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Abstract 
 
This paper provides a methodology for valuing a Loan Credit Default Swap Index (LCDX) and its tranches 
involving both default and prepayment risks. The valuation is path dependence, where interest, default and 
prepayment rates are correlated stochastic processes following CIR processes. By Monte Carlo simulation, a 
numerical solution and team structure of tranched LCDX are obtained. Computing examples are provided. 
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1. Introduction 
 
Credit markets have seen an explosive growth over the 
last decade. New products, like CDOs, CPDOs, are br- 
ought to the market with an unprecedented complexity. 
However, the financial crisis happened three years ago 
makes people more careful with these products. 

Loan-only Credit Default Swaps, called LCDS in sim-
ple, are financial instruments that provide the buyer an 
insurance against the default of the underlying syndi-
cated secured loan. Its markets were launched in 2006 
both in US and Europe. It can be seen that there is an 
explosive growth of the markets these years. Compar-
ing to a standard Credit Default Swaps (CDS), a LCDS 
contract is almost the same, except that 1) its reference 
obligation is limited on loans; 2) it can be cancelled. So 
that, the pricing of LCDS must take into account not 
only default probabilities with recovery rate, but also 
the prepayment probabilities. These two probabilities 
are negative correlated. The stronger the relationship 
between default and prepayment, the higher the LCDS 
spread. 

Like a CDS Index (CDX), a Loan Credit Default Swap 
Index (LCDX) is the most popular index of LCDSs and 
is composed of 100 equally weighted single-name LCDSs. 
It is the benchmark index for the loan-only CDS in North 
America. LCDX was the first standardized liquid product 
for taking directional views on a portfolio representing 
the syndicated secured loan market. Moreover, positions 
can be taken by now in standardized tranches on LCDX: 
[0% - 5%], [5% - 8%], [8% - 12%], [12% - 15%] and 

[15% - 100%]. The [0% - 5%] tranche is quoted as up-
front premium (no running spread), while the other 
tranches are quoted in running spread. LCDS trades are 
cancelable if no suitable debt remains to deliver upon 
settlement. The LCDS trades are then completely can-
celed and the corresponding LCDX trades are factored 
down. LCDX tranches are affected by simply reducing 
the size from the super-senior tranche because of pre-
payment, while the most junior tranche is reduced by 
default of the reference first as CDX. 

In the literature, different models for pricing risk de-
rivatives. These models can be classified into two main 
categories known as structural and reduced form models. 
Structural models are based on the model proposed by 
Merton [1], which shows that a company’s equity can be 
regarded as European call options. Black-Cox [2], and 
Longstaff and Schwartz [3] developed the model for de-
fault event as soon as the firm’s asset value falls below a 
certain level. Reduced form models are not determined 
by the firm value, but by the first jump of an exogenous 
jump process. The parameters governing the default haz-
ard rate are inferred from market data. These models can 
incorporate correlations between defaults by allowing 
hazard rates to be stochastic and correlated with macro-
economic variables. Duffie and Singleton [4], Lando [5], 
and Zhou [6] provide examples of research using this 
approach. For the pricing LCDS, Zhen Wei [7] consid-
ered a single name LCDS, where default and prepayment 
intensities were involved. He used a single-factor model 
with common factor and correlation coefficient to depict 
the negative relationship between default and prepay-
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ment, whose rates follow double stochastic process. 
However, his model allows a negative prepayment rate, 
which lacks of financial meaning. Based on Zhen Wei’s 
work, Dobranszky et al. [8] times the prepayment inten-
sity with a coefficient variation to describe the relation-
ship between LCDS and CDS.  

For pricing a basket LCDS, the reduced form model is 
used more frequently due to the scale and complexity of 
the pool. The reduced form model can be classified to 
two categories: “bottom up” and “top down”. In a bottom 
up model, the portfolio intensity is an aggregate of the 
constituent intensities. In a top down model, the collat-
eral portfolio is modeled as a whole, instead of drilling 
down to individual constituents; the portfolio intensity is 
specified without reference to the constituents. The con-
stituent intensities are recovered by random thinning. 
The benefit of a top-down approach is its simplicity as a 
result of not having to model the individual constituents 
of the underlying portfolio. Giesecke [9] contrasts these 
two modeling approaches. It emphasized the role of the 
information filtration as a modeling tool. Wu, Jiang and 
Liang [10] use top-down model to pricing of MBS with 
repayment risk. Using bottom upframework, Shek, Ue-
matsu and Zhen Wei [11] studied pricing a CDS refer-
enced a pool loan, described the default and prepayment 
by single-factor Gaussian Copula model. They obtained 
the spread of the LCDX through Monte Carlo simulation. 
Dobranszky and Schoutens [12] used single-name copula 
to describe the relationship between default and prepay-
ment. Under “top down” and intensity framework, Liang 
and Zhou [13] using a single-factor model, correlated 
default and prepayment risks are considered, where they 
are considered as two kinds of decreases in the pool, and 
the stochastic interest rate is used to be their common 
factor, where negative intensity of prepayment is de-
scribed as refinance. A closed form solution is obtained 
in the work. 

In this paper, we deal with structured credit risk prod-
ucts quite similar to the synthetic CDO of credit default 
swaps (CDS). More precisely, a tranched portfolio of 
loan-only credit default swaps (LCDS) is considered. 
Under “top down framework”, and based on work of [8], 
the references pool of LCDX is considered as an entity. 
The difficulty here is that the default and prepayment 
are negative correlated and affect LCDX in different 
directions and they are path dependent as ones of an 
Asian option. That means, the pricing has no analytical 
solution. By linear transformation, we use independent 
random variables to express interest, default and pre-
payment rates. Through Monte Carlo simulation, we ob-
tain numerical solutions. Numerical examples are pre-
sented. 

The structure of the paper is as follows: In the next 

section, we establish a pricing model for LCDX, by in-
troducing two processes of default and prepayment rates. 
In the third section, we use CIR processes to describe 
interest, default and prepayment rates, then the pricing 
model can be calculated. In the fourth section, some nu-
merical examples are shown. Summary is in the Conclu-
sion section. 
 
2. Modeling LCDX  
 
As mentioned before, the main point of LCDS is a 
probability that the loan prepays earlier and hence the 
instrument is cancelable. During the life of an LCDS 
contract, two kinds of events may be triggered, either 
the underlying loan is prepaid or the loan-taker goes to 
default. If a prepayment event were triggered first, the 
LCDS would have been cancelled. Otherwise, the LCDS 
would have defaulted, when the LCDS issuer would have 
to pay the recovery adjusted notional amount to the 
LCDS buyer. 

On the model established in LCDS [13] at time s, 
,  where d

s s sdD A ds p
s s sdP A ds sD  and sP  are 

the accumulative amount of default prepayment respec-
tively, and sA  is the outstanding principal balance at 
time s. Then for any s > 0,  

1.s s sA D P    

The default and prepayment risks have opposite im-
pact on the tranches. The default goes from the jun-
ior-most tranche until it is completely redeemed, then 
allocated to the next tranche, while the prepayment goes 
from the senior-most tranche until it is completely re-
deemed. The prepayment does not result in loss, thus the 
investor need not pay for prepayment. 

Denoted the accumulative loss in the pool at time s by 
 1s sL R  D . For a mezzanine tranche [A,B], (0 ≤ A ≤ 

B ≤ 1) with attachment point A and detachment point B, 
we define its accumulative loss at time s as: 
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It can also be expressed as 

  
,

.
1 1A B s

s A L B L Bs s

L A
L

B A   


  

 

The accumulative decrease on the notional principal at 
time s is 

.s sPP P RDs                (1) 

The second term in the right side of (1) is coming from 
the fact that defaults amortize the senior-most tranche. 
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Hence, when defaults occur, both the junior-most and the 
senior-most tranches are impacted. The junior-most 
tranche notional principal is reduced by the amount of 
the loss and the senior-most tranche notional principal is 
amortized by the amount of the recovery. We define the 
decrease on the notional principal of the tranche [A, B] at 
time s as: 

.
 

The fair spread of tranche [A, B] is chosen such that 
the expected present value of the fee payments for that 
tranche is equal to the expected loss payments. 

The fee payment can be calculated as 
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and the expected loss payment is shown as 

 
 

0
dd, ,d : e 1ut
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Loss t L t A L Bt t

A
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Then c is chosen such that it balances ,A B

FeePV  and 
,A B

LossPV , i.e. 
average options. Therefore, using the single-factor model, 
the problem cannot be simplified. Thus, in this study, we 
use CIR Process to describe the behavior and correlation 
of d

t , p
t  and t  directly. This is also guaranteed 

that all rates are positive. By Monte Carlo simulation, we 
obtain a numerical spread solution. 

r
 1 .L Fc R V V                (2) 

This is the pricing formula for tranched LCDX. 
 
3. The Solution Under CIR Process Suppose that d

t , p
t  and  follows the stochastic 

process of CIR, i.e. 
tr

 
In [13], we use a single-factor model to describe the rela-
tion between default and prepayment. By this model, we 
can find an affine solution for LCDS. When pricing 
LCDX, the pricing Equation (2) is much more compli-
cated than the one of LCDS. The model in LCDX turns 
to path dependent, somewhat like the ones of arithmetic  

  ,t t tdr r dt r dW     t  

  , ,i i i i i i i
t t t td dt dW i         .d p   

Rewrite the formula as 
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W
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where κ, θ, σ etc. are all positive constants; tW ,  
and 

d
tW

p
tW   follow standard Brown Motion. It is well 

know that, under the condition 
2 22 , 2 , ,i i i i d p       ,  

These CIR processes are nonnegative and their boun-
daries at origin are unattainable [14,15]. 

These three processes are correlated. Denoted i , 
 by the correlations of ,  1, 2,3,i 

,
 , d

t tdW dW
 p

tdW dWt  and t t  respectively. As the 
default and prepayment rates are opposite correlated to 
the interest rate, the first one is positive while the second 
one is negative. That means 1

 ,ddW dW p

0  0, 2  . No matter 
how interest rate changes, the relationship of the default 

and the prepayment rates is negative, i.e. 3 0  . 
The covariance matrix is denoted by  

 , ,d p
t t t tdW dW dWdW  is: 

 
1

cov , , .d p
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1

 
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 
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To fetch random numbers which are not independent 
for a simulation, we need to deal with the correlation of 
the variables. Here, we introduce a lemma: 

Lemma A linear transformation of a normal distribu-
tion is still a normal one. 

According to this theorem, we can find an independent 
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process vector t , a 3 × 3 matrix A 
and three-dimension constant vector b such that  

 , ,t t tdX dY dZdU ,t t dW AdU b               (4) 
where  

 

2
1 1

2 2 2
1 2 3 1 2 33 1 2

2 2 2
1 1

1 0 0 0

1 0

01 2

1 1

 

       


 

 
 
           
   

     
    

A b, 0 .  

Take Equation (4) into (3), we have, 
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After transformation, the correlated variables are ex-

pressed as independent ones. Now, we can establish a 
process of the numerical calculation: First, we simulate 
three paths of independent Brown Motion t . 
Second, taking them into Equation (5), we obtain the 
paths of interest rate, default rate and prepayment rate. 
Third, taking these into pricing Equation (2), by differ-
ence method, we obtain the price of different trances. 
This result can be treated as random samples of all the 
possible prices. Another path can get another random 
sample. At last, repeating this process thousands of times, 
getting an assemble of price, averaging these random 
samples, we can obtain the final price of each tranche of 
LCDX.  

, ,t tdX dY dZ

 
4. Numerical Examples 
 
So far, we have derived the pricing Equation (2) and 
numerical method. Here, we give some examples.  

Now, take t = 0, R = 0.3, and consider the spread of 
LCDX. 

Figure 1 shows the shape of LCDX term structures 
with  

   1 2 3, , 0.5, 0.4, 0.5 ,       

  0, , , 0.02,0.04,0.02,0.03 ,r     

   0, , , 0,1,0.1,0.05,0.05d d d d      ,

   0, , , 0.1,0.05,0.02,0.02p p p p     .   

The graph shows that the spread curves of different 
tranches are not intersected. That because that the default 
an

t is larger. The curve 
be

l values of 
de

d prepayment start from the junior-most and senior- 
most tranches first respectively. They allocate next tranches 
only the present ones completely redeemed. It also can 
be seen that the spread of senior-most tranche is very low 
and close to 0, which is the manifestation of taking de-
fault risk last and prepayment first. 

The shape of curve [5% - 8%] is steep during time 2.5 
and 5 which implies that the defaul

comes horizontal from time 8 which indicates that the 
accumulated loss is beyond of this tranche, and the de-
fault is already allocated to the next tranche. 

Figure 2 shows a three dimension figure of tranche 
spread [5% - 10%] with respect to the initia

fault and prepayment rates at time 4. If the initial value 
of default goes up, which means the probability of de-
fault goes larger as well, it results that the spread is more 
expensive. On the contrary, if the initial value of pre-
payment goes up, which means the probability of pre-
payment goes larger, it is an advantage for the investor of 
this tranche and results that the spread is cheaper.  
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Figure 1. LCDS Tranch Spread vs time T. 
 

 

Figure 2. Spread of Tranch [5% - 8%] vs Default & Pre-
payment intensities. 

e impact of correlations 
 

Figure 3 shows th 1 2 3( , , )   . 
In the graph, ρ ≠ 0 means that  

1 2 3, , ) (0.5, 0.4, 0.5)(      , while ρ = 0 mea

1 2 3( , , ) (0,0,0)
ns 

    . Whicheve
sts that the correlatio

he spread. The division of asset pool 
into several tranches redistributes the investment returns 
and risks. It also reduces the impact of correlation be-
tween variables on spread. 

Figure 4 shows the impact of two parameters on a 
junior tranche: mean revers

r tranche, th

little impact on tranc

ion rate and long-term-mean 
of

f default is. This results that the  

e two curve 
n have are very close, which manife

 the default rate, since default starts from the sen-
ior-most tranche. Here, the tranche [5% - 8%] is consid-
ered. The spread increases as the mean reversion in-
creases. In our example, as the mean ( 0.1)d   is big-
ger than initial value 0( 0.05)d  , the default rate re-
verses upward. That means, the greater ion, the 
larger the probability o

 the revers

 

Figure 3. LCDX Tranch Spread with different ρ vs T. 
 

 
 

 

Figure 4. The Spread of Tranch [5% - 8%] with different 
default parameters κ and θ vs T.  
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Figure 5. The Spread of Tranch [12% - 15%] with differen
prepayment parameters κ and θ vs T. 
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spread is more expensive. The incr  
im

Figure 5 shows that the impact on a senior tranche of 
mean reversion rate and long-term

te, since prepayment starts from the senior-most tranche. 
Here, tranche [12% - 15%] is chosen. The spread deceases 
as the mean reversion increases. In our example, as the 
mean ( 0.05)p   is bigger than initial value 0( 0.02)p  , 
the prepayment rate reverse upward. The greater the re-
version er the probability of prep , 
which results that the spread is cheaper. The increasing 
of long-term mean also causes the spread decease. 
 
5. Conclusions 
 
We establish a mo
d

ment rates are correlated with interest rate. All these 
rates are assumed follow CIR process. Using Monte 
Carlo method, we obtain numerical solution and term 
structure of tranched LCDX with graphs, by which pa-
rameter analysis are carried on. 
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