s
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work by incorporating jumps in volatility and their
model is given by

dS, =S, (udt + [, dW?)+S,_YdN 3)
dv, = k(0 -V, )dt + o v, dW," + Z,dN}' .

Eraker et al. [3] developed a likelihood-based estima-
tion strategy and provided estimates of parameters, spot
volatility, jump times, and jump sizes using S&P 500 and
Nasdaq 100 index returns. Moreover, they examined the
volatility structure of the S&P and Nasdaq indices and
indicated that models with jumps in volatility are pre-
ferred over those without jumps in volatility. But they
did not provide a closed-form formula for the price of a
European call option.

In this paper, we would like to consider the problem of
finding a closed-form formula for a European call option
where the underlying asset and volatility follow the Model
(3). This formula will be useful for option pricing rather
than an estimation of it as appeared in Eraker’s work.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly discuss the model descriptions for the
option pricing. The relationship between stochastic dif-
ferential equations and partial differential equations for
the jump-diffusion process with jump stochastic volatil-
ity is presented in Section 3. Finally, a closed-form for-
mula for a European call option in terms of characteristic
functions is presented.

2. Model Descriptions

It is assumed that a risk-neutral probability measure M
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exists, the asset price S, under this measure follows a jump-
diffusion process, and the volatility v, follows a pure mean

reverting and square root diffusion process with jump, i.e.

our models are governed by the following dynamics:

ds, =S, ((r —/Ism)dt +ﬂthS)+ S_YdNS, (4

dv, = x(0-Vv,)dt+ o v, dW," + Z,dN;,

where S, v,, x, 8, o, WlS and W, are defined as
in Bate’s model r is the risk-free interest rate, N° and
N, are independent Poisson processes with constant in-
tensities A° and A" respectively. Y, is the jump size
of the asset price return with density ¢, (y) and
E[Y,J=m<o and Z isthe jump size of the volatility
with density ¢, (Z) . Moreover, we assume that the jump
processes N° and N, are independent of standard
Brownian motions W,* and W,'.

3. Partial Integro-Differential Equations

Consider the process X, = (Xt(l), Xt(z)) where Xt(l)

and Xt(z)
equations:

O = £ (X0, x P t)de+ gy
Xl(i)ythl(l)
) = f2 (xt(l)s xt(Z)’t)dt + gz (

+Z,dN?

are processes in R and satisfy the following

X", X, t)aw
(5)

X", X t)dw?

where fz g, f, and g, are all continuously differenti-
able, W, g and W are standard Brownian motions

with Corr[th( ,th(z)J: p, NY and NO® are

independent Poisson processes with constant intensities
AY and A®? respectively.

Since every compound Poisson process can be repre-
sented as an integral form of a Poisson random measure
[4] then the last term on the right hand side of (5) can be
written as follows:

t Ny t
TXOYNG =3 X0, = [T xadq (dsda),
0 n=1 on

t Néz) t

[Z, NP =Y 7, =[[rdg(dsdr),
0 0

n R

where Y, are iid. random variables with density @, ()
and dy is a Poisson random measure of the process

fY with intensity measure A ¢g, (dg)dt, Z, are
11d rahdom variables with density ¢, (z), and J; isa
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N

Poisson random measure of the process R, = Y Z, with
n=1

intensity measure /1(2)¢Z (dr)dt.

Let U(x,X,) be a bounded real-valued function and
twice continuously differentiable with respect to X, and
X, and

u(x,%,t)= E[U (X@,X#Z))

X =x, X ](6)
By the two dimensional Dynkin formula [S5], u is a
solution of the partial integro-differential equation (PIDE)
_ou(x,%,,t)
&

+ﬂ("j[u(x1+y,xz,t)
R

+Au(x,%,,t)
(% %,,t) |, (y

+/1(2)f[u(x,,x2 +2z,t)-u

R

(% %,,t) ], (2)dz

subject to the final condition u(X,X,,T)=U (prz) :

The notation A is defined by

KU(XI,XQ,'[)Z f aU();;(XZ’t) + f, aU()(;;XZ’t)
1 2
1, 0%u(x,X, t) *u(x, %, t)
+§g1 76)(1 +,9,0, 75X18X2

1, 0%u(x,x,t
PR

2 0x,
@)

4. A Closed-Form Formula for the Price of a
European Call Option

Let C denote the price at time t of a European style call
option on the current price of the underlying asset S,
with strike price K and expiration time T .

The terminal payoff of a European call option on the
underlying stock S, with strike price K is

max (S; —K,0).

This means that the holder will exercise his right only
if S; >K and then his gain is S; —K . Otherwise, if
S; <K, then the holder will buy the underlying asset
from the market and the value of the option is zero.

Assuming the risk-free interest rate r is constant
over the lifetime of the option, the price of the European
call at time t is equal to the discounted conditional
expected payoff
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C(Sl,vl,t;K,T)

—e"TE,, [ max (S; —K,0)|S,.v, |

"(T")[IST Py (Sr [Seov,)dS; =K [ Py, (S, |St,vt)dSTj
K K

L=
=S, (WIST Py (S |St,vt)dSTJ

t K
- Ke’r‘T’”T Py (Sr1S..V, )dS;
K
1
=S| —————[S; P, (5 [S,,v,)dS;
(M[ssl,t]I (el ]
Ke 00 [P (S, 8,18,
K

=S,P(S,,V, K, T)=Ke " TIPS, v, t; K, T)

®)
where E,, is the expectation with respect to the risk-
neutral probability measure, I:’M(ST |Sth) is the cor-

responding conditional density given (S ,Vl) and

P (S, Vet K, T) [js P (S |St,v)dSTj/EM[ST|Sl,vJ

Note that P, is the risk-neutral probability that
S; > K (since the integrand is nonnegative and the inte-
gral over [O,oo) is one), and finally that

J Py (ST |St’vt)dST
K

=Prob(S; >K|S,,v,)

P, (SuVot:K,T)

is the risk-neutral in-the-money probability. Moreover,
E[Sr SV J=e"s, for t>0.

Assume that the asset price S; and the volatility Vv,
satisfy (4), we would like to compute the price of a
European call option with strike price K and maturity
T . To do this, we make a change of variable from S,
to L, =InS,, i.e. where S, satisfies (4) and its inverse
S, =e“. Denote k=InK the logarithm of the strike
price. By the jump-diffusion chain rule, InS, satisfies
the SDE

dIns, :[r—zsm—\%jdnﬁdwf +In(1+Y,)dN$ (9)

Applying the two-dimensional Dynkin formula [5] for
the price dynamics (9) and volatility Vv, in system (4),
we obtain the value of a European-style option, as a
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function of the stock log-return L, denoted by
C(L,v,t:k,T)=C ( Ve T)
:C(e‘“s‘,v[,t;el“K,T)
=C(S,, V.t K, T),
ie.,
C(Lv,tkT)=e""E,, [max(eLT —K,0)|L[ =1y, =v]
and satisfies the following PIDE:
oC A
0:E+A[C](I,v,t;k,T)
+/‘LSI[C(I+y,v,t;k,T)—C(I,v,t;k,T)]@(y)dy
R

+/1V_|'[(f(l,v+ z,t;k,T)—C(I,v,t;k,T)J@ (z)dz

R

_ (10)
Here the operator A as in (7) is defined by
1 eC aC
A I vtk T)= k(0-v
[ ( 2 )al ( )av
62C 6 ¢
+— v
2 6I2 6|6v
A1 GZVE—I‘C
2 ov?
In the current state variable, the last line of (8) becomes
C(Lv.t:k,T)=€'B (Lv.t:k.T) e "TIB, (Lv.t:k.T)
(11)
where |5j (Lv,tk,T)=P, (e',v,t;ek,T) ,j=12.

The following lemma shows the relationship between P,
and |52 in the option value of (11).

Lemma 1 The functions P, and P, in the option
value of (11) satisfy the following PIDEs

oP < oP
0=a—tl+A[F’l](l,v,t;k,T)+v6—1

+pav%ﬁ+(r—/15m)lsl

+/13:f[(ey —l)ﬁl (1+y.vt: k,T)](/ﬁY (y)dy

and subject to the boundary condition at expiration time
t=T;

P(LV,T:k,T)=1., (12)

moreover, F~’2 satisfies the equation

oP. 5 -
O:ﬁ+A[P2](I,v,t;k,T)+er,
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and subject to the boundary condition at expiration time
t=T,;

P, (LVv,T:K,T)=1,,, (13)
The operator A is defined by

A[F](Lv,t:k,T)

2
::(r—/lsm—l jaf+/c(6?—v)6f+lv6;c
2 Jal ov 2 d

o't 1, o'f
+poV_——+—0V—;
olov 2 ov

+ 25 [[ (14 tk T) = £ (Lv,6K,T) ] (y)dy

R

+ 2 [[F(Lv+ 2K T) = F(LV.T:KT)]4, (2)dz.

—rf (14)

Note that 1, =1 if | >k and otherwise 1., =0.

The following lemma shows how to calculate the
functions P, and P, as they appeared in Lemma 1.

Lemma 2 The functions P and P, can be calculated

by the inverse Fourier transforms of the characteristic
function, i.e.

~ o0 —ixkf' | tkT
P,-(I,v,t;k,T)=1+ljR{e (v tk, )}dx’
2 Wy ix

for j=1,2 with Re[-] denoting the real component of
a complex number. By letting =T —t.
1) The characteristic function f, is given by

f(Lv.txt+7)= exp(g1 (7)+vh, (r)+ixl),

where
2 A2\ (eMT _q
hl(Z')Z . (’71 1)( )AIT
o (771+A1_(771_A1)e )
gl(r)z((r—ﬂsm)ix—/lsm)r
(A, +m,)(1-67A7
—:_—? 2n|1-— 12(A1 ) +(A +m)7

m = po(ix+1)-x

and A, = \n —c’ix(ix+1).
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2) The characteristic function f, is given by

f,(Lv.tix,t+7) =exp(g, (r)+vh, () +ixl +rz),

(2 = 3)(e™ 1)

where  h,(7)= :
o’ (772+A2_(772_A2)eA2T)
gz(r):((r—/lsm)ix—r)r
-A,T
] (A2+772)(1_e 2)
—% 2In|1- o, +(Ay +m,)T

+ASrT (eixy —1)@ (y)dy+/1VrT (eZhZ(T) —1)¢Z (z)dz
n, =ipoX—K

and A, =\ —O'ziX(iX—l) .

In summary, we have just proved the following main
theorem.
Theorem 3 The value of a European call option of (4) is

CIv,tk,T)=€B (Lv,t:k,T)=e"TIB (Lv,t:k,T)

where P, and P, are given in Lemma 2.

5. Conclusions

This paper has proposed asset price dynamics to accom-
modate both jump-diffusion and jump stochastic vola-
tility. Under this proposed model, an analytical solution
is derived for a European call option via the characteris-
tic function.
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Appendix

Proof of Lemma 1. We plan to substitute (11) into (10).
Firstly, we compute

@ _¢ 57|51_ k-r(T-t)@ rekr 05

ot ot ot ?

L _g P gp_gerrn P

al : al

L _g B _gertry Py

ov ov ov

2 205

52 _ 52 2€|@+e||51_ekfrn 1)55’2

al ol ol al

OC _g 0P 4B e 0P,

olov olov ov olov

O’C _ &R jerry O°F
2 2 2 0

ov ov ov
C(1+y,v,t:k,T)-C(Lv,t;k,T)

e B (1+y,v,t:k,T)
—* "I (14 y,v,t:k,T)

>’P P

pav(ala\/ a/] 20'2V alz—rP+isj[(ey—l)

R

+ 2 [[R(Lv+z2EkT) =B (LvtkT) 4 (2)dz

R

subject to the boundary condition at the expiration time
t =T according to (12).
By using the notation in (14), PIDE (15) becomes

P, " oP,
Oza—t1+A[Pl](l v,t;k, T)+vﬁ

Jr,zyo-v?;ll+(r—/15m)|51
<25 [[(& =) R (1 Y.tk T) | (v)dy
R
oP .
=a—t1+A1[Pl](l,v,t;k,T)
For E’;(I,v,t;k,T):

0_£+rP +( ﬂsm—lvjapzﬂc(a—v)
ot 2
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[ (L, tk,T) TR (1v,tk,T)
el (eyl51 (1+y, vtk T)=B (1 + y,v,t;k,T))

+(e'B (14 y.v.tkT)=e'R (Lv.tk,T))
k-
ey

—e IR (14 y vtk T) =B (Lv,t:k,T)
e —1) (1+y,v,5k,T)
+e'pl((|+y,v,t;k,T)—Pl(I,v,t;k,T))
—e TR (1 Ytk T) = B (L.t k. T) |
and
C(Lv+z,tkT)-C(L,v,t;k,T)

=[eB(Lv+2,tkT)=e " TIB (Lv+2,tk,T)]
(B (Lv.tik.T) e TI8, (Lv,tik.T)

=e' [P (Lv+ztkT)-PF (Lv.t:k,T)]
—e IR (Lv+ 2tk T) =Py (Lv,t:k,T) |

We substitute all terms above into (10) and separate it
by assumed independent terms of P, and P,. This
gives two PIDEs for the risk-neutralized probability for
P,(Lv,t;k,T), j =1,2 : (Equation (15))

(14wt T)+B 1+ Y vtk T) -ROwEKT) |4 (y)dy (15)

1 &R, 7P 1 , P <
+-V—=+pov +—o'vV—-TR,
2 d olov 2 ov

+2° [[ B (1+y.v.t:k,T) -

RN

B (1v.t:k.T) | (y)dy

+2 [[B(Lv+2,tk,T)-

R

B (Lv.t:k.T) g, (z)dz
(16)

subject to the boundary condition at the expiration time
t=T according to (13). Again, by using the notation in
(14), PIDE (16) becomes

0= %D+A[P 1d,v,t; Kk, T)+rP

- P AR EKT).
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The proof of Lemma 1 is now completed.
For j=1,2 the characteristic functions for

F~’j (Lv,t:k,T),
with respect to the variable k are defined by

f(Lv,txT)= '[e'XKdP (Lv,t:k,T),

—0

with a minus sign to account for the negativity of the

measure de .

Note that f i also satisfies similar PIDEs

of.
E‘+Aj[fj](l,v,t;x,T)=0, (17)
with the respective boundary conditions

f,(Lv,t;x,T) je'Xde (Lv,t:k,T)

j e (=5 (k—1)dk)

ixl

=e
since dP, (L, T;k,T)=dl,,, =dH (I-k)=-5(k—I)dk .

Proof of Lemma 2
1) To solve for the characteristic function explicitly,
letting 7=T —t be the time-to-go, we conjecture that

the function f, is given by
fL(Lv.tixt+7)=exp(g, (r)+vh (z)+ixl) (18)
and the boundary condition
9,(0)=0=h(0).
This conjecture exploits the linearity of the coefficient
in PIDE (17).
Note that the characteristic function f, always exists.

In order to substitute (18) into (17), firstly we com-
pute

of , of

A (gt D

of o' f
Elzhl(r) fl alzl - Xzfl
ot . o f,
ala\‘/:lxhl(r) f, = =h’(7) f,

f(1+yvtxt+7)-f(Lv,txt+7)
:(eixy —1) f, (I,V,t;X,t+T)

fi(Lv+ztxt+7)-f (Lv,txt+7)
= (e”"(’) —1) f(Lv.txt+7)
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and
(ey —1) f(1+y, vt X t+7)= (ey —l)eg‘(r)Wh'(T)“X(”y)
(ey —l)eixy f(Lv,t;xt+7)

Substituting all the above terms into (17) and after
canceling the common factor of f,, we get a simplified

form as follows:
0= —gl'(r)—vhl’(r)+(r —ﬂsm+;v]ix
+(x(0-V)+pov)h, (r)—%vx2
+ povixh, (7) +%0'2Vh12 (r)-A°m

+ 48 j(e(ix”)y —1)@ (y)dy

+/1Vﬂ[( e —1)¢Z( )dz.

By separating the order v and ordering the remaining

terms, we can reduce it to two ordinary differential equa-
tion (ODEs),

hi(7) 2%0'2h12 (T)+(p0(1+ ix)—

and

I()hl(2')+%ix—%xz (19)

0/ (7) = x6h, (7)+(r - 2°m)ix—2°m
+ 15 T( (ix+1)y l)aﬁv 20)
+lvT(Zh| )¢Z()

—o0

Let 7, = po(ix+1)—« and substitute it into (19). We get

h'(7)= %az (hf +%h1 +O}2ix(ix+1)j

2

1.2 [hl . 2n, +\/47712 —402ix(ix+1)J
2 20

20°

= lo.z [hl +h +2A1 j[hl +h _ZAIJ
2 o c

n —o’ix(ix+1) .

X[hl L 20— 4] —402ix(ix+1)J

where A, =
By the method of variable separation, we have

2dh,

+A —-A
(h1+77102 1)(h]+7710-2 1]

=oidr.
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Using partial fractions, we get

S I_A— 1+A dh, =dr.
A, hl+77121 hl+77121

o o

Integrating both sides, we obtain
h1 + U _Al
2
Inj —2 _|=A7r+C.
h+’71+A

Using boundary condition h(z =0) =0, we get

C=In (’7' j
n+A
Solving for h,, we obtain
N G
o (771+A1—(771—A1)eA1’)

In order to solve g,(7) explicitly, we substitute h, (7)

into (20) and integrate with respect to 7 on both sides.

Then we get

gl(r)z((r—/lsm)ix—/lsm)r

0 (A, +m,)(1-™"

—% 2ln[1— ! lZ(AI ) +(A +1,)T

+lSTT (e(‘x“)y —1)¢v (y)dy

—o0

+/1VTT ( (e

'~1)¢, (2)dz

Proof of 2). The details of the proof are similar to case 1).

Hence, we have
f,(Lv,txt+7)= exp(g2 (7)+vh, (z)+ixl + rr)
where g,(7), h,(7),7, and A, are as given in the Lemma.

We can thus evaluate the characteristic functions in
explicit form. However, we are interested in the risk-neu-
tral probabilities I5j, j=12. These can be inverted from
the characteristic functions by performing the following
integration
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P (Lv.t;k,T)=

N =

et IX

o [e™f (Lv,tk,T
+1IR{e (VERT) g an

for j=1,2.
To verify (21), firstly we note that

E,, |:eix(lnSt—an) |1n S, =Ly, :VJ
=E,, [eix(L"k) L =Ly, =v] = T eix(l*k)dﬁj (Lv,t;k,T)

=g ™ T e™dP, (1,v,t;k,T)=e ™ T ™ (-5 (1-k)dk)

= f, (Lv,tk,T).
Then

= e (Lv,tk,T
et
2 mg

IX

— E,, |:eix(ln5t—an) |1nSt =L,V :V:I

iX

1 1+oo eiX(|—k)
=Ey|;+-|R dx|L, =1y, =v
M2 x '[ ¢ ix |Lt !

EERES sin(x(1-k))

dx

=Ey| S+

dx|L =1,v, =v
ot

1 sin X
=E, |=+s n
M| 5 TSE J.

dx|L[ =1y, _v}

11
=E, |=+=s n
M_z 5 g

-K)|L =1Ly, —v}

=Eu[ L]k =Ly, =V]

where we have used the Dirichlet formula .[ %d =1
0+
and the sgn function is defined as sgn(x)=1 if x>0,

0if x=0 and-1if x<0O.
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