
Intelligent Control and Automation, 2011, 2, 299-309 
doi:10.4236/ica.2011.24035 Published Online November 2011 (http://www.SciRP.org/journal/ica) 

Copyright © 2011 SciRes.                                                                                  ICA 

An Adaptive Fuzzy Sliding Mode Control Scheme for 
Robotic Systems 

Abdel Badie Sharkawy*, Shaaban Ali Salman 
Mechanical Engineering Department, Faculty of Engineering, Assiut University, Assiut, Egypt 

E-mail: *ab.shark@aun.edu.eg 
Received August 7, 2011; revised September 1, 2011; accepted September 28, 2011 

Abstract 
 
In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the 
AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a 
model-free fuzzy sliding mode control. The equivalent controller has been substituted for by a fuzzy system 
and the uncertainties are estimated on-line. The approach of the AFSMC has the learning ability to generate 
the fuzzy control actions and adaptively compensates for the uncertainties. Despite the high nonlinearity and 
coupling effects, the control input of the proposed control algorithm has been decoupled leading to a simpli-
fied control mechanism for robotic systems. Simulations have been carried out on a two link planar robot. 
Results show the effectiveness of the proposed control system. 
 
Keywords: Sliding Mode Control (SMC), Adaptive Fuzzy Sliding Mode Control (AFSMC), Fuzzy Logic 

Control (FLC), Adaptive Laws, Robotic Control

1. Introduction 
 
Performance of many tracking control systems is limited 
by variation of parameters and disturbances. This specially 
applies for direct drive robots with highly nonlinear dy-
namics and model uncertainties. Payload changes and/or its 
exact position in the end effector are examples of uncer-
tainties. The control methodologies that can be used are 
ranging from classical adaptive control and robust control 
to the new methods that usually combine good properties 
of the classical control schemes to fuzzy [1,2], genetic al-
gorithms [3], neuro-fuzzy [4,5] and neural network [6] 
based approaches. Classical adaptive control of manipula-
tors requires a precise mathematical model of the system’s 
dynamics and the property of linear parameterization of the 
system’s uncertain physical parameters [7].  

The study of output tracking problems has a long- 
standing history. Sliding mode control (SMC) is often fa-
vored basic control approach, because of the insensitivity 
to parametric uncertainties and external disturbances [7-10]. 
The theory is based on the concept of changing the struc-
ture of the controller to achieve a desired response of the 
system. By using a variable high speed switching feedback 
gain, the trajectory of the system can be forced on a chosen 
manifold, which is called sliding surfaces or switching sur-
faces, and remains thereafter. The design of proper switch-

ing surfaces to obtain the desired performance of the sys-
tem is very important and has been the topic of many pre-
vious works [11,12]. With the desired switching surface, 
we need to design a SMC such that any state outside the 
switching surface can be driven to the switching surface in 
finite time. Generally, in the SMC design, the uncertainties 
are assumed to be bounded. This assumption may be rea-
sonable for external disturbance, but it is rather restrictive 
as far as unmodelled dynamics are concerned.  

Nowadays, fuzzy logic control (FLC) systems have been 
proved to be able to solve complex nonlinear control prob-
lems. They provide an effective means to capture the ap-
proximate nature of real world. Examples are numerous; 
see [13] for instance. While non-adaptive fuzzy control has 
proven its value in some applications [1,2,14], it is some-
times difficult to specify the rule base for some plants, or 
the need could arise to tune the rule-base parameters if the 
plant changes. This provides the motivation for adaptive 
fuzzy control, where the focus is on the automatic on-line 
synthesis and tuning of fuzzy controller parameters. It 
means the use of on-line data to continually “learn” the 
fuzzy controller, which will ensure that the performance 
objectives are met. This concept has proved to be a prom-
ising approach for solving complex nonlinear control 
problems [15,16].  

Recently, adaptive fuzzy sliding mode control design has  
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drawn much attention of many researchers. Because, con-
trol chattering, an inherent problem associated with SMC, 
can evoke un-modeled and undesired high frequency dy-
namics, Ho et al. [17] have proposed an adaptive fuzzy 
sliding mode control with chattering elimination for nonli-
near SISO systems. The adaptive laws, however, rely on 
the projection algorithms, which can hardly be satisfied in 
practical problems. In [18], the authors have established an 
adaptive sliding controller design based on T-S fuzzy sys-
tem models. The fuzzy system used is rather complicated 
and the upper bound of the uncertainty is needed to synthe-
size the controller. A robust fuzzy tracking controller for 
robotic manipulator which uses sliding surfaces in the con-
trol context can be found in [19]. The control scheme, 
however, depends heavily on the properties of the dynamic 
model of robotic manipulators and similar to [17], the au-
thors use the projection algorithms which have practical 
limitations.  

More recently, Li and Huang [20] have designed a MI-
MO adaptive fuzzy terminal sliding mode controller for 
robotic manipulators. In the first phase of their work, the 
fuzzy control part relied on some expert knowledge and a 
trial-and-error procedure is needed to determine the output 
singletons. In the second phase, they designed an adaptive 
control scheme that determines these parameters on-line. 
The rule base, however is restricted to five rules per each 
joint and the fuzzy singletons should have values within 
specified ranges to enforce stability.  

In this work, an adaptive fuzzy sliding mode control 
(AFSMC) scheme is proposed for robotic systems. The 
scheme is based on the universal approximation property of 
fuzzy systems and the powerfulness of SMC theory. A one 
dimensional adaptive FLC is designed to generate the ap-
propriate control actions so that the system’s trajectories 
stick to the sliding surfaces. Adaptive control laws are de-
veloped to determine the fuzzy rule base and the uncertain-
ties. With respect to SMC, the proposed algorithm elimi-
nates the usual assumptions needed to synthesize the SMC 
and better performance can be achieved.  

The paper is organized as follows. In Section 2, the 
equivalent control method is used to derive a SMC for rigid 
robots. Section 3 introduces the proposed AFSMC which is 
a model free approach. Simulation results which include 
comparison between AFSMC and SMC are presented in 
Section 4. Section 5 offers our concluding remarks.  
 
2. Sliding Mode Control (SMC) Design 
 
In this Section, the well-developed literature is used to 
demonstrate the main features and assumptions needed to 
synthesis a SMC for robotic systems. SMC employs a 
discontinuous control effort to derive the system trajec-
tories toward a sliding surface, and then switching on 

that surface. Then, it will gradually approach the control 
objective, the origin of the phase plane. To this end, con-
sider a general n-link robot arm, which takes into ac-
count the friction forces, unmodeled dynamics, and dis-
turbances, with the equation of motion given by 

( ) ( , ) ( ) ( ) ( ) ( )d s dM x x C x x x G x F x F x T t t          

                         (1) 
where 

nx R
nR 

 joint angular position vector of the robot; 
 applied joint torques (or forces); 

( ) n nM x R   inertia matrix, positive definite; 
( , ) nC x x x R   effect of Coriolis and centrifugal forces; 
( ) nG x R  gravitational torques; 

n n
dF R   diagonal matrix of viscous and/or dynamic 

friction coefficient; 
( ) n

sF x R  vector of unstructured friction effects and 
static friction terms; 

n
dT R  vector of generalized input due to disturbances 

or unmodeled dynamics.  
The controller design problem is as follows. Given the 

desired trajectories  with some (or all) sys-
tem parameters being unknown, derive a control law for 
the torque (or force) input 

,,, ddd xxx 

( )t  such that the position 
vector x  and the velocity vector  can track the de-
sired trajectories, if not exactly then closely. For simplic-
ity, let (1) rewritten as: 

x

( ) ( , ) ( )M x x f x x t              (2) 

where the vector  

( , ) ( , ) ( ) ( ) ( ).       d s df x x C x x x G x F x F x T t  

The following assumptions are needed to synthesis a 
SMC:  

Assumption 1: The matrix ( )M x
ˆ ( )

 is bounded by a 
known positive definite matrix M x .  

Assumption 2: There exists a known estimate  
for the vector function  in (2).  

),(ˆ xxf 
),( xxf 

The tracking control problem is to force the state vec-
tor to follow desired state trajectories . Let  

 be the tracking error vector. Further, 
let us define the linear time-varying surface  [21], 

)(txd

)()()( txtxte d
)(ts

( ) ( ) ( )s t e t t  ,  1 2( , ) ( ), ( ), , ( )  T

ns x t s t s t s t  (3) 

where  and )()()( txtxte d  )(t  is a time varying 
linear function. Thus from (2) and (3), we can get the 
equivalent control (also called ideal controller): 

])[(),()(    d
eq xxMxxft            (4)

 
where )(teq  is equivalently the average value of )(t  
which maintains the system’s trajectories (i.e. tracking 
errors) on the sliding surface . To ensure that 
they attain the sliding surface in a finite time and there-

0)( ts
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after maintains the error  on the sliding manifold, 
generally the control torque 

( )e t
( )t  consists of a low fre-

quency (average) component  and a hitting (high 
frequency) component 

eq t
ht

 
as follows 

)t(ht)(teq)(t                    (5) 

The role of )(tht  acts to overcome the effects of the 
uncertainties and bend the entire system trajectories to-
ward the sliding surface until sliding mode occurs. The 
hitting controller )(ht t  is taken as [8,21] 

)ssgn(Kht                     (6) 

where,  n1diag , ,K k k

1 2

 
 sgn ,sgn

, , and 0
sgn
ik

 , ,   sgn n s s s

x

x







)(





s T . 

To verify the control stability, let us first get an ex-
pression for . Using (3)-(5), the first derivative of (3) 
is: 

)(ts

 )

)

ht

i
d txM

tx

tetxs













          

)(          

)(          

)(),(

1 



d

f

t

t

 

)(

)(

tx

t

,(

(
     (7) 

Choosing a Lyapunov function 

)(2 tsi

.0

)



 ist

)[(1 x

0

2

1
1V 

1

n

i

)(

1

n

i i

ii

sk

st 

) 

(tsi

                    (8) 

and differentiating using (6) and (7), we obtain: 

       

(

2

11








i

iht

n

i
sV  )(t

 dx

i 

             (9) 

which provides an exponentially stable system.  
Since the parameters of (2) depend on the manipulator 

structure and payload it carries, it is difficult to obtain 
completely accurate values for these parameters. In SMC 
theory, estimated values are usually used in the control 
context instead of the exact parameters. So that (4) can be 
written as: 

]ˆ,(ˆ)(  eq Mxxft           (10) 

where ,  are bounded estimates for , 
and  respectively. As mentioned earlier in As-
sumption 1 and 2, they are assumed to be known in ad-
vance.  

)(ˆ xM
),( xx 

),(ˆ xxf  )(xM
f

In sliding mode, the system trajectories are governed by 
[9]:  

,0)( tsi  ,         (11) ) n,,1

So that, the error dynamics are determined by the 
function )(t . If coefficients of )t(  were chosen to 
correspond to the coefficients of a Hurwitz polynomial, it 
is thus implying that t . This suggests 0)( telim )(t  
taking the following form:  

 dt)( 21 iiiii ectec , with      (12) 0, 21 ii cc

So that, in a sliding manifold, the error dynamics is: 

0)()()( 21  tectecte iiiii               (13) 

and the desired performance is governed by the coeffi-
cients  and c .  1 2

In summary, the sliding mode control in (5), (6) and (10) 
can guarantee the stability in the Lyapunov sense even 
under parameter variations. As a result, the system tra-
jectories are confining to the time varying surfaces (3). 
With this in hand, the error dynamics is decoupled i.e. 
each degree of freedom is dependent on its perspective 
error function, (13). The control law (10) however, shows 
that the coupling effects have not eliminated since the 
control signal for each degree of freedom is dependent on 
the dynamics of the other degrees of freedom. Inde-
pendency is usually preferred in practice. Furthermore, to 
satisfy the existence condition, a large uncertainty bound 
should be chosen in advance. In this case, the controller 
results in large implementation cost and leads to chatter-
ing efforts.  

c

 
3. Decoupled Robot Tracking Control Design 
 
In this Section, we propose a fuzzy system that would 
approximate the equivalent control (4). The main chal-
lenge facing the application of fuzzy logic is the devel-
opment of fuzzy rules. To overcome this problem, an 
adaptive control law is developed for the on-line genera-
tion of the fuzzy rules. The input of the fuzzy system is the 
sliding surfaces (3), and the output is a fuzzy controller, 
which substitutes for the equivalent (4). With this choice, 
no bounds are needed about the system functions. Fur-
thermore, the uncertainties are estimated and continu-
ously compensated for, which means that the hitting 
controller ht  (6) is adaptively determined on-line. The 
coming Subsection gives a brief introduction to fuzzy 
logic systems and characterizes them with the type, which 
is utilized in this contribution.  

u

 
3.1. Fuzzy Logic Systems 
 
A fuzzy logic system consists of a collection of  fuzzy 
IF-THEN rules. A one-input one-output fuzzy system has 
the following form:  

L

Rule : IF  is THEN  is  l
l fl s A            (14) 

where 1,2, , l L  is the rule number, s  and f  are 
respectively, the input and output variables. lA  is the 
antecedent linguistic term in rule ; and ll  , 1, , l L  
is the label of the rule conclusion, a real number called 
fuzzy singleton. The conclusion of each rule (control ac-

Copyright © 2011 SciRes.                                                                                  ICA 
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tion), a numerical value not a fuzzy set, can be considered 
as pre-defuzzified output. Defuzzification maps output 
fuzzy sets defined over an output universe of discourse to 
a crisp output, f . In this work, we have adopted sin-
gleton fuzzifier, product inference, the center-average 
defuzzifier which reduces the fuzzy rules (14) into the 
following fuzzy logic system: 

1

1

( )
( , )

( )

l

l

L
l

A
l

f L

A
l

s
s

s

 
 












             (15) 

where 
lA  is the membership grade of the input  into 

the fuzzy set l

s
A . In (15), if l ’s are free (adjustable) 

parameters, then it can be rewritten as: 

( , ) ( )T
f s s                     (16) 

where 1( , )L  
,


1[ ( ), ( )]  
 is the parameter vector and  

( )  L Ts s s  is a regression vector given by 

1

( )
( )

( )

l

l

l A
L

A
l

s
s

s










                (17) 

Generally, there are two main reasons for using the 
fuzzy systems in (16) as building blocks for adaptive 
fuzzy controllers. Firstly, it has been proved that they are 
universal approximators [22]. Secondly, all the parame-
ters in ( )s  can be fixed at the beginning of adaptive 
fuzzy systems expansion design procedure so that the 
only free design parameter vector is  . In this case, 

( , )s   is linear in parameters. This approach is adopted 
in synthesizing the adaptive control law in this paper.  

Without loss of generality, Gaussian membership 
functions have been selected for the input variables. A 
Gaussian membership function is specified by two pa-
rameters  ,c  : 

2
1

( ) gaussian( ;c, ) exp
2

l
j

j
j jA

x c
x x 



  
     
   

 

where  represents the membership function’s center 
and 

c
  determines its width.  

The fuzzy system used in this contribution is one input 
one output system, (14). The input of the fuzzy system is 
normalized using L  number of equally spaced Gaussian 
membership functions inside the universe of discourse. 
Slopes are identical, see Figure 1.  

The described fuzzy system is used to approximate the 
nonlinear dynamics of robotic systems. In a decoupled 
manner, the control action is computed for each degree of 
freedom, based on the corresponding sliding surface. The 
control actions l  (output singletons) which are con-

1l 3l2l Ll 

3c1c 2c Lc

 

Figure 1. Input fuzzy sets. 
 
oming Subsection, adaptive laws are derived to do this 

3.2. The Adaptation Mechanism 

Fuzzy systems are universal function approximators. 

section, we derive an adaptive control law 
to

c
task. The antecedent part is fixed with Gaussian mem-
bership functions. 

 

 

They can approximate any nonlinear function within a 
predefined accuracy if enough rules are used. This im-
plies the necessity of using expert knowledge in the form 
of large number of rules and suitable membership func-
tions. Usually trial and error procedure is needed to 
achieve the requested accuracy. Assigning parameters of 
the fuzzy systems (or some of them) adaptively greatly 
facilitates the design (e.g. reduce the number of rules) 
and enhances the performance (saves the computation 
resources).  

In this Sub
 determine the consequent part (control actions con-

tained in parameter vector  ) of the fuzzy system which 
is used to approximate the unknown nonlinear dynamics 
of robotic systems. The proposed scheme saves the need 
to expert knowledge and tedious work needed to assign 
parameters of the fuzzy system. Furthermore, distur-
bances, approximation errors and uncertainties are de-
termined compensate for on-line leading to a stable 
closed loop system.  

Lyapunov stability analysis is the most popular ap-
proach to prove and evaluate the convergence property 
of nonlinear controllers, e.g., sliding mode control, fuzzy 
control system. Here, Lyapunov analysis is employed to 
investigate the stability property of the proposed control 
system. By the universal approximation theorem [22], 
there exists a fuzzy controller ),(  sf  in the form of 
(16) such that 

( )t ( , ) T
eqi f i i i i i is          , 1, ,i n     (18) 

where i  is the approximation error and is bounded by 

i iE  . Employing a fuzzy controller ˆˆ ( , )if i is   to 
ate )(t

ieqapproxim   as  

ˆ ˆˆ ( , ) T
if i i i is                  (19) 

where î  is the estimated value of the parameter vector 

i . Now, the SMC in (5) can be rewritten as:  tained in the param ter vector e   should be known. In the  
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where the fuzzy controller 

 
ˆˆ( ) ( , ) ( )    i f i i i ht i it s s           (20) 

 
ˆˆ ( , ) f i i is

 controller 
 is designed to 

approximate the equivalent ( )eqi t . Define 

  
ˆˆ ( , )     f i eqi f i i is , i i î  use (17), then it 

is obtained that 
 , and 

T
if i i i                      (21) 

An expression for ( )s t  can be expressed as follows:  

1 1

1 1

( , ) ( ) ( )

          ( ) ( ) ( )

          ( ) ( ) ( , ) ( )

          ( )( ) ( ) ( , ) ( )

d

d
eq ht

s x t e t t

x t x t t

M x M x f x x x t

d

M x M x f x x x





 

t  

 

 

 

  

   

    

 
 

 
 

 


(22) 

Substituting from (19-21):  
1 )( )( hts M x u                 (

where 

23) 

1 1 2 2, , ,T T T T
n n        

   .
( )

  Now, assume that 
1M x

 can be approximated by 
finite diagonal matrix 

known constant posi-
tive de M . Unlike constant con-

 schemes (see [23,24] for example), this assump-
tion has been taken into accoun s follows. Equation (23)
can be rewritten as 

trol gain
t a  

, ( )T
i i i ht i i i is M u E    ,   1, ,i n     (24) 

where is the suiE  
certainties. A cont

f 

m of approxim n errors an
rol goal would  on-line 

Define a Lyapunov functio  

atio d un-
be the determi-

nation o its estimate, ˆ ( )iE t . The estimation error is de-
fined by 

( )E t E  ,  1, ,i n  .        (25) ˆ ( )i i iE t

n as

 
2E2

2 1
( ), ,

2
n

i ii
V s t E s M


 


 

, ,
1 2

1

2 2

T
i i i

i i i
i i

M
 
 

 
 



 
  

 
where  and  are positive constants. Differentiat-
ing (2 ect to time and using (23), it is

(26)

1
5) with 

2
resp  ob-

tained that 

 2 ,
 


      

T
n i i i i

i i

E E
V s , ,1

1 2

,
 

   
  

 i i i i i i i ii
i i

E s s M M  

, ,1
1

( )
T

n T i i i i
i i i ht i i i i i i i ii

i

E E
s M u E M M

 
 

 


    



      ,

2i





, ,1
1

[ ( )] ( )
n jT i i

i i i i i i i i ht i i i ii
i

E E
M s M s u E M


 




,

2i
     
 
 


     

To satisfy , the adaptive laws can be selected as 

i



2 0V 

1i i is                    (27) 

 

Using (20) 

ˆ sgn( )ht i i iu E s               (28)

2
ˆ ( )i i i i             (29) E t E s   

then (22) can be rewritten as 

  2) ]i i i iE s E2 ,1
ˆ( ), , [ sgn(

ˆ( ) 0 

n

i i i ii

i i i

V s t E M s E s

E E





,1
                        

m

i ii
s M



   


  
   

 

(3

Therefore,  is reduced gradually and the con
system is stabl  which means that the system trajectories 
converge to t sliding surfaces 

0) 

trol 2V
e

he ( )s t  while ̂  and
re

 Ê  
main bounde Now, if we let 

 
d. 

, 21
ˆ( )  

m

i i i ii
Γ t s M E E V

 i            (31) 

and integrate  Γ t  with respect to time, then it is 
shown that 

 
 is bounded and

 is non-incr unded, it implies that 

        (33)

2 20
( )d ( (0), , ) ( ( ), , )       (32) 

Because

   t
Γ V s E V s t E  

2 ( (0), , )V s E 
easing and bo

2 ( ( ), , )V s t E   

0
lim ( )d

t

t Γ          

Furthermore, Γ
  is bounded, so that by Barbalat's 

lemma [7], it can be shown that
 0

( )d 0 lim t Γ . 
esult, the proposed 

t

That is, . As a 
AFSMC is asym

e re tten as follow

ler (34) has two terms; 

( )s t  0  as
pto

 0t  r
tically stable.  

Hence, the control law (18) can b wri s 

 
ˆ, ) sgn( )i f i i i i iu t u s E s , 1, , .i n     (34) ˆˆ( ) ( 

In summary, the adaptive fuzzy sliding mode control-

 
ˆˆ ( , )f iu s  given in (19) with

parameter 
 the 

î  adjusted by (27) an

 AFSMC

d the uncertain
ap

nals to the robotic system may result in chattering caused     

ties and 
proximation bound ˆ

iE  adjusted by (29). By applying 
these adaptive laws, the  is model free and can 
be guaranteed to be stable for any nonlinear system has 
the form of (2).  

It should be noted that implementing the algorithm 
implies that the both error dynamics and control signals 
has been decoupled, since each of them is dependent 
only on the perspective sliding surface. Unlike SMC, the 
proposed AFSMC does not require any knowledge about 
the system functions nor their bounds. It adaptively de-
termines and compensates for the unknown dynamics 
and external disturbances leading to a stable closed loop 
system. Figure 2 shows the main elements of the control 
system.  

Remark 1. Since the control laws (6) and (34) contain 
the sign function, direct application of such control sig-
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Figure 2. The closed loop control system utilizing AFSMC. 
 
by the signal discontinuity. To overcome this problem, 
the control law is smoothed ou

yer 

1x

2x

1l

2l

1m

2m

 

t within a thin boundary 
  la [7,21] by replacing the sign function by a satu-

ration function defined as:  

sgn         1

sat 

i i

i

s s

s  
  

  
     

                 1

i i

i i i

i i

s s

 



   


 

 
4. Simulation Results 

 
 this Section, we simulate the AFSMC and SMC on a 

ulation tests are carried out 
using MATLAB R2009a, version 7.8 under Windows 7 

In
two link robot; Figure 3. Sim

Figure 3. A two link rigid robot. 
 

The friction and disturbance torques were unknown to 
the algorithm. Random signals were generated by the 
rand function in MATLAB. 

The desired trajectories for  and were set as: 

environment. A two link robot arm with varying loads is 
used to generate data in the simulation tests. The arm is 
depicted as 2-input, 2-ouput nonlinear system. The con-
trol architecture shown in Figure 2 represents the closed 
loop system, in which the robot is the plant to be con-
trolled. The detailed descriptions of the matrices )(xM , 

( , )C x x  and )(xG  in (1) for this robot are given in Ap-
pendix A. We consider the state variable vector as the 
joint positions; i.e. 1 2[ , ]Tx x x . They are usually avail-

dback als through encoders mounted on the 
motor shafts.  

Link parameters a 2 (1)rand , 

2 1 3 (1)m rand   , 1 1.0 ml  and 2 0.7 ml , where 
the mass of lin

able fee  sign

1x 2x  

1 1 1 2 2 2( ) ),   d dsin( ) ,   ( ) sin(x t t  A t x t A   

with 1 1.2   A rad , 2 1.6  radA , 1
1 π / 2 rad s   , 

1
2 π rad s   . 
Initially, the arm is assumed at rest, i.e.  

1
0 [0,0]  rad s  T , and position of links as  tx

[π /12, π /12]  Tx 0  radt

sition error o o
0 [15 , 15  te

1[1.89, 5.03] s

, which resulted in initial po-
and velocity error ]  degreeT  

re

 k tw randomly 
om n es from 

 1 2m  


k one

va
0.10.0  . Figure 

k tw
ure 4(b). 

1m  and lin
o-rand

a) shows t
ue

o 2m  are 
umbe rang
me history

ried; )1(rand  is a pseud r 
4( heir ti . A ran-

dom disturbance torq  has been added to the gravity 
torque of lin o, such that [0,  7 (1)]T

dT rand  , Fig-
Dynamic and static friction torques were se-

lected as follows:  

15cos( )    0

0    3d

x
F

2cos( )x

 
  


, 11.8 sgn( ) 
  s

 21.2 sgn( ) 

x
F

x
 

0 rad T

AFSMC has been
 te
The   

. 
 simulated under the following

se termine each 
of the o equivale

ttings. Two rules were implemented to de
 tw nt control components, i.e. 2L  in 

(14). Each rule base has 
the subscript de

ber. This means that a total 
te

   

one input, is  and one output, 

ieq , where tes the joint num-
 were used to de-

1,2i   
of 4 

no
rules

rmine the two equivalent torques. This is relatively a 
quite small number of rules. In a similar study, i.e. adap-
tive fuzzy sliding mode control for nonlinear systems [25], 
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(a)                                                         (b) 

Figure 4. Mass of links (a) and disturbance (b) profiles. 
 
the rule base consists of 36 ru
freedom system (the inverted

Coefficients of the sliding surf
s  and . After few simulation 

in

les for a one de
 pendulum).  

gree of 

aces in (12) were picked 
a 1 2

tests, the learning rates were adjusted as 1 [15,1.5]T   
and 2 [45,6]T  . The estimated errors in (28) 

[40, 40]Tc 

 function in 

[3,3]Tc 

d (28) has 

have been 
itiated as ˆ [ 300, 100]TE    . As mentioned earlier, the 

sign (6) an been replaced by the 
saturation function with 1i , 2,1i .  

Ev he parameter vectors is given in Figure 
5(a). Zeros te their elements. The su-
perscripts denote the rule number, 1 and 2. The rates of 
adaptation for the param ec e d

olution of t
were used to initia

eter v tors ar epicted in Fig-
ur

by the AFSMC. Similar to what we 

e 5(b). As it can be noticed, the rate of adaptation of 
rule 1 is very close to rule 2 for the same joint. This re-
mark was noticed by the authors from an enlarged version 
of Figure 5(b). Time history of the estimated errors is 
shown in Figure 6. 

With respect to SMC in (5), (6) and (10), we have si-
mulated it under the following settings. The control sys-
tem has been initiated with the same initial conditions (i.e. 
e  and e ) followed 
did with respect to the AFSMC, the sign function in (6) 
has been replaced by the saturation function. The gain K  
of the hitting controller gain in (6) was set as 70K I  

ere wh I  is 22  identity matrix. This value of K  has 

been sel , ected as the maximum
maximum possible rate of 

 possible one which means 
convergence. Larger value 
hesize the SMC, results in chattering. To synt ˆ ( )M x and 

ˆ ( , )f x x  in (10) were selected as follows: ˆ 5M I  whic h 
means that it is a time-independent matrix and  

0.5  0 2ˆ
0  0.5 1 d s df x F x F T
   

       
   

   

where ,  d sF F  and dT  are defined above.  
Similar to AFSMC, the friction and disturbance torques 

were unknown to the control algorithm. Results are shown 
in Figures 7-12. A close look to these Figures shows that 

SMC tle . Figure 12 
de
the AF was lit -bit faster than SMC

picts the control signals. In the transient phase, the 
maximum input torques of the SMC exhibits larger values 
than those of the AFSMC.  

In order to quantify the performance of the two con-
trollers, we have used the following three criteria. 

1) Integral of the absolute value of error (IAE):  

0
( )  d 

ft
IAE e t t  

2) Integral of time multiplied by the absolute value of 
the error (ITAE) 

0
( )  dft

ITAE t e t t   
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Figure 5. Time history of (a) parameter vectors (i.e. control actions) and (b) adaptation rate.  
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Figure 6. Time history of the estimated er

 
 Integral of th

rors. 

3) e square value (ISV) of the control input 

2

0
( ) dft

ISV u t  t   

 

Both IAE and ITAE are used as objective numerical 
measures of tracking performance for an entire error 
curve, where  represents the total running time (3 
seconds). The  criterion gives an intermediate result. 
In ITAE, time appears as a factor; it will heavily empha-
size errors that occur late in time. The criterion ISV shows 
the consumption of energy. Results are given in Table 1. 

These results slightly differ when we run the software 
more than one time under the same conditions. This is 

o the random signals involved in the simulation 
nd the disturbances). 

rly notice that the AFSMC 
e performance 

in

ft
 IAE

referred t
(masses of the links a

Nevertheless, one can clea
out performs the SMC with respect to all th

dices. 
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Figure 7. The desired joint angles  actual angles  
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Figure 8. Time history of the sliding surfaces. 
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Figure 9. Phase plots. 
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Figure 10. Velocity tracking errors.  
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F  igure 11. Trajectory tracking errors. 
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Table 1. The per rmance indices. 

Controller Joint IAE (rad) × 10−  rad·s–1) × 10−2 ISV (N.m)2 × 104 

                  

Figure 12. The input torques. 

fo

2 ITAE (

AFSMC Joint 1 2.80 1.6 1.447 

 Joint 2 2.92 1.2 0.15 

SMC Joint 1 2.86 1.62 2.41 

 Joint 2 4.26 2 0.37 

 
Finally, it can be concluded that all signals of the pro-

posed control system are bounded, the states hav
verged to the equilibrium points and the cont
have been met. 
 
5. Conclusions 
 
In this article, we utilized the universal approximation 

property of fuzzy systems and powerfulness of SMC 
 compose an AFSMC scheme for robotic systems. 

m and uncertainty 
e. The proposed control 

he following advantages: 1) does not require 
del; 2) guarantees the stability of the closed 
) uses a simple rule base (one-input one- 

output fuzzy system). The adaptive control law generates 

e con-
targets 

theory to
Optimalrol  parameters of the fuzzy syste
bound are generated on-lin
scheme has t
the system mo
loop system; 3
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on-line the fuzzy r hermore, t certain
learned on-line and  comp o
parison with SMC, the proposed co cheme is d
coupled and has eli ed the assu s, which a
usually needed to synthesize a SMC. 

The control scheme has been simulated on a two link 
pl

uting time, thereby increasing the sam-
ling frequency for possible implementation. It shoul

e developed adaptive laws learn the 
zzy rules and uncertainties. Zeros have been used to

ules. Furt he un ties are 
 adaptively ensated for. In c m- 

ntrol s e- 
minat mption re 

 

anar robot. The fuzzy system needs only two rules per 
joint to determine the control signal. The approach sig-
nificantly eliminates the fuzzy data base burden and re-
duces the comp
p d be 

 
emphasized that, th
fu
initiate them. Results show the effectiveness of the overall 
closed-loop system performance. 
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Appendix A 
 
Assuming rigidity of links and joints and using the Lagran

bot arms is given by 
ge method, it can be shown that the equation of motion of the 
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11 2 1 2 2

sl l x  
22 sinl l x  

 
C m ,x

),

12 2 1 2 2 2in ,x
 

C m

21 2 1 2 1 2sin ,C m l l x x 
 

( ) cosG m m gl x 1 1 2 1 1 2 2 1 2cos(m gl x x 
 

2 2 2 1 2cos( ),G m gl x x 
 

2and 9.8 m sec  is the acceleration of gravity. 
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