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Abstract 
 
Usually asset price process has jumps and volatility process has long memory. We study maximum quasi- 
likelihood estimators for the parameters of a fractionally integrated exponential GARCH, in short FIECO- 
GARCH process based on discrete observations. We deal with a compound Poisson FIECOGARCH process 
and study the asymptotic behavior of the maximum quasi-likelihood estimator. We show that the resulting 
estimators are consistent and asymptotically normal. 
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1. Introduction 
 
Parameter estimation in GARCH models has been studi- 
ed extensively in view of their wide applications. In or-
der to incorporate long memory in the model we look at 
the continuous time counterpart. Most of the financial 
transactions are recorded these days with ultra high fre- 
quency which are also called tick-by-tick data. The most 
important feature of these data are irregular spacing of 
observation time points. If one aggregates the data up to 
fixed time intervals, there is loss of information which 
should be avoided. Hence it is natural to model price 
processes in continuous time. Also volatility clusters on 
high level. This long-run volatility persistence is not taken 
into account by GARCH models. Levy processes con- 
tribute non-normality and jumps in the observed part of 
the model and fractional processes contribute long me- 
mory in unobserved part in the model. Based on discrete 
observations of the price process we estimate all the un- 
known parameters of the price and the volatility process 
by the maximum quasi-likelihood estimation. We use 
Gaussian quasi-likelihood as a contrast function. Maxi- 
mum quasi-likelihood estimator is an application of Kal- 
man filter in the context of maximum likelihood estima- 
tion. Even if the data are non-normal, we use the Gaus- 
sian log-likelihood. 

Non-negative Ornstein-Uhlenbeck processes were first 
studied by Wolfe [1] who obtained it as a limit of an au- 
toregressive process with positive innovations. These days  

non-negative Ornstein-Uhlenbeck processes have recei- 
ved lot of attention in view of their applications as inter-
est rate and stochastic volatility models, see Barndorff- 
Nielsen and Shephard [2,3]. Gaver and Lewis [4] studied 
estimation in first order autoregressive gamma process. 
Davis and McCormick [5] studied estimation for first or- 
der autoregressive process with positive or bounded in- 
novations. Neilsen and Shephard [6] studied likelihood 
analysis of a first order autoregressive model with expo-
nential innovations. Brockwell, Davis and Yang [7] stu- 
died parameter estimation of non-negative Levy driven 
Ornstein-Uhlenbeck processes. Jongbloed, van der Meulen 
and van der Vaart [8] studied nonparametric estimation for 
Levy driven Ornstein-Uhlenbeck processes. 

Parameter estimation in Gaussian Ornstein-Uhlenbeck 
process was extensively studied in Bishwal [9]. To ac-
count for the strong persistence in volatility, which 
sometimes is observed in empirical data, we study the 
FIECOGARCH (fractionally integrated exponential con- 
tinuous time generalized autoregressive conditional het- 
eroscedastic) process. The log-price process has jumps 
and the log-volatility process has long memory. The long 
memory effect introduced in the log-volatility process, 
propagates to the volatility process. Thus the model here 
captures the two stylized facts of long memory and jumps. 
Continuous time long memory process in volatility re- 
ceived some attention, see Comte and Renault [10] where 
they used fractional Ornstein-Uhlenbeck process as the 
stochastic volatility process and Comte, Coutin and Renault  
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[11] where they used fractional CIR square root process 
as the stochastic volatility process. Marquardt [12] studi- 
ed fractional Levy processes and applied it to long me- 
mory moving average processes. Marquardt [13] studied 
multivariate fractionally integrated CARMA processes. 
Bender and Marquardt [14] studied stochastic calculus 
for convoluted Levy processes. Haug and Czado [15] 
studied structural properties of an exponential continuous 
time GARCH process. Haug and Czado [16] studied the 
structural properties of FIECOGARCH model. Czado and 
Haug [17] used an exponential autoregressive conditional 
duration model to describe the dependence structure in 
durations of ultra high frequency financial data. Haug, 
Kluppelberg, Lindner and Zapp [18] studied method of 
moment estimation in the COGARCH(1,1) model. CO- 
GARCH model is suitable for irregularly spaced obser- 
vation times. Straumann and Mikosch [19] studied quasi- 
maximum likelihood estimation in conditionally hetero- 
scedastic time series model. Haug and Czado [20] stud- 
ied quasi-maximum likelihood estimation and prediction 
in the compound Poisson ECOGARCH(1,1) model. 
 
2. Preliminaries 
 
Fractional Levy Process is a generalization of fractional 
Brownian motion and is defined as  
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Following are the properties of fractional Levy process: 
1) The covariance of the FLP is given by  
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2) HM  is not a martingale. For a large class of Levy 
processes, HM  is neither a semimartingale. 

If the Levy process M is of finite activity, then the cor- 
responding fractional Levy process HM  is of finite va- 
riation. In the case when M is not of finite activity, the 
corresponding fractional Levy process is not a semimar- 
tingale. 

3) HM  is Hölder continuous of any order   less 

than 
1

2
H  . 

4) HM  has stationary increments. 

5) HM  is symmetric. 

6) HM  is self similar. 

7) HM  has infinite total variation on compacts. 

8) HM  is not self similar. 

9) HM  has long memory. 

10) Fractional Levy Ornstein-Uhlenbeck (FLOU). 
Process: 

The FIMA (fractionally integrated moving average) 
process is defined as  
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and the kernel g is the kernel of a short memory moving 
average process. 

The process  HY t  can be written as  

    ,= d ,
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t

H HY t g t u M tu  

We assume the following conditions on the kernel g: 
  . 

(A1)   = 0g t  for all  (causality). < 0t

(A2)   ctg t Ce  for some constants  and  

(short memory). 

> 0C >0C

FIMA process is stationary and is infinite divisible. 

Consider the kernel    
  0,= t s g t s e I t s 

   then 

     
3

2
(0, )0

= d
1

2

  
  

    

 
Ht s

Hg t e I t s s s t

H

, . 

Note that  

   ,
, = d  ,  H t HR

V g t u L u t  

is the fractional Levy Ornstein-Uhlenbeck (FLOU) pro- 
cess satisfying the fractional Vasicek model  

, , ,d = d d , .  H t H t H tV V t M t  

 
3. Main Results 
 
The FIECOGARCH process is given by , ,d = dH t H tY X tL  

,
, =

VH t
H tX e

 
  

, ,d = d d ,H t H t HV V t M t   

where t  is a Levy process independent of ,L H t  which 
is a fractional Levy process of integration (Hurst) para- 
meter 

M

 0.5,0.75H . 
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We estimate ,   and   by the maximum quasi- 
likelihood method and study the asymptotic properties of 
the estimators. 

Equivalently, ,
,d = d d

X H t
H t tY t e  L

,

 

 , ,d = d dH t H tX X t M H t  . 

The log-volatility process is strictly stationary and the 
covariance function is of the form  

 when .      2 12 2
, , 1log , log  
  H

H t h H tCov C h h 

The autocorrelation function of log-volatility and vo- 
latility process decay at a hyperbolic rate. 

The autocovariance function of the price returns over a 
time interval of length   > 0r
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  We will treat the special case of Compound Poisson 
FIECOGARCH process first. We will estimate the pa- 
rameters by maximum quasi-likelihood estimation me- 
thod. 

A compound Poisson FIECOGARCH process is driven 
by the Levy process L with Levy symbol  

     
2

0,1/= 1
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u
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where 0,1   is a normal distribution with mean 0 and 
variance 1  . This means that L is the sum of a standard 
Brownian motion W and a compound Poisson process  
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k
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where  is an independent Poisson process with in- 

tensity 
tN

> 0  and jump times   k k Z
T

 0,1/

. The Poisson pro- 

cess is also independent from the i.i.d. sequence of jump 
sizes  with Z N kZ

k Z 1  . The Levy process 

M in this case is given by  
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The stationary log-volatility is of the form  
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The log-price process is given by  

0
=1

= , 0, 
t

k

N

t T k
k

S Z t S = 0.  

We observe  at n consecutive jump times  S
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over the time interval  0,T . The state process HX  has 
then the following autoregressive representation  

 

 

 

1

1

1

1

, ,

= 1

,

=

d

= 1

i

i i

Ti
i k

Ti

Ti i

i

i i

i

T
H T H T

N
T T

k k
k N

T s

T

T T
H T i i

X e X

e Z Z

e C s

C
e X Z Z e





 

 

  



  










 

 





   

   



     
 




 

where 1:= , = 1,2, ,  i i iT T T i n  and  
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include the jump at time  and its corresponding jump 

size is 
iT

iZ . 

The leverage effect depends on the sign of  . We 
will also identify the leverage parameter  . 

The compound Poisson process has finite activity. The 
observation of the log-price process is given by  

1, ,
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= =
i

k i
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T T k H T H Ti
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We study the parameter estimation in two steps. The rate 
  of the Poisson process N can be estimated given the 
jump times i , therefore it is done at a first step. Since 
we observe total number of jumps n of the Poisson pro- 
cess N over the T intervals of length one, the MLE of 

T

  
is given by  

ˆ := .n

n

T
  

Theorem 3.1 We have  
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LLN and CLT and delta method applied to the se- 

quence  
  1

,0 , = 1,2, ,H iI S i  n  give the results.  

The CLT result above allows us to construct confi- 
dence interval for the jump rate  . A  100 1 %  con- 

fidence interval for   is given by 

1 1
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2

q 


 is the 1
2

 
 


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

-quantile of the standard nor- 

mal distribution. 
To estimate the remaining parameters  , ,   , we use 

the quasi maximum likelihood (QML) estimation proce- 
dure as developed by Straumann [21] in conditionally 
heteroscedastic time series models. Since the conditional 
distributions of the returns is unknown, we will use the 
QML approach by choosing the Gaussian quasi-likeli- 
hood as a contrast function. 

The conditional log-likelihood has the representation  
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where the estimates of the volatility  

are given by  
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and given the parameters   and   the estimates of 
the state process X are given by the recursion  
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Note that    2
= , 0,1

π
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
E W W N . 

Here the approximation  for small  is   1 ze  z z

used. The recursion needs a starting value ,0
ˆ

HX  which 
will be the mean value zero of the stationary distribution 
of X. 

MQLE of   is defined as  

 ˆ ˆ:= arg , .max
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The parametric estimator of volatility at jump times 
 is given by  0 1 10 = < < < < < ,  n nT T T T T n Z
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which uses the MQLE n̂ . 

Let  0HF   be the Fisher information of the log-price 

process where 0  is the true parameter. The following 

theorem gives the strong consistency and the asymptotic 
normality of the MQLE. 

Theorem 3.2  

0
ˆa) . .  as  n a s n   

    1/2 1
0 0

ˆb) 0, as    D
n Hn N F n  

Proof. The discrete time process  process is strong 
mixing with geometric rate and since strict stationarity of 

S 

2  implied strict stationarity of  is also ergodic. 
Hence application of the Birkoff ergodic theorem and 
central limit theorem for strongly mixing process proves 
the theorem. 

S 

Remark. We considered the case  0.5,0.75H 

 1/2
logn n

2 1Hn

. 
For the case , the asymptotic distribution of 
the MQLE will be normal with the rate  and 
the asymptotic distribution of the MQLE will be non- 
Gaussian Rosenblatt distribution with rate 

= 0.75H

 . This 
shows the different behavior of the MQLE in different 
parts of the Hurst space even in the stationary case. In 
the nonstationary case, the limit distribution will be 
mixture normal. Thus not only the original parameter 
space, but also the Hurst space plays an important role in 
obtaaining the limit distribution of the MQLE in long 
memory models. 
 
4. Conclusions 
 
We studied parameter estimation in a FIECOGARCH 
model from discrete data. We obtained the consistency 
and asymptotic normality of the maximum quasi-likelihood 
estimator. Here we assumed H to be known. An im- 
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portant problem is estimation of H, for instance based on 
second order quadratic variation and remains to be in- 
vestigated. 
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